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SUMMARY. This article discusses the modeling of a categorical variable for which subjects can select any 
number of categories. For c categories, the response variable consists of a cross-classification of c binary 
components, one pertaining to  each category. Using data from a survey (Loughin, T. M. and Scherer, P. 
N., 1998, Biometrics, 54, 630-637) in which Kansas farmers indicated their primary sources of veterinary 
information, we discuss simultaneous logit modeling of the binary components of the multivariate response. 
The use of maximum likelihood or quasi-likelihood fitting provides chi-squared tests with degrees of freedom 
df = C(T - 1) for testing the independence between each of the c response components and an explanatory 
variable with r categories. These tests are alternatives to the weighted chi-squared test and the bootstrap 
test proposed by Loughin and Scherer for this hypothesis. 
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1. Introduction 
Table 1, from an interesting article by Loughin and Scherer 
(1998), gives the data from a study that asked a sample of 262 
Kansas livestock farmers, “What are your primary sources 
of veterinary information?” The outcome categories are (A) 
professional consultant, (B) veterinarian, (C) state or local 
extension service, (D) magazines, and (E) feed companies and 
representatives. The farmers were asked to select all categories 
that were relevant. Table 1 provides response counts when 
these categories are cross-classified with the farmer’s achieved 
education. This 5 x 5 contingency table contains 453 positive 
responses from the 262 farmers. Table 1 also lists the sample 
proportion of farmers who chase each outcome category for 
each educational level. 

Loughin and Scherer (1998) developed a large-sample 
weighted chi-squared test and a small-sample bootstrap test 
for the hypothesis that the probability of selecting any given 
veterinary information source is identical among the five edu- 
cational levels. They noted that ordinary statistical inference 
was inappropriate with Table I ,  because its 453 entries were 
not independent. For instance, it  is incorrect to apply the 
chi-squared distribution with the ordinary Pearson statistic 
to Table 1 to test this hypothesis. In this article, we present 
valid chi-squared tests for this hypothesis as well as models 
to describe these data. 

At each educational level, there are 25 possible response 

sequences, according to the (yes, no) outcome for the selec- 
tion of each outcome category. Thus, the response is most 
fully viewed as a cross-classification of five binary compo- 
nents: variable A indicating whether a farmer said ‘yes’ to 
source A ,  variable B indicating whether a farmer said ‘yes’ to 
source B ,  and so forth. The complete data set is the 5 x 25 
contingency table showing the counts of the possible response 
sequences at each level of X = education. Proper analyses 
use the data in this form rather than in the form of Table 
1. Loughin and Scherer (1998) also exhibited their data in 
the form of this contingency table, which is referred to as the 
complete table. 

Table 1 is marginal to the complete table, referring to 
counts of the ‘yes’ responses in the marginal distributions of 
the components at each educational level. The hypothesis that 
Loughin and Scherer tested is that of simultaneous marginal 
independence between X and A, X and B, X and C ,  X and 
D ,  and X and E in five of the two-way marginal tables of the 
complete table. As this hypothesis refers to marginal tables, i t  
does not specify the joint distribution for the complete table. 
Thus, inference about this hypothesis must deal separately 
with specification of that joint distribution. 

Our article discusses the modeling of categorical variables 
that have multiple potential responses. We demonstrate the 
use of existing methodology to model directly the marginal 
distributions of the multivariate response, i.e., the distribu- 
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Table  1 
veterinary information sources and education groups f o r  262 farmers 

Information source Total number of Total number of 
Education A B C D E responses subjects 

High school 19 (0.22) 38 (0.43) 29 (0.33) 47 (0.53) 40 (0.46) 173 
Vocational 2 (0.12) 6 (0.38) 8 (0.50) 8 (0.50) 4 (0.25) 28 

4-year college 19 (0.17) 29 (0.26) 40 (0.35) 53 (0.47) 29 (0.26) 170 
Others 3 (0.21) 4 (0.29) 8 (0.57) 6 (0.43) 6 (0.43) 27 

2-year college 1 (0.03) 13 (0.42) 10 (0.32) 17 (0.55) 14 (0.45) 55 

88 
16 
31 

113 
14 

Tot a1 44 90 95 131 93 453 262 

Source: Loughin and Scherer (1998); value in parentheses is the proportion selecting that category. 

tions for which Table 1 summarizes counts for the ‘yes’ cat- 
egory. Section 2 discusses logit models of this type. One can 
use maximum likelihood (ML) or quasi-likelihood (e.g., gener- 
alized estimating equations) methods to estimate parameters 
of the marginal logit models. Section 2 also discusses effects 
of table sparseness. As a by-product of the modeling, in Sec- 
tion 3 we show how to construct large-sample chi-squared 
tests for the hypothesis of marginal independence between 
each component of a c-category response and an r-category 
predictor. These model-based test statistics have a degree of 
freedom df = T ( C  - 1). Section 3 also presents and compares 
other large-sample and small-sample tests for this hypothe- 
sis including the tests suggested by Loughin and Scherer. An 
advantage of the test statistics proposed here is antivariance 
whether the responses refer to “check all categories that ap- 
ply” or to “check all categories that do not apply.” Section 4 
deals with extensions of the models and alternative modeling 
approaches. 

