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SUMMARY. We examine issues in estimating population size N with capture-recapture models when there 
is variable catchability among subjects. We focus on a logistic-normal mixed model, for which the logit of the 
probability of capture is an additive function of a random subject and a fixed sampling occasion parameter. 
When the probability of capture is small or the degree of heterogeneity is large, the log-likelihood surface 
is relatively flat and it is difficult to obtain much information about N. We also discuss a latent class 
model and a log-linear model that account for heterogeneity and show that the log-linear model has greater 
scope. Models assuming homogeneity provide much narrower intervals for N but are usually highly overly 
optimistic, the actual coverage probability being much lower than the nominal level. 
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1. Introduction 
This article discusses the use of mixture models in capture- 
recapture experiments devised to estimate the size N of a 
closed population. These models address the estimation of N 
when heterogeneity exists in the population with respect to 
catchability. 

Norris and Pollock (1996) listed papers that consider mod- 
els allowing for heterogeneous catchability. Relatively few 
models have been developed in the class, denoted by Mth, that 
allows heterogeneous capture probabilities to vary also across 
sampling occasions. Sanathanan (1972a,b) considered this set- 
ting in the context of visual scanning experiments and used a 
mixed logit model. Darroch et al. (1993) and Agresti (1994) 
discussed log-linear models motivated by a fixed-effects for- 
mulation of Sanathanan’s model. Chao, Lee, and Jeng (1992), 
Chao et al. (1996), and Chao and Tsay (1998) used a non- 
parametric sample coverage approach. 

This article discusses strategies for estimating N under 
Mth assumptions when the captured subjects are marked or 
recorded in such a way that the number of subjects with a 
particular pattern of being observed or not being observed at 

each sampling occasion is available. For t sampling occasions, 
the data can then be displayed in a 2t contingency table, with 
a missing observation for the cell corresponding to noncap- 
ture at  each occasion. For a logit model with a random effect 
reflecting subject heterogeneity, we study how the estimator 
of N depends on the variance component and on the extent 
of sampling. With strong heterogeneity and a small propor- 
tion of the population captured in each sample, we see that 
the 2t - 1 observable counts provide little information about 
N .  We also discuss alternative models, of log-linear and la- 
tent class form, that account for heterogeneity. Simulations 
indicate that the log-linear model of homogeneous twc-factor 
association sometimes performs better than the mixed model 
with respect to both accuracy of the point estimate and cov- 
erage and length of the resulting confidence intervals. These 
simulations also demonstrate the lack of information about N 
often provided by the latent class model and the overly opti- 
mistic nature of models that assume subject homogeneity. 

Section 2 presents the mixed logit, log-linear, and latent 
class models. Section 3 reviews maximum likelihood (ML) es- 
timation of N and an alternative to the standard asymptotic 
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confidence interval for N for these models. Section 4 provides 
an example, while Section 5 discusses the behavior of the 
log-likelihood and of point and interval estimators of N in 
the presence of subject heterogeneity. Section 6 examines the 
trade-off between confidence intervals being informative and 
yet maintaining the nominal error rate and makes recommen- 
dations based on the results of a simulation study. 

2. Mixed Logit Models and Latent Class Models 
We first review the models in their traditional application, 
when all N individuals are observed, before discussing their 
extensions to the capture-recapture setting in Section 3. 

2.1 A Logit Model with Subject Heterogeneity 
For subject s, s = 1,. . . , N ,  let y: = ( ~ ~ 1 , .  . . , ys t )  be a vector 
of t binary measurements (0 or l ) ,  where ysj  = 1 denotes 
capture in sample j .  Let p,j = P(y,j = 1). We permit subject 
heterogeneity using the model 

The greater the variability in {a,}, the more heterogeneous 
are the capture probabilities at a given sample. The larger the 
value of P j ,  the greater the probability of capture at occasion 
j .  Original applications of the model (Rasch, 1961) referred to 
t test items, making the model popular in educational testing, 
where it is known as the Rasch model. In fitting the model, 
one assumes independence of responses across occasions for a 
given subject, termed local independence, and independence 
between subjects. 

