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SUMMARY. Unless the true association is very strong, simple large-sample confidence intervals for the odds 
ratio based on the delta method perform well even for small samples. Such intervals include the Woolf logit 
interval and the related Gart interval based on adding .5 before computing the log odds ratio estimate and 
its standard error. The Gart interval smooths the observed counts toward the model of equiprobability, but 
one obtains better coverage probabilities by smoothing toward the independence model and by extending 
the interval in the appropriate direction when a cell count is zero. 
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1. Introduction 
One of the most important parameters in the study of con- 
tingency tables is the odds ratio. For a 2 x 2 contingency 
table with expected frequencies { p i j } ,  the true odds ratio is 
8 = (p11pzz ) / (p1zpz1 ) .  The usual estimators of the odds ra- 
tio have the form 8 = ( j i 1 1 j i 2 2 ) / ( f i 1 2 j i 2 1 )  for estimates { f i i j }  

of the expected frequencies. For cell counts {nij} obtained 
with Poisson, multinomial, or independent binomial sampling, 
many estimators of 8 use f i i j  = nij + c for some nonnegative 
constant c.  Denote this estimator by 8,. The unconditional 
maximum likelihood (ML) estimator has c = 0, whereas us- 
ing c > 0 ensures that undefined estimates or estimates on 
the boundary of the parameter space cannot occur. The most 
popular estimator of this form, with c = .5 (Haldane, 1956; 
Anscombe, 1956), achieves bias of order O(n-’) for large sam- 
ples in the estimation of log(8) by log(8,). 

For large samples, by the delta method (Bishop, Fienberg, 
and Holland, 1975, Section 14.6), the estimator log(8,) of 
log(8) is approximately normal with asymptotic standard er- 
ror that can be estimated by 

1 1 1 1 
6 (loge,) = J- + ___ +-+- 

n11 + c  n l z - t c  nz1 + c  n z z + c ’  

Thus, an approximate lOO(1 - a)% confidence interval for 8 
results from exponentiating the end-points of 

log (8,) lt z a p &  (log&) , (1) 

where is the a12 standard normal quantile. This interval, 
often referred to as the logit interval because of the expression 
of log(&) as the difference between two empirical logits, was 
proposed by Woolf (1955) for c = 0 and by Gart (1966) for c 
= .5. Several related intervals have been proposed (cf., Gart, 

1971). I refer to the logit interval with c = 0 as the Woolf in- 
terval and the case c = .5 as the Gart interval (though perhaps 
Haldane-Anscombe-Gart would be more appropriate). 

Many textbooks state that logit intervals behave poorly for 
small samples in the direction of having actual coverage prob- 
abilities too low (e.g., Breslow and Day, 1980, p. 134; Fleiss, 
1981, p. 74; Agresti, 1990, p. 69). This apparently dates back 
to evaluations by Gart and Thomas (1972), who claimed that 
the logit interval was much too narrow, and to Woolf’s state- 
ment in proposing (1) for c = 0 that “(t)his is a ‘large-sample’ 
treatment and the formulae cease to be applicable if any of 
the observed frequencies is small,” (1995, p. 252). However, 
the Gart and Thomas (1972) remark referred to comparing 
the logit interval with an interval based on the exact con- 
ditional approach, which is necessarily conservative because 
of discreteness (Neyman, 1935), rather than comparing at- 
tained coverage probabilities to the nominal confidence level. 
This exact confidence interval for 8, proposed by Cornfield 
(1956), consists of the collection of 80 values for which the P- 
value exceeds a/2 in conducting each exact one-sided test of 
Ho: 8 = 80 using the nonnull hypergeometric conditional dis- 
tribution derived from conditioning on row and column totals. 
The exactness refers to the conditional distribution being free 
of nuisance parameters. With Cornfield’s method, the actual 
confidence coefficient, defined as the infimum of the coverage 
probabilities for all possible parameter values, has the nomi- 
nal confidence level as a lower bound. 