2. The Margina l  Logit Model Approach 
For concreteness, in formulating models we refer to Table 1, in 
which there is a categorical explanatory variable and a cate- 
gorical outcome variable with potentially multiple responses. 
We denote the explanatory variable, e.g., education, by X ,  
having T levels, and the outcome variable by Y ,  having c 
binary components. We refer to the c binary variables that 
constitute Y as i tems. It is usually natural to assume an in- 
dependent multinomial distribution for the counts in each of 
the r subtables of size 2‘ of the complete table. For a ran- 
domly selected subject at level i of X ,  let 7 r j l i  denote the 
probability of responding with a ‘yes’ on the j t h  item (i.e., 
including category j in the set of chosen categories). Then 
{(rJIz, 1 - 7r j l i ) , j  = 1,. . . , c} are the c marginal distributions 
for the 2‘ cross-classification of responses when X = i. Also 
note that 0 5 Cj7rjli 5 c.  

2.1 Multiple Marginal Independence Model 
The marginal logit model 

states that, for each item j, the probability of responding with 
a ‘yes’ for that item is the same at each level of X .  We call 
this the multiple marginal independence model for the effect 
of X on Y ,  because it states that each component of Y is 

marginally independent of X .  This model is equivalent to the 
null hypothesis tested by Loughin and Scherer (1998), whose 
alternative hypothesis is equivalent to the model 

These models make no assumption about the association 
structure for the multinomial distributions specifying the joint 
distribution. Thus, model (2) is the saturated model for the 
marginal distributions; the observed counts in the complete 
T x 2‘ table are its fitted values, and the sample marginal 
logits at each level of X are the ML estimates of {&}. 

More generally, marginal models can incorporate a set LC 

of explanatory variables. One might then compare a general 
model 

permitting different marginal distributions for each combi- 
nation of item and z to simpler models in which effects are 
constant across levels of certain explanatory variables. 

2.2  Fitting Marginal Models 
In principle, it is not difficult to fit models of form (3), but ML 
fitting is not readily amenable to ordinary statistical software. 
Obtaining ML estimates is awkward because even though 
the models apply to c marginal tables of the complete table, 
the likelihood refers to multinomial probabilities within the 
complete table. 

To maximize the product multinomial likelihood subject 
to the constraint that the marginal distributions satisfy 
a model, one can iteratively use Lagrange’s method of 
undetermined multipliers together with the Newton-Raphson 
method (Aitchison and Silvey, 1958; Haber, 1985). We applied 
an algorithm based on a refined method (Lang and Agresti, 
1994) in which the matrix inverted in the Newton-Raphson 
step has a simpler form. This algorithm applies to generalized 
log-linear models having the matrix form 

C log AT = Xp. (4) 

In this context T is the vector, with T x 2‘ elements, of the 
T sets of multinomial probabilities, one set for each level of 
X ,  and is the vector of model parameters, c for model 
(1) and T C  for model ( 2 ) .  The matrix A applied to 7r forms 
the relevant marginal probabilities, and C applied to the log 
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Table 2 
Item parameter estimates, with standard errors in 

parentheses, under multiple marginal independence, and 
the resalt of the model-comparison test of independence 

for a marginal logit model fitted by M L  and GEE 

Parameter ML (SE) GEE (SE) 

P1 
P2 
P 3  
P4 
P5 

Test of independence 
(df = 20) G2 = 30.9, X 2  = 26.7 Wald = 33.2 

marginal probabilities forms the marginal logits for the 
models. An S-plus function (‘gllm’) for the algorithm may be 
obtained from Prof J. B. Lang of the Statistics Department, 
University of Iowa. 

Let p denote the vector of sample proportions in the 
complete table corresponding to the multinomial probabilities 
T .  Having fitted the model, one can check the goodness of fit 
by comparing p or the cell counts to their fitted values % using 
the usual chi-squared statistics. It can be more informative 
to compare the sample marginal proportions Ap (or the 
marginal counts) with their fitted values A%, for instance, 
forming adjusted residuals by taking the ratio of A(p -%) to 
their asymptotic standard errors (Lang and Agresti, 1994). 

