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Abstract: Bayesian methods are suggested for estimating proportions in the cells of cross-classifica- 
tion tables having at least one classification with ordered categories. These methods utilize models 
for cell proportions that incorporate the category orderings. The resulting estimators are smoother 
and can be much more efficient than the sample proportions, yet they are consistent even if the 
model chosen for the smoothing does not hold. Two approaches are considered: (1) Bayes 
estimators using a Dirichlet prior distribution for the proportions; (2) Bayes estimators based on 
normal prior distributions for association parameters in the saturated loglinear model. In each case, 
the means of the prior distributions are chosen to satisfy a model for ordered categorical data, such 

as the uniform association model. Empirical Bayes versions of the two analyses are also given. 

Keywor& Dirichlet prior, EM algorithm, Empirical Bayes, Loglinear models, Ordinal variables, 
Smoothing methods, Uniform association model. 

1. Introduction 

In recent years, much attention has been devoted to the development of models 
for analyzing cross-classification tables in which classifications have ordered 
categories. In some applications, however, it is important to estimate cell propor- 
tions in the table, yet there is no reason to expect a certain model to describe the 
data well. Model-based estimators are inconsistent, when the model does not 
hold. On the other hand, the sample proportions may not be desirable estimators, 
especially if the data are sparse. In this article we suggest two Bayesian ap- 
proaches to smoothing the sample proportions. In these approaches, a model still 
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provides part of the mechanism for smoothing the data, in the sense that the 
methods produce a shrinkage of the sample proportions toward a set of propor- 
tions satisfying the model. The estimators combine good characteristics of sample 
proportions and of estimators that are completely model-based. Like sample 
proportions (and unlike model-based estimators), they are consistent. Like 
model-based estimators (and unlike sample proportions), the estimators incorpo- 
rate the ordinal nature of the data, giving smoother values that can have much 
smaller total mean square error than the sample proportions. 

In Section 2 we suggest a Bayesian analysis that applies directly to the cell 
proportions. We use a variation of the Fienberg and Holland (1970, 1973) 
approach of giving a Dirichlet prior distribution to the cell proportions. Our 
Dirichlet prior distribution has expected value components satisfying a simple 
model for ordinal data, such as Goodman’s (1979) uniform association model. In 
a corresponding empirical Bayes approach, the expected value components in the 
prior distribution are obtained from the regular maximum likelihood (ML) fit of 
the ordinal model. In Section 3 we give a Bayesian analysis that applies to the 
parameters of the saturated loglinear model, rather than directly to the cell 
proportions. The expected values of normal prior distributions for the association 
parameters in the saturated model again follow the structure of a simple model 
for ordinal data. An empirical Bayes method that uses the EM algorithm is given 
for estimating the parameters in the prior distributions. 

Section 4 gives an example, and Section 5 gives results of a Monte Carlo study 
in which empirical Bayes estimators based on Dirichlet prior distributions are 
compared to the sample proportion estimator. The smoothed estimators are seen 
to be much more efficient than the sample proportion, their relative advantage 
increasing as the number of cells increases, as the sample size decreases, or as the 
model utilized for the smoothing better approximates the pattern for the true 
proportions. 

Most of our ideas are presented in the context of estimating proportions in the 
cells of a two-way table in which at least one of the classifications is ordered. We 
assume that the sample cell counts n’ = (n,,, . . . , nrc) in the r-by-c cross-classifi- 
cation of X and Y have a multinomial (n, { ~7;~)) distribution, where n = xZn,i. 
Denote the expected values of the { n,j} by ( m ii}. The local odds ratios 

eij=m,,m,+,,,+,/mi,j+Imj+l,,, I< i<:-1, 1 <jGc-I, 

are useful for describing properties of models for the association between X 

and Y. 
Several simple and useful models are special cases of the model 

log m,j = p + A: + XT + PP;v, 

considered by Goodman (1979). For this model, 

(1.1) 

For the special case { CL, = i } and { vj = j} this is called the uniform association 
(U) model, since {log 6Jij = /? }. When the { pi} are unspecified parameters and 
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the { vj} are monotone scores, this is called the row-effects model, and when the 
{ v,} are unspecified and the { p, } are monotone scores it is called the column 
effects model. One reason for the importance of this structural form is that it 
contains as a special case a discrete version of the bivariate normal distribution 
(Goodman 1985). This model is useful for both of the smoothing methods 
described in this article. 

