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Abstract: The feasibility of maximum likelihood (ML) analyses of models for marginal distribu-
tions of contingency tables diminishes as the numbers of margins and response categories
increases. This article describes alternative approaches that are much more feasible. We recom-
mend a “pscudo ML"™ approach that obtains model parameter estimates by treating repeated
responses as independent and uses a jackknife to estimate the covariance matrix of those
estimates. We test marginal homogeneity using a Waid statistic. or by ad apting the efficient score
statistic from the independent-samples case. We illusirate these approaches with a seven-dimen-
sional table having 78 125 cells, and we give simulation results that show no substantive loss of
efficiency from using pscudo ML estimates.

Keywords: Loglinear models; Longitudinal data: Maximum likelihond; Ordinal data; Pscudo
maximum likelihood: Score statistic; Weighted lcast squarcs.

1. Introduction

At each of T occasions, suppose we observe responses for n subjects on a
categorical variable having I levels. A T-dimensional contingency table having
IT cells then cross-classifies the n observations. The hypothesis of marginal
homogeneity, which we denote by MH, states that the T first-order marginal
distributions of the responses are identical. At occasion g, let ¢,(g) denote the
probability that a subject makes response h. There is MH if

dy(l)=d,(2)= -+ =¢,(T). forh=1....1I (1.1)
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This article discusses ways of comparing marginal distributions for large,
sparse contingency tables. These methods test MH in the context of a model for
the marginal distributions, such that MH is a special case of the model. There
are several advaniages of making the test model-based. First, this leads naturally
to post-test description and inference regarding the nature of the marginal
heterogeneity. Second, models can be generalized to incorporate explanatory
variables, so that effects of those variables can also be analyzed or so one can
make adjusted comparisons of marginal distributions. Finally, it is often sensible
to use a directed alternative to MH corresponding to some model so that the
test statistic has fewer degrees of freedom, and hence potentially greater power.
This is particularly true when the response is ordinal.

There is considerable literature on likelihood methods for testing MH.
Madansky (1963) gave a likelihood-ratio test. It assumes a r. ultinomial likeli-
hood for the I7 cells for the table, and it compares the likelihood maximized
subject to constraint (1.1) to the likelihood maximized in the unrestricted case.
That is, Madansky’s test is simply a goodness-of-fit test for the model of MH.
The unrestricted alternative hypothesis corresponds to the saturated model for
the marginal distributions. Firth and Treat (1988) and Lipsitz (1988) showed
how to conduct this test using standard software such as GLIM and SAS. An
alternative likelihood-based approach tests MH in the context of the quasi-sym-
metry model. It tests the hypothesis that the quasi-symmetry model holds with
MH (i.e., that there is symmetry) against the alternative that quasi-symmetry
holds without MH, by comparing the maximized likelihoods for the symmetry
and quasi-symmetry models. See Darroch (1981) and Agresti (1990 , Section
11.2) for details on these and other methods for testing MH.

Even in this modern computer age, such likelihood-ratio tests are difficult to
implement or even infeasible when I and 7 are moderately large, because of the
huge number of cells and the extreme sparseness of the table. For instance,
consider Table 1. based on data presented by Landis and Koch (1977). This
table presents classifications on a 5-level ordinal scale regarding carcinoma in
situ of the uterine cervix, for seven pathologists evaluating n = 118 slides. The
ordered response categories are: (1) Negative; (2) atypical squamous hyperpla-
sia; (3) carcinoma in situ; (4) squamous carcinoma with early stromal invasion;
(5) invasive carcinoma. The resulting contingency table has 57 = 78 125 cells. The
table satisfies MH if the seven raters have identical response distributions, but it
is unclear how one can test MH. Many sums of cell counts that are sufficient
statistics for the symmetry and quasi-symmetry models equal zero, and regular
ML estimates do not exist for these models. Madansky’s ML test and directed
methods based on models for marginal distributions must maximize a multino-
mial likelihood having 78 124 parameters, subject to certain constraints for the
first-order marginal distributions. Methodology for maximizing likelihoods sub-
ject to constraints has been available for some time (Aitchison and Silvey, 1958),
but published examples of such analyses (e.g., Haber, 1985) have dealt only with
small tables.

The main purpose of this article is to describe simple strategies for comparing
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marginal distributions of large, sparse contingency tables. We propose a method
that uses ML to estimate model parameters under the naive assumption that the
repeated responses are independent, but then uses a jackknife to obtain an
appropriate estimated covariance matrix of the estimates. For Table 1, in
treating the 7 marginal distributions for the 118 observations with 5-category
response as independent, we apply standard ML methods to 7 X 118 = 826
observations in cells of a 7 X5 table. Problems of sparseness and awkward
computations then disappear. To test MH, we conduct a Wald test using these
estimates. We also show how one can test MH by modifying the covariance
structure in score statistics (Rao, 1973) for comparison of independent multino-
mial distributions.

Sections 2-4 present the strategies for comparing marginal distributions. We
illustrate their use for ordinal classifications in Section 5, and apply them in
Section 6 to compare the marginal distributions of Table 1. Section 7 gives
results of a simulation study that suggests the naive estimates are surprisingly
efficient. Section 8 briefly describes use of the methods with nominal classifica-
tions.