An alternative, quasi-likelihood, approach for obtaining 
estimates in marginal models is that based on generalized 
estimating equations (GEE) of Liang and Zeger (1986). The 
GEE approach is computationally simpler than ML for large 
complete tables that occur with large c values or multiple 
explanatory variables. With categorical predictors and an 
unstructured correlation matrix for the joint distribution of 
the items, this corresponds to iterating the weighted least 
squares (WLS) approach of Koch et al. (1977) (Miller, Davis, 
and Landis, 1993). SAS can implement the WLS approach 
with PROC CATMOD, which is designed to provide WLS 
fits for models of form (4), and it can implement the GEE 
approach for a variety of correlation matrix structures with 
PROC GENMOD. 

Table 2 shows the ML estimates of {p,} and their standard 

errors for the multiple marginal independence model (1) 
applied to the coFplete data in Table 1. For comparison, 
Table 3 shows {Pi,} for the saturated model (2). The 
goodness-of-fit tests of model (1) yield the likelihood-ratio 
statistic G2 = 30.9 and the Pearson statistic X 2  = 26.7, 
each with df = 20. Both statistics provide weak evidence 
of lack of fit ( P  = 0.06 and 0.14). The complete table is 
sparse, having 262 observations in 160 cells, of which 94 are 
empty; thus, this conclusion is tentative. The test using G2 
tends to be too liberal when fitted values fall between 0.5 
and 5. It also tends to be too conservative when fitted values 
fall below 0.5, yet the complete table has many cells of each 
type. For the 25 fitted values corresponding to the marginal 
counts in Table 1, four adjusted residuals have absolute values 
greater than 2. These result from fitted counts of 5.4, 29.0, 
37.2, 30.6, and 39.3 corresponding to the observed counts of 
1, 38, 29, 40, and 29 in Table 1; these cells are identified 
by asterisks in Table 3. (The differences between observed 
and fitted marginal totals of ‘no’ responses necessarily yield 
exactly the negative of the deviations and of the adjusted 
residuals for the Lyes’ responses.) 

For most software for the GEE approach, such as SAS, 
applied with the multiple marginal independence model (l),  
the procedure analyzes the complete table collapsed over 
education because of the lack of an education predictor in the 
model. In that case, for any choice of correlation structure the 
process converges in a single iteration and yields the relevant 
sample marginal kgits as estimates. From Table 1 with model 
(l), for instance, /31 = log{44/(262-44)) = -1.6. This is also 
the WLS estimate for the data collapsed over education. Table 
2 also shows these estimates of {&} for model (l), which 
are similar to those obtained with the ML fitting. Table 4 
illustrates the use of SAS for these analyses. 

2.3 Other Unsaturated Margznal Models 
One can construct special cases of the saturated model (2) 
that have multiple marginal independence as further special 
cases. For instance, the logit model 

permits the marginal probability to vary across levels of both 
X and Y .  Identifiability requires a constraint such as cyT = 0. 
For the Kansas farmer data, this model has fit statistics G2 

Table 3 
Parameter estimates for marginal models for Table 1: The first sets 

are for saturated model (2) and the second sets are for model (7) 

Information source 
Education A B C D E 
High school -1.29, -1.61 -0.27a, -0.48 -0.71, -0.48 0.14, -0.01 - 0 . W ,  -0.48 

2-year college -3.40”, -1.61 -0.33, -0.48 -0.74, -0.48 0.19, -0.01 -0.19, -0.48 
4-year college -1.60, -1.61 -1.06a, -1.06 -0.60, -0.48 -0.12, -0.01 -1.06”, -1.06 

Vocational -1.95, -1.61 -0.51, -0.48 0.00, -0.48 0.00, -0.01 -1.10, -0.48 

Others -1.30, -1.61 -0.92, -0.48 0.29, -0.48 -0.29, -0.01 -0.29, -0.48 

a These saturated estimates refer to cells for which the multiple marginal independence model has an absolute 
adjusted residual exceeding 2. 
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Table 4 
Example  of SAS code for marginal WLS and GEE analysis 

data wls ; 
input educ a b c d e count ; 
datalines; * 1 line for each of 160 counts in complete table, as illustrated; 

1 1 1 1 1 1  7 
1 1 1 1 0 1  0 

5 0 0 0 1 0  1 
5 0 0 0 0 0  0 

. . .  . . .  

