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Summary. We consider simple ordinal model-based probability effect measures for comparing distributions of two groups,
adjusted for explanatory variables. An “ordinal superiority” measure summarizes the probability that an observation from one
distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model.
The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It
equals �(β/

√
2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities,

for standard normal cdf � and effect β that is the coefficient of the group indicator variable. For the more general latent variable
model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link
functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1 + exp(β)] with the log–log

link and equals approximately exp(β/
√

2)/[1 + exp(β/
√

2)] with the logit link, where β is the group effect. Another ordinal
superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures
directly for ordinal models for the observed response that need not assume corresponding latent response models. We present
confidence intervals for the measures and illustrate with an example.

Key words: Cumulative logit model; Cumulative probit model; Mann–Whitney statistic; Ordinal multinomial models;
Proportional odds; Stochastic ordering.

1. Introduction

This article considers simple ordinal effect summaries for
model-based comparison of two groups on an ordinal categor-
ical response variable, while adjusting for other explanatory
variables. Unlike standard summaries using nonlinear mea-
sures such as probits and odds ratios that can be difficult for
practitioners to interpret, the proposed measures are based
merely on probabilities and their differences.

The summary measures generalize two “ordinal supe-
riority” measures that compare two groups without
supplementary explanatory variables. Let y1 and y2 denote
independent random variables from groups denoted by A and
B, for a quantitative or ordinal categorical scale. The measure

� = P(y1 > y2) − P(y2 > y1). (1)

summarizes their relative size. For binary responses with out-
comes (0, 1), this simplifies to the difference of proportions,
P(y1 = 1) − P(y2 = 1). If y1 and y2 are identically distributed,
then � = 0.0. For discrete response variables, such as ordinal
categorical responses, a related measure that has null value
equal to 0.50 rather than 0 is

γ = P(y1 > y2) + 1

2
P(y1 = y2) (2)

(Klotz, 1966). The correction factor adjusts for ties to gener-
ate a null value of 0.50. The measures are functionally related,

γ = (� + 1)/2, � = 2γ − 1,

with γ and � having ranges [0, 1] and [−1, 1], respectively.
They are most meaningful when the groups are stochastically
ordered, such as when they differ by a location shift on some
scale. For details for ordinal categorical response scales, see
Agresti (2010, Chap. 2). The measures relate directly to the
information used in the Mann–Whitney statistic. For exam-
ple, issue 4 of Volume 25 of Statistics in Medicine in 2006,
which is devoted to that statistic and its uses and extensions,
contains several articles that use such measures.

The ordinal effect measures discussed in this article use
such probabilities in the context of modeling ordinal response
variables while adjusting for explanatory variables. Section 2
introduces the measures for normal linear models that contain
an indicator term for the groups, because linear models serve
as latent variable models for ordinal response data. Section 3
presents related measures for a standard model for an ordinal
response variable that applies a link function such as the pro-
bit or logit to cumulative probabilities, utilizing its connection
with the latent variable model for various error distribu-
tions. Section 4 presents an example, also showing how to use
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R software to easily construct confidence intervals for the
measures. Section 5 presents related ordinal effect measures
for cumulative link models in terms of the observed response,
instead of a latent response. Section 6 discusses the applicabil-
ity of the measures and suggests extensions for other models.

2. Ordinal Superiority Measures for Normal
Linear Models

We first consider normal linear models that have explanatory
variables in addition to a binary group indicator variable. At
explanatory variable values x = (x1, . . . , xp)

T , let y1 denote
the response variable for an observation in group A and let y2

denote an independent response for an observation in group
B. Using the model-based conditional distributions on y for
the two groups at x, let

� = P(y1 > y2; x) − P(y2 > y1; x).

With no explanatory variables other than the group indicator,
this simplifies to (1). An analog of the ordinal superiority
measure (2) is

γ = (� + 1)/2,

which is merely P(y1 > y2; x) when the response is continuous.
The measures are useful summaries when no substantive inter-
action occurs between the group variable and the explanatory
variables.

