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SUMMARY. The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) 
conditional on a set of success probabilities and sample size indices, a vector of counts is independent 
binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. 
We use this distribution to model multivariate binomial-type responses using a vector of random effects. 
The vector of logits of parameters has a mean that is a linear function of explanatory variables and has 
an  unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility 
than the univariate model that uses a normal random effect to account for positive correlations in clustered 
data. The multivariate model is useful when different elements of the response vector refer to different 
characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary 
measurement of a single response when there is a nonexchangeable association structure, such as one often 
expects with longitudinal data or when negative association exists for at least one pair of responses. We 
apply the model to an influenza study with repeated responses in which some pairs are negatively associated 
and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with 
clustered observations. 

KEY WORDS: Continuation-ratio logit; Generalized estimating equations (GEE); Generalized linear mixed 
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1. Introduction 
This paper presents models for vectors Y = (Y1, Y2,. . . , YE) 
of binomial-type responses. Interest focuses on modeling the R 
response distributions, such as comparing those distributions 
at fixed values of covariates. When Y results from repeated 
measurement of a single binary variable, a common way to 
account for the correlations is with a random effect term for 
each subject or cluster. By contrast, the model discussed in 
this paper refers to a set of R separate response variables with 
a distinct random effect for each variable. 

The models discussed are special cases of the generalized 
linear mixed model (GLMM), which has a linear predictor 
consisting of fixed effects relating to observed covariates and 
random effects relating to unobserved variables. For many re- 
peated measurement problems, a simple random effects struc- 
ture consisting of a random intercept is sufficient to account 
for correlations among different observations on the same sub- 
ject or among observations on different subjects in the same 
cluster (e.g., Breslow and Clayton [1993] and references there- 
in). For subject (or cluster) s, s = 1,. . . , N ,  and binary re- 

sponse Y.qr that can take values zero and one, r = 1, . . . , R, let 
iTs r  = P(YsT = 1) and let xsr be a fixed covariate row vector. 
Most common is the logit link, for which the random-intercept 
form of model is 

logit ( r s T )  = as + X s r p ,  (1) 

where {a,} are i.i.d. random variables with distribution func- 
tion F in some parametric family and where /3 is a p x 1 pa- 
rameter vector. Typically, one assumes that {as} are N(0, u2) 
with unknown u2 and that the R responses (given a,) are mu- 
tually independent. This case for (1) is often called a logistic- 
normal model. One can obtain maximum likelihood (ML) es- 
timates of (a, p )  using various methods, including Newton- 
Raphson maximization following Gauss-Hermite quadrature 
to numerically integrate out the random effects. 

While model (1) has enjoyed much success for certain types 
of data, it suffers from two inflexibilities. First, the model 
implies nonnegative marginal log odds ratios among the R 
responses, averaged over subjects. To illustrate such inade- 
quacy, we use Table 1, taken from Haber (1986) and also 
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Table 1 
Observed and fitted counts of infection profiles for influenza data 

Fitted values Observed 
(ylj. .  . rY4) count Model (1) BLN model (6) BLN model (7) 

0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  

Deviance (d.f.) 

140 
31 
16 
3 

17 
2 
5 
1 

20 
2 
9 
0 

12 
1 
4 
0 

138.4 
20.8 
19.5 
4.1 

22.1 
4.6 
4.3 
1.2 

26.2 
5.5 
5.1 
1.5 
5.8 
1.7 
1.6 
.6 

27.7 (10) 

138.4 
23.9 
16.9 
5.4 

19.2 
6.1 
3.8 
2.1 

28.2 
1.4 
6.3 

.6 
7.1 
.7 

2.4 
.5 

18.2 (8) 