, 
proc catmod order=data; weight count; 
population educ; response logit; 
model a*b*c*d*e = ( 
1 0  0 0 0 , o  1 0  0 0 , o  0 1 0  0 , o  0 0 1 0 , o  0 0 0 1, 
1 0  0 0 0 , o  1 0  0 0 , o  0 1 0  0 , o  0 0 1 0 , o  0 0 0 1, 
1 0  0 0 0 , o  1 0  0 0 , o  0 1 0  0 , o  0 0 1 0 , o  0 0 0 1, 
L O  0 0 0 , o  1 0  0 0 , o  0 1 0  0 , o  0 0 1 0 , o  0 0 0 1, 
1 0  0 0 0 , o  1 0  0 0 , o  0 1 0  0 , o  0 0 1 0 , o  0 0 0 1) 
(1=‘a’, 2=‘bJ 3=‘c’ 4=‘d’, 5=‘e’) * 

run; 
data gee; 
input case educ $ item $ response @@ ; 
datalines; * 262 lines, 1 for each subject, as illustrated below; 

l l a l  1 l b l  1 l c l  1 I d 1  1 l e l  
2 1 a l  2 l b l  2 l c l  2 I d 1  2 l e l  

261 5 a 0 261 5 b 0 261 5 c 1 261 5 d 0 261 5 e 0 
262 5 a 0 262 5 b 0 262 5 c 0 262 5 d 1 262 5 e 0 

. . .  . . .  

, 
proc genmod data-gee; class case item; 
model response = item 
repeated subject=case / type = exch corrw ; 

/ dist=bin noint; 

run; 

= 22.8 and X 2  = 19.3 with df = 16. It also provides only 
weak evidence of improvement over the multiple marginal in- 
dependence model (1) with change in G2 = 8.1 when df = 4 
and P = 0.09. 

This model makes the rather strong assumption that the 
difference between logits at two levels of X is identical for all 
items. If it holds with much variability in {az} ,  then consid- 
erable variability would occur among those levels in the ex- 
pected number of ‘yes’ responses. In practice, however, the 
overall ‘yes’ response rate would often be relatively stable 
among levels of X .  In Table 1, for instance, the values of 
ratio (number of responses)/(number of subjects) are 1.97, 
1.75, 1.77, 1.50, and 1.93 for the five education groups, and 
model ( 5 )  has a1 = 0.134,;~ = -0.086,& = -0.109,& = 
-0.313, and ;s = 0. When multiple marginal independence is 
violated, it may be more common for any particular group to 
have relatively low probabilities for some items and relatively 
high ones for others. 

When X has ordered levels, a way to obtain an unsaturated 
model and yet obtain patterns such as those just described is 
by permitting linear trends for the effects of X .  For fixed 

h 

scores {q} for levels of X ,  the model 

log (*) = /3j + Y ~ X ~ ,  z = 1,. . . , r ,  j = 1,. . . , c  (6) 

permits a separate slope for each item. The model of interest 
may be nested between this model and the saturated model 
( a ) ,  whereby only some items have a linear trend and the 
others have arbitrary effects, or it may be nested between 
this model and the multiple marginal independence model, 
whereby some subset of items are marginally independent of 
the group variable. In Table 1, the educational levels, high 
school (HS), 2-year college, and 4-year college, have a clear 
ordering, but their relation to the other two educational levels 
is unclear. In any case, 2 n  inspection of the marginal propor- 
tions in Table 1 or of {/3z3} for model (2) in Table 3 does not 
suggest any monotonic trends. 

Most of the data in Table 1 come from groups, HS and 
4-year college, and a noticeably lower sample-response rate 
occurs for items B and E with the 4-year college group. Oth- 
erwise, taking into account the small sample sizes at the other 
educational levels, it seems plausible that the marginal prob- 
abilities are roughly equal for items B,  C, and E regardless 

1 - T J l 2  
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of the educational level and are roughly equal among educa- 
tional levels for item A and roughly equal among educational 
levels for item D. That is, the sample seems relatively well 
described by the marginal model 

+ P B C E I ( j  = 2,3,5) 
+ PRE41(2 = 4 ; j  = 2,5),  (7) 

where I ( , )  is the indicator function. Table 3 also shows the 
estimates for this model. For all i ,  this model yields the fitted 
marginal probability estimates p?lz = 0.167, 541% = 0.497, and 
P,lz = 0.383 for j = 2,3,5,  except that p2l4 = p^q4 = 0.257. 
Here, G2 = 21.5 and X 2  = 17.5, for df = 21, summarize 
the goodness of this description. Since an inspection of the 
marginal proportions in Table 1 suggested this model, one 
should not use the above in any formal sense. Having addi- 
tional explanatory variables besides education would provide 
a greater scope for building unsaturated marginal models. 

2.4 Marginal Models with Simpler Joint Distributions 
The main questions of interest pertaining to Table 1 refer to 
marginal distributions of the joint distribution of responses on 
the five items. The actual form of this joint distribution may 
be regarded as a nuisance or at best of secondary interest. 
Thus, the models considered so far deal directly with the 
marginal distributions and make no attempt to describe the 
joint distribution of the responses. Because of this, model 
(a), which does not specify any pattern for the marginal 
probabilities, is saturated. 

