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Abstract: The feasibility of maximum likelihood (ML) analyses of mod& for marginal distribu- 
tions of contingency tables diminishes as the numbers of margins and rcsponsc catcgorics 
Increases. This article describes alternative approaches that arc much rnorc fcasiblc. We rccom- 
mend a “pseudo ML” approach that obtains model parameter cstimatcs by treating rcpcatcd 
rcsponscs as independent and uses a jackknife to cstimatc the co\ariancc matrix of those 
estimates. WC test marginal homogcncity using a Wald statistic. or by adjpting the cfficicnt score 
statistic from the indcpcndcnt-samples case. WC illusrratc thcsc approaches lvith a scvcn-dimcn- 
sional table having 78 125 cells. and WC give simulat:on results that sho!v no substantive loss of 
efficiency from using pseudo ML estimates. 
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At each of T occasions, suppose we observe responses for tz subjects on a 
categorical variable having I levels. A T-dimensional contingency table having 
I’ cells then cross-classifies the 11 observations. The hypothesis of rwu-gid 
homogeneiry, which we denote by MI-I, states that the T first-order marginal 
distributions of the responses are identical. At occasion g, let &( ,q) denote the 
probability that a subject makes response II. There is MI-I if 

<b,,( 1) = 4,,(Z) = * ” = dJ,( T), for It = 1 . . . . , I. (1.1) 
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This article discusses ways of comparing marginal distributions for large, 
sparse contingency tables. These methods test MH in the context of a model for 
the marginal distributions, such that MH is a special case of the model. There 
are several advaniages of making the test model-based. First, this leads natura”.:y 
to post-test description and inference regarding the nature of the marginal 
heterogeneity. Second, models can be generalized to incorporate explanatory 
variables, so that effects of those variables can also be analyzed or SO one can 
make adjusted comparisons of marginal distributions. Finally, it is often sensible 
to use a directed alternative to MH corresponding to some model SO that the 
test statistic has fewer degrees of freedom, and hence potentially greater power. 
This is particularly true when the response is ordinal. 

There is considerable literature on likelihood methods for testing MH. 
Madansky (1963) gave a likelihood-ratio test. It assumes a r, ultinomial likeli- 
hood for the I“ cells for the table, and it compares the likelihood maximized 
subject to constraint ( 1.1) to the likelihood maximized in the unrestricted case. 
That is, Madansky’s test is simply a goodness-of-fit test for the model of MH. 
The unrestricted alternative hypothesis corresponds to the saturated model for 
the marginal distributions. Firth and Treat (1988) and Lipsitz (1988) showed 
how to conduct this test using standard software such as GLlM and SAS. An 
alternative likelihood-based approach tests MH in the context of the quasi-sym- 
metry model. It tests the hypothesis that the quasi-symmetry model holds with 
MH (i.e., that there is symmetry) against the alternative that quasi-symmetry 
holds without MH, by comparing the maximized likelihoods for the symmetry 
and quasi-symmetry models. See Darroch (1981) and Agresti (1990 , Section 
11.2) for details on these arrc! other methods for testing MH. 

Even in this modern computer age, such likelihood-ratio tests are difficult to 
implement or even infeasible when I and T are moderately large, because of the 
huge number of cells and the extreme sparseness of the table. For instance, 
consider Table 1, based on data presented by Landis and Koch (1977). This 
table presents classifications on a S-level ordinal scale regarding carcinoma in 
situ of the uterine cervix, for seven pathologists evaluating n = 118 slides. The 
ordered response categories are: ( 1) Negative; (2) atypical squamous hyFerpla- 
sia; (3) carcinoma in situ; (4) squamous carcinoma with early stromal invasion; 
(5) invasive carcinoma. The resulting contingency table has 5’ = 78 125 cells. The 
table satisfies MH if the seven raters have identical response distributions, but it 
is unclear how one can test MH. Many sums of cell counts that are sufficient 
statistics for the symmetry and quasi-symmetry models equal zero, and regular 
ML estimates do not exist for these models. Madansky’s ML test and directed 
methods based on models for marginal distributions must maximize a multino- 
mial likelihood having 78 124 parameters, subject to certain constraints for the 
first-order marginal distributions. Methodology for maximizing likelihoods sub- 
ject to constraints has been available for some time (Aitchison and Silvey, 1958), 
but published examples of such analyses (e.g., Haber, 1985) have dealt only with 
small tables. 

The main purpose of this article is to describe simple strategies for comparing 
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marginal distributions of large, sparse contingency tables. We propose a method 
that uses ML to estimate model parameters under the naive assumption that the 
repeated responses are independent, but then uses a jackknife to obtain an 
appropriate estimated covariancc matrix of the estimates. For “I’able 1, in 
treating the 7 marginal distributions for the 118 observations with 5-category 
response as independent, we apply standard ML methods to 7 X 118 = 826 
observations in cells of a 7 x 5 table. Problems of sparseness and awkward 
computations then disappear. To test MH, we conduct a Wald test using these 
estimates. We also show how one can test MH by modifying the covariance 
structure in score statistics (Rae, 1973) for compatison of independent multino- 
mial distributions. 

Sections 2-4 present the strategies for comparing marginal distributions. We 
illustrate their use for ordinal cllassifications in Section 5, and apply them in 
Section 6 to compare the marginal distributions of Table 1. Section 7 gives 
results of a simulation study that suggests the naive estimates are surprisingly 
efficient. Section 8 briefly describes use of the methods with nominal classifica- 
tions. 