138.7 
31.1 
16.2 
2.0 

18.6 
2.3 
6.0 

.4 
22.6 
2.8 
7.2 
.5 

8.1 
.6 

5.6 
.3 

6.3 (8) 

analyzed by Darroch and McCloud (1990). In this 24 con- 
tingency table, counts refer to infection profiles of a sam- 
ple of 263 individuals for four influenza outbreaks occurring 
in the winters 1977/1978 to 1980/1981 in Tecumseh, Michi- 
gan. Each subject has four binary responses. Model form (1) 

xs4 = (O ,O,O,  l), and = (P1,,&,/33,P4) is appealing, with 
differences among {&} providing comparisons of the log odds 
of catching the flu at the various outbreaks. However, the out- 
breaks in the first 3 years were caused by different viruses, 
while the outbreak in the fourth year was apparently caused 
by the same virus as in the first year. One expects responses 
for the first and fourth outbreaks to be negatively correlated 
because contracting influenza during one outbreak provides 
a stronger immunity against a subsequent outbreak of that 
type. Section 3 discusses this example further. 

Second, the model implies an exchangeability in the con- 
ditional odds ratios for the marginal distribution. For re- 
sponses {ys7., T = 1 , .  . . , R} for an arbitrary subject, let tab = 
Cr ysr - ysa - Ysb. For the marginal distribution (averaged 
over subjects) at covariate values {x7. = xs7-}, the odds ratio 
between responses a and b, given the other responses, is the 
same for all pairs (a ,  b) with a common value of t a b ,  and this 
is true regardless of the form of the random effects distribu- 
tion. Thus, unlike in generalized estimating equations (GEE) 
analyses for repeated measurement (Liang and Zeger, 1986), 
model (1) does not provide a way of specifying correlation 
patterns that treat the responses in an asymmetric manner. 

This article presents a generalization of model (l), called 
the multivariate binomial logit-normal model. It provides flex- 
ibility in modeling the correlation structure among R response 
variables that are each binomial, conditional on the random 
effects, by using a separate random effect for each variable. 
The model form itself is not new, as other authors have intro- 
duced logit models with multivariate normal random effects 

with xsl = (1,0,0,0), x,2 = (0, L O , O ) ,  x s g  = (O,O,  L O ) ,  

(e.g., Stiratelli, Laird, and Ware, 1984; Breslow and Clayton, 
1993). In traditional mixed logistic models with multivariatt: 
normal random effects, however, the random effects vector 
usually consists of a subject-specific intercept and slope. The 
multivariate binomial logit-normal model differs from this in 
that the random terms are not regression coefficients commoii 
to all observations within a cluster but rather are a separate 
random intercept unique to each observation. This formula- 
tion is useful when the separate binomial variables refer to 
different classifications or when the R repeated responses are 
not positively correlated. Section 2 presents the model and a 
method for fitting it. Section 3 presents two examples of its 
application; Section 4 explores some properties of the model; 
and Section 5 discusses alternative models and alternative fit- 
ting procedures. 

2. The Mul t ivar ia te  Binomial Logit-Normal Model  
For subject s, conditional on rs = ( ~ ~ 1 , .  . . , T , ~ R ) ,  we let 
Y ,  = (Ysl , .  . . , Y s ~ )  denote R independent binomial random 
variables with index vector ns = ( n , ~ ,  . . . , n , ~ )  and parame- 
ters rs. Let logit(rs) denote the logit operation applied com- 
ponentwise to 7rs. We now generalize model (1) by incorpo- 
rating a separate random effect for each of the R binomial 
responses, such that logit(7rs) is a multivariate normal ran- 
dom variable. Specifically, 

s = 1 , .  . . , N ,  where X, is the R x p covariate matrix whose 
r th  row is xsr and as N N(0, X ) .  The parameters describe 
the effects of the explanatory variables, while I: contains pa- 
rameters that reflect the heterogeneity among subjects as well 
as within-subject dependencies among the R variables. Model 
(1) is a special case of this model that restricts the R random 
effects to be identical (i.e., they have equal variances and all 
R(R - 1)/2 pairwise correlations equal 1.0). 
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We refer to the mixture model in which, (i) conditional 
on rs, Y ,  is a vector of R independent binomial random 
variables with indices n, and parameters 7rs and [ii) the lized. 