2. Using an ordinal Diricblet prior distribution for cells proportions 

Fienberg and Holland (1970, 1973) described a simple Bayesian approach in 
which the unknown cell proportions V’ = ( pII,. . . , n,,) have a Dirichlet prior 
distribution with parameter /3’ = ( pII,. . . , &); that is, the prior density function 
is 

O<~r,~<l forall i and j, ~~~li=l, 

where all pi, > 0. The prior mean of ~ij is yi, = Pij/K, where K = ZX/3j,. The 
posterior distribution of s is also Dirichlet, with parameter /3* = /3 + n. Let 
LY = K/( n + K). The Bayes estimator for squared error loss is the posterior mean, 

E(Tlj In> = t1 - a)Plj + “Yi, (2.1) 
which is a weighted average of the sample proportion P,~ = n ij/n and the prior 
mean yi,. 

Formula (2.1) suggests that K can be interpreted as the number of observa- 
tions that the prior information represents. The value of K for which 
mean squared error (MSE) is minimized is 

Fienberg and Holland suggested an estimator of vii having form (2.1) 
K replaced by the ML estimator K( p, y) of K( 7r, y). For this choice, 

the total 

(2.2) 

but with 

(2.3) 

Following the arguments in Brown and Rundell (1985) for kernel estimates, one 
could instead obtain an unbiased estimator of the total mean square error, and 
then solve for the value of (Y that minimizes that estimator. This gives the 
“minimum unbiased risk estimator”, for which 

and there is greater smoothing than with the Fienberg-Holland estimator. Alter- 
native estimators could be used for K, such as those discussed by Bishop et al. 
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(1975), pp. 430-432) and such as the ratio unbiased and two-step estimators 
suggested by Ighadaro and Santner (1982). 

For ordinal variables, we suggest giving the { yjj} a pattern that reflects trends 
expected in the association. Unless one wishes to posit specific ,values for the 

{u,J, t P b bl i is ro a y easiest to select values that satisfy a simple ordinal model. 
For instance, if both variables are ordinal, one often expects (at least approxi- 
mately) a monotonic association of the type in which the {log Sji} are uniformly 
of one sign. Then it is natural to let the { yi,} satisfy model (1.1) with monotone 
scores. For the U model, for instance, the choices of the common local log odds 
ratio p and the row and column marginal probabilities determine the { yij } . 

One can bypass having to choose the { Y,~} by using an empirical Bayes 
approach, for which the { Y,~} depend on the data. Fienberg and Holland 
suggested { Tii =p;+~+~}, where pi+ =Cjpij and P+_~=I&P~~, which shrinks the 
sample proportions towards the fit of the independence model. To utilize the 
category orderings, we instead recommend using { Tij} that are ML fitted 
probabilities for a simple ordinal model. If we select the U model, for instance, 
then the component means of the fitted Dirichlet prior distribution for { rij} 
match the data in the marginal distributions and in the correlation, since the 
likelihood equations for the U model are { T,+ = pi+ }, { p+j = P+~}, and CE.ij+jj = 
CCijp,,. The resulting posterior estimator has the appealing property of being a 
weighted average of the sample proportion and the ML fitted proportion for the 
U model. For fixed n, the weight given to the sample proportion decreases as the 
fit of the U model improves. 

This strategy can be suitably modified for cross classifications of ordinal with 
nominal variables. For instance, if the row variable is nominal and the column 
variable is ordinal, one often expects (at least approximately) the conditional 
distributions within the rows to be stochastically ordered on the ordinal variable. 
Then, it is reasonable to let the { p,j} be ML estimates of cell proportions for a 
model that has this property, such as the row effects model. For that choice, the 
component expected values of the fitted Dirichlet prior distribution is an rc-vec- 
tor that matches the sample proportions in the marginal distributions and in the 
row means {Cjv,pij/p,+, i = l,..., r}. 