Alternatively, one can model the marginal distributions 
while simultaneously modeling the joint distribution of 
the responses. With this approach, one can consider an 
unsaturated model, such as an ordinary log-linear model, for 
the joint distribution and can then also add structure for the 
marginal distributions. An advantage is that the resulting 
fitted values are smoother, lacking certain higher-order 
interactions. One can fit log-linear models simultaneously 
with compatible marginal models using methods described 
in Fitzmaurice and Laird (1993) and in Lang and Agresti 
(1994). Lang’s S-plus function ‘gllm’ mentioned earlier can fit 
such models. (However, ‘gllm’ sometimes requires the addition 
of a small constant to empty cells when a sufficient statistic 
for the log-linear model falls on the boundary, in which case 
finite estimates of some parameters of the model do not exist 
for the joint distribution.) 

We now illustrate marginal models having simpler joint 
distributions. Model (1) deals with the saturated log-linear 
model for the joint distribution and imposes the constraint of 
multiple marginal independence. However, standard log-linear 
analyses reveal that simpler models adequately describe the 
joint distribution of the group variable X and the five items. 
Although models permitting only two-factor associations fit 
poorly, models having three-factor interactions in addition 
to two-factor associations fit well. In the common log-linear 
model notation for the sufficient marginal configurations, the 
model ( A B C ,  ABD,  A B E ,  ACD, ACE,  ADE,  BCD,  B C E ,  
BDE,  CDE,  X A B ,  X A C ,  X A D ,  X A E ,  X B C ,  X B D ,  X B E ,  
X C D ,  X C E ,  X D E )  is adequate. Goodness-of-fit statistics 
with large values of df for such sparse data no longer have 

A 

approximate chi-squared null distributions, but X 2  = 21.3 
and G2 = 19.1 with df = 70 summarize a fit that is very 
close to the cell counts. (The ordinary df value loses some 
validity here, as certain sufficient marginal totals assumed the 
boundary value of zero, which implies that many of the cell- 
fitted values must also equal zero and provide perfect fits.) We 
also fitted this log-linear model of three-factor interactions 
with the addition of the constraints deleting the marginal 
education effects. For a variety of added small constants and 
for a variety of models including simpler ones that deleted 
some three-factor interaction terms, results were consistent 
with those obtained using model (1); specifically, the deviance 
increased on the order of about 30 for df = 20, with the 
addition of the constraint of multiple marginal independence. 

2.5 Sparseness Issues 
One of the limitations of the ML modeling approach that 
occurs commonly for repeated measurement data is that 
of sparseness of the data. With T levels of predictors and 
c outcome categories, sparseness can occur in the r x 2‘ 
contingency table as a result of having many possible choices 
(i.e,, large c )  or as a result of having multiple or continuous 
predictors (large r ) .  Chi-squared tests of model goodness of 
fit are best suited for modest c, with at most a few categorical 
predictors. 

For the parameters of interest in comparing marginal 
probabilities across levels of a predictor, the sparseness is 
relevant in terms of the marginal totals at combinations of 
the predictor levels and the outcome categories. The marginal 
models do not have reduced sufficient statistics, but ideally 
for each j most of the counts in the r x 2 marginal tables 
relating X to selection of outcome category j should exceed 
five. For Table 1, for instance, the models refer to five separate 
5 x 2 marginal tables, and 45 of those 50 cells have a cell 
count exceeding five. When the number of cells in the table 
is very large, model goodness-of-fit statistics may not have 
null distributions close to chi-squared, but ordinary inference 
applies reasonably well to estimate {&} and to compare 
nested models as long as these marginal counts are not too 
small. 

One way of dealing with sparseness is to study separately 
parts of the data set containing most of the data and in which 
the sparseness is not severe. In Table 1, for instance, 201 of 
the 262 subjects fall into just two of the educational levels, HS 
and 4-year college, with which one could conduct analyses. 
By doing so, one obtains somewhat stronger conclusions. 
To illustrate, the likelihood-ratio statistic, which compares 
fits of the marginal models with and without education 
effects,-equals 15.9 with df = 5 and a P value of 0.007. 
The {p3}  for the multiple marginal independence model 
(1) are -1.42, -0.72, -0.61, -0.02, and -0.67, compared to 
-1.56, -0.71, -0.50, -0.02, and -0.63 for the complete data 
with all five educational levels. 