standard errors by the number of quadrature points q used in 
each dimension to ensure that this approximation has stabi- 

\ ,  

{logit(r,)} are i.i.d. from a N(p, X) distribution as a mul- 
tivariate binomial logit-normal distribution. We denote it by 
BLNR(n,,p, E), or BLN for short. For instance, as just de- 
scribed, Y, w BLNR(n,, X,P, X). Let f(7r; XP,  X) denote 
the probability density function for {r,}. Then 

f(r; XP,  X) 
( R  1 -l 

= (27r)-R/2 lEl-1/2 { n [7rr(l - T r ) ]  } 
l r=1 I 

x exp { -1 (logit(r) - XP)’ x-’ (logit(r) - XP)} , 
2 

0 5 ~ r 5 1 ,  

for r = 1,. . . , R. The BLNR(n, XP, C) mixture has probabil- 
ity mass function 

y r = O , 1 ,  ..., nr ,  r = l ,  . . . ,  R, ( 3 )  

where b(yr I 7rr;nr) denotes the binomial probability mass 
function with nr trials and parameter 7rr. 

Maximum likelihood estimation of the parameters (0, X) 
is more complex computationally for this model than the 
usual univariate generalized linear mixed model because of 
the multivariate nature of the integral in ( 3 ) .  In our examples, 
we approximated this integral using multidimensional Gauss- 
Hermite quadrature. Consider the transformation (Aitchison 
and Ho, 1989) logit(r) - X P  = Qz, where Q is the unique 
lower triangular R x R matrix with nonnegative diagonal 
elements such that E = QQ’. The ML estimates P and 
f: = QQ’ are obtained by maximizing the approximation 
to the log likelihood, 

1 

a = l  L k 1 

where 

k = (k1,.  . . , k ~ ) ,  z k l . . . k R  = ( z k l , .  . . , z k R )  is a vector of uni- 
variate quadrature nodes, and the multivariate quadrature 
weights v c  . . . k R  are products of the appropriate univariate 
quadrature weights. 

We maximized (4) using FSQP (Zhao and Tits, 1994), a set 
of FORTRAN subroutines for numerically optimizing an ob- 
jective function subject to linear and nonlinear constraints on 
the variables. One can fit the model with an unstructured X or 
with relevant special cases, such as a common variance with 
certain correlations equal to zero, others equal to one, and 
others equal to some unknown p .  After fitting the model, one 
can make inferences in the usual manner using the model’s 
log likelihood function. We used I-’(@, where I ( 0 )  is the 
observed information matrix, to estimate the asymptotic co- 
variance matrix of d .  We recommend plotting estimates and 

3. Examples of Multivariate Binomial Logit-Normal 

We now provide two examples demonstrating the generality 
of the multivariate binomial logit-normal (BLN) model. First 
we analyze Table 1, for which multivariate random effects can 
account for some negative associations. Second, we analyze a 
developmental toxicity study, with logits applied to an ordinal 
outcome, in which a vector of random effects account for litter 
clustering. 

3.1 Repeated Univariate Response Permitting Negative 

For the influenza data in Table 1, each subject has four binary 
responses (Y1 , Y2, Y3, Y4), and we consider BLN models with 
n = 1. Let 7rsr denote the probability that subject s gets the 
flu in year r and consider the BLN model 

Models 

Dependence: Influenza Data 

lOgit(7rsr) = ~ s r  + ,&. (5) 

We first used a random effect covariance structure based 
on a sum of two components, one corresponding to subject 
heterogeneity and one corresponding to dependence between 
the first and fourth outbreaks because of the apparently 
common virus in years 1 and 4. Namely, we assumed that 
as = a , ~  +ctsw, where a , ~  - N4(0, EH) and a,w - 
N4(0, Xw) and (Y,H and a,w are independent, with 

i.i.d. i.i.d. 