Though this article focuses on simple comparisons of marginal distributions,
in practice it is usually important to describe the dependence of those distribu-
tions on a set of explanatory variables. Also, as we discuss in Section 9, missing
data often pose a problem in longitudinal studies. We study the simpler case of
no covariates and no missing data primarily to focus attention on basic strategies
and to make some simple efficiency comparisons. However, when there are
covariates, the feasibility of standard ML approaches becomes even more
problematic.

2. Pseudo ML estimation assuming independent multinomials

For large, sparse tables, one can easily fit models for the T first-order marginal
distributions by treating sample counts from different margins as statistically
independent. This naive approach was used for univariate longitudinal data
problems by Liang and Zeger (1986). Consider the T X I table consisting of the
T sample marginal distributions. A singie observation in the original I7 table is
replaced by T observations in this 7 X I table. One obtains parameter estimates
by using ML to fit the model to this table, treating the rows as having
independent multinomial distributions. The resulting estimates are not truly
ML, since those distributions are not truly independent and the function
maximized is not the true likelihood. But, the consistency of the sample
estimators of the marginal probabilities implies that these ‘pseudo ML’ estima-
tors are consistent, assuming that the model chosen to represent the variation in
the marginal distributions holds. The estimated covariance matrix obtained by
treating the margins as independent is not consistent for the true covariance
matrix of the estimators, however.

For tables that are too large for ordinary ML methods, we recommend
estimating model parameters using the pseudo ML estimates and estimating the
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covariance matrix of those estimators using the jackknife method. Calculating
the estimated covariance matrix involves re-fitting the model repeatedly, each
time deleting one observation, and using the left-hand side of formula (2.3) in
the following discussion. If K cells in the full /7 table have non-zero counts.
then one need only do K re-fits of the model, weighting the results to obtain the
jackknife estimated covariance matrix. Simulation results of Lipsitz et al. (1990a)
for modeling repeated binary responses suggest that for each re-fit of the model,
it is preferable to use a one-step jackknife rather than a fully-iterated jackknife.
This procedure, outlined below, uses only the first step of the Newton-Raphson
iterative process for fitting the model, with the pseudo ML estimates as the
initial estimates. Fox et al. (1980) and Simonoff and Tsai (1986) discussed
advantages of such “linearized” jackknife procedures for use in obtaining
standard errors of estimates in general non-linear modeling. The one-step
jackknife also saves considerable time in what can be a computationally inten-
sive estimation process.

White (1982) and Gourieroux et al. (1984) gave the true asymptotic covari-
ance matrix for the ML estimator of a model with misspecified likelihood. The
one-step jackknife estimator is asymptotically equivalent to an estimator White
proposed of that matrix. We next outline the reasons for this asymptotic
equivalence.

For a model having parameter vector B, the pseudo ML estimate B is
obtained by setting

u(B) =Y u,(B)=0, (2.1)

and solving for ﬁ where u,(B) denotes the contribution to the score vector (the

derivative of the log likelihood with respect to B) from subject i. Given [i and
deleting the jth subject, the first step of the Newton-Raphson algorithm
produces

f,-B+ Zl,-(ﬁ)]-'[):ui(é)]. (22)

i#j i#j
where L1(B) = —Xou,(B) /0B is the information matrix. From (2.1),

Z"i(é) = —uj(ﬁ)s

i#j

so that (2.2) becomes

(.,-6)=-|Zu(#) (8
i)
One form of the jackkniie cstimator of the covariance matrix of B is

L(6.-6)(8 -4

-¥ {[Zi ’m}* '!,uf(ﬁ>uj(é)'l[21i(é)]'}- (23)
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Under regularity conditions needed for [5 to be consistent, this is asymptotically
equivalent to
-1

lzl:ln(ﬁ)] ‘[Ejlu,(ﬁ)",(ﬁ)][fll’,(ﬁ)] ~ (2.4)

which is the estimaror proposed by White. The asymptotic equivalence refers to
cacn of these estimators converging (when multiplied by n) to the true asymp-
fetic covariance matrix of #'/* (B — B). The usual estimator of the covariance
reatrix, the inverse information [L7(B)] ™', is aymptotically equivalent to (2.3)
and (2.4) under the additional assumption that

E[L(B)] = E[u,(B)u,(B) ].

where the expectaion is taken with respect to the true distribution (i.e., not the
naive ‘independence” distribution) of the data.

The left-hand side of (2.3) is often simpler to compute than (2.4). This is
particularly true for model (5.2) discussed in Section 5, for which the naive
likelihood is rot a simple function of model parameters.

2, Tasts of marginal homogeneity

After obteining modei parameter estimates and an estimated covariance matrix,
onc can apply standard methods of inference. For instance, one can iest MH
using a Wald <ki-squared test for umformity of certain parameters across the 7
occasions. For cach pcrameter ons contributes 7~ 1 elements to a vector d of
differ-nces between 7 — 1 of the secasions and a baseline occasion. The Wald
statistic then has form d’V 'd, where V ois an estimated covarianice matrix of d.