Standard ML asymptotics do not apply to this model 
since, as the number of subjects ( N )  grows, the number of 
model parameters also grows. Thus, the ordinary ML estimate 
of /3 = ( P I , . .  . ,&) is not consistent (Andersen, 1980). 
Two approaches are used to overcome the inconsistency. 
The first, a fixed-effects approach, treats {a,} as nuisance 
parameters and eliminates them by conditioning on their 
sufficient statistics, yielding conditional ML (CML) estimates 
-C 
- /3 . Let Z = ((1,. . . , l ) ,  . . . , (0,. . . ,O)} be the set of 2t 
possible sequences of responses ( y s l ,  . . . , y s t ) ,  in lexicographic 
order. Let = (il,. . . ,it) be an element of Z and let ni = 
nil..+ be the number of subjects having that sequence. Tjur 
(1982) showed that the CML estimates of /3 are, equivalently, 
ML estimates of main effect parameters i n a  log-linear model 
of quasi symmetry fitted to the 2t table of counts {ni}. - 

Specifically, letting {pi - = E(ni)}, - the log-linear model is 

log(pi) - = Po + PlI(i1 = 1) + . ' .  + p t q i t  = 1) + X(i1,. . . ,it), 
(2) 

where the parameter X ( i 1 ,  . . . , it) is invariant to permutations 
of its arguments and the I ( . )  function is an indicator. 

A second approach treats {a,} as random effects, typically 
having a normal distribution with mean zero and unknown 
variance u2, for which 

logit(p,j) = uZs + P j ,  (3) 

with 2, N N(0,l). The probability that a subject with ability 
2 has capture history j, i E 1, is qp  = IIj=l [exp{ij(uZ + 
pj)}/{l + exp(u2 + P j ) } ] .  Thus,-the probability that a 
randomly selected subject has that pattern is the marginal 

probability 

where +(z) is the standard normal density. This also satisfies 
the quasi-symmetry model (2), regardless of the distributional 
assumption about the random effect (Tjur, 1982). This model 
implies a positive dependence structure among the t occasions 
in the form of uniformly nonnegative log odds ratios, both 
conditional and marginal, in the 2t table. The marginal 
multinomial log-likelihood for (u, p),  given the cell counts 
n = (n1 ... 1 ,  . . . ,no...o), is l(o, p; g) 0: 

Using Gaussian quadrature, one can approximate the 
marginal probabilities (4) with iii = exp{ij(ozk 
+ /3 j ) } /  (1 + exp(uzk + Pj)}]vk for tabulated { z k }  and {vk} 
(Aitkin, 1996). The choice of the number of quadrature points 
q determines the degree of accuracy, and larger q is needed 
when u is larger. Then XiE= ni log(iii) is the objective function 
maximized with respect-to (a, - p). - 

2.2 Quasi-Symmetric Log-Linear and Latent Class Models 
This article also discusses two log-linear models for pi and 

a latent class model that have connections with the mixed 
model (3). The log-linear models are simple ones assuming 
either mutual independence of responses or a homogeneous 
association pattern. The mutual independence model, which 
is ( 2 )  with constant value for A(.), results from the logistic- 
normal model with u = 0; i.e., it assumes homogeneity of 
subjects. Darroch et al. (1993) and Agresti (1994) noted 
that, although the mixed model satisfies the quasi-symmetry 
model (2) marginally, fitting that marginal model provides 
no information about N since one of its likelihood equations 
shows that any value no . . .o  is consistent with the model. 
They considered special cases of the quasi-symmetry model 
for which this is not the case. In particular, the log-linear 
model of homogeneous two-factor association (H02), 

- 
ni log(ni). - -  - 

log(pi) = PO+PlI(i, = l ) + ~ . . + P J ( i ,  = 1)+ (cf,l" ) A, 
- 

( 5 )  
is the special case in which only the second-order interactions 
differ from zero. This model is the special case of the log-linear 
model of no threfactor interaction in which all pairwise 
associations are identical. The mutual independence model 
is the further special case of ( 5 )  in which X = 0. 