and 

This suggests fitting model (5) with as covariance structure 

Table 1 shows the BLN model fit with this correlation 
structure. Inspection of the parameter estimates as a function 
of q shows that the quadrature approximation stabilizes for 
q > 17. All fits reported here are based on q = 20 quadrature 
points. This model fit has likelihood-ratio goodness-of-fit 
statistic (deviance) G2 = 18.2 with d.f. = 8, showing evidence 
of lack of fit. Model ( 5 )  with univariate random intercept is 
the special case of (6) in which p1 = p2 = 1, i.e., in which 
as has only the a , ~  component and the random effect is the 
same for each response. This fit has G2 = 27.7 with d.f. = 10. 
Not unexpectedly, this model also fits poorly since it forces 
all pairwise marginal log odds ratios to be nonnegative; e.g., 
the fitted marginal odds ratio for Yl and Y4 is 1.44 compared 
with the sample value of .32. Table 1 also shows this model 
fit. 
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We next fitted BLN model (5) with unconstrained !2 to 
investigate why the model with structure (6) fits poorly. This 
model estimates that all correlations between outbreak four 
and the other three outbreaks are negative and suggests that 
the BLN model with 

may be reasonable. This would make biological sense if the 
outbreak in the fourth year shared viruses with the first 
three years. Table 1 shows the BLN fit with this covariance 
structure. This model fits the data well (G2 = 6.3, d.f. = 8), 
and we gain 7 d.f. compared to the unstructured model by 
constraining the variance components to be equal and the 
correlations to have only two distinct values. The model yields 

= (-4.0,-4.4,-4.7,-4.5), S = 4.05, 61 = .43, and 62 
= -.25. The ,6 components order the estimated probability 
of flu at the four outbreaks for individuals having common 
susceptibility a at each outbreak. For instance, for subject a 
at time 1 and subject b at time 2 for whom a,l = a b 2 ,  we 
estimate that the odds of succumbing to the first outbreak 
were exp[-4.0 - (-4.4)] = 1.5 times the odds of succumbing 
to the second outbreak. 

Section 4 shows equivalence in the sign of the correlation 
of the random effects and of the corresponding marginal 
responses. It follows that, for this model, the fitted log odds 
ratios for the marginal associations between Y4 and each of 
Y1, Y2, and Y3 are negative; in fact, the sample odds ratios are 
.32, .54, and .62, respectively. We also fitted the model that 
allows a possibly different random effects correlation between 
outbreaks 1 and 4 than between 2 and 4 and between 3 and 4, 
but this did not provide a significantly improved fit (G2 = 5.4, 
d.f. = 7). 

For these data, Darroch and McCloud (1990) separately 
measured two sources of dependence-population hetero- 
geneity and negative within-subject (1,4) correlation. Their 
model specifies, for a given subject, mutual independence 
of the first three responses and, conditional on those 
responses, dependence of the fourth response on the first 
alone. This model also fits well (G2 = 5.5, d.f. = 5). It 
provides an estimate of -2.27 for the log odds ratio relating 
the conditional association between Y1 and Y4, describing 
the within-subject immunity to outbreak 4 acquired by 
succumbing to outbreak 1. Their model, however, implies 
positive conditional associations between Y2 and Y4 given Y1 
and between Y3 and Y4 given Y1, whereas the sample log odds 
ratios for these four cases are negative. 

3.2 Contanuataon-Ratao Logats For Clustered Ordznal 

The BLN model also has application to continuation-ratio 
logit modeling of repeated or clustered ordinal responses 
since, for that multinomial model, the logits refer t o  sets 
of independent binomial variates (Fienberg, 1980). For the 
application discussed in this subsection, the dependence 
results from measurement on subjects in clusters of related 
subjects rather than from repeated measurement for each 
subject. Suppose there are N clusters and let rsl denote 
the probability that a subject in cluster s makes response 

Outcomes: Toxacaty Data 

j ,  j = 1 , .  . . , J ,  where for simplicity we suppress notation 
for explanatory variables. For cluster s, ws j  = r s j / ( ? r s j  + 
. . . + X , J )  is the conditional probability of response j ,  given 
response in category j or higher. The continuation-ratio logits 
are {logit(w,j), j = 1,. . . , J - I}. 