Let z be a group indicator for an observation, where z = 1
for group A and z = 0 for group B. These ordinal measures
have simple form for the ordinary normal linear model

y = β0 + βz + xT βx + ε,

with βx = (β1, . . . , βp)
T and ε ∼ N(0, σ2). For this model, the

difference between the conditional means of y1 and y2 at x is
β, and

γ = P(y1 > y2; x) = P

[
(y1 − y2) − β√

2σ
>

−β√
2σ

]
= �

(
β√
2σ

)
.

This formula applies regardless of the values x of the
explanatory variables. Likewise, � = 2�(β/

√
2σ) − 1. Differ-

ences between the normal conditional standardized means for
the two groups taking values β/σ equal to 0, 0.5, 1, 2, 3, cor-
respond to γ equal to 0.50, 0.64, 0.76, 0.92, 0.98, respectively.
Analogous measures apply when interaction occurs between
the group indicator and an explanatory variable, or when the
variance is allowed to be nonconstant, but then the values of
the measures depend on the value of that explanatory vari-
able. The standardized difference β/σ has seen longtime use in
the literature for comparing two groups (e.g., Lehmann, 1975,
p. 71). The corresponding ordinal superiority measures have
also been used in a general regression context (e.g., Brumback
et al., 2006, Thas et al., 2012).

In practice, with least squares estimate β̂ in the linear
model and residual standard deviation s, we can estimate
the ordinal group comparisons by γ̂ = �(β̂/

√
2s) and �̂ =

2�(β̂/
√

2s) − 1. A confidence interval (L, U) for the stan-
dardized difference β/σ in the normal linear model yields a
corresponding confidence interval (�(L/

√
2), �(U/

√
2)) for

γ, which then also yields one for �. For the model matrix X

for the linear model, let v denote the element in the row and
column of (XT X)−1 corresponding to the effect parameter β

for comparing the two groups. For testing H0: β = 0 using
the usual t statistic, t = β̂/s

√
v, consider the noncentrality

parameter

λ = β

σ
√

v
.

Let (λ̂L, λ̂U) denote the standard confidence interval for
λ for this test (Lehmann, 1986, p. 352). Then, since λ =
(β/

√
2σ)(

√
2/v), it follows that the confidence interval (L, U)

for β/
√

2σ is
√

v/2(λ̂L, λ̂U). Applying � to these endpoints
yields the confidence interval for γ. Hayter (2012) presented
more general confidence intervals, and Tian (2008) presented
confidence intervals for group comparisons when the groups
have different variances.

3. Ordinal Superiority Measures for Ordinal
Latent Variable Models

When y is a c-category ordinal response variable, the most
popular models are special cases of the cumulative link model

link[P(y ≤ j)] = αj − βz − xT βx , j = 1, . . . , c − 1, (3)

for link functions such as the logit, probit, or log–log and
complementary log–log (McCullagh, 1980). It is often sensible
to regard an ordinal categorical variable as necessarily crude
measurement of a continuous latent variable y∗ that, if we
could observe it, would be the response variable in an ordinary
linear model. The cumulative link model is implied by a model
in which a latent response has conditional distribution with
cdf given by the inverse of the link function and with mean
βz + xT βx (Anderson and Philips, 1981).

The normal latent variable model with y∗ ∼ N(βz +
xT βx, 1) implies the cumulative probit model

�−1[P(y ≤ j)] = αj − βz − xT βx,

with {αj} being cutpoints on the underlying scale and � being
the standard normal cdf. The ordinal superiority measures
apply directly to this latent variable model. Let y∗

1 and y∗
2

denote independent underlying latent variables at x when z =
1 and when z = 0, respectively. For this model,