The latent class (LC) model discussed is the special case of 
model (1) with only two possible values for a,. It assumes that 
the population is a mixture of two types, with homogeneity 
of subjects within each type but with the type of any given 
subject being unknown. This model is a special case of 
latent class models introduced by Lindsay, Clogg, and Grego 
(1991) and Agresti and Lang (1993). The LC model also 
relates to the normal random effects version (3) of the model, 
being a generalization of the q = 2 Gaussian quadrature 
approximation of it. Two-point Gaussian quadrature results 
in a latent class model with two classes that place equal 
probability (vk = 0.5, k = 1,2) of a subject being in class k. 
If we relax v1 = v2 = 0.5 and instead estimate these weights, 
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the 2t expected frequencies satisfy 

t / t  

where XI, = [log(uk) - log rI$,l (1 + exp(aI[k = 21 + &)}I - 
[log(ul) - logII~=,{l + exp(&)}]. This is equivalent to the 
LC model with two latent classes and common association 
parameter a ,  

This model represents a compromise between the mutual 
independence model and the logistic-normal model, allowing 
some heterogeneity yet assuming homogeneity within each 
latent class. One can fit it using the EM algorithm. The 
distribution of the complete data has regular exponential form 
so that only the complete data sufficient statistics must be 
estimated at each E-step. (See Goodman (1974) for an EM 
approach to latent class models in general and Agresti and 
Lang (1993) for this specific case.) In general, let L be the 
number of latent classes. Lindsay et al. (1991) proved that if 
L > t/2, and if there exists a distribution for as in the Rasch 
model (1) such that the random effects solution can exactly fit 
the sufficient statistics for as,  then necessarily the latent class 
fit will be identical to the conditional maximum likelihood fit. 
The authors also gave simple numerical and graphical tests of 
this condition, and in practice this equivalence seems quite 
common when L > t/2. In such cases, the fit is then also 
identical to that of the quasi-symmetry model and the model 
is not informative for the capturerecapture problem. 

3. ML Estimation of N in Capture-Recapture Studies 
In the capturerecapture setting, the cell count no ...o is 

unknown. In subsequent discussions, we refer to the table with 
all 2t cell counts known as the complete table and the one with 
no ...o unknown as the incomplete table. 

3.1 Point Estimation 
Let 

and n = CiExoni denote the observable capture histories, 
the observable celicounts, and the total number of observed 
subjects, respectively. For a model indexed by e, we use 
Sanathanan's (1972a) conditional approach to N-estimation. 
This approach obtains an N-estimate by maximizing the 
binomial likelihood of observing n successes in N trials 
when the probability of success is 1 - xo ...o(f&), where & 
maximizes the conditional likelihood 

zo = ((1,. . . , l),  . . . , (0,. . . ,o ,  l)}, qo = (721 ...I,. . . ,no...1), 

with 

7rL = r@)/&xo 7ri(e)}, i E To 

The resulting estimate fic = n/{l  - no ...o(&)} is the 
basis of traditional log-linear modelling of capture-recapture 
experiments (Fienberg, 1972; Cormack, 1989). 

One can also use the unconditional ML estimate N of 
the population size. Sanathanan (1972a) commented that 
necessarily N 5 fit. It has been our experience that the 
behavior of the unconditional estimate in the presence of 
subject heterogeneity is similar to that of the conditional 
estimate. We focus solely on Nc here since it lends itself 
to the construction of profile likelihood confidence intervals 
for N .  

3.2 Confidence Interval 
Recent research on confidence intervals for population size 
has focused on methods for small to moderate samples. The 
sampling distributions of the N-estimators are then highly 
skewed, and the asymptotic Wald-type confidence interval for 
N can have a lower bound falling below the observed number 
of subjects. In this paper, we use profile likelihood confidence 
intervals (Cormack, 1992) since Sanathanan's f i ~  has a 
likelihood-ratio interpretation. Specifically, profile likelihood 
intervals use the fact that ?qO...o)c = fit - n is the value 
of the missing cell count that yields the smallest likelihood- 
ratio statistic for testing goodness-of-fit of the model to 
the complete table. Denote the value of this statistic by 
G2(fi(o...o)c). The lOO(1 - a)% profile likelihood interval 
includes values of  no...^, and hence N, that satisfy G2(n0 ...o)- 
G2(A~o, . ,o)c)  5 xy,,, the upper-tail percentage point from A 
chi-squared distribution with 1 d.f. 