3. Using ordinal normal prior distributions for loglinear model parameters 

Leonard (1975) and Laird (1978) proposed estimating proportions in a two-way 
table through a Bayesian analysis of the parameters of the saturated loglinear 
model, 

log mjj=~++~+h~+X,,. 

Laird let the marginal parameters {A:} and {A’;} have independent uniform 
(improper) prior distributions over the real line, subject to the constraints 
CAT = CAY = 0, and she let the association parameters { Aij} have independent 
N(0, a*) distributions. She also suggested empirical Bayes analyses in which one 
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estimates u 2 by finding the value that maximizes an approximation for the 

marginal distribution of nl evaluated at the observed data. 
The use of zero for the prior means for the { A,,} provides a shrinkage towards 

the independence model. For ordinal data, one could instead let the prior means 
be terms in a simple structural model that describes ordinal relationships. For 
instance, we suggest taking E(A,,) = @,v,, corresponding to model (1.1). Our 
analysis is an adaptation of the one presented by Laird. in which we provide this 
additional prior structure. Suppose both variables are ordinal but there is no 
natural set of category scores. If one expects some (unspecified) monotonic form 
of association, it is simplest to use the scoring {EL, = i - (r + 1)/2} and { v, =j - 
(c + 1)/2}, for which the mean of the prior distribution for A,, is the association 
term in the U model. Specification of p in this prior mean reflects beliefs about 
the direction and strength of association. Specification of u reflects beliefs about 
the degree to which the { A,, } approximate a uniform association structure with 
that strength of association. 

Let 0 = (At,. . . , XT_,, A);, . . . , hT_1, A,,, . . . , A,,). The posterior density func- 
tion of 8 has the form 

We take the approach of Leonard (1975) and Laird (1978) of using the mode 6 * 
of the posterior distribution as the estimator of 8. This estimator corresponds to 
an estimator IT* of 7, for which the expected frequency estimates { m,*, = nr,T } 
satisfy the equations 

m,*+ = n;, 3 i=l ,.**, r, 

* 
m+j= n,,, j=l,...,c, 

m,T=nij-(A:,-&,~~)/a*, i=l,..., r, j=l,..., c. 

From the second derivative matrix of the log posterior with respect to B, it 
follows that the { m;} satisfying these equations are unique. If all n,, > 0 and all 
n +, > 0, then all n;y > 0, even if some n,i = 0. The equations imply that as 
a2 ---) cc, {m,; --, ni,), whereas as as a2 + 0, hyj -+ &A, v, and hence the { m,; ) 
converge to values that satisfy model (1.1) with association term identical to the 
mean of the prior distribution. For fixed u* > 0, as n + co, n,: = p, j + 0,(1/n). 

To avoid having to choose /3 and u* in the prior distributions for { X,i}, one 
can instead use an empirical Bayes solution. Here, we adapt the approach 
suggested by Laird (1978) and also by Chuang (1982) for a different model. The 
posterior density is related to the prior density g( 0) and the likelihood f( n IS) by 

where m(n; p, a) denotes the marginal probability function of n. Viewing the 
marginal distribution as a function of (p, u), for a given n, we estimate the 
parameters in the prior distribution by maximizing this “marginal likelihood”. 
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Using the same arguments given by Laird, we obtain equations for maximizing 

m(n; P, a), 

and 

E( C CPCLiV_jhij In, P? u, = PC CPf’j’. 

(3.1) 

(3.2) 

The EM algorithm can be applied to solve equations (3.1) and (3.2) as follows. 
Given current values uCP) and /I (p), for the E step one calculates 

tcP) = E( c cA#z, p(p), &‘I) 

and 

u(P) = E ( C CPjvjX,JIn 7 PC’)7 ‘(‘))’ 
Then for the A4 step one lets 

P (p+l) = .(P)( c &+$?)-l 

and 

b (P+ly = [t(P) _ ( p(p+l))2c &&+rc. 
The conditional expectations require integration with respect to the posterior 
distribution. One can approximate this integral by replacing the posterior distri- 
bution by the normal distribution N( 8*, C*) having the same mode and whose 
log has the same curvature at the mode as the log of the true posterior. Thus, the 
E step of the EM algorithm is implemented by taking 

tCP)= c x(X:,)2 + cuz and u(P)= c &,zJ~,I~~ 

where { a: } are the estimated variances, obtained from C*, of the TC values 
( Xyj} obtained in the pth iteration. The matrix C* has the same form as given by 
Laird (1978, p. 586). 