Though this article focuses on simple comparisons of marginal distributions, 
in practice it is usually important to describe the dependence of those distribu- 
tions on a set of explanatory variables. Also, as we discuss in Section 9, missing 
data often pose a problem in longitudinal studies. We study the simpler case of 
no covariates and no missing data primarily to focus attention on basic strategies 
and to make some simple efficiency comparisons. However, when there are 
covariates, the feasibility of standard ML approaches becomes even more 
problematic. 

2. Pseudo ML estimation assuming independent multinomials 

For large, sparse tables, one can easily fit models for the T first-order marginal 
distributions by treating sample counts from different margins as statistically 
independent. This naive approach was used for univariate longitudinal data 
problems by Liang and Zeger (1986). Consider the TX I table consisting of the 
7’ sample marginal distributions. A single observation in the original IT table is 
replaced by T observations in this T X I table. One obtains parameter estimates 
by using ML to fit the model to this table, treating the rows as having 
independent multinomial distributions. The resulting estimates are not truly 
ML, since those distributions are not truly independent and the function 
maximized is not the true likelihood. But, the consistency of the sample 
estimators of the marginal probabilities implies that these ‘pseudo ML’ estima- 
tors are consistent, assuming that the model chosen to represent the variation in 
the marginai distributions holds. The estimated covariance matrix obtained by 
treating the margins as independent is not consistent for the true covariance 
matrix of the estimators, however. 

For tables that are too large for ordinary ML methods, we recommend 
estimating model parameters using the pseudo ML estimates and estimating the 
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covariance matrix of those estimators using the jackknife method. Calculating 
the estimated qovariance matrix involves re-fitting the model repeatedly, each 

time deleting one observation, and using the left-hand side of formula (2.3) in 
the following discussion. If K cells in the full I’ table have non-zero counts, 
then one need only do K re-fits of the model, weighting the results to obtain the 
jackknife estimated covariance matrix. Simulation results of Lipsitz et al. (1990a) 
for modeling repeated binary responses suggest that for each re-fit of the model, 
it is preferable to use a one-step jackknife rather than a fully-iterated jackknife. 
This procedure, outlined below, uses only the first step of the Newton-Raphson 
iterative process for fitting the model, with the pseudo ML estimates as the 
initial estimates. Fox et al. (1980) and Simonoff and Tsai (1986) discussed 
advantages of such “linearized” jackknife procedures for use in obtaining 
standard errors of estimates in general non-linear modeling. The one-step 
jackknife also saves considerable time in what can be a computationally inten- 
sive estimation process. 

White (1982) and Gourieroux et al. (1984) gave the true asymptotic covari- 
ante matrix for the ML estimator of a model with misspecified likelihood. The 
one-step jackknife estimator is asymptotically equivalent to an estimator White 
proposed of that matrix. We next outline the reasons for this asymptotic 
equivalence. 

For a model having parameter vector /3, the pseudo ML estimate b is 
obtained by setting 

u(b) = Cu;(s^) = 0, (2.1) 
and solving for b, where ui</3> denotes the contribution to the score vector (the 

derivative of the log likelihood with respect to /?> from subject i. Given @ and 
deleting the jth subject, the first step of the Newton-Raphson algorithm 
produces 

&=b+ Cr(s^) 
[ i~j 1 I-‘[ iyq 

(2.2) 

where Cl,@) = - Cau,<@/ap is the information matrix. From (2.1), 

i#j 

so that (2.2) becomes 

One form of the jackkn%: t:stimator of the covariance matrix of 6 is 

= c 
i ir c ‘;(&] - ‘1 i!dj(&Uj(a^)‘] 

i+j 
(2.3) 



Under regularity conditions needed for b to be consistent, this is asymptotically 
equivalent to 

which is the estimator proposed by White. The asymptotic equivalence refers to 
ea(x of these estimators convergmg (when multiplied by l.2) to the true asyrnp- 
t&i< covariance matrix of n’/’ Cp -#I). The usual estimator of the covariance 
~,~~trix, the inverse information [c I,( )I-‘, is aymptotically equivalent to (2.3) 
and (2.4) under the additional assumption that 

El UP)] = E[ zz,( B)zz,(fi j] , 
inhere the expcctaaion is taken with respect to the true distribution (i.e., not the 
naive ‘indcpendcn~c’ distribution) of the data. 

The left-hand side of (2.3) is often simpler to compute than (2.4). This is 
particularly true for model (5.2) discussed in Section 5, for which the naive 
‘likelihood is rot :A simple function of model parameters. 

7 Tsts of marginral homogeneity .* * 

Aftci, obtaining mode!, parameter estimates and an estimated covariance matrix, 
one c;ln apply standard methods of inference. For instance, one can test MH 
using a Wald J-Li-squai-ed test for umformity of certain parameters across the T 
occasions. For each p; rametc-r one contributes T - 1 elements to a vector d of 
difCer,nccs between 7’ - i of tl-w l>ccasEons and a baseline occasion. The Wald 
statistic: tlafn Eaac r$n-~ d ‘C’- Id. wtrcrc V’ is an estimated covariancc matrix of d. 