3. Testing Multiple Marginal Independence 
To test the null hypothesis of multiple marginal independence 
with Table 1, Loughin and Scherer (1998) constructed a 
modified Pearson statistic that compares the cell counts in 
Table 1 with their proper expected values under the null 
hypothesis. They showed that its null asymptotic distribution 
is that of a linear combination of chi-squared random variables 
each having df = 1. This is reminiscent of Rotnitzky and 
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Jewel1 (1990), who showed that in generalized linear models 
with correlated observations, a naive likelihood-ratio sta- 
tistic based on assuming independent observations behaves 
asymptotically like a weighted combination of independent 
xf random variables. Loughin and Scherer noted that the 
coefficients for the linear combination in their statistic depend 
on the unknown cell probabilities for the complete table. 
Another disadvantage of their statistic is that it is not 
invariant to switching the ‘yes’ and ‘no’ labels for all the items. 
For example, their modified Pearson statistic equals 20.85 for 
Table 1; if instead we form the table with outcome categories 
referring to the wording “Indicate which are not your primary 
sources of veterinary information,” then their statistic would 
equal 9.98 instead. 

3.1 Model-Based Tests 
Alternatively, to test the hypothesis of multiple marginal 
independence with large samples, one could use a likelihood- 
ratio or Pearson statistic for testing the goodness of fit of the 
logit model (1) specifying this hypothesis. This corresponds 
to a comparison of that model with the saturated model 
(2). The null hypothesis of multiple marginal independence 
corresponds to HO : P I J  = . . .  = &,, j = 1,. . . , c ,  in 
the saturated model. The likelihood-ratio statistic G2 equals 
-2 times the log of the ratio of the maximized likelihoods 
for models (I) and (2). This statistic and the corresponding 
Pearson statistic X 2 ,  which compares the T x 2‘ observed 
and fitted counts for model ( l ) ,  have large-sample chi-squared 
distributions with df = C(T  - 1), the difference in parameter 
dimensionality of the two models. For these statistics, the 
resulting null distribution does not assume any particular 
structure for the joint distribution. 

These tests of multiple marginal independence, i.e., 
goodness-of-fit tests of model (l), yield G2 = 30.9 and X 2  
= 26.7, each with df = 20, providing weak evidence against 
the hypothesis with P = 0.06 and 0.14. Similar test statistic 
values occur while conducting the test using an unsaturated 
structure for the joint distribution; for instance, one such 
test compares the three-factor interaction models with and 
without the marginal constraint. Similar statistics also occur 
by comparing the models using the GEE methods. The GEE 
methods are not likelihood based and require Wald tests to 
check the lack of fit; the test statistic is a quadratic form that 
uses the estimates of the extra terms that are in model (2) but 
not in model (1) and their inverse covariance matrix. Here, 
the Wald statistic equals 33.2 with df = 20 and P = 0.03. 

Because the complete 5 x Z5 table corresponding to 
Table 1 is sparse, we cautiously make conclusions based 
on tests having df = 20. More reliable and informative 
tests use a model-based comparison of the multiple marginal 
independence model with a model that provides some 
structure for the nature of the marginal inhomogeneity. Using 
a more specific alternative provides the potential for increased 
power and also focuses attention on estimating the effects 
that may exist. To illustrate, one can compare model (1) 
with the additive-effects model ( 5 ) .  That is, assuming model 
( 5 ) ,  one tests multiple marginal independence by testing 
011 = . . . = ar ,  yielding chi-squared statistics with df = T - 1. 
This model also provides only a weak evidence of improvement 
over the multiple marginal independence model, the change 
in G2 = 8.1, df = 4, and P = 0.09. 

3.2 Testzng based o n  the Bonferrons Approach 
Loughin and Scherer (1998) noted the inappropriateness of 
testing multiple marginal independence by applying the usual 
chi-squared statistics directly to tables that are similar to 
Table 1 in form. Another naive approach calculates chi- 
squared for each of the c marginal T- x 2 tables relating X to 
each component of Y and treats them as being independent 
by adding the values and their df values to obtain a summary 
‘chi-squared’ statistic with df = C(T - 1). For Table 1, the 
five marginal Pearson statistics are 5.96, 7.89, 4.62, 1.42, 
and 10.95, each having df = 4. The summary naive ‘chi- 
squared’ statistic equals 30.84 with df = 20, having P = 
0.06. The corresponding naive likelihood-ratio statistic is 
32.44, with P = 0.04. Perhaps surprisingly, these statistics 
are only slightly different from the legitimate df = 20 chi- 
squared values reported earlier and obtained while comparing 
the ML fits of the marginal models. However, an insiection 
of the asymptotic covariance matrix for estimates {Pt ,}  for 
model (2) reveals weak correlations between terms PL3 and 
P t k  describing the association in different marginal tables. 

A valid albeit somewhat conservative way of simultaneously 
using the c marginal Pearson statistics to test multiple 
marginal independence is via the Bonferroni approach. For 
instance, to ensure asymptotic overall size of at most a, 
one conducts each separate df = T - 1 chi-squared test in 
the ordinary way by rejecting the overall hypothesis if the 
minimum P value is 5 a /c ;  i.e., if P, is the P value for the 
j t h  test, an adjusted overall P value is min(cP,, 1). When 
this overall test gives evidence against the null hypothesis, the 
separate chi-squared components provide information about 
the marginal tables that are responsible. With this approach, 
none of the five Pearson statistics just reported is sufficiently 
large to cast serious doubts on the hypothesis of multiple 
marginal independence, a s  the overall adjusted P value equals 
0.136. 