Let {ysj, j = 1, .  , . , J }  be the number of subjects in 
cluster s having response j and let m, = ysj  and 
Nsj  = ms - Ci<j  ysi. For a given cluster in a continuation- 
ratio logit model, the multinomial response is equivalently a 
set of J - 1 independent binomial counts (y,~,. . . , y , ( ~ - ~ ) )  
out of ( N s l , .  . . , N s ( ~ - l ) )  trials with probability vector ws = 
( w , ~ , .  . . , w , ( J - ~ ) ) .  Because of the independence of the (J-1) 
responses for this model, for a given cluster effect, one can 
construct random effects models for the continuation-ratio 
logits as special cases of BLN models. The model has the 
form 

logit (w,) = as + XSp. 
Here, for cluster s, n, = ( N s l ,  N,2,. . . , N s ( J P l ) ) ,  unlike the 
application in Section 3.1 in which all binomial indices equal 
one. 

We now apply this model to a developmental toxicity study 
conducted under the U.S. National Toxicology Program (Price 
et al., 1985). This study examined the developmental effects 
of ethylene glycol (EG) by administering one of four doses 
(0,  .75, 1.50, 3.00 g/kg) to pregnant rodents, with (25, 24, 
22, 23) animals in the four dose groups. The clusters are 
litters of mice. The three possible outcomes (dead/resorption, 
malformation, normal) for each fetus are ordered, normal 
being the most desirable result. The continuation-ratio logit 
is natural here since categories are hierarchically related; 
an animal must survive before a malformation can take 
place. A Dirichlet-trinomial model (Chen et al., 1991) and 
GEE methods (Ryan, 1992; Catalano, Ryan, and Scharfstein, 
1994) estimate the population averaged effect of dose on a 
multinomial response in the presence of the litter effect. The 
use of random effect models to account for litter effects seems 
unexplored in the multinomial case. 

Here, for litter s with dose i, logit(w,(i)l) is the 
continuation-ratio logit for the probability of death and 
logit(w,(i)2) is the continuation-ratio logit for the conditional 
probability of malformation, given survival. We account for 
the litter effect by the inclusion of litter-specific terms a,(i)  = 

(crs(i)l,  crs(z)z) in the BLN model, 

where xi is the dose associated with the i th dose group and 
as(i) N N(0,Ci). The multivariate random effect allows 
for differing amounts of litter effect overdispersion for the 
probability of death and for the probability of malformations, 
given survival. 

Table 2 reports the maximized log likelihoods for model 
(8) and various special cases. The parameter estimates again 
stabilized for q > 17 quadrature points, and all fits reported 
are based on q = 20. The special cases are as follows: 

i.i.d. 

(a) BLN2 model with dose-specific random effects but 
common intercept and slope for the two logits, i.e., 
y1 = y2 and 01 = p2 in model (8); 
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Table 2 
Maximized log likelihoods under the multivariate 
binomial logit-normal model and submodels f O T  

the ethylene glycol data of Price et at. (1985) 
~~ ~~ 

Multivariate binomial-logit Parameter Maximized 
normal model dimension log likelihood 

BLN2 with dose-specific Ci 
(model 8) 16 -457.3 

BLN2 with Xi, common y, /? 14 -485.7 
BLN2 with common X 7 -464.7 
BLN2 with common C, p = 0 6 -464.7 
Univariate 2 5 -474.0 

(b) BLN2 model with constant covariance matrix across the 
four doses, i.e., XI = X2 = C3 = X4; 

(c) BLN2 model with constant covariance matrix across dose 
and independent random effects, i.e., C1 = C2 = E3 = 
X4 and p = .O; 

(d) univariate dose-specific random effects, i.e., aS(%)1 = 

asjzp so that each entry of Cz is up and the correlation 
between random effects for the two logits equals one; 

(e) the model with univariate constant variance component 
across dose, i.e., = a s ( z ) 2  and ui = u. 