AltcrnaGvL+:, :md c,~~~~p~~tatic.,r~ai[~~ more simply, one can formu;ate test statis- 
tics for %I!% by ::dapting efLzicn? score statistics for tlnis hypothesis. The efficient 
score sta1tistl.c is a quadrat:;: Iorm based on the score vector of partial derivatives 
of the log l,ikeliha_iod with respect to the parameters of interest, evaluated at the 
null hypXhcsls cY,lima”Cs. c’ox and Hinkley t 197&l, Chapter 9) and Rao (1973, 
Section C,cI +cfl* ” ~r,.~~amed this type of test and showed asymptotic equivalences 
among it anti the W:J% ar~t likelihood-ratio tests. Our approach is to calculatt 
the score lcctklr using the pseudo log likelihood (i.e., treating the T marginal 
distributi;~r:~ as indepen&rt), but to calculate its covariance matrix using the 
true und*Ayirrg dependf,nce structure. 

Specif :ai!y. for the model chosen to reflect possible departures from IQH, we 
obtain tl:c score vector by calculating partial derivatives of the pseudo log 
Ilikclihooii with respect to the model parameters describing the marginal differ- 
ences. evaluated at the estimates obtained under MH. Since it depends only on 
the first derivative of the log likelihood, the score vector provides a consistent 
indication of whether M holds (under the model assumption), regardless of 
the true dcpcndcncc structure. e estimate the covariance matrix of the score 
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vector using the dependence structure across occasions implied by a multinomial 
assumption for the complete I“ table. The test statistic is a quadratic form 
comparing the score vector to its null expected value, weighted by the inverse 
estimated covariance matrix. Thus, the test statistic has the simplicity of a score 
statistic for independent samples, yet it takes into account the actual lepen- 
dence. 

Thcrc are two forms for this pseudo score statistic. One form uses the 
estimated covariance matrix for the score vector under the assumption of MH, 
whereas the other form uses the non-null estimated covariance matrix. Under 
MH, the two estimates converge to the same matrix as 11 increases, though one 
expects better approximations to null asymptotic sampling distributions using 
the null-based estimate. The pseudo score test approach is applicable when the 
overall sample size is large enough that the score vector is approximately 
normally distributed, so that the quadratic form has an asymptotic chi-squared 
null distribution. This can happen even when data are so highly sparse that 
regular or pseudo ML estimates of model parameters do not exist. 

ted least squares model-fitting 

One can use weighted least squares (WLS) methodology (Koch et al., 1977) to 
formulate ailother approach that is also more amenable than standard ML for 
fitting models to margins of large, sparse contingency tables. We now give some 
attention to WLS, because one can readily implement it with standard computer 
software. 

In mode!ing first-order marginal functions such as logits, WLS methods 
require only the second-order marginal tables to estimate the asymptotic covari- 
ante structure of those rcsponsc functions. For many models, one can obtain 
WLS fitting of the models for marginal distributions using procedure CATMOD 
in SAS. The second-order marginal tour ts must be sufficiently large that the 
sample response functions arc approximately normally distributed and their 
estimated covariancc matrix is non-singular. In practice. this usually requires the 
first-order marginal counts to nearly all rvceed about S- 10. Koch ct A. ( 1977), 
Landis et al. (19881, and Agresti (1989) g,ave examples of the use of WLS for 
analyzing rcpcated categorical data. 

‘When the model holds, WLS is asymp.otically equivalent to ML for the full 
1’ table. When the sample size is large and WLS is feasible but ?vIL is not, WLS 
may be preferred over pseudo ML methods bccausc of computational simplicity 
and guaranteed optimal asymptotic cfficincy. Howcvcr, the pseudo ML meth- 
ods have the advantage of being applicable when the dat:: arc too sparse to 
support WLS. In particular, unhkc LS. pseudo L methcrds apply when thcrc 
are continuous explanatory variables. Also, the example in Section 6 shows that 
WLS is unreliable and highly sensitive to slight changes in the data w 
marginal counts arc small. In such cases, W S estimates may bc mu 
than pseudo ML estimates. 
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5. arginal comparisons of ordinal classifications 

To illustrate methods for comparing marginal distributions, we discuss a general 
class of models, 

Linkj( g) = aj - I_C, 7 j= l,..., I- 1, g= l,...,T, (5 1) . 

for ordinal response variables. The link is some function of the first-order 
marginal probabilities. Two important special cases are: (1) the cumulatke logit 
model, whereby 

Linkj( g) = logit[ yj( g )] 9 (5 2) . 

with y,(g) = ~1(9) + * l . + ~j(g), and (2) the adjacent-categories logit model, 
whereby 

Linkj(g)== l"g[4j(g)/4j+,(g)]* (5 3) c . 

We use the latter model partly because of its equivalence to a simple loglinear 
model, the YOW effects model. In model (5.1), {aj} are nuisance parameters, and 
{pR} describe variation in the marginal distributions. For this model, MH 
corresponds to p1 = - - * = pr. For identifiability, {p,} satisfy a constraint such 

as Cp, = 0. For the cumulative logit link, it follows from Anderson and Philips 
(1981) that if there are underlying continuous logistic distributions for the 
marginal distributions, differing only in location, then this model holds and 
differences among {pR} describe the location shifts. 

Our pseudo ML approach fits the model to the T x I table of sample 
marginal distributions, treating the samples as independent multinomials. We 
estimate a covariance matrix for the estimates of {pi} using (2.3) for the one-step 
jackknife. Using those results, we can test MH using a Wald test, letting the 
vector of differences be the pseudo ML estimates of (p, - pT,. . .) p,-__, - pr). 