Since 

it follows that [u (p+‘)]2 > (&;)/rc. H ence, the empirical Bayes estimate of u2 
is nonnegative. 

For this application the EM algorithm may converge extremely slowly, and 
there need not be a unique solution. In fact, (u = 0, arbitrary /3) are always roots 
of these equations. We suggest using a wide variety of initial values for p and u 
in order to check whether the obtained solution depends on the initial choice. To 
guard against choosing an inappropriate solution, we also suggest comparing 
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results to those obtained with an alternative approximation. For instance, we 
adapted an alternative approach suggested by Laird. Since 

m(n; p, 0) =g(8; /3, u)f(n le)/h(Bln; P, 0) for all 8, (3.3) 

it can be approximated by dividing the product of the likelihood and prior 
density by the normal approximation discussed previously for the posterior 
density. The resulting approximation for the marginal distribution should be 
reasonable when the normal approximation for the posterior distribution is 

evaluated at 6 = 8 *. Using this substitution for each B term in (3.3) we 
calculated numerically the approximate marginal distribution for a rectangular 

gridof(/3, ) 1 u va ues, in order to determine an approximation for the ( p, o) value 
that maximizes the marginal distribution. 

For several examples studied by the authors, both approaches for determining 
(/?, a) gave very similar results. Because convergence was slow with the EM 
algorithm, however, and since there exist multiple solutions to equations (3.1) and 
(3.2), we have found the second approximation more useful, particularly when 
u = 0. In this approach, a very broad range of (/3, a) values was first used to 
determine the general behavior of the marginal distribution and to determine the 
region in which its maximum occurs, and then a refined grid of (p, a) values was 
used to better determine the location of the maximum. Computer programs for 
obtaining the empirical Bayes solution using these approximations are available 
upon request from Dr. Chuang. 

An interesting characteristic of the empirical Bayes approach is that if the 
standard ML fit of model (1.1) is exceptionally good, then the marginal distribu- 
tion of n is sometimes maximized at a (/3, a) pair for which u = 0. When this 
happens, we conjecture that the /3 value in that maximizing pair is identical to the 
standard ML estimate p for model (1.1). Our reasoning is as follows. Consider 
expression (3.3) for fixed n and fixed /3. This expression holds for all 8, and 
hence it applies at the posterior mode 8 *. Now as u JO the posterior density of B 
loses its dependence on n, becoming more similar to the prior density, and it 
seems as if the ratio of the prior and posterior densities evaluated at the posterior 
mode would converge to 1, hence losing its dependence on /3. Thus, as u JO, 
finding the fi value that maximizes m(n; p, a) becomes more similar to the 
problem of maximizing the regular likelihood f( n 10) subject to the constraints 
{h,, = /?P,v~} for 8 implied by u = 0. This latter maximization corresponds to 
ML estimation of P, in model (1.1). If our conjecture is true, then the posterior 
estimate of A;, is &,v,, and since m,*, = ni+ and rn:, = n,, for all i and j, it 
follows that the { rn: } are identical to the ML estimates for model (1.1). This 
result gives an interesting interpretation to the empirical Bayes solution: If model 
(1.1) fits extremely well, one estimates the cell proportions using the ML expected 
frequency estimates based directly on that model; otherwise, one uses estimates 
that correspond to a less severe smoothing of the sample proportions. 

When the row variable is nominal and the column variable is ordinal, one 
could still use the N(&;vj, u2) prior distribution for X,,, but it no longer is 
appropriate to use monotone scores for { p, }. One could instead use the para- 
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meterization N( rjvj, u2), where { vj} are fixed (e.g., equal-interval) and a2 and 
the { r;}, satisfying CT, = 0, are parameters. Then, the mean of the prior distribu- 
tion is the association term in the row effects model. The empirical Bayes 
approaches discussed previously can be adapted to this situation. 