We can formally test the fit of the first three special cases 
against the general model (8) using likelihood-ratio tests. 
Since comparing the univariate models to their multivariate 
counterparts involves testing that the correlation parameters 
are on the boundary, we cannot formally compare these 
models using likelihood-ratio tests, but an informal analysis 
of maximized likelihoods seems adequate here. For these 
data, the independent multivariate random effects model with 
homogeneous variance structure (i.e., the fourth model listed 
in Table 2) appears to describe the data well. The parameter 
estimates are (with asymptotic standard errors for the dose 
effects in parentheses) 

.3 .o 
= [ .o 2.51 ’ 

31 = -4.19, T.2 = -4.36, = .08 (.208), 6 2  = 1.79 
( . 225) .  The variance component estimates suggest a strong 
litter effect for the malformation outcome (given survival) 
but not for death. For a given cluster, there is no evidence 
of a dose effect on the death rate, but the estimated odds of 
malformation, given survival, are multiplied by exp( 1.79) = 
6.0 for every additional gram per kilogram of ethylene glycol 
that a mouse receives. The model, which corresponds to a 
separate univariate logistic-normal model for each conditional 
binomial outcome, specifies that the proportion of dead pups 
and the proportion of malformed pups (given survival) are 
independent both within litter and marginally. 

3.3 Other Applicatzons of the BLN Model 
Coull and Agresti (1998) showed other applications of the 
BLN model. The model is often natural when two or more 
binary variables are measured repeatedly, such as in a 
longitudinal study. Here, different elements of the response 
vector refer to different characteristics. To illustrate, Coull 
and Agresti (1998) reanalyzed the leading-crowd data of 

Coleman (1964) that appears often in the discrete data 
literature (e.g., Agresti, 1997). The data consist of matched- 
pairs responses for two binary variables, and they used the 
BLN model with a bivariate normal random effect. A potential 
application with a repeated univariate response is in capture- 
recapture modeling for estimating population size. Coull and 
Agresti (1999) used a univariate model with random effects 
to permit animal heterogeneity. This model, however, cannot 
handle trap avoidance, resulting in negative associations 
between the capture responses at different occasions. 

4. Characteristics of the Multivariate Binomial 

We next study some properties of the BLN distribution, which 
forms the basis of the models in this paper. Unfortunately, 
there are no closed-form expressions for its moments since 
such expressions do not exist for the moments of a 
multivariate logit-normal random variable. Let Y denote a 
BLNR(n, p, C) variate. Then 

Logit-Normal Distribution 

E(K)  = E{E(Yr 1 7 r r ) }  = nrE(7rr) 

and 

cov(Yr, YTt) = nrn+ cov(rr, 7r+) +I(T = r’)nrE{7rT(1 - 7 r r ) } ,  

where I ( . )  is an indicator function. Let 7r: = exp(pr)/[l + 
exp(pr)]. Taylor series expansions show that, for small { u , . ~ } ,  

(9) 

C0V(7rT,7rT,) = urrm; (1 - 7r;) 7r;t (1 - 7r,.,) 

We conducted a simulation study of various properties of the 
BLN distribution. This indicates that these approximations 
tend to break down when urr > .6. For Urr 5 .6, 

E(Yr) M nrr; 
c o v ( y r , ~ . f )  M nrnl.tuTT/7r:(I - x;)7rT?/(l - 7r;f) 

+ I ( .  = T’)nr[7rF(1 - 7rT)][1 - urr!r:(l -.:)I. 
In particular, for small normal dispersion, 

corr(Y,, Yr,) 
M n r n T , u T T ~ ~ ~ ( 1  - T : ) T ; < ( ~  - .,*() 

Although it is not possible to provide general properties 
of the BLN distribution, results for some special cases are 
apparent. If each urT = 0, then the R marginal variables are 
independent binomials. If the normal correlations {pry /  = 0}, 
then the R counts are independent but have extra-binomial 
dispersion, the degree of overdispersion governed by { uTr}. 