The &i-squared asymptotic distribution for the Wald statistic has df = T - 1, 
rather than cllf = (T - l)( I - 1) as in the most general (unstructured) tests. 
Testing MH using this model gives a test directed towards varialion in location 
among the occasions. 

For many versions of model (Xl), pseudo score statistics provide simple 
alternative ways of testing MH. Let rZ,j denote the number of subjects who make 
response j at occasion t. Assuming no missing data, let rz = n, = ~jn,j. For a set 
of monotone response scores {I;} for the ordinal response scale, let 

MI = C l~~~,j/r2 ) I = l,...,T. and M = C L’j”.j/“T. 
i i 

Then M, is the ‘mean’ response at occasion t for the response scores {I;}, and 
M = C,M,/T is the mean response for the sum of the single-factor response 
distributions. Our pseudo score statistics are quadratic forms describing varia- 
tion among these means, or equivalently variation from 0 among {d, = [( A4, - 

b(M,-M)]=A4, -A+, t = l,..., T - 1). The quadratic forms use esti- 
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mated covariances among {n,} generated by assuming multinomial sampling over 
the full I“ table. 

Let p,,(t) = n,,,/n and let p,&) denote the proportion of subjects making 
response h at occasion t and response i at occasion u. Let d = (d,, . . . , d,_ J’ 
and for all (j, k) with j < T, K < T, let S denote the matrix having elements 

sjk = c CL’hCi[ Phi(jk) -phi(jT) -pl,i(kT) +pI,(T)Sl~i] 
h i 

where S,i = 1 when h = i, and S,~i = 0 when h f i. Letting & denote the 
response score for subject i at occasion t, we can also express 

Sjk = C [(J’Lj -Mj) - (YET- MT)][(x., -Mk) - (YeT-MT)]/n* 
e 

Then Sjk/'Z is the unrestricted ML estimate of COV(dj, d,), and the quadratic 
form Q = n&S- ‘&I is an asymptotic chi-squared statistic for testiug MH, based 
on df= T- 1. 

For model (5.3) with rows in the T x I table treated as independent multino- 
mials, the efficient score vector for testing MH has components n( M, - M), 
with {L) = j}. Hence the statistic Q is a pseudo score statistic for testing MH 
using that model. When we let IC’j = [n., + - - - +n. ,j_ l + (1/2Jn_jI/r~l, the aver- 
age cumulative proportion or ‘ridit’ scores for margin In.j, j = 1,. . . , I}, Q is a 
pseudo score statistic for the cumulative logit model (5.2). 

The pseudo score statistic Q is equivalent to the WLS goodness-of-fit statistic 
for testing the null mean r-espoyse model 

E(M,) =a, t = l,...,T, 

using a multinomial sampling assumption for the IT table. One can compute 
this s’tatistic using procedure CATMOD in SAS. For T = 2, Bhapkar (19701, 
Fleiss and Everitt (1971), Koch and Reinfurt (1970, and Meeks and D’Agostino 
(1983) have proposed tests of this form. It is also possible to use CATMOD to 
do standard WLS fits of models (5.2) and (5.3), incorporating the full multino- 
mial dependence structure, at least when the first-order marginal totals are not 
too small. 

The alternative form of the pseudo score statistic uses 

which yields an estimated covariance matrix under the null hypothesis of equal 
marginal means. When hl holds, one would expect the score statistic usirlg this 
estimate to have actual distribution more closely approximating the a:.vm;.)totic 
chi-squared distribution, for small to moderate n. The two forms of the esti- 
mated covariance can give quite different st statistic values, and a good topic 
for future study is to compare operating c racteristics of the two approaches. 
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Table 2 
Estimates of {p,) for cumulative logit model 

Pathologist Pseudo Pseudo 

ML WLS 

A 0.58 (0.165) 0.52 (0.155) 
B 0.5 1 (0.158) 0.49 (0.165 1 
C -0.19 (0.152) -0.19 (0.156) 
D -0.51 (0.153) - 0.47 (0.157) 
E 0.62 (0.156) 0.55 (0.158) 
F - 1.13 (0.164) - 1.06 (0.164) 
G 0.12 (0.156) 0.16 (0.161) 

Dependent 
WLS 

0.37 (0.066) 
0.30 (0.066) 
0.02 (0.040) 

- 0.38 (0.073) 
0.34 (0.075) 

- 0.67 (0.098) 
0.02 (0.039) 

Jackknife 

0.58 (0.088) 
0.5 1 (0.087) 

- 0.19 (0.087) 
- 0.5 1 (0.083) 

0.62 (0.088) 
- 1.13 (0.128) 

0.12 (0.058) 

In the meantime, for purposes of testing MH, we recommend using the statistic 
based on the null estimate. 

arginal comparison of carcinoma ratings 

Table 1 is highly sparse, with 118 observations in 78 125 cells. The first-order 
marginal counts are much less sparse, varying between 1 and 69, with 23 of the 
35 counts exceeding 10. We first tested MH with Wald statistics for model (5.11, 
usbig the jackknife to estimate the covdriance matrix of pseudo ML estimators. 
The Wald statistic equals 113.6 for the cumulative logit case and 57.5 for the 
adjacent-categories logit case. Both statistics are based on df = 6, and give very 
strong evidence against MH. 