Alternativeiy, and computationally more simply, one can formuiate test statis-
tics for MH by adapting efiicient score statistics for this hypothesis. The efficient
score staiistic 1s @ quadratic form based on the score vector of partial derivatives
of the log likelihwiod with respact to the parameters of interest, evaluated at the
null hypothesis ¢stimates. Cox and Hinkley (1974, Chapter 9) and Rao (1973,
Section be) desciibed this type of test and showed asymptotic eguivalences
among it and the Waid arut likelihood-ratio tests. Our approach is to calculate
the score vector using the pseudo log likelihood (i.e., treaiing the T marginal
distributions as independent), but to calculate its covariance matrix using the
true undcrlying dependence structure.

Specif::aily. for the model chosen to reflect possible departures from MH, we
obtain the score vector by calculating partial derivatives of the pscudo log
likelihoord with respect to the model parameters describing the marginal differ-
cnces. evaluated at the estimates obtained under MH. Since it depends only on
the first derivative of the log likelihood, the score vector provides a consistent
indication of whether MH holds (under the model assumption), regardless of
the true dependence structure. We estimate the covariance matrix of the score
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vector using the dependence structurc across occasions implied by a multinomial
assumption for the complete /' table. The test statistic is a quadratic form
comparing the score vector to its null expected value, weighted by the inverse
estimated covariance matrix. Thus, the test statistic has the simplicity of a score
statistic for independent samples, yet it takes into account the actual depen-
dence.

There arc two forms for this pseudo score statistic. One form uses the
estimated covariance matrix for the score vector under the assumption of MH,
whereas the other form uses the non-null estimated covariance matrix. Under
MH, the two estimates converge to the same matrix as # increases, though one
expects better approximations to null asymptotic sampling distributions using
the null-based estimate. The pseudo score test approach is applicable when the
overall sample size is large enough that the score vector is approximately
normally distributed, so that the quadratic form has an asymptotic chi-squared
null distribution. This can happen cven when data are so highly sparse that
regular or pseudo ML estimates of model parameters do not exist.

4. Weighted least squares model-fitting

One can use weighted least squares (WLS) methodology (Koch et al., 1977) to
formulate another approach that is also more amenable than standard ML for
fitting models to margins of large, sparse contingency tables. We now give some
attention to WLS, because one can readily implement it with standard computer
software.

In modeling first-order marginal functions such as logits, WLS methods
require only the second-order marginal tables to estimate the asymptotic covari-
ance structure of those response functions. For many models, one can obtain
WLS fitting of the models for marginal distributions using procedure CATMOD
in SAS. The second-order marginal cour ts must be sufficiently large that the
sample response functions are approximately normally distributed and their
estimated covariance matrix is non-singular. In practice, this usually requires the
first-order marginal counts to nearly all exceed about 5-10. Koch ct al. (1977),
Landis et al. (1988), and Agresti (1989) gave examples of the use of WLS for
analyzing repcated categorical data.

‘When the model holds, WLS is asymp:otically cquivalent to ML for the full
I table. When the sample size is large and WLS is feasible but ML is not, WLS
may be preferred over pscudo ML methods because of computational simplicity
and guaranteed optimal asymptotic effici-ncy. However, the pscudo ML meth-
ods have the advantage of being apphcauble when the data are too sparse to
support WLS. In particular, unlike WLS, pscudo ML metheds apply when there
are continuous explanatory variables. Also, the example in Section 6 shows that
WLS is unreliable and highly sensitive to slight changes in the data when some
marginal counts are small. In such cases, WLS estimates may be much poorer
than pseudo ML estimates.
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5. Marginal comparisons of ordinal classifications

To illustrate methods for comparing marginal distributicns, we discuss a general
class of models,

Link(g) =, —#es =l I—1,  g=1,....T, (5.1)

for ordinal response variables. The link is some function of the first-order
marginal probabilities. Two important special cases are: (1) the cumulative logit
model, whereby

Link;(g) = logit[v;(£)] (5.2)

with y,(g)=¢(g)+ --- +¢(g), and (2) the adjacent-categories logit model,
whereby

Link,(g) = log[¢;(2)/®,..(2)]- (5.3)

We use the latter model partly because of its equivalence to a simple loglinear
model, the row effects model. In model (5.1), {a;} are nuisance parameters, and
{Mg} describe variation in the marginal distributions. For this model, MH
corresponds to u, = --- = u,. For identifiability, {,ug} satisfy a constraint such
as Xu, = 0. For the cumulative logit link, it follows from Anderson and Philips
(1981) that if therc¢ are underlying continuous logistic distributions for the
marginal distributions, differing only in location, then this model holds and
differences among {u,} describe the location shifts.

Our pseudo ML approach fits the model to the T X I table of sample
marginal distributions, treating the samples as independent multinomials. We
estimate a covariance matrix for the estimates of {u,} using (2.3) for the one-step
jackknife. Using those results, we can test MH using a Wald test, letting the
vector of differences be the pseudo ML estimates of (g, — pyv.n.s by — 1)
The chi-squared asymptotic distribution for the Wald statistic has df =T — i,
rather than df=(T— 10/ —1) as in the most general (unstructured) tests.
Testing MH using this model gives a test directed towards variacion in location
among the occasions.