Also, for T # T’, (9) yields cov(Yr,Y,/) = nrn+ cov(7rT,7r,~). 
Since { 7 r r )  are monotone increasing functions of the normal 
components, the pairwise correlations corr(Y,, Yr<) and 
corr(rT,rT!) have the same sign as p+. In fact, from 
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expression (lo), for small and fixed normal variation and fixed 
normal means, corr(Y,-, YT,) increases as prr /  does. For small 
normal variation and extremely large nr and TI,-,, expression 
(10) also implies that corr(Y,-, YT,) is approximately equal to 
prr/  and that corr(Y,-, YT,) is increasing in uT,- and in u,)+ for 
fixed means and p,-,.r. 

Finally, we briefly mention the special case 

Simulations indicate that corr(Y1, Y2) depends strongly on u, 
p, and n but only weakly on p. For fixed p ,  not surprisingly, 
this correlation is stronger as u increases for fixed n and as n 
increases for fixed u. For further details, see Coull and Agresti 
(1998). 

5.  Comments 
This final section discusses some alternative models and 
alternative ways of fitting models for multiple-response data. 

5.1 Alternative Models f o r  Multiple-Response Data 
The models described in this article assumed a multivariate 
normal distribution for the random effects. An obvious 
question concerns the effect of misspecification. For the 
univariate model (l), Neuhaus, Hauck, and Kalbfleisch (1992) 
showed that, if the normal distribution can induce an 
intracluster correlation approximately equal to that for the 
actual mixing distribution, there is little bias in the estimation 
of fixed effects or the standard errors; when the actual 
distribution is highly skewed, there may be greater bias in 
estimating the overall intercept. Since a wide variety of mixing 
distributions can produce similar marginal distributions, an 
incorrect choice for the mixing distribution usually yields only 
slight bias. Research is now needed to investigate these issues 
for multivariate models. 

To check empirically the consequence of choosing normal- 
ity, one could compare results to those using a nonparametric 
random effects approach (Aitkin, 1996; Agresti, 1997). For 
the developmental toxicity data of Section 3.2, e.g., the litter- 
specific effects might follow a highly skewed distribution, so we 
applied Aitkin’s approach. The slope estimates (with standard 
errors in parentheses) of .09 (.206) and 2.30 (.258) are 
somewhat different from the ones (.08, 1.79) under normality, 
but a comparison of them with standard errors provides the 
same substantive conclusions. For some multivariate logit 
models, it is possible to use a conditional ML approach 
with within-cluster effects (e.g., Agresti, 1997), and widely 
discrepant values of estimates between that and the normal 
random effects approach would also suggest caution. 

An alternative approach for handling correlated binomial- 
type variates is with marginal models, for which effects of 
explanatory variables refer to the overall population rather 
than individual subjects. Best known for marginal modeling is 
the GEE methodology (Liang and Zeger, 1986). For marginal 
models based on a fully specified joint distribution and 
hence a likelihood function, ML fitting is possible but can 
be awkward; it has been used mainly for some relatively 
simple problems (e.g., Fitzmaurice, Laird, and Rotnitzky, 
1993; Lang and Agresti, 1994). The GEE approach has the 
advantage of simplicity. When the models of this paper or 

marginal ML models are feasible, an advantage of them 
over GEE methods is that they provide a complete model: 
they have a likelihood function, making likelihood-ratio 
methods of inference possible. Otherwise, one’s choice of‘ 
model may reflect whether subject-specific descriptions have 
more relevance than population-averaged ones. 

In some cases, analyses with similar effect as those of this 
paper result from using a univariate random effects model. 
Consider, e.g., the model 

logit (7 rsT )  = T,-CX~ + xsrP, (11) 
i.i.d. where as N N(0, l ) .  This is the special case of model (2) 

that specifies pTT/ = 1 if 7,- and rT, have the same sign 
and prr /  = -1 otherwise. The discrimination parameters 
T = ( T I , .  . . , T R ) ,  which allow the R binary outcomes to be 
associated differently with the latent variable c y S ,  have been 
used in educational testing settings and in teratology studies 
(Legler and Ryan, 1997). This model requires only one- 
dimensional quadrature for fitting while still being capable of 
describing both positive and negative association structures 
among the R responses. It provides a good fit to the influenza 
data (G2 = 4.1, d.f. = 7). It would be interesting to analyze 
both the bias incurred by fitting the simpler model (11) when 
the more general model (2) holds under a variety of correlation 
structures and the increase in variance incurred by fitting 
model (2) when the simpler model (11) holds. 