Other possible alternatives to Wald-type interval estima- 
tion are based on the bootstrap, either a percentile version or 
Efron's bias corrected and accelerated interval (Buckland and 
Garthwaite, 1991). Here we focus only on the profile likelihood 
method since our comparisons, which we plan to report in a 
separate paper, indicated that this interval holds a substantial 
advantage over the bootstrap intervals with respect to both 
coverage and computation for the models we considered. 

4. Snowshoe Hare Example 
Cormack (1989) reported a capture-recapture study having 
t = 6 consecutive trapping days for a population of snowshoe 
hares. Table 1, which displays the data, shows that 68 hares 
were observed. Table 2 summarizes the N-estimates and 
confidence intervals based on various models. The logistic- 
normal model using q = 20-point quadrature yields SC = 0.97 
and NC = 92.0. Table 1 shows this fit. A profile of fic across 
q 2 2 reveals that the estimates stabilize for q > 5, but it takes 
a much larger value of q before the plot for the log-likelihood 
stabilizes; the interval estimates stabilize for q > 17. 

The log-linear model of homogeneous two-factor associa- 
tion (H02) gives a similar point estimate of N and fit as 
the logistic-normal model. All observed cell fitted values were 
no further than 0.04 from the values shown in Table 1 for 
the logistic-normal model. However, the H02 95% profile 
likelihood interval is narrower than the interval obtained with 
the logistic-normal model. The log-linear model of mutual 
independence, which assumes no heterogeneity, yields the 
narrowest interval. The latent class model also has a much 
narrower interval than the one for the logistic-normal model. 

This example illustrates the considerable variability among 
the point and interval estimates for N that one usually obtains 
with different models. The impact of subject heterogeneity on 
these results is explored in the next section. 
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Table 1 
Results of capture-recapture of snowshoe hares 

Captures 3, 2, and 1 

Capture 6 Capture 5 Capture 4 0 0 0 0 0 1 0 1 0  0 1 1 1 0  0 1 0  1 1 1 0  1 1 1 

3 6 
(2.3) (5.4) 

0 

0 
(0.9) 

1 

1 
(0.5) 

0 

0 
(1.2) 

0 

0 
(0.3) 

2 3 
(0.8) (1.8) 

2 3 
(0.5) 
1 

(0.3) 
1 

(0.3) 
0 

(0.6) (1.5) 
0 0 

(0.3) (0.8) 
1 1 

(1.1) (2.6) 
0 3 

(1.5) 
1 

(0.4) 
0 

(0.4) 
0 

(0.6) (1.3) 
0 1 

(0.5) (1.1) 
1 1 

(0.4) (0.9) 

a Fit of logistic-normal model (q  = 20) 
Data from Cormack (1989). 

5.  Behavior of the Log Likelihood and N Estimator 

In the capture-recapture problem, large heterogeneity results 
in strong positive associations among the t capture results 
and also has a strong impact on the estimation of N. The 
greater the heterogeneity, as reflected by Bc, the larger the 
estimate of no ...o tends to be. For the logistic-normal model 
with the snowshoe hare data, the first plot in Figure 1 shows 
Nc as a function of an assumed known value for u. Since NC 
is a rapidly increasing function of u, small changes in BC can 
have a large impact on the ML estimate of N .  Plot 2 in Figure 
1 displays a profile of -2 log L in terms of u, revealing that 
6c = 0.97. The case of large heterogeneity causes difficulties 
in estimation for the logistic-normal model since a large BC 
results in a relatively flat likelihood surface, which implies 
unstable and imprecise N-estimates. Figure 1 shows that this 
problem is not serious with the snowshoe hare data. 

When There Is Subject Heterogeneity 
As heterogeneity increases, the probability of capturing a 

subject a relatively small or relatively large number of times 
increases. If the logistic-normal model provides a reasonable 
approximation for a particular application, having only one 
capture for a large proportion of the sampled subjects sug- 
gests that considerable heterogeneity exists within the popula- 
tion and/or that the probabilities of capture at each occasion 
are small. Of course, having only one capture for most sub- 
jects could also occur if the model assumptions are badly vi- 
olated, e.g., when animals exhibit trap avoidance, so that the 
local independence assumption of the logistic-normal model is 
inappropriate. Unfortunately, traditional goodness-of-fit tests 
cannot necessarily differentiate among these cases or between 
a correct and incorrect model, as discussed in Section 6. 