3.3 Small-Sample Tests 
Because the chi-squared weights for the Loughin and 
Scherer (1998) large-sample modified Pearson test depend 
on unknown probabilities, these authors also proposed 
an alternative bootstrap-based test that would be more 
appropriate for small samples or for highly sparse data. 
Their resampling mechanism uses the data in the complete 
table and generates bootstrap resamples of the same sample 
size under the assumption that X is independent of the 
joint distribution of the five items That is, the log-linear 
model for the resampling mechanism is ( A B C D E , X ) .  This 
is actually a special case of multiple marginal independence 
that is equivalent to two-way independence in the 5 x Z5 
table in which the rows are the five educational groups 
and the columns are the 32 possible response combinations. 
Their bootstrap-test P value is the proportion of generated 
resamples for which their modified Pearson test statistic is at 
least as large as the sample value. 

One could, of course, use the bootstrap approach with 
an alternative test statistic for the hypothesis of multiple 
marginal independence. For instance, one could obtain a 
bootstrap distribution for the likelihood ratio or Pearson 
statistic for testing the fit of the marginal model (1). This 
is computationally more complex, however, because of the 
necessity of fitting the model with each bootstrap resample. 
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A simpler statistic to use is the naive chi-squared statistic 
just mentioned, which is based on summing Pearson statistics 
from the separate marginal tables. Again, the P value is the 
proportion of generated resamples for which this test statistic 
is at least as large as the sample value. 

The naive test statistic that sums marginal Pearson 
statistics has great appeal, a s  it expands the Loughin and 
Scherer modified Pearson statistic to consider the ‘no’ out- 
come cells as well as the ‘yes’ cells in the marginal tables. 
Hence, the sum of marginal Pearson statistics is invariant to 
the switching of the ‘yes’ and ‘no’ labels for all the items. For 
Table 1, the sum of marginal Pearson statistics equals 30.8 
regardless of whether the table is expressed in terms of “check 
all that apply” or “check all that do not apply.” We obtained 
a bootstrap P value of 0.062 for 10,000 bootstrap resamples. 
For Table 1, with the Loughin and Scherer modified Pearson 
statistic, for which the sample value is 20.85, we obtained a 
bootstrap P value of 0.049, whereas they reported a value of 
0.047, with 5000 resamples. By contrast, when we analyzed 
the data in terms of the wording “Indicate which are n o t  your 
primary sources of veterinary information,’’ with the same 
bootstrap resamples, their modified Pearson statistic of 9.98 
had a bootstrap P value of 0.105. 

3.4 Comparison of Approaches 
An appealing aspect of the Loughin and Scherer bootstrap 
approach is that it does not have to rely large-sample 
asymptotics with small samples or on highly sparse data. 
As previously discussed, the tests of marginal independence 
based on the comparison of model (1) with more complex 
models are valid only asymptotically, with the actual size 
being close to the nominal size when the sample size is large 
relative to the number of parameters. A disadvantage of 
their bootstrap approach is that the sampling distribution 
of the test statistic employed is generated under the log- 
linear model ( A B C D E , X ) ,  which is narrower than that 
of the null hypothesis. Although this need not adversely 
affect the performance of the resulting tests in terms of 
power or size, it would be more satisfying to use a null 
sampling distribution that applies to ull cases in which 
multiple marginal independence holds. 

One way to come closer to this ideal is to apply the 
bootstrap method by resampling from the multinomial dis- 
tribution corresponding to the fit of the null model (1) 
to the complete table. When we did this using 10,000 
resamples, we obtained (1) P = 0.114 with the sum 
of marginal Pearson statistics, (2) P = 0.108 with the 
Loughin and Scherer modified Pearson statistics, and (3) 
P = 0.131 with their statistic applied with ‘no’ responses. 
Even this approach, however, is not ideal, as it is better 
to use conditional rather than unconditional distributions 
for studying sparse asymptotic behavior. However, marginal 
models such as (1) have no reduced sufficient statistics; the 
usual small-sample exact conditional testing methods are 
inapplicable here, because marginal models are not canonical- 
link generalized linear models for the complete table. It is 
comforting to know that for linear exponential family models, 
the Pearson statistic and the model parameter estimates are 
asymptotically independent (McCullagh, 1985). One way to 

reduce slightly the error resulting from the fact that the 
bootstrap does not resample with the true probabilities is 
to use the double bootstrap. However, this also involves 
refitting the model for all resamples at the first stage, and 
with the same total computational effort, this reduced error 
is likely to be offset by an increased Monte Carlo error, 
even with recycling methods (Newton and Geyer, 1994). The 
development of improved small-sample analyses for marginal 
models is by itself a useful topic for future research. 