γ = P(y∗
1 > y∗

2; x) = P

[
(y∗

1 − y∗
2) − β√
2

>
−β√

2

]
= �

(
β√
2

)
,

regardless of x values, and � = 2�(β/
√

2) − 1.
The logit link and corresponding cumulative logit model

relate to underlying logistic distributions, for which such a
simple expression does not occur. However, because of the
very close similarity of logit and probit model fits, estimates
of the corresponding measures for that logistic latent vari-
able model are very similar to estimates for the normal latent
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variable model. For a cumulative logit model with propor-
tional odds structure and maximum likelihood estimate β̂ of
the group effect, we can use numerical integration or simulate
pairs of observations from the relevant logistic distributions to
closely approximate the maximum likelihood estimate of the
probability for the difference of latent logistic random vari-
ables. In practice, though, it is adequate to approximate the
distribution of y∗

1 − y∗
2 by a logistic distribution with param-

eter β and scale parameter
√

2, for which

γ ≈ exp(β/
√

2)

[1 + exp(β/
√

2)]
,

or to fit the corresponding cumulative probit model and use
the closed-form results for it.

For ordinal responses, log–log and complementary log–log
links are appropriate when we expect underlying latent vari-
ables to have extreme-value distributions. If in the latent
variable model, the errors are independent extreme-value
random variables (i.e., the standard Gumbel cdf F(ε) =
exp[− exp(−ε)]), then their difference has the standard logis-
tic distribution (McFadden, 1974). For a model with log–log
link and coefficient β for the group indicator, it follows that

γ = P(y∗
1 > y∗

2; x) = exp(β)

[1 + exp(β)]
,

when the scale parameter of the underlying extreme-value
distributions is 1.

For γ and � for the latent variable model with an ordinal
response variable, simple confidence intervals result directly
from ordinary confidence intervals for β for the correspond-
ing ordinal cumulative link model. For example, if [β̂L, β̂U ] is
a profile-likelihood or Wald confidence interval for β in the
cumulative probit model based on a multinomial likelihood,

the corresponding confidence interval for γ is [�(β̂L/
√

2),
�(β̂U/

√
2)].

4. Example for Cumulative Link Models

We illustrate the ordinal superiority measures with an exam-
ple from Agresti (2015, Section 6.3.3) on a study of mental
health. It relates a four-category response variable measuring
mental impairment (1 = well, 2 = mild symptom formation,
3 = moderate symptom formation, 4 = impaired) to a binary
indicator of socioeconomic status (SES: 1 = high, 0 = low) and
a quantitative life-events (LE) index taking values on the
nonnegative integers between 0 and 9 with mean 4.3 and stan-
dard deviation 2.7. The n = 40 observations are available at
www.stat.ufl.edu/ aa/glm/data.

For the cumulative probit model corresponding to a normal
latent variable model, the maximum likelihood fit is

�−1[P̂(y ≤ j)] = α̂j + 0.68336(SES) − 0.19535(LE).

To compare the two levels of SES using β̂1 = −0.68336, we
can use γ̂ = �(β̂1/

√
2) = 0.314 and �̂ = −0.371. The ordinal

superiority measure γ̂ has the interpretation that at any par-
ticular value for life events, there is about a 1/3 chance of
lower mental impairment at low SES than at high SES. The
95% profile likelihood confidence interval for β1 yields confi-
dence intervals (0.161, 0.507) for γ and (−0.678, 0.015) for �.
Table 1 shows how simple it is to use software such as R to
obtain a confidence interval for γ for the SES effect. Here, we
fitted the cumulative probit model using the cml function of
the R–package ordinal (Christensen, 2011).

Similarly, we can use these measures to compare two levels
of the life events measure. For the highest and lowest levels (0
and 9), γ̂ = �(9β̂2/

√
2) = 0.893, with 95% profile likelihood

confidence interval (0.653, 0.983), suggesting a very strong
effect.