For many versions of model (5.1), pseudo score statistics provide simple
alternative ways of testing MH. Let n,; denote the number of subjects who make
response Jj at occasion f. Assuming no missing data, let n =n, = ¥ n, . For a set

Jrhye
of monotone response scores {rj} for the ordinal response scale, let

M, = Zl‘jn”-/il, r=1,...,T, and M= Zz'jn_j/nT.
I .

J

Then M, is the ‘mean’ response at occasion ¢ for the response scores {t'}, and
M=% M,/T is the mean response for the sum of the single-factor response
distributions. Our pseudo score statistics are quadratic forms describing varia-
tion among these means, or equivalently variation from 0 among {d, =[(M, —-
MY-(M;-M))=M,-M,, t=1,...,T—1}. The quadratic forms use esti-
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mated covariances among {d,} generated by assuming multinomial sampling over
the full 17 table.

Let p,(t)=n,/n and let p,(tu) denote the proportion of subjects making
response h at occasion ¢ and response i at occasion u. Let d =(d,,...,d,_,)’
and for all (j, k) with j < T, k <T, let § denote the matrix having elements

Sip = E Zl’hvi[pm(jk) ~Pui(JT) — p,i(KkT) +ph(T)5hi]
h i

_(Mj "MT)(Mk - My),

where 8,,=1 when h=i, and §,,=0 when h #i. Letting Y, denote the
response score for subject i at occasion ¢, we can also express

sie =2 [(Ye = M;) = (Yog = Mp)]|[(Y = M,)) = (Yor = Mp)] /.
e
Then s, /n is the unrestricted ML estimate of Cov(d;, d,), and the quadratic
form Q =nd’S~'d is an asymptotic chi-squared statistic for testing MH, based
ondf=T-1.

For model (5.3) with rows in the T X I table treated as independent multino-
mials, the efficient score vector for testing MH has components n(M, — M),
with {¢; =j}. Hence the statistic Q is a pseudo score statistic for testing MH
using that model. When we let {v;=[n, + -+ +n_;_, +(1/2)n]/n}, the aver-
age cumulative proportion or ‘ridit’ scores for margin {n,j, j=1,...,1},Qisa
pseudo score statistic for the cumulative logit model (5.2).

The pseudo score statistic Q is equivalent to the WLS goodness-of-fit statistic
for testing the null mean response model

E(M,)=a, t=1,...,T,

using a multinomial sampling assumption for the I’ table. One can compute
this statistic using procedure CATMOD in SAS. For T =2, Bhapkar (1970),
Fleiss and Everitt (1971), Koch and Reinfurt (1971), and Meeks and D’Agostino
(1983) have proposed tests of this form. It is also possible to use CATMOD to
do standard WLS fits of models (5.2) and (5.3), incorporating the full multino-
mial dependence structure, at least when the first-order marginal totals are not
too small.
The alternative form of the psetido score statistic uses

Sip = Z(K, - YzT)(Y:k =Yy)/n,
1]
which yields an estimated covariance matrix under the null hypothesis of equal
marginal means. When MH holds, one would expect the score statistic usirg this
estimate to have actual distribution more closely approximating the arvmptotic
chi-squared distribution, for smalt to moderate n. The two forms of the esti-
mated covariance can give quite different test statistic values, and a good topic
for future study is to compare operating characteristics of the two approaches.
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Table 2
Estimates of {u,} for cumulative logit model
Pathologist Pseudo Pseudo Dependent Jackknife

ML WLS WLS
A 0.58 (0.165) 0.52 (0.155) 0.37 (0.066) 0.58 (0.088)
B 0.51 (0.158) 0.49 (0.165) 0.30 (0.066) 0.51 (0.087)
C -0.19 (0.152) —-0.19 (0.156) 0.02 (0.040) —0.19 (0.087)
D —-0.51 (0.153) —0.47 (0.157) —-0.38 (0.073) —0.51 (0.083)
E 0.62 (0.156) 0.55 (0.158) 0.34 (0.075) 0.62 (0.088)
F —1.13 (0.164) —1.06 (0.164) —0.67 (0.098) -1.13 (0.128)
G 0.12 (0.156) 0.16 (0.161) 0.02 (0.039) 0.12 (0.058)

In the meantime, for purposes of testing MH, we recommend using the statistic
based on the null estimate.

6. Marginal comparison of carcinoma ratings

Table 1 is highly sparse, with 118 observations in 78 125 cells. The first-order
marginal counts are much less sparse, varying between 1 and 69, with 23 of the
35 counts exceeding 10. We first tested MH with Wald statistics for model (5.1),
using the jackknife to estimate the covariance matrix of pseudo ML estimators.
The Wald statistic equals 113.6 for the cumulative logit case and 57.5 for the
adjacent-categories logit case. Both statistics are based on df = 6, and give very
strong evidence against MH.