Like the approach of Section 2, the Bayesian procedure discussed in this 
section does not smooth the row or column marginal proportions. Such a 
smoothing can be obtained, however, by using proper prior distributions for the 
marginal parameters. For instance, one could let the {Al} be independent 
N(0, u:) and the {XT} be independent N(0, u,‘). 

4. Example 

Next we illustrate the smoothing approaches by estimating cell proportions for 
Table 1, taken from Maxwell (1961), giving data on severity of disturbed dreams 

Table 1 

Expected frequency estimates based on (1) sample proportions, (2) ML estimates for model (1.1) 
(3) Empirical Bayes estimates with Dirichlet prior distribution for (rr,,), (4) Empirical Bayes 
estimates with normal prior distributions for {A,,} 

Age Estimate Severity of Disturbances of Dreams 

Not Severe Very Severe 

1 2 3 4 

5-7 1 7 4 3 7 

2 4.80 3.39 5.23 7.58 
3 5.78 3.66 4.24 7.32 

4 5.34 3.51 4.83 7.31 

8-9 1 10 15 11 13 

2 16.41 9.09 11.01 12.50 

3 13.56 11.72 11.01 12.72 

4 14.61 10.74 10.98 12.66 

10-11 1 23 9 11 7 

2 21.41 9.76 9.13 9.10 

3 22.12 9.42 10.29 8.17 
A 22.09 9.51 9.87 8.54 

12-13 1 28 9 12 10 
2 30.72 11.53 9.46 7.29 
3 29.51 10.41 10.59 8.49 
4 29.67 11.02 10.22 8.09 

14-15 1 32 5 4 3 
2 26.67 8.24 5.57 3.53 

3 29.04 6.80 4.87 3.29 
4 28.29 7.22 5.09 3.41 

Source of data: Maxwell (1961). 
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for a sample of 223 boys. In utilizing model (1.1) we assigned midpoint scores 
p’ = (6, 8.5, 10.5, 12.5, 14.5) to the age variable and equal-interval scores {vi = j 
- 3.5) to severity of disturbed dreams. Table 1 contains the estimated expected 
frequency estimates based on (1) the sample proportions (i.e., these are the cell 
counts), (2) the ML fit of model (l.l), (3) the empirical Bayes approach with a 
Dirichlet prior distribution for cell proportions that smooths towards the fit of 

model (1.1) (namely, (2.1) with a obtained using (2.3) with yi, replaced by the 
fitted values for that model), and (4) the empirical Bayes approach using 
{ N( &.L~v~, a’)} prior distributions for { Xjj} in the saturated loglinear model. 

Model (1.1) with the indicated scores fits these data quite well. The likelihood- 
ratio goodness-of-fit statistic equals 14.6, based on 11 degrees of freedom, and the 

ML estimate of ,B equals -0.097. 
When we use the Dirichlet prior distribution for { 7~;~ } with { ?,j} that are the 

ML fitted probabilities for the model (l.l), then the weight given to the model 
(1.1) estimates is (Y = 0.56. The moderately strong weight reflects the good fit 
obtained with that model. 

For the empirical Bayes approach with prior distributions for the { X,j}, the 
EM algorithm produces p = -0.092 and (I = 0.184 for the parameterization of 
the normal distributions. Direct approximation of the marginal distribution of n 
suggested that its value for the observed data is maximized approximately when 
p = -0.094 and u = 0.187. The relatively small value for u (compared to the 
values of ppjvj in the corners of the table, for instance) again reflects the good fit 
obtained with the model (1.1). The values /3 = -0.092 and u = 0.184 were used in 

Table 2 
Expected Frequency Estimates based on (1) Sample Proportions, (2) ML Estimates for U Model. 
and Empirical Bayes Estimates with Normal Prior Distributions for {A,,). and (3) Empirical Bayes 
Estimates with Dirichlet Prior Distribution for {T,,) 

Mental Health Estimate Parents’ Socioeconomic Status 
Status A B C D E F 

Well 1 64 57 57 72 36 21 
2 65.3 54.2 55.9 65.3 39.0 27.3 
3 64.9 55.0 56.2 67.1 38.1 25.6 