Table 2 gives pseudo ML and jackknifed pseudo ML estimates of {p,} for the 
cumulative logit model, as well as estimated standard errors. The pseudo ML 
estimates are the ones obtained by fitting the cumulative logit version of model 
(5.1) to the 7 x 5 table of sample marginal distributions, treating the seven rows 
as independent multinomial samples. The jackknife estimates are the average of 
the 118 estimates obtained by leaving out, one at a time, each of the 118 
observations. The standard errors we report for the pseudo ML estimates are 
the ones that treat the samples as independent, and are incorrect. The ones for 
the jackknife, based on (2.3), recognize the dependence and hold for the pseudo 
estima+c:s ;*; well. We included the incorrect ones to show how one can 
drssttcAi3 LxGere$Grnate v-r’ lability in describing within-subject effects by naively 
treat,Eg the samples as independent. 

In addition, we used WLS to fit the cumulative logit model to margins of the 
table, directly incorporating estimates of dependence from a multinomial struc- 
ture for the full 5’ table (We added 0.001 tc the count for cell (4,4,4,4,4,4,5) to 
obtain a nonsingular covariance matrix). The reliability of such estimates is 
questionable, since two marginal counts equal 1 and two equal 2. The WLS 
Wald statistic for testing p1 = - l - = ,u7 equals 85.7, based on df = 6. The WLS 
fit has residual chi-squared equal to 98.5, based on LI’~ = 18. The model does not 
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appear to fit well, but it detects enough of the departIn-e from MH to also give a 
very small P-value. 

Table 2 also contains the WLS model parameter estimates, as well as pseudo 
WLS estimates based on using the WLS method to fit the model to the 7 x 5 

table that treats the margins as independent. The pseudo WLS estimates have 
similar values as the pseudo ML estimates. The WLS estimates that incorporate 
the dependence are somewhat different from the others, and have smallest 
estimated standard errors. owever, a sensitivity anal) .=+a, +--‘c revealed that these 

estimates are unreliable, because of the presence of small marginal counts. For 
instance, all raters made rating 4 more often than rating 5 except for rater F, 
who made rating 4 only once and rating 5 four times. If we change the 
observation (4,3,3,3,3,5,3) to (4,3,3,3,3,4,3), thus increasing rater F’s marginal 
count for rating 4 from 1 to 2, the WLS Wald test statistic for MH drops from 
85.7 to 32.7, and the third column of estimates in Table 2 changes dramatically 
from (0.37, 0.30, 0.02, -0.38, 0.34, -0.67, 0.02) to (0.28, -0.04, -0.02, - 0.27. 
0.12, - 0.05, -0.02). By contrast the pseudo WLS estimates hardly change at 
all, the largest change being the first, which changes from 0.520 to 0.528. 

For only 8 of the 118 slides did any raters use rating 5, and all marginal 
counts that are less than 10 refer to rating 4 or 5. Thus, combining these rating 
categories should improve the reliability of methods that are highly susceptible 
to sparseness. When we combine categories 4 and 5, all marginal counts equal at 
least 5. The WLS Wald test statistic changed from 85.8 to 94.6, and the WLS 
model estimates changed to (0.43, 0.44, -0.19, -0.37, 0.41, -0.84, -0.12). 
These are much closer to the pseudo WLS and ML estimates in Table 2. In this 
case, the WLS estimated standard errors also increased to levels close to those 
reported for the jackknife. Combining columns has trivial results on the other 
approaches. For instance, the pseudo WLS estimates all changed by less than 
0.02 (reflecting the property of invariance to scale collapsings that McCullagh 
(1980) gave as an important quality of this model), and their naive estimated 
standard errors all changed by less than 0.001. 

Similar results occurred for the adjacent-categories logit model. Table 3 
reports estimates of (~~1 and estimated standard errors for that model, using 
the same four approaches. Estimates are smaller than those for the cumulative 

Table 3 
Estimates of {pK} for adjacent-categories logit model 

Pathologist Pseudo PseudLI 
ML WLS 

A 0.32 (0.084) 0.28 (0.077) 
B 0.24 (0.084) 0.2 1 (0.086~ 
C - 0.09 (0.086) - 0.13 (0.090) 
D 0.27 (0.089) 0.27 (0.092) - - 
E 0.34 (0.084) 0.29 (0.089) 
F - 0.59 (0.098) - 0.46 (0.088, 
G 0.05 (0.084) 0.07 (0.089) 

DepCndClli 

WLS 

0.20 (0.038) 
0.1 1 (0.03 1) 
0.02 (0.026; 
0.20 (0.04-l~ - 
0.13 (0.045) 

- 0.26 (0.052) 
0.0 1 (0.024) 

- _-_I_ 
Jackknife 

0.32 (0.053) 
0.24 (0.04Y) 

- 0.09 (0.050) 
- 0.27 (0.053 1 

0.34 (0.05.5) 
- 0.5Y (0.006) 

0.05 (0.03 1) 
-- 
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logit model (about half as large), since differences of estimates refer to local log 
odds ratios rather than log odds ratio!%, utilizing the entire response scale. Again, 
the standard errors reported for the pseudo estimates are incorrect, being too 
large. The jackknife estimated standard errors are more reliable, and apply both 
to the jackknif: estimates and to the pseudo ML and WLS estimates. 