Table 1
R code and output (edited) for finding confidence interval for ordinal superiority measure γ for SES effect in cumulative

probit model with mental impairment data

> Mental <- read.table("http://www.stat.ufl.edu/~aa/glm/data/Mental.dat",header=T)
> Mental
1 impair ses life
2 1 1 1
3 1 1 9
...
40 4 0 9
> attach(Mental)
> library(ordinal) # library(ordinal) requires response to be a factor
> impair.f <- factor(impair)
> probit.m <- clm(impair.f ~ ses + life, link="probit")
> summary(probit.m) # we don’t show cutpoint parameter estimates

Estimate Std. Error z value Pr(>|z|)
ses -0.68336 0.36411 -1.877 0.06055 .
life 0.19535 0.06887 2.837 0.00456
> Like.CI.b1 <- confint(probit.m)[1,] # profile likelihood CI for beta1
> Like.CI.gamma <- pnorm(Like.CI.b1/sqrt(2)); Like.CI.gamma

2.5 % 97.5 %
0.1608020 0.5074911

www.stat.ufl.edu/~aa/glm/data
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In practice, some methodologists use ordinary normal lin-
ear models for ordinal response data, feeling they are easier to
interpret than cumulative link models and believing that the
response is merely crude measurement of something inher-
ently continuous. For comparison, we estimate the ordinal
superiority measure γ with this crude modeling approach,
showing results in Table 2 using R software. For the SES
effect, γ̂ = �(β̂1/

√
2s) = �[−0.64501/

√
2(1.02696)] = 0.328.

The confidence interval for the noncentrality parameter λ is
available in R software with the conf.limits.nct function in
the MBESS package (Kelley, 2007). So, it is simple to obtain
a confidence interval for γ, using v = (se/s)2, where se is the
reported standard error for the estimated group effect. Table
2 shows that the 95% confidence interval for γ is (0.18, 0.51),
quite similar to (0.16, 0.51) obtained with the truly ordinal
treatment of the data through the cumulative probit model.

Next, we consider two alternative link functions for the
cumulative link model. The cumulative logit model has β̂ =
−1.1112 for the SES effect, for which γ̂ = 0.317. The value
γ̂ ≈ exp(β̂/

√
2)/[1 + exp(β̂/

√
2)] = 0.313 which has approxi-

mate 95% profile likelihood confidence interval (0.160, 0.511),
nearly identical to what we obtain with the cumulative probit
model. Using the log–log link for an underlying extreme-
value distribution, which is plausible for mental impairment
and quite different from a logit or probit link, we obtain
β̂ = −0.8746 and γ̂ = exp(β̂)/[1 + exp(β̂)] = 0.294 with 95%
profile likelihood confidence interval (0.152, 0.487). Compar-
ison of log-likelihood or AIC values does not suggest a clear
preference among the probit, logit, and log–log links, partly
reflecting the modest sample size.

In yet another approach for these data, Thas et al. (2012)
fitted a semiparametric model for logit(γ), estimating model
parameters using a set of estimating equations and estimat-
ing the covariance matrix of the estimators with a sandwich
covariance matrix. At fixed life events, they obtained γ̂ = 0.32
and a 95% confidence interval for γ of (0.20, 0.48). This is

slightly narrower than obtained with parametric models but
very similar to one we obtain below without assuming a latent
variable model, and with similar substantive impact. We con-
sider this mental impairment example further in the next
section.

5. Measures for Ordinal Models without
Assuming Latent Structure

For any model for ordinal categorical responses, analogs of
the ordinal superiority measures apply directly to the model,
without reference to any latent variable model. For a c-
category ordinal response variable y and a specific value of
the explanatory vector x, say x0, let

π�j(x0) = P(y = j; z = 2 − �, x0), � = 1, 2, j = 1, . . . , c.

We define

�(x0) =
∑
j>k

π1j(x0)π2k(x0) −
∑
k>j

π1j(x0)π2k(x0), (4)

and

γ(x0) =
∑
j>k

π1j(x0)π2k(x0) + 1

2

∑
j

π1j(x0)π2j(x0). (5)

Corresponding sample values �̂(x0) and γ̂(x0) replace the
probabilities in (4) and (5) by the corresponding fitted values
{π̂1j(x0)} and {π̂2j(x0)} for the model.