Mild 1 94 94 105 141 97 71 
Symptom 2 104.4 94.9 107.2 137.0 89.6 68.8 
Formation 3 101.5 94.7 106.6 138.1 91.6 69.4 

Moderate 1 58 54 65 77 54 54 
Symptom 2 50.2 49.9 61.7 86.4 61.8 52.0 
Formation 3 52.3 51.1 62.6 83.8 59.6 52.6 

Impaired 1 46 40 60 94 78 71 
2 42.1 45.9 62.2 95.3 74.7 68.8 
3 43.2 44.3 61.6 94.9 75.6 69.4 

Source of data: Srole et al. (1962) 
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the normal prior distributions that generated the posterior distribution corre- 
sponding to the expected frequency estimates given in Table 1. For these data, 
the Dirichlet and normal-based priors gave very similar results in terms of the 
smoothings provided of the sample cell counts. 

Table 2 is an example of data for which the empirical Bayes approach for 
parameters in the saturated loglinear model gives a degenerate prior distribution 
and hence gives cell proportion estimates identical to the ML estimates for model 
(1.1). The data are taken from Srole et al. (1978, p. 289) and were analyzed in 
Goodman (1979). Theory and research in mental health studies have suggested 
that mental health improves with increasing socioeconomic status (SES) of 
subjects or their parents (see, e.g., Dohrenwend and Dohrenwend, 1969). Hence, 
it makes sense to smooth towards a model, such as the U model, that represents a 
monotonic association. In fact, the U model fits the data extremely well, with 
likelihood-ratio goodness-of-fit statistic equal to 9.9, based on df = 14. 

When we use the Dirichlet prior distribution for { rjj} with { qij} that are ML 
fitted probabilities for the U model, then (Y = 0.72, so the smoothed estimates are 
quite similar to the ML estimates for the U model. For the empirical Bayes 
approach with N( pp. ,v,, a’) prior distributions for the { Aij} in the saturated 
loglinear model, the EM algorithm and direct approximation of the marginal 
distribution of n given (p, a) both suggested the use of /I = 0.09 and u = 0.00 in 
the prior distributions. In fact, p = 0.091 is the ML estimate of /3 for the U 
model. 

5. Improvement in estimation using smoothed estimators 

In this section we give the results of a Monte Carlo study that illustrates how 
smoothed Bayes estimators can be substantially better than sample proportions. 
This study used only the empirical Bayes estimator for the Dirichlet prior 
approach of Section 2, because computation time is much less for the normal-prior 
based estimator of Section 3. 

The study was also designed to study how various factors affect the behavior of 
the smoothed vs. unsmoothed estimators. We compared the mean square error of 
the sample proportions and of the smoothed estimators, by varying 

1. Table size 
a. 3X3 
b. 6x6 

2. Sample size 
a. n= 50 
b. n = 200 

3. Whether the U model holds 
a. Yes 
b. No - Model (1.1) holds with scores (1, 2.5, 3) for 3 x 3 case, 
(1, 2.8, 4.2, 5.2, 5.8, 6) for 6 X 6 case. 
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Table 3 

Mean Square Errors for Estimators of Cell Proportions 

rXc P n Estimator 

Sample Uniform- Independence- Uniform 

Proportion smoothed smoothed model 

U Model Holds 
3x3 0.1 50 

200 

0.4 50 

200 

6X6 0.1 50 
200 

0.4 50 
200 

U Model Does Not Hold 

3x3 0.1 50 
200 

0.4 50 
200 

6X6 0.1 50 
200 

0.4 50 
200 

0.099 

0.099 
0.098 

0.098 

0.027 
0.027 
0.027 
0.027 

0.099 
0.099 
0.098 
0.098 
0.027 
0.027 
0.027 
0.027 

0.067 0.060 0.062 

0.068 0.064 0.062 

0.069 0.076 0.064 

0.067 0.095 0.062 

0.012 0.013 0.009 

0.012 0.016 0.009 

0.014 0.018 0.012 

0.014 0.024 0.012 

0.067 0.060 0.063 
0.068 0.065 0.064 
0.072 0.078 0.071 
0.084 0.098 0.097 
0.013 0.013 0.010 
0.013 0.017 0.012 