Pseudo score stati\a# :s for model (S.l), like the Wald statistics using the 
jackknife estimates a.. i their standard errors, give strong evidence of marginal 
heterogeneity. For instance, the version with {ui = j} (the score statistic for the 
adjacent-categories logit model) gives a chi-squared statistic of 68.2 (df = 6) 
using the null estimated covariance. 

S estimates 

An important matter to consider for the pseudo estimates is whether they are 
much less efficient than the ordinary estimates. When responses are strongly 
correlated across occasions, one would expect that a pseudo ML or pseudo WLS 
estimator might have larger mean squared error (IVISE) than an ordinary ML or 
WLS estimator, since the pseudo estimators ignore the dependence. However, 
we performed a small-scale simulation study that gave promising results for the 
relative efficiency of the pseudo estimators. For marginal comparisons using the 
adjacent-categories logit model, preliminary results show no reduction in preci- 
sion using pseudo estimators compared to ordinary estimators. 

Because of the extremely time-consuming nature of the ordinary ML estima- 
tion process, we limited most of our investigation to a single population with 
T = 2 occasions and I = 3 possible responses. We generated independent sam- 
ples of size n from multinomial distributions defined over the 3 x 3 table. The 
marginal probabilities satisfied model (5.3) with {ri.= l/3} and with {~.j} 
determined by the model, for a fixed value of pd = p1 - p,. The cell probabili- 
ties in the table were based on an underlying bivariate normal distribution 
having the given marginal probabilities. Specifically, let (X, Y) have a bivariate 
normal distribution with means 0, variances 1, and correlation p. Define 
cutpoints {ai, yi, i = 0,1,2,3} by 

p(crj-l lxlcUi) =rri. ) p(yj_l I YS yj) =T.jT 

where cu,=y,= --oo and a3=y3= 00. The multinomial probabilities are {r;j = 
P(ai_1 5X I Cyi, rj-1 < Y I ri)}. Eight combinations of n, ,o, and pd were 
chosen: n = 20 and 50, p = 0.2 and 0.8, and & = 0.0 (marginal homogeneity) 
and 0.4. 

The program for the simulations used S-PLLJS software (1990) and was 
executed on a DECstation 3100. We utilized the ‘runif’ and ‘cut’ functions in 
S-PLLJS to randomly generate the multinomial counts. The algorithm for 
calculating constrained ML estimators followed the techniques developed by 
Aitchison and Silvey (1958) and aber (1985). We obtained an estimated 
standard error for the L estimator using the delta method. For generated 
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Table 4 
Estimated root mean squared error (MSE) and standard deviation (SD) values for logit compari- 
son of margins based on discretized bivariate normal distribution 

Case Estimator n = 20 n = 50 

Root Empirical Average Root Empirical Average 
MSE std dev model SD MSE std dev model SD 

Pd=O 
p = 0.8 

Pd=o 
p = 0.2 

jhd = 0.4 
p = 0.8 

pd = 0.4 
p = 0.2 

ML 0.25 1 0.25 1 0.213 0.143 0.143 0.136 
WLS 0.233 0.233 0.223 0.140 0.140 0.137 
P-ML’ ’ ) 0.233 0.233 0.402 0.140 0.140 0.248 
P-wLs’2’ 0.229 0.229 0.406 0.139 0.139 0.248 
ML 0.384 0.384 0.362 0.241 0.241 0.227 
WLS 0.372 0.372 0.367 0.239 0.239 0.227 
P-ML 0.381 0.38 1 0.404 0.238 0.238 0.249 
P-WLS 0.371 0.37 1 0.410 0.237 0.237 0.250 
ML 0.275 0.272 0.242 0.159 0.159 0.152 
WLS 0.272 0.272 0.249 0.157 0.157 0.153 
P-ML 0.277 0.275 0.414 0.157 0.156 0.255 
P-WLS 0.272 0.271 0.418 0.155 0.155 0.256 
ML 0.410 0.409 0.378 0.246 0.246 0.234 
WLS 0.400 0.400 0.387 0.243 0.243 13.235 
P-ML 0.413 0.411 0.419 0.242 0.242 0.256 
P-WLS 0.395 0.394 0.426 0.240 0.240 0.258 

(*I P-ML denotes pseudo ML 
(2) P-WLS denotes pseudo WLS 

tables in which at least one estimate did not exist, we added 0.00001 to each cell 
count, which always resulted in existence. Table 4 reports the square root of the 
MSE estimates for the four estimators (ML, WLS, pseudo ML, pseudo WLS), 
based on 1000 simulations at each of the eight settings of (n, p, ,Q). With 
probability 0.95, for the n = 20 cases, the root MSE estimates are good to within 
about 0.020 when p = 0.2 and 0.015 when p = 0.8; for the n = 50 cases, they are 
good to within about 0.012 and 0.009. 

The root MSE estimates in Table 4 show that, to the degree of accuracy 
obtained in this simulation study, (1) the four estimators performed equally well, 
and (2) we can conclude that the true MSE values are not substantively 
different. Somewhat surprisingly, even when X and Y were strongly correlated, 
the pseudo estimates performed adequately. Also, the WLS estimates per- 
formed as well as the ML estimates, though the sizes of the marginal counts 
were not small enough to cause the sorts of problems WLS estimates can have 
with sparse data. 

Table 4 also reports the empirical standard deviations of the estimates, as 
well as the average of the standard errors predicted by the model fits. As 
expected, the pseudo standard errors behave poorly when there is substantial 
correlation; treating the margins as independent results in overestimating the 
degree of variability. If we regard the empirical standard deviation as being 
close to the true population standard error, we see that the ordinary model-based 
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estimates are quite good, though there is some evidence that they tend to be too 
small when n is small. 