In contrast to the relatively stable point estimates for the 
snowshoe hare data, consider Table 3 from Chao et al. (1996), 

-2 log L 

160 
140 

120 

100 

80 60 

0.0 1.0 2.0 0.0 1.0 2.0 

Table 2 
N-estimates and profile likelihood confidence intervals for  

Table 1 produced by the 
logistic-normal (q = 20), latent class, 
homogeneous two-factor association, 

and mutual-independence models 

95% confidence 
Model NC interval 

Logistic-normal 92.0 (74.8, 153.6) 
Homogeneous two-factor association 90.5 (74.8. 125.1) - 

77’1 i70’8’ 87’4)’ Figure 1. 
tic-normal model with the snowshoe hare data (Table 1). 

I?c and -2 log L as a function of (T for the logis- Latent class 
Mutual independence 75.1 (69.9, 83.3) 
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Figure 2. View of the profile log-likelihood surface with respect to N and u, 
maximized over p, for the hepatitis data. - 

which reports the results from an epidemiological study de- 
signed to estimate the number of people infected during a 
1995 hepatitis A outbreak in northern Taiwan. The 271 ob- 
served cases were reported from three sources: records based 
on a serum test taken by the Institute of Preventive Medicine 
of Taiwan (P), records reported by the National Quarantine 
Service (Q), and records based on questionnaires conducted 
by epidemiologists (E). Here, dc = 2.9 is large, and the large 
negative values for & = (-6.7, -6.8, -6.8) reflect the many 
subjects with one capture (187) compared with the numbers 
of subjects with two or three captures (56 and 28). In such 
situations, the data provide relatively little information about 
N .  The log-likelihood is relatively flat with respect to  u, so 
a wide range of u values are consistent with the data. The 
plausible values,however, correspond to a wide range of 
N-estimates since NC increases sharply with respect to u. 

Figure 2 shows the profile log-likelihood surface with re- 
spect to N and u maximized over p. Nothing practical can 
be said about N except that it is notvery small. The flat log- 
likelihood can cause wild fluctuations in the point estimate 
due to small changes in numerical precision or in the data 
themselves. This flat surface produces a 95% profile likeli- 
hood interval for N of (758, co). Why does the logistic-normal 
model sometimes provide little information about the popu- 
lation size? The reason is similar to the reason why every 
no . . . o  2 0 is plausible for the quasi-symmetry model. This 
model results from a completely unspecified mixing distribu- 
tion, so that each candidate no ...o is plausible. The normal 
class of mixing distributions is itself rich enough that many 
values of (T (and of  no...^) may be consistent with the data. 
A wide range of plausible u values implies that the candidate 
N values form a wide interval, amounting to little practical 
information about N .  

Instead of allowing each subject to have a different propen- 
sity for capture, the latent class (LC) approach requires 2, 
to take one of only two values. For the hepatitis example, 
Figure 3 portrays the deviance profile for the LC model. Be 
cause all N 2 479 yield a constant deviance, this model pro- 
vides no point estimate and a profile likelihood interval of 

( 4 0 7 , ~ ) .  The flat log-likelihood relates to results of Lind- 
say et al. (1991) about the model's close relationship to the 
log-linear model of quasi symmetry, which provides no infor- 
mation about N .  Chao et al. (1996) stated that the true pop- 
ulation size for the hepatitis data is approximately 545. The 
complete table satisfies the Lindsay et al. (1991) condition for 
equivalence of the fit of the LC model with two classes and 
the conditional ML fit and hence the quasi-symmetry fit. 

Flat likelihoods have occurred in other capture-recapture 
approaches. Burnham and Overton (1978) made a passing ref- 
erence to the perfomance, in this respect, of the beta-binomial 
model, and they presented a jackknife estimator. Similari- 
ties exist between this problem and the related problem of 
N-estimation when observing k independent and identically 

400 500 600 700 800 

N 

Deviance (G') profile for 379 5 N 5 800 for the Figure 3. 
hepatitis data (Table 3). 
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Table 3 

Capture-history counts and conditional (on n) 
fitted values for hepatitis study. First row displays 
95% profile likelihood Confidence intervals for  "000. 

in Capture-Recapture Studies 299 

Observed Quasi-symmetry Logistic-normal Latent 
P Q E  count fit fit (q  = 50) class fit 