It does not seem possible to make general statements about 
the relative performance (e.g., efficiency comparisons) of the 
bootstrap and model-based tests. As the sample size increases, 
we feel it is more advantageous to use the marginal model- 
comparison tests. The sampling distribution then applies for 
all cases under which multiple marginal independence holds, 
and attention is directed toward the more important issue of 
describing departures from the null hypothesis. When using 
bootstrap or model-based tests, we recommend the use of test 
statistics that are invariant t o  the choice of outcome category 
for each item. 

4. Extensions and Alternative Approaches 
In summary, the data summarized in Table 1 provide only 
weak evidence against multiple marginal independence of 
education and the five items. Advantages of employing 
marginal modeling include the by-products of probability 
estimates of selecting various outcome categories, estimates 
of parameters that describe possible departures from multiple 
marginal independence, and the capacity to employ residuals 
and other measures of lack of fit. 

With the marginal modeling approach, one can extend the 
analyses discussed in this paper. For instance, suppose that 
each of two response variables can have multiple responses, 
where Yl has c1 categories and Y 2  has c2 categories. Then the 
models apply to a 2‘l x 2‘’ contingency table at  each setting 
of explanatory variables. To illustrate, for a sample of farmers, 
Y1 might refer to primary sources of veterinary information 
and Y2 to different swine management practices employed. 
One might test for independence between Y1 and Y2 in 
the sense of simultaneous pairwise marginal independence 
between each component of Y1 and each component of 
Y2. The marginal modeling approach specifies independence 
simultaneously for clc2 separate 2 x 2 marginal tables, one 
for each such pair of components. One can fit this model 
using the methodology of Lang and Agresti (1994) alluded 
to in Section 2, and ordinary goodness-of-fit statistics have 
df = c1c2. Also, one could study the effects of explanatory 
variables on components of each response variable. Of course, 
sparseness becomes even more of an issue for such extensions. 

This article focused on marginal models because they 
directly address response probabilities for the various outcome 
categories. Other modeling approaches could be used for 
which multiple marginal independence occurs as a special 
case. Agresti and Liu (1998) surveyed various ways of 
modeling a categorical variable allowing arbitrarily many 
category choices. These include item response models (Baker 
1992), random-effects models, quasi-symmetric log-linear 
models that have connections with item response models, 
and models that describe the actual subset of the responses 
chosen. In our experience, random-effects models usually fit 
data of this sort poorly. For instance, for the Kansas farmer 
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data set, none of the subjects responded with a ‘no’ for all five 
of the sources, showing a likely violation of the assumption 
of independence of successive responses, given the random 
effect. Given that someone does not choose a particular four 
of the sources, they seem much more likely to choose the 
fifth source than if independence held. In applications of this 
type, respondents may psychologically feel obligated to select 
at least one category. In addition, unconditionally random- 
effects models imply nonnegative associations between pairs 
of items, whereas these data show rather marked negative 
associations between responses on items A and D and between 
responses on items A and E. 

Finally, a challenge for future research is to develop tests 
of multiple marginal independence that work well for small 
samples or for highly sparse data and that have a distribution 
that applies under the entire null hypothesis. For sparse data 
with a very large number of cells, the usual goodness-of- 
fit statistics have approximate normal distributions (Morris, 
1975). There is some evidence that the jackknife can work 
well in estimating asymptotic variances of such statistics 
(Simonoff, 1986), and investigating this and various bootstrap 
methods, including finding suitable pivotal statistics, for 
marginal models with large tables is a useful area for future 
research. 
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RESUME 
Cet article discute la modklisation d’une variable catkgorielle 
pour laquelle les sujets peuvent sklectionner n’importe quel 
nombre de catkgories. Pour c catkgories, la variable de r6ponse 
consiste alors en une classification croiske de c composantes 
binaires, chacune reprksentant une catkgorie. EN utilisant les 
donnkes d’un sondage (Loughin et Scherer, 1998) dans lequel 
des fermiers du Kansas indiquaient leurs sources primaires 
d’information vktkrinaire, nous discutons la modklisation 
simultanke du logit des composantes binaires d’une rkponse 
multivarike. L’usage d’un ajustement du maximum de vrai- 
semblance ou de quasi vraisemblance fournit des tests du Chi- 
2 avec c(r  - 1) d d l  pour tester l’indkpendance entre chacune 
des c composantes de rkponse et une variable explicative B 
r cat6gories. Ces tests sont des alternatives au test du Chi-2 
pondkrk et au test du bootstrap que Loughin et Scherer ont 
proposks dans cette hypothkse. 
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