Table 2 gives pseudo ML and jackknifed pseudo ML estimates of {u } for the
cumulative logit model, as well as estimated standard errors. The pseudo ML
estimates are the ones obtained by fitiing the cumulative logit version of model
(5.1) to the 7 X 5 table of sample marginal distributions, treating the seven rows
as independent multinomial samples. The jackknife estimates are the average of
the 118 estimates obtained by leaving out, one at a time, each of the 118
observations. The standard errors we report for the pseudo ML estimates are
the ones that treat the samples as independent, and are incorrect. The ones for
the jackknife, based on (2.3), recognize the dependence and hold for the pseudo
estima*s ax well. We included the incorrect ones to show how one can
drasticeliy cverestimate v.riability in describing within-subject effects by naively
treat.ng the samplcs as independent.

In addition, we used WLS to fit the cumulative logit model to margins of the
table, directly incorporating estimates of dependence from a multinomial struc-
ture for the full 57 table (We added 0.001 tc the count for cell (4,4,4,4.4,4.5) to
obtain a nonsingular covariance matrix). The reliability of such estimates is
questionable, since two marginal counts equal 1 and two equal 2. The WLS
Wald statistic for testing i, = -+ = u, equals 85.7, based on df = 6. The WLS
fit has residual chi-squared equal to 98.5, based on df = 18. The mocel does not
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appear to fit well, but it detects cnough of the departiure from MH to also give a
very small P-value.

Table 2 also contains the WLS model parameter estimates, as well as pseudo
WLS estimates based on using the WLS method to fit the model to the 7 X 5
table that treats the margins as independent. The pseudo WLS estimates have
similar values as the pseudo ML estimates. The WLS estimates that incorporate
the dependence are somewhat different from the others, and have smallest
estimated standard errors. However, a sensitivity analvsis revealed that these
estimates are unreliable, because of the presence of small marginal counts. For
instance, all raters made rating 4 more often than rating 5 except for rater F,
who made rating 4 only once and rating 5 four times. If we change the
observation (4,3,3,3,3,5,3) to (4,3,3,3,3,4,3), thus increasing rater F’s marginal
count for rating 4 from 1 to 2, the WLS Wald test statistic for MH drops from
85.7 to 32.7, and the third column of estimates in Table 2 changes dramatically
from (0.37, 0.30, 0.02, —0.38, 0.34, —0.67, 0.02) to (0.28, —0.04, —0.02, —0.27.
0.12, —0.05, —0.02). By contrast the pseudo WLS estimates hardly change at
all, the largest change being the first, which changes from 0.520 to 0.528.

For only 8 of the 118 slides did any raters use rating 5, and all marginal
counts that are less than 10 refer to rating 4 or 5. Thus, combining these rating
categories should improve the reliability of methods that are highly susceptible
to sparseness. When we combine categories 4 and 5, all marginal counts equal at
least 5. The WLS Wald test statistic changed from 85.8 to 94.6, and the WLS
model estimates changed to (0.43, 0.44, —0.19, —0.37, 0.41, —0.84, —0.12).
These are much closer to the pseudo WLS and ML estimates in Table 2. In this
case, the WLS estimated standard errors also increased to levels close to those
reported for the jackknife. Combining columns has trivial results on the other
approaches. For instance, the pseudo WLS estimates all changed by less than
0.02 (reflecting the property of invariance to scale collapsings that McCullagh
(1980) gave as an important quality of this model), and their naive estimated
standard errors all changed by less than 0.001.

Similar results occurred for the adjacent-categories logit model. Table 3
reports estimates of {u,} and estimated standard errors for that model, using
the same four approaches. Estimates are smaller than those for the cumulative

Table 3
Estimates of {u,} for adjacent-categories logit model
Pathologist Pscudo Pscudo Dependent Jackknife

ML WLS WLS
A 0.32 (0.084) 0.28 (0.077) 0.20 €(0.038) 0.32 (0.054)
B 0.24 (0.084) 0.21 (0.086) 0.11 (0.031) 0.24 (0.049)
C —0.09 (0.086) ~0.13 (0.090) 0.02 (0.026; —0.09 (0.050)
D —0.27 (0.089) —-0.27 (0.092) -0.20 (0.044) —0.27 (0.053)
E 0.34 (0.084) 0.29 (0.089) 0.13 (0.045) 0.34 (0.055)
F —0.59 (0.098) —0.46 (0.088) —0.26 (0.052) —0.59 (0.096)
G 0.05 (0.084) 0.07 (0.089) 0.01 (0.024) 0.05 (0.031D
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logit model (about half as large), since differences of estimates refer to local log
odds ratios rather than log odds ratios utilizing the entire response scale. Again,
the standard errors reported for the pseudo estimates are incorrect, being too
large. The jackknife estimated standard errors are more reliable, and apply both
to the jackknif: estimates and to the pseudo ML and WLS estimates.

Pseudo score statis:.:s for model (5.1), like the Wald statistics using the
jackknife estimates a.. . their standard errors, give strong evidence of marginal
heterogeneity. For instance, the version with {v; =} (the score statistic for the
adjacent-categories logit model) gives a chi-squared statistic of 68.2 (df = 6)
using the null estimated covariance.