0 0 0  - (0 ,  ( 4 8 7 , ~ )  (136, cm) 
0 0 1  63 61.0 61.0 61.0 
0 1 0  55 58.0 58.0 58.0 
0 1 1  18 17.0 17.0 17.0 
1 0 0  69 68.0 68.0 68.0 
1 0 1  17 20.0 20.0 20.0 
1 1 0  21 19.0 19.0 19.0 
111  28 28.0 28.0 28.0 

Note: Data from Chao et al. (1996), with P = Institute of Pre- 
ventive Medicine of Taiwan, Q = National Quarantine Service, and 
E = epidemiologists. 

distributed binomial counts with unknown N and probabil- 
ity parameter (cf., Aitkin and Stasinopoulos, 1989, and ref- 
erences therein). These authors demonstrated that, when the 
log likelihood is flat, the ML estimator is unstable, with small 
changes in the data yielding large changes in N. For the 
logistic-normal model (q  = 50) applied to the hepatitis data, 
Nc changes from 3856 to 4551 to 5443 when nl ...I changes 
from 27 to 28 to 29. 

6. Comparisons and Recommendations 
In capture-recapture experiments, we have seen that the point 
estimate and the associated confidence interval for N de- 
pends strongly on the choice of model. This strong depen- 
dence reflects the fact that the capture-recapture problem is 
inherently one of prediction, i.e., in estimating no ...O, one ex- 
trapolates from the range of the observed data, numbers of 
subjects having 1,2, .  . . , t captures, to the number of sub- 
jects with zero captures. The standard goodness-of-fit criteria 
are of limited help for this extrapolation problem since two 
models can provide good fits to the observed data yet yield 
dramatically different estimates for the unobserved count. 
The hepatitis data illustrates this point. The logistic-normal 
and latent class models provide identical fits to the incom- 
plete table yet quite different ones to the complete table. 
The logistic-normal model does not fit the complete table well 
since Gcomplete = 9.3 with 3 d.f. The latent class model, on 
the other hand, yields Gcomplete = 1.0 with 2 d.f. Thus, one 
cannot definitively test for dependence between samples in 
the complete table using only the observed counts in the in- 
complete table. 

Given the limited use of goodness-of-fit criteria, the ques- 
tion occurs as to how to select a model. In some applications, 
subject matter may suggest a particular model. In practice, 
the probability of capture is often small and most subjects ap- 
pear in one or none of the samples. There then typically exists 
an increasing ordering of the magnitude of fic from simple 
to more complex models. The width of the interval estimates 
also follow this ordering, reflecting the smaller standard er- 
rors obtained with more parsimonious models. The simpler 
models also have the advantage of greater stability, with the 

2 

2 

N-estimates not fluctuating so wildly with small changes in 
the data. We get nothing for free, however. These simpler 
models either do not account for population heterogeneity or 
underestimate it, so the point estimates can severely under- 
estimate N and the associated confidence intervals can have 
actual coverages well below the nominal level. We feel that 
wide intervals in such cases merely reflect the small amount 
of information about the population size that results when 
most subjects are captured only once. 

A trade-off clearly occurs in selecting a model. One would 
like a narrow confidence interval for N but not at the ex- 
pense of drastic sacrifice in the actual confidence level. Much 
of the capturerecapture literature has recommended models 
producing narrow intervals, but we believe that such intervals 
are usually overly optimistic. An example of this contrast is 
the difference between the H02 estimate and a sample cov- 
erage estimate given by Chao et al. (1996) tnd Chao 
and Tsay (1998) for the hepatitis data set. There, N H O ~  has 
a standard error of about 900, causing the authors to reject 
this estimator in favor of &c, which has a much narrower 
confidence interval. The simulations of Chao et al., however, 
indicate that, when the capture history counts are simulated 
from the logistic-normal model with N = 200, the actual cov- 
erage for 95% bootstrap confidence intervals generated us- 
ing NSC is 58.5% while the corresponding figure for N H O ~  is 
91.5%. 