Unlike the measures for the latent variable models, these
measures have values depending on x0. In practice, we could
report them and their confidence intervals at a representative
x0 value, such as the overall mean x̄. Or, if the sample x val-
ues are representative of the population of interest, a summary
approach estimates the measures at the x value for each obser-

Table 2
R code and output (edited) for finding confidence interval for ordinal superiority measure γ for SES effect in normal linear

model with mental impairment data

> summary(lm(impair ~ ses + life))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.91973788 0.33785712 5.68210 1.6924e-06
ses -0.64500836 0.32915094 -1.95961 0.0576069 .
life 0.17778169 0.06060938 2.93324 0.0057285
---
Residual standard error: 1.02696 on 37 degrees of freedom

> library(MBESS)
> conf.limits.nct(-0.64501/0.32915, df=37, conf.level=0.95)
$Lower.Limit
[1] -3.956887716
$Upper.Limit
[1] 0.06278409435
> v <- (0.32915/1.02696)^2
> pnorm(sqrt(v/2)*(-3.956887)); pnorm(sqrt(v/2)*(0.062784))
[1] 0.1849219812
[1] 0.5056763573
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vation, and then averages them. Let xi denote the explanatory
component vector for observation i, and let π�ij = π�j(xi), for
� = 1, 2, i = 1, . . . , n, and j = 1, . . . , c. Summary ordinal supe-
riority measures are

�∗ = 1

n

∑
i

�i and γ∗ = 1

n

∑
i

γi, (6)

with components �i = �(xi) and γi = γ(xi), given by (4) and
(5), respectively. The expressions of �i and γi in terms of the
parameters of the cumulative link model (3) are given in web
appendix A. We obtain the model-based estimates �̂∗ and
γ̂∗ by replacing the parameter values by the corresponding
estimated values.

To construct confidence intervals for these measures, we can
obtain large-sample standard errors using the delta method,
based on an estimated covariance matrix of the ML model
parameter estimates that are generated from the usual multi-
nomial sampling scheme. From results for the simple case
without explanatory variables, it is more sensible to apply the
delta method to a transform such as the logit of the measure
(Ryu and Agresti, 2008) rather than to the measure itself.
Web appendix A contains the technical details. An R function
for constructing estimates and confidence intervals for γ∗ and
�∗, based on the cumulative logit or probit model, is available
in web appendix B.

We illustrate for the mental impairment data that Sec-
tion 4 used to illustrate the measures for the ordinal latent
variable models. For comparing the two SES levels with cumu-
lative probit and cumulative logit models, Table 3 shows γ(x)
and �(x) at the life events index values x = 0, . . . , 9, and at
the sample mean value x̄ = 4.3. Although the estimates vary
according to the life events value, they are quite stable. As
we would expect, because of the similarity of logit and probit

Table 3
Estimates of the ordinal superiority measures comparing the

two SES levels for the mental impairment data at the
different levels of the life-events index and its sample mean,
based on the cumulative probit and cumulative logit models

Cumulative

Probit Logit Probit Logit

Life events γ̂ �̂

0 0.355 0.357 −0.291 −0.286
1 0.345 0.348 −0.310 −0.305
2 0.338 0.341 −0.325 −0.318
3 0.333 0.337 −0.334 −0.326
4 0.330 0.335 −0.340 −0.330
5 0.329 0.334 −0.342 −0.333
6 0.330 0.334 −0.339 −0.332
7 0.334 0.336 −0.333 −0.327
8 0.339 0.341 −0.321 −0.317
9 0.348 0.350 −0.305 −0.301

x̄ = 4.3 0.330 0.334 −0.341 −0.331

models, summary results are similar for the two cumulative
links.

For the summary measures averaged over the 40 observa-
tions, we obtain γ̂∗ = 0.337 and �̂∗ = −0.325 for the probit
model, and we obtain γ̂∗ = 0.341 and �̂∗ = −0.319 for the
logit model. Table 4 shows 95% confidence intervals for the
population values, using the observed information matrix. All
these analyses indicate a range from essentially no effect to a
relatively large one in the direction of poorer mental health
at the lower SES level.