7. Efficiency of pseudo ML and WLS estimates

An important matter to consider for the pseudo estimates is whether they are
much less efficient than the ordinary estimates. When responses are strongly
correlated across occasions, one would expect that a pseudo ML or pseudo WLS
estimator might have larger mean squared error (MSE) than an ordinary ML or
WLS estimator, since the pseudo estimators ignore the dependence. However,
we performed a small-scale simulation study that gave promising results for the
relative efficiency of the pseudo estimators. For marginal comparisons using the
adjacent-categories logit model, preliminary results show no reduction in preci-
sion using pseudo estimators compared to ordinary estimators.

Because of the extremely time-consuming nature of the ordinary ML estima-
tion process, we limited most of our investigation to a single population with
T = 2 occasions and I =3 possible responses. We generated independent sam-
ples of size n from multinomial distributions defined over the 3 X 3 table. The
marginal probabilities satisfied model (5.3) with {m,=1/3} and with {7}
determined by the model, for a fixed value of u, = u, — u,. The cell probabili-
ties in the table were based on an underlying bivariate normal distribution
having the given marginal probabilities. Specifically, let (X, Y) have a bivariate
normal distribution with means 0, variances 1, and correlation p. Define
cutpoints {a;, y;, { =0,1,2,3} by

Pla,_,<X<a,)=m, , P(y,_, <Y< Y)) =1,

where ay=vy,= —» and a; = y; = ». The multinomial probabilities are {m;=
Ple;_,<X<a, y,_,<Y< y;)}. Eight combinations of n, p, and u, were
chosen: n =20 and 50, p =0.2 and 0.8, and w,=0.0 (marginal homogeneity)
and 0.4.

The program for the simulations used S-PLUS software (1990) and was
executed on a DECstation 3100. We utilized the ‘runif’ and ‘cut’ functions in
S-PLUS to randomly generate the multinomial counts. The algorithm for
calculating constrained ML estimators followed the techniques developed by
Aitchison and Silvey (1958) and Haber (1985). We obtained an estimated
standard error for the ML estimator using the delta method. For generated
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Table 4

Estimated root mean squared error (MSE) and standard deviation (SD) values for logit compari-
son of margins based on discretized bivariate normal distribution

Case Estimator n=20 n=50
Root  Empirical  Average Root  Empirical Average
MSE  std dev model SD MSE  std dev model SD
ny=0 ML 0.251 0.251 0.213 0.143  0.143 0.136
p=038 WLS 0.233  0.233 0.223 0.140 0.140 0.137
P-MLD 0.233  0.233 0.402 0.140 0.140 0.248
P-WLS?® 0229 0.229 0.406 0.139 0.139 0.248
ny=0 ML 0.384 0.384 0.362 0.241  0.241 0.227
p=02 WLS 0372 0372 0.367 0.239 0.239 0.227
P-ML 0.381 0.381 0.404 0.238  0.238 0.249
P-WLS 0.371  0.371 0410 0.237 0.237 0.250
ry=04 ML 0.275 0272 0.242 0.139 0.159 0.152
p=08 WLS 0272 0272 0.249 0.157 0.157 0.153
P-ML 0277 0275 0414 0.157 0.156 0.255
P-WLS 0272 0271 0.418 0.155 0.155 0.256
pny=04 ML 0410 0.409 0.378 0.246  0.246 0.234
p=02 WLS 0.400 0.400 0.387 0.243  0.243 0.235
P-ML 0413 0411 0.419 0.242 0.242 0.256
P-WLS 0.395 0.394 0.426 0.240 0.240 0.258

M p.ML denotes pseudo ML
@ P-WLS denotes pscudo WLS

tables in which at least one estimate did not exist, we added 0.00001 to each cell
count, which always resulted in existence. Table 4 reports the square root of the
MSE estimates for the four estimators (ML, WLS, pseudo ML, pseudo WLS),
based on 1000 simulations at each of the eight settings of (n, p, u,). With
probability 0.95, for the n = 20 cases, the root MSE estimates are good to within
about 0.020 when p = 0.2 and 0.015 when p = 0.8; for the n = 50 cases, they are
good to within about 0.012 and 0.009.

The root MSE estimates in Table 4 show that, to the degree of accuracy
obtained in this simulation study, (1) the four estimators performed equally well,
and (2) we can conclude that the true MSE values are not substantively
different. Somewhat surprisingly, even when X and Y were strongly correlated,
the pseudo estimates performed adequately. Also, the WLS estimates per-
formed as well as the ML estimates, though the sizes of the marginal counts
were not small enough to cause the sorts of problems WLS estimates can have
with sparse data.
~ Table 4 also reports the empirical standard deviations of the estimates, as
well as the average of the standard errors predicted by the model fits. As
expected, the pseudo standard errors behave poorly when there is substantial
correlation; treating the margins as independent results in overestimating the
degree of variability. If we regard the empiricai standard deviation as being
close to the true population standard error, we see that the ordinary model-based



68 A. Agresti, S. Lipsitz, J.B. Lang / Comparing marginal distributions

estimates are quite good, though there is some evidence that they tend to be too
small when n is small.