0.016 0.019 0.016 
0.020 0.024 0.032 

4. Strength of association 
a. /3 = 0.1 in model (1.1) 
b. fi = 0.4 in model (1.1) 

Uniform marginal probabilities { 7ri+ = l/r} and { 7~+, = l/c} were used for all 
cases. The Dirichlet prior distribution was based on the ML fit of the U model, 
namely (2.1) where cr was calculated using (2.3) with Y,~ replaced by the ML 
estimate of nlj using the U model. For illustrative purposes, we also compared 
this estimator and the sample proportion to the ML estimator based completely 
on the U model and to the Bayes estimator whose Dirichlet prior distribution is 
based on the ML fit of the independence model (i.e., (2.1) where (Y is calculated 
using (2.3) with Y,~ replaced by ~~+p+~). 

For each estimator iiij of vii, Table 3 contains the value of 

nCrs, C;EjC7jij,a - 7i,j)* 

Mrc (5-l) 

for each of the sixteen combinations of conditions, where ejj., denotes the value 
of fiij in the ath randomly generated table. The M = 5000 simulations used the 
GGMTN multinomial generator in IMSL, on an IBM 3081 computer. For this M 
value, the standard errors of the values in (5.1) are all less than 0.001. For the 
sample proportion estimator, we report the exact expected value of (5.1) which is 
(1 - E&r,;)/K. 
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When the U model holds, the amount of smoothing is substantial for the 
U-smoothed empirical Bayes estimator. Its mean square error is considerably 
smaller than that for the sample proportion, and is nearly as small as that for the 
estimator based completely on the U model. Not surprisingly, the U-smoothed 
estimator improves on the independence-smoothed estimator as the strength of 
association /? increases, and as the sample size n increases. 

Similar remarks apply when model (1.1) holds but the U model does not, 
though as n increases it naturally becomes more advantageous to use the 
smoothed proportion estimators instead of those based completely on the U 
model. However, it is only for the largest values of r x c, p, and n considered 
(the last row in Table 3) that the inconsistency of the U model estimator starts to 
affect its performance seriously. The uniform-smoothed estimator does well in all 
cases considered. The MSE is quite a bit smaller than that for the sample 
proportion even when the U model does not hold and with n as large as 200. 

6. Generalizations and alternative approaches 

This article has considered only two-way tables. In principle, the arguments 
extend to multi-dimensional tables having some ordinal classifications. For the 
approach of Section 2, one selects an appropriate ordinal model for the mean of 
the Dirichlet prior to satisfy. For many purposes it would be adequate to choose 
a model that structures the two-factor associations and excludes three-factor or 
higher interactions. Examples of such models were given by Clogg (1982) and 
Agresti and Kezouh (1983). For the approach of Section 3, one lets the highest- 
order interaction terms in the saturated model have independent normal prior 
distributions, where the means in the prior distributions are terms in an ordinal 
model that one expects to approximate the true form of the interaction. The 
Dirichlet approach is considerably simpler to implement particularly for tables of 
several dimensions. 

There are many ways other than Bayesian methods to smooth ordered categori- 
cal data. Kernel methods were discussed by Titterington (1980), Titterington and 
Bowman (1985), and Brown and Rundell (1985). An advantage of these, com- 
pared to most of the Bayes methods discussed here, is that the marginal 
proportions also are smoothed. A disadvantage is that the choice of kernel 
method is usually ad hoc rather than theory-based. In some of our simulations we 
used the kernel estimator 7~ * = (I + aG)‘p, where the matrix G has all g,, = - 1 
and gives influence of pa6 on ~~3 proportional to 

0_5(o-c)‘+(h-4’ 

and where (Y was chosen to minimize an unbiased estimate of the total mean 
square error. Compared to the empirical Bayes approach of Section 2, the kernel 
approach was more successful (i) as the true cell proportions were more nearly 
constant, (ii) as the model used for the Bayesian smoothing fitted the true 
proportions more poorly, and (iii) as the sample size decreased. 