We have not attempted a comparison of standard deviation estimators, 
mainly because of the large amount of time it would take to simulate the 
jackknife. We take comfort from other studies of methods for categorical 
repeated measures by Bloch and Kraemer (1989) ;md Lipsitz et al. (1990a) that 
showed that the jackknife performed very well in estimating standard deviations. 
We did note empirically that the ML and WLS estimators of standard deviations 
that allow for correlation are about 50-75% more variable than the estimators 
of standard deviations that treat the classifications as independent. A useful 
topic for future research is to check whether standard deviation estimators such 
as the jackknife or robust estimators proposed by Liang and Zeger (1986) are 
more stable than the ordinary estimators. 

Since 20-50 observations in a 3 X 3 table do not generate nearly the degree of 
sparseness encountered in many repeated categorical measurement studies, this 
study does not shed much light on effects of severe sparseness. It is impractical 
to simulate ordinary ML for much larger tables, but we did make a comparison 
of (WLS, pseudo WLS, pseudo ML) for some 10 x 10 tables with only 20 
observations. Similar results held, in that the pseudo estimates were adequate. 
For instance, when there is marginal homogeneity, the estimated root MSE 
values for 1000 simulations were (0.103, 0.096, 0.108) when p = 0.2 and (0.064, 
0.067, 0.059) when p = 0.8. 

arginal comparisons of nominal classifications 

The pseudo ML fitting procedure for models for nominal classifications pro- 
ceeds in a similar way. For instance, suppose we want to fit a multinomial logit 
model that has additive occasion and treatment effects as explanatory variables. 
The pseudo ML estimates, which treat the occasions as independent, are 
identical to the regular ML estimates for the loglinear no three-factor interac- 
tion model fitted to the treatment-occasion-response table. 

Suppose we want to construct a pseudo score statistic to test MH for a 
nominal classification. When there are no covariates, we consider the saturated 
loglinear model for the T x I table {njj}. The components of the efficient score 
vector for testing MH (i.e., independence for the TX I table) are IUij = nij - 
n,/T, i = 1,. . . , T - 1, j = 1,. . . , I - 11. Note that C,~ij = cluij = 0. Let dij = 
qj - UTi = nij - yt rj, i = 1, . . . , T - 1, j = 1, . . . , I - 1. Then, MH is equivalent 
to E(d,j) = 0 for all i and j, and a pseudo score statistic is given by a quadratic 
form in the vector of the (T - l)( I - l){dij) and their estimated covariances. 

One can conduct a WLS test of MH based on the unrestricted ML estimators 
of marginal probabilities (i.e., the sample marginal proportions) and the unre- 
stricted ML estimator of the covariance matrix of differences of those estima- 
tors. See Bhapkar (1973) and Darroch (1981). But this is precisely the same as 
the pseudo score test just described. That is, the pseudo score test is the 
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goodness-of-fit test of the model of MH for the I“ contingency table, having 
d”= (T - l)( I - 1). It can be implemented with CATMOD in SAS. 

Although a goal of repeated measures and longitudinal studies is normally to 
collect data on every subject in the sample at each time of follow-up, it often 
happens that some subjects are not observed at all occasions. In this case, ML 
estimates (obtained, for example, using the EM algorithm: Dempster et al., 
1977) and ML score tests are consistent under weak missing data conditions 
(missing at random; Rubin, 19769. When the data are missing at random, the 
missing data process depends on the observed responses. 411 other estimators 
and test statistics discussed in this article require the data to be missing 
completely at random (Rubin, 19761, which is a stronger assumption. When ths 
data are missing completely at random, the missing data process cannot depend 
on the observed responses. 

To be consistent under the appropriate missing data conditions, however, ML 
also requires the correct specification of the complete IT joint multinomial 
distribution, whereas ‘pseudo IViL’ requires only the correct specification of the 
T marginal distributions. Thus, ML is consistent under weaker missing data 
conditions and pseudo ML is consistent under weaker conditions about the joint 
distribution of the responses over time. Further, as we have discussed, pseudo 
ML ca,? be used with much sparser data. 

Assuming the appropriate missing data conditions hold, the estimates, stan- 
dard errors, and test statistics discussed change minimally with missing data. 
The ML estimates can be obtained using either the EM algorithm or the 
Newton-Raphson algorithm (Hocking and Oxspring, 1971) and the asymptotic 
variance is consistently estimated by the inverse of the observed information 
(second derivative of the log-likelihood). When the data are missing at random, 
the expected information can only be obtained if we are also willing to specify 
the missing data process. Fortunately, one need not specify the missing data 
process to estimate the variance of the ML estimate when the data are missing 
at random since the observed information will converge in probability to its 
expectation over this missing data process and the IT multinomial distribution. 