6. Discussion and Extensions

The measures introduced here supplement measures previ-
ously proposed to summarize effects in models for ordinal
categorical responses, such as Ryu and Agresti (2008) and
Thas et al. (2012). For other ordinal effect measures, see
Cheng (2009), Lu et al. (2014), Lu et al. (2015), and Volfovsky
et al. (2015).

An advantage of the ordinal superiority measures is simplic-
ity of interpretation for ordinal categorical models in which
researchers often find probits and odds ratios difficult to
interpret. For models with nonlinear link functions, such as
cumulative link models, the natural model-based effect mea-
sures are not easy to understand. For the typical medical
researcher or practitioner, for instance, reading that at any
values of explanatory variables the estimated probability that
a response to drug (z = 1) is better than a response to placebo
(z = 0) is γ̂ = 0.66 would have greater meaning than reading
that (i) an estimated cumulative odds for drug is exp(β̂) = 2.7
times the estimated cumulative odds for placebo (i.e., from
(3) with the logit link), or (ii) estimated cumulative probits
differ by β̂ = 0.5 or an underlying mean for drug is β̂ = 0.5
standard deviations better than for placebo (i.e., from (3)
with the probit link), or (iii) the estimated probability that
the response for drug is worse than a particular outcome cat-
egory is the power exp(β̂) = 1.7 of the estimated probability
that the response for placebo is worse than that category (i.e.,
from (3) with the complementary log–log link).

The ordinal superiority measures extend directly to sum-
mary comparisons of multiple groups, based on more general
models that have multiple indicator variables for the groups.
For example, suppose a cumulative probit model contains
terms β(a)za + β(b)zb in the linear predictor for groups a and
b, where zj = 1 for observations from group j and zj = 0 oth-
erwise. Then, an analog of γ for comparing those groups
is �[(β(a) − β(b))/

√
2]. Inference can use Bonferroni adjust-

ments. With a large number g of groups, it may be useful to
model the g(g − 1)/2 comparison measures in terms of fewer
parameters, such as is done with the Bradley–Terry model
and is discussed in a simpler context by Bergsma et al. (2009,
p. 11).

The proposed measures in Section 5 that are not connected
with a linear latent variable model apply directly to other
ordinal models, such as continuation-ratio logit models and
adjacent-category logit models that have proportional odds
structure (Agresti, 2010, Chapter 4). When the explanatory
variables are solely categorical, the data form a contingency
table, and (3) for the logit link is the response model analog
of association models for cumulative odds ratios, while other
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Table 4
95% confidence intervals for the ordinal superiority measures comparing the two SES levels for the mental impairment data

at the sample mean of the life-events index and summarized over life-events values, based on the cumulative probit and
cumulative logit models

Cumulative

Probit Logit Probit Logit

Life events γ �

x̄ = 4.3 (0.19, 0.51) (0.20, 0.51) (−0.63, 0.03) (−0.61, 0.02)
Summary (0.21, 0.49) (0.21, 0.50) (−0.57, −0.02) (−0.57, −0.01)

ordinal response models correspond to association models for
alternative types of ordinal odds ratios (see Sections 8.3.2–
8.3.4 of Kateri, 2014). Some of these models, such as those
expressed in terms of local odds ratios, have approximate
connections with underlying normal models. The measures
extend also to more general ordinal-response models than
those having linear predictors, such as generalized additive
models for ordinal responses (e.g., Yee and Wild, 1996),
although obtaining confidence intervals is then more challeng-
ing.

7. Supplementary Materials

Web Appendices A and B, referenced in Section 5, are avail-
able with this article at the Biometrics website on Wiley
Online Library. Web appendix A contains the technical details
for deriving the large-sample confidence intervals for γ∗ and
�∗, while web appendix B provides the R–function for comput-
ing γ̂∗ and �̂∗, along with the associated confidence intervals.
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