A. Agresti, C. Chuang / Model-based methods for estimating cell proportions 257 

Simonoff (1983) and Titterington and Bowman (1985) discussed the penalized 

likelihood approach, in which the smoothed estimator is obtained by maximizing 

L = log likelihood - @ (Q ) , 

where @ is a roughness penalty; that is, Qi is a function that decreases as IT is 
more smooth, in some sense. For two-way tables Simonoff (1983) suggested the 
penalty function @(IT) = nCC(log 0,j)2 involving the local odds ratios { 8;, }, 
which has the effect of shrinkage towards the independence estimator. For 
ordinal data, one could select a function that penalizes for departures from 
smoothness given by a certain type of ordinal model. For instance, one could let 

which has the effect of penalizing more when the estimates move farther from a 
uniform association fit. This approach, a kernel approach, or a Bayes or empirical 
Bayes approach generally produce estimators that, for sparse ordinal data, are 
much preferable to the sample proportions. 

Acknowledgments 

We thank Ming Yang for computing assistance. Dr. Agresti’s research was 
partially supported by grant GM 33210 from the National Institutes of Health. 

References 

A. Agresti and A. Kezouh, Association models for multidimensional cross-classifications of ordinal 
variables, Communications in Statistics Al2 (1983) 1261-1276. 

Y.M.M. Bishop, S.E. Fienberg and P.W. Holland, Discrete Multivariate Analysis (MIT Press, 

Cambridge, 1975). 
P.J. Brown and P.W.K. Rundell, Kernel estimates for categorical data, Technometrics 27 (1985) 

293-299. 

C. Chuang, Empirical Bayes methods for a two-way multiplicative-interaction model, Communica- 
tions in Statistics All (1982) 2977-2989. 

C. Clogg, Some models for the analysis of association in multiway cross-classifications having 
ordered categories, J. Amer. Statist. Assoc. 77 (1982) 803-815. 

B.P. Dohrenwend and B.S. Dohrenwend, Social Status and Psychological Disorder: A Causal Inquiry 
(Wiley, New York, 1969). 

S.E. Fienberg and P.W. Holland, Methods for eliminating zero counts in contingency tables, in: 
G.P. Patil, (Ed.) Random Counts on Models and Structures (Pennsylvania State University Press, 
University Park, 1970). 

S.E. Fienberg and P.W. Holland, Simultaneous estimation of multinomial cell probabilities, J. 
Amer. Statist. Assoc. 68 (1973) 683-691. 

L.A. Goodman, Simple models for the analysis of association in cross-classifications having ordered 
categories, J. Amer. Statist. Assoc. 74 (1979) 537-552. 

L.A. Goodman, The analysis of cross-classified data having ordered and/or unordered categories: 
Association models, correlation models, and asymmetry models for contingency tables with or 
without missing entries, Ann. Statist. 13 (1985) 10-69. 



258 A. Agresti, C. Chuang / Model-based methods for estimating cell proportions 

A. Ighodaro and T. Santner, Ridge type estimators of multinomial cell probabilities, in: S. Gupta 
and J.O. Berger (Eds.) Statistical Decision Theory and Related Topics III, Vol. 2, (Academic 

Press, New York, 1982). 

N. Laird, Empirical Bayes methods for two-way contingency tables, Biometrika 65 (1978) 581-590. 

T, Leonard, Bayesian estimation methods for two-way contingency tables, J. Roy. Statist. Sot. B37 

(1975) 23-37. 

A.E. Maxwell, Analysing Quafitatiue Data (Methuen, London, 1961). 
J.S. Simonoff, A penalty function approach to smoothing large sparse contingency tables, Ann. 

Statist. 11 (1983) 208-218. 
L. Srole, T.S. Langner, S.T. Michael, M.K. Opler and T.A.C. Rennie, Mental Health in the 

Metropolis: The Midtown Manhaftan Study (McGraw-Hill, New York, 1962). 
D.M. Titterington, A comparative study of kernel-based density estimates for categorical data, 

Technometrics 22 (1980) 259-268. 

D.M. Titterington and A.W. Bowman, A comparative study of smoothing procedures for ordered 
categorical data, J. Statist. Comput. Simul. 21 (1985) 291-312. 