We have not attempted a comparison of standard deviation estimators,
mainly because of the large amount of time it would take to simulate the
jackknife. We take comfort from other studies of methods for categorical
repeated measures by Bloch and Kraemer (1989) and Lipsitz et al. (1990a) that
showed that the jackknife performed very well in estimating standard deviations.
We did note empirically that the ML and WLS estimators of standard deviations
that allow for correlation are about 50-75% more variable than the estimators
of standard deviations that treat the classifications as independent. A useful
topic for future research is to check whether standard deviation estimators such
as the jackknife or robust estimators proposed by Liang and Zeger (1986) are
more stable than the ordinary estimators.

Since 20-50 observations in a 3 X 3 table do not generate nearly the degree of
sparseness encountered in many repeated categorical measurement studies, this
study does not shed much light on effects of severe sparseness. It is impractical
to simulate ordinary ML for much larger tables, but we did make a comparison
of (WLS, pseudo WLS, pseudo ML) for some 10 10 tables with only 20
observations. Similar results held, in that the pseudo estimates were adequate.
For instance, when there is marginal homogeneity, the estimated root MSE
values for 1000 simulations were (0.103, 0.096, 0.108) when p = 0.2 and (0.064,
0.067, 0.059) when p = 0.8.

8. Marginal comparisons of nominal classifications

The pseudo ML fitting procedure for models for nominal classifications pro-
ceeds in a similar way. For instance, suppose we want to fit a multinomial logit
model that has additive occasion and treatment effects as explanatory variables.
The pseudo ML estimates, which treat the occasions as independent, are
identical to the regular ML estimates for the loglinear no three-factor interac-
tion model fitted to the treatment-occasion-response table.

Suppose we want to construct a pseudo score statistic to test MH for a
nominal classification. When there are no covariates, we consider the saturated
loglinear model for the T X I table {n,;}. The components of the efficient score
vector for testing MH (i.e., independence for the T X I table) are {U; =n,; —
n;/T, i=1,....,T—1, j=1,...,1-1}. Note that L,U; =X,U;=0. Let d;;=
U;—Up=n;—ngy, i=1,...,T—-1, j=1,...,1 - 1. Then, MH is equivalent
to E(d;;) =0 for all i and j, and a pseudo score statistic is given by a quadratic
form in the vector of the (T — 1)(I — 1){d;;} and their estimated covariances.

One can conduct a WLS test of MH based on the unrestricted ML estimators
of marginal probabilities (i.e., the sample marginal proportions) and the unre-
stricted ML estimator of the covariance matrix of differences of those estima-
tors. See Bhapkar (1973) and Darroch (1981). But this is precisely the same as
the pseudo score test just described. That is, the pseudo score test is the WLS
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goodness-of-fit test of the model of MH for the I” contingency table, having
df = (T — 1)(I — 1). It can be implemented with CATMOD in SAS.

9. Missing data issues

Although 2 goal of repeated measures and longitudinal studies is normally to
collect data on every subject in the sample at each time of follow-up, it often
happens that some subjects are not observed at all occasions. In this case, ML
estimates (obtained, for example, using the EM algorithm: Dempster et al.,
1977) and ML score tests are consistent under weak missing data conditions
(missing at random; Rubin, 1976). When the data are missing at random, the
missing data process depends on the observed responses. All other estimators
and test statistics discussed in this article require the data to be missing
completely at random (Rubin, 1976), which is a stronger assumption. When the
data are missing completely at random, the missing data process cannot depend
on the observed responses.

To be consistent under the appropriate missing data conditions, however, ML
also requires the correct specification of the compiete I7 joint multinomial
distribution, whereas ‘pseudo ML’ requires only the correct specification of the
T marginal distributions. Thus, ML is consistent under weaker missing data
conditions and pseudo ML is consistent under weaker conditions about the joint
distribution of the responses over time. Further, as we have discussed, pseudo
ML can be used with much sparser data.

Assuming the appropriate missing data conditions hold, the estimates, stan-
dard errors, and test statistics discussed change minimally with missing data.
The ML. estimates can be obtained using either the EM algorithm or the
Newton—-Raphson algorithm (Hocking and Oxspring, 1971) and the asymptotic
variance is consistently estimated by the inverse of the observed information
(second derivative of the log-likelihood). When the data are missing at random,
the expected information can only be obtained if we are aiso willing to specify
the missing data process. Fortunately, one need not specify the missing data
process to estimate the variance of the ML estimate when the data are missing
at random since the observed information will converge in probability to its
expectation over this missing data process and the /7 multinomial distribution.