This trade-off is also evident in several simulation studies 
that we conducted. For lack of space, the details of the sim- 
ulations and tables listing their results are not shown here, 
but this material is available from the authors in technical re- 
port form. The mutual independence model provides the nar- 
rowest intervals but the poorest coverage, while the logistic- 
normal models often provide close-tenominal coverage but 
little practical information on N. For estimates based on the 
mutual independence model, the profile likelihood coverage is 
close to the nominal level when that model is the true model 
and N is large, but this method tends to badly underestimate 
N in the presence of heterogeneity. Based on the simulation 
results, we recommend that the logistic-normal model be used 
as a diagnostic tool when selecting a model. The MLE of u and 
the profile likelihood from this model, along with the numbers 
of subjects captured 0,. . . , t times, provide information about 
the amount of heterogeneity present and the probabilities of 
capture. If 0 < 6~ < 1 and the occasion parameter estimates 
are not large negative numbers, we recommend using the p r e  
file likelihood interval based on fic from the logistic-normal 
model. Simulations show that when the subjects are spread 
somewhat evenly over numbers 0 , .  . . , t of captures, this model 
does slightly better than the H 0 2  model with respect to cov- 
erage without producing wider intervals. 

If the logistic-normal model yields 5~ = 0.0, one should 
consider the H02 log-linear model since there is the possi- 
bility of negative dependencies among the t occasions. We 
simulated a situation in which both population heterogene- 
ity and serial within-subject dependencies exist among the t 
responses. When trap avoidance causes the log odds ratios 
for consecutive samples to be negative in the 2t table, the 
logistic-normal fit is obtained on the boundary (&c = 0.0) 
and the model will not usually estimate N accurately. This 
failure of the logistic-normal model is to be expected since 
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generalized linear mixed models containing a random inter- 
cept cannot describe a negative dependence structure among 
the t responses. The H02  model maintains close-to-nominal 
coverage for both positive and negative association structures 
since the homogeneous two-factor association term X is not 
constrained to be positive. 

When most subjects are captured only once and the con- 
tinuous mixture model yields a relatively flat likelihood and 
C?C > 1, we also recommend using the H02 model since it 
yields narrower intervals and much more accurate N-estimates 
than the mixed model, even when that model truly holds. For 
all underlying models and parameter settings considered in 
our simulation studies, this model yielded coverage probabil- 
ities that were never far from the nominal level. Moreover, 
the H02 model is simple to use, being a log-linear model that 
accounts for heterogeneity by adding a single association pa- 
rameter to the log-linear model of mutual independence. 

Our simulation studies also suggested that, for large u, the 
finite intervals from the latent class model are overly opti- 
mistic, the actual coverage probabilities being considerably 
less than the nominal level. Thus, we are skeptical of the nar- 
row latent class profile likelihood confidence interval for the 
snowshoe hare data, for which the logistic-normal model has 
BC = 0.97. In general, we do not recommend using the latent 
class model to estimate N, even if it is the true model; its 
profile likelihood intervals often have infinite length, and if 
they have finite length but there is much heterogeneity, then 
their coverage probability is suspect. 

In summary, severe population heterogeneity and/or small 
probabilities of capture in a capture-recapture experiment 
make reaching useful conclusions difficult. Mixed capture-re- 
capture models allowing heterogeneous catchability reflect the 
large amount of uncertainty in estimating N through wide 
confidence intervals. Flat log-likelihoods can result in unsta- 
ble estimates that are sensitive to small changes in the data. 
When this is the case, one must use caution in estimating N 
with simple capture-recapture models since these models tend 
to produce overly optimistic confidence statements about N. 
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RESUMB 
A moins que la v6ritable association soit trbs forte, de simples 
intervalles de confiance pour l’odds ratio, Btablis h partir de la 
mQthode delta et pour de grands Qchantillons, ont de bonnes 
performances, mbme pour des petits Qchantillons. Ces inter- 
valles comprennent l’intervalle logit de Woolf et l’intervalle as- 
sociQ de Gart, oh l’on ajoute .5 avant le calcul de l’estimateur 
du logarithme de l’odds ratio et de son erreur standard. L’in- 
tervalle de Gart Qquilibre les valeurs observBes vers le modble 
uniforme, mais on obtient de meilleures probabilitbs de recou- 
vrement en Qquilibrant vers le modble d’indQpendance, et en 
Btendant l’intervalle dans la direction appropride lorsqu’une 
cellule correspond & une valeur nulle. 
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