When \Jsing pseudo ML estimates and score statistics with missing data, the 
rows of the T x I contingency table are still treated as independent, but a row 
sum will not be identically n, and instead will satisfy f~,, I tz. Then, when 
performing the jackknife to estimate the variance of the pseudo ML estimate, 
we delete each subject as before (i.e., for subject i, we delete q responses, 
where T,. 5 T). In the pseudo score tests, a modification that gives consistent 
results when data are missing completely at random is M, = (CjL>~?,,)/~~,~ , 

and, when calculating Sjk, p,,(t) = nrlr/nl. and p&l) = ~Q~~~,,/~~,,,. . y d-~-e 

r2 ,l,l,j is the number of subjects who have response 11 at occasion t and response i 

at occasion u. 
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In modifying WLS with missing data, two-step methods have been proposed 
by Koch et al. (1972), Woolson and Clarke (19841, Landis et al. (1988), and 
Lipsitz et al. (1990b). The first steps of the three approaches are different 
methods of estimating the probabilities in the TX I table as well as the 
covariance matrix of these estimates. The second step of the methods is the 
same; perform weighted least squares on the estimates from step one to 
estimate the parameters under the appropriate model. In particular, Koch et al. 
(1972) further stratified individuals by their pattern of non-response, and then 
used weighted least squares to estimate the T X I probabilities. Woolson and 
Clarke (1984) estimated the marginal probability of response h at occasion t by 
the proportion of individuals with response h among those who respond at that 
occasion. To estimate the variance, tl-py proposed ‘In (I + l)r multinomial 
distribution, adding one response categc . y at LA t k-w point that corresponds 
to missing. Lipsitz et al. (1990b) estimated the T x I yjrobabilities using the EM 
algorithm with the underlying IT joint multinomial di,tribution. The Lipsitz et 
al. method is consistent when the data are missing at random, whereas the other 
two require data to be missing completely at random. 

In closing, we mention that there are yet other ways of comparing marginal 
distributions and estimating covariance matrices that we have not discussed in 
this article. For instance., an alternative to the jackknife for estimating the 
covariance matrix is to adapt an empirical estimator described by Liang and 
Zeger (1986). Results in Lipsitz et al. (1990a) suggest this is asymptotically 
equivalent to using the jackknife. Stram et al. (1988) presented an alternative 
strategy of estimating a separate set of parameters at each occasion, and then 
empirically estimating the joint covariance matrix of estimated parameters from 
different occasions. They then used standard methods such as Wald tests to 
compare parameters across occasions. This is a special case of the Liang and 
Zeger approach using the naive ‘independence’ estimates, if one fits a model in 
which the sets of parameters for different occasions are completely separate. 
Such approaches also have the advantage over WLS of being valid for smaller 
sample sizes and sparser data. 

Another approach is to estimate parameters using some assumed structure 
for the covariance matrix of the sample marginal responses. When we use the 
covariance structure induced by assuming a multinomial distribution over tl;e 
full IT table, this simplifies to the ordinary WLS approach. In principle, it is 
possible to use such an approach in which we model the covariance matrix in 
terms of some smaller set of parameters. For instance., Liang and Zeger used 
this approach for univariate responses with structures such as autoregressive or 
one-step dependence. For categorical responses having more than two cate- 
gories, simple structures are not so readily apparent. 



In future research, it is of interest to cornflare various ways of obtaining 

pseudo estimates. We believe that the sample pseudo estimates based on 
treating occasions as independent will be adequate for most purposes. It is also 
important in future work to compare the various ways of estimating the 

covariance matrix of pseudo estimates. This is especially crucial, since our 
simulation results suggest that it is more difficult to precisely estimate standard 
errors when there truly is dependence across occasions. 

Finally, for completeness, we note there are other strategies one can employ 
when the main focus is testing of MH, rather than estimating model parameters. 
One approach uses generalizations of the Cochran-Mantel-Haenszcl (C-M-H) 
test. For details, see Agresti (1990, Sections 7.4 and 8.4), Darroch ( 198i !. White 
et al. (1982), and Landis et al. (1988). The generalized C-M-H statistic is 
applied to a T x I x PI table, in which the T responses for subject k form the 
k th of n strata or blocks. The stratum for subject k consists of a T x I table, in 
which there is a single observation in each row. The T x I table fitted in Section 
2 is the two-way marginal table of this one, collapsed over subjects. Some 
versions of this statistic correspond, for certain models, to a pseudo score test 
statistic. 

One can use a generalized C-M-H statistic presented by Landis et al. t 1988) 
to test variation among marginal means of an ordinal classification, with elf = T 
- 1. For Table 1 it also gives strong evidence of marginal heterogeneity, 
equaling 202.0 based on df = 6 for the case of equally-spaced responses scores. 
When one use:; thi!< generalized statistic with rank scores computed separately in 
each block. this gives the corrected-for-ties version of Friedman’s test (White et 
al. 1982). For Table 1 this statistic equals 214.2. 

Darroch (1981) noted that the generalized C-M-H statistic for nomirl:rl 
classifications, having crf = (T - l)( I - l), has the advantage that the inverse of 
the CT - l)( I - 1) x (T - 1 I( 1 - 1) covariance matrix of {L/,,} from Section 8 is 
determined by the inverse of an (I - 1) x ( I - 1) matrix. The generalized 
C-M-H statistics apply to sparse data, and are available using procedure 
FREQ in SAS. i-Lo-+vever, they have the disadvantages that they make certain 
exchangeability assumptions that rarely are suitable when the occasions are 
times (Landis et al. 1988), and they are directed strictly towards testing MH, 
rather than estimating the degree of marginal heterogeneity for some specified 
model. 

Sample programs for performing the analyses reported in this paper arc 
available upon request from the authors. The jackknife program for estimating 
the covariance matrix of the pseudo estimates uses procedure 
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