5.2 Alternative Fitting Methods f o r  BLN Models 
In comparing integral approximation techniques, Evans and 
Schwartz (1995) recommended multiple quadrature over 
other methods when R 5 6, but they pointed out that 
quadrature becomes computationally impractical for larger 
R. In fact, with the BLN model, we had computational 
difficulties when R 2 5, particularly since stable estimates of 
variance components and standard errors may require large 
values of q. Alternative methods are then more appropriate. 
Recent research on GLMMs has provided Monte Carlo 
EM algorithms for cases in which numerical integration is 
infeasible (McCulloch, 1997; Booth and Hobert, 1999). The 
M step in this EM algorithm maximizes a Monte Carlo 
approximation of the expected value of the complete log 
likelihood given previous values of the parameter estimates 
and the observed data. The above articles take different 
approaches to generating the E-step Monte Carlo samples, 
with the Booth and Hobert approach being noteworthy in 
that it provides an estimate of the potential Monte Carlo 
error. Alternatively, one might use Breslow and Clayton’s 
(1993) penalized quasi-likelihood approach, based on a 
Laplace approximation for the integral. This yields, however, 
a rougher approximation for the ML estimates, especially 
when variance components are large or data are far from 
normal (e.g., binary). Finally, Stiratelli et al. (1984) used 
an empirical Bayes approach with a diffuse prior for the 
regression parameters. 

The models presented in this paper generalize to a vector 
of multinomial variates, i.e., to a multivariate multinomial 
logit-normal model. Also, our binomial mixture model and 
the Poisson mixture model in Aitchison and Ho (1989) are 
special cases of a multivariate generalized linear mixed model. 
More generally, different elements in Y could have different 
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conditional distributions. Finally, a key component of the 
BLN models is the use of a normal distribution for the logit 
transform of the binomial parameters. A similar approach is 
used in models for compositional data (Aitchison and Shen, 
1980), which are random vectors on the simplex. 
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RESUME 
La distribution binomiale logit-multinormale est une 
distribution de melange pour laquelle (1) conditionnellement 
a un jeu de probabilites de succhs et des indices de taille 
d’kchantillon, le vecteur des frequences de succbs est constitue 
de variables binomiales indkpendantes, et (2) le vecteur 
des logits des paramhtres a une distribution multinormale. 
Nous utilisons cette distribution pour modkliser des reponses 
multivariees de type binomial en utilisant un vecteur d’effets 
alkatoires. Le vecteur des logits des paramhtres a une moyenne 
qui est une fonction linkaire des variables explicatives et a 
une matrice de covariance non ou partiellement specifiee. 
Le modhle gknkralise et fournit une plus grande flexibilitk 
que le modhle univarik qui utilise un effet gaussien aleatoire 
pour prendre en compte une correlation positive dans des 
donnkes en grappe. Le modkle multivarie est utile quand 
des elements diffkrents du vecteur de reponse referent des 
caractkristiques differentes, chacune d’elle peut naturellement 
avoir son propre effet alkatoire. I1 est aussi utile pour les 
mesures repdtkes binaires d’un simple reponse quand il n’ y 
a une structure d’association non &changeable., tel qu’on le 
suspecte souvent dans les donnkes longitudinales ou quand 
il existe une association negative pour au moins une paire de 
rkponses. Nous appliquons le modble a une etude sur la grippe 
avec des mesures rkp6tkes dans lesquelles certaines paires 
sont negativement associees et a une etude de toxicite sur 
le dkveloppement avec des logits de ratio continus appliques 
a une rkponse ordinale et des donnkes en grappe. 
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