When using pseudo ML estimates and score statistics with missing data, the
rows of the 7 X I contingency table are still treated as independent, but a row
sum will not be identically n, and instead will satisfy n, <n. Then, when
performing the jackknife to estimate the variance of the pseudo ML estimate,
we delete each subject as before (i.e., for subject i, we delete T, responses,
where T, < T). In the pseudo score tests, a modification that gives consistent
results when data are missing completely at random is M, =(th‘jn,j)/n,. ,
and, when calculating s, p()=n,/n, and p,(t)=n,,./n, . where
n,,,: is the number of subjects who have response / at occasion ¢ and response
at occasion u.
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In modifying WLS with missing data, two-step methods have been proposed
by Koch et al. (1972), Woolson and Clarke (1984), Landis et al. (1988), and
Lipsitz et al. (1990b). The first steps of the three approaches are different
methods of estimating the probabilities in the 7 X[ table as well as the
covariance matrix of these estimates. The second step of the methods is the
same; perform weighted least squares on the estimates from step one to
estimate the parameters under the appropriate model. In particular, Koch et al.
(1972) further stratified individuals by their pattern of nor-response, and then
used weighted least squares to estimate the 7 X I probabilities. Woolson and
Clarke (1984) estimated the marginal probability of response 4 at occasion ¢ by
the proportion of individuals with response 4 among those who respond at that
occasion. To estimate the variance, tkey proposed an (7 + 1)7 multinomial
distribution, adding one response categc .y at cuch “nic point that corresponds
to missing. Lipsitz et al. (1990b) estimated the 7 X I nrobabilities using the EM
algorithm with the underlying I7 joint multinomial distribution. The Lipsitz et
al. method is consistent when the data are missing at random, whereas the other
two require data to be missing completely at random.

10. Discussion

In closing, we mention that there are yet other ways of comparing marginal
distributions and estimating covariance matrices that we have not discussed in
this article. For instance, an alternative {0 the jackknife for estimating the
covariance matrix is to adapt an empirical estimator described by Liang and
Zeger (1986). Results in Lipsitz et al. (1990a) suggest this is asymptotically
equivalent to using the jackknife. Stram et al. (1988) presented an alternative
strategy of estimating a separate set of parameters at each occasion, and then
empirically estimating the joint covariance matrix of estimated parameters from
different occasions. They then used standard methods such as Wald tests to
compare parameters across occasions. This is a special case of the Liang and
Zeger approach using the naive ‘independence’ estimates, if one fits a model in
which the sets of parameters for different occasions are completely separate.
Such approaches also have the advantage over WLS of being valid for smaller
sample sizes and sparser data.

Another approach is to estimate parameters using some assumed structure
for the covariance matrix of the sample marginal responses. When we use the
covariance structure induced by assuming a multinomial distribution over the
full 1" table, this simplifies to the ordinary WLS approach. In principle, it is
possible to use such an approach in which we model the covariance matrix in
terms of some smaller set of parameters. For instance, Liang and Zeger used
this approach for univariate responses with structures such as autoregressive cr
one-step dependence. For categorical responses having more than two cate-
gories, simple structures are not so readily apparent.
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In future research, it is of interest to compare various ways of obtaining
pseudo estimates. We believe that the sample pseudo estimates based on
treating occasions as independent will be adequate for most purposes. It is also
important in future work to compare the various ways of estimating the
covariance matrix of pseudo estimates. This is especially crucial, since our
simulation results suggest that it is more difficult to precisely estimate standard
errors when there truly is dependence across occasions.

Finally, for completeness, we note there are other strategies one can employ
when the main focus is testing of MH, rather than estimating moudel parameters.
One approach uses generalizations of the Cochran—-Mantel-Haenszel (C-M-H)
test. For details, see Agresti (1990, Sections 7.4 and 8.4), Darroch (198i). White
et al. (1982), and Landis et al. (1988). The generalized C-M-H statistic is
applied to a T X I X n table, in which the T responses for subject & form the
kth of n strata or blocks. The stratum for subject k& consists of a T X [ table, in
which therc is a single observation in each row. The T X I table fitted in Section
2 is the two-way marginal table of this one, collapsed over subjects. Some
versions of this statistic corresnond, for certain models, to a pseudo score test
statistic,

One can use a generalized C-M-H statistic presented by Landis et al. (1988)
to test variation among marginal means of an ordinal classification, with df =T
— 1. For Table 1 it also gives strong evidence of marginal heterogeneity,
equaling 202.0 based on df = 6 for the case of equally-spaced responses scores.
When one uses ihis generalized statistic with rank scores computed separately in
each block, this gives the corrected-for-ties version of Friedman's test (White et
al. 1982). For Table 1 this statistic equals 214.2.

Darroch (1981) noted that the gencralized C-M-H statistic for nominal
classifications, having df = (T — 1)(I — 1), has the advantage that the inverse of
the (T — (I — 1) X (T — IXJ = 1) covariance matrix of {d,} from Scction 8 is
determined by the inverse of an (I — 1) X (I —1) matrix. The generalized
C-M-H statistics apply to sparsc data, and are available using procedure
FREQ in SAS. However, they have the disadvantages that they make certain
exchangeability assumptions that rarely are suitable when the occasions are
times (Landis et al. 1988), and they are directed strictly towards testing MH,
rather than estimating the degree of marginal heterogeneity for some specified
model.

Sample programs for performing the analyses reported in this paper are
available upon request from the authors. The jackknife nrogram for estimating
the covariance matrix of the pseudo estimates uses procedure IML in SAS.
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