This paper reports the behavior of the coverage probabili- 
ties of the logit confidence interval. Unless the true odds ratio 
is very large, this method seems to be acceptable even for 
small sample sizes. An improved logit interval results from 
using cell probability estimates based on a smoothing differ- 
ent than the crude one of adding c to each cell. 
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2. Comparisons of Coverage Probabilities and 

The coverage probabilities and expected lengths of the Woolf 
and Gart versions of the logit confidence interval were eval- 
uated for a variety of sampling methods, true probabilities, 
small sample sizes, and nominal confidence coefficients. Ta- 
bles 1 and 2 show typical results. Table 1 refers to nomi- 
nal 95% confidence intervals when the data result from two 
independent binomial samples of sizes n1 = n2 = 10 with 
various choices for the binomial parameters p i  and pz .  Here, 
6 = Ipl/(l - p l ) ] / [ p z / ( l  - p z ) ] .  When any cell count equals 
zero, we take the Woolf interval to be the entire real line. All 
expected lengths are reported conditional on the set of tables 
for which all counts are positive; the coverage probabilities, 
however, are based on all tables. The tables report expected 
log lengths, which are the same when values of p l  and p2 are 
interchanged. However, somewhat modest differences in ex- 
pected log lengths can translate to substantively important 
differences on the scale actually used for interpretation, es- 
pecially when the true log odds ratio is large. For example, 
when p l  = .4 and p2 = .1, the expected lengths of the confi- 
dence intervals for the odds ratio itself are 59.9 for the Woolf 
interval, 31.8 for the Gart interval, and 250.8 for the exact 
interval. 

Table 1 reveals that, considering the small sample size, 
the logit methods behave surprisingly well for these param- 
eter settings. Their coverage probabilities exceed the nomi- 
nal confidence level. The expected lengths are smaller for the 
logit intervals than for Cornfield’s exact interval, reflecting the 
conservativeness of exact conditional methods for small sam- 
ples. (The exact intervals were obtained using StatXact [Cy- 
tel, 19951). Similar results hold in other highly discrete prob- 
lems, even when conditioning is not involved (e.g., Agresti 
and Coull, 1998). Since our main focus in this note is on the 
performance of the delta method-based logit formula (l), we 
will not further consider exact approaches. 

Table 2 evaluates the coverage probabilities of the nominal 
95% logit intervals for the somewhat larger binomial sample 

Lengths 
size cases (nl,nz) = (20, 20) and (30, 10). Except in one case 
with the Gart interval, coverage probabilities again exceed the 
nominal confidence level. With both of these logit intervals, 
underestimation of /log81 (the true log odds ratio falling far- 
ther from zero than the interval bounds) is much more com- 
mon than overestimation, the discrepancy being somewhat 
larger for the Gart interval. For the eight cases summarized 
in Table 1 for which p l  # p2, e.g., the average probability 
of underestimation was ,013 for the Woolf interval and .018 
for the Gart interval and the average probability of overesti- 
mation was ,002 for the Woolf interval and ,001 for the Gart 
interval. 

To investigate the logit intervals’ performance over a much 
wider range of possible parameter values, coverage probabil- 
ities were calculated (using Splus) using each of a random 
sample of 10,000 pairs of independent binomial parameters 
from the uniform distribution over the unit square. Table 3 
summarizes the results when n1 = n 2  = 10. It evaluates the 
nominal 95% versions of the Woolf and Gart logit methods 
by reporting mean coverage probabilities, mean expected log 
lengths, the mean absolute distance of the coverage probabil- 
ity from .95, and the proportion of cases for which the cov- 
erage probability falls at least .03 below that nominal value. 
Expected lengths were calculated conditional on all cell counts 
being positive, but coverage probability measures again used 
the entire distribution. (Table 3 also summarizes performance 
of the exact confidence interval, and some methods discussed 
in Sections 3 and 4.) 

Table 3 also reports minimum coverage probabilities for 
each method over the entire set of 10,000 odds ratios consid- 
ered. To illustrate the behavior for the portion of the param- 
eter space usually dealt with in practice, Table 3 also reports 
the minimum coverage probabilities for the (4909,6519, 7739) 
of the 10,000 probability pairs in which the true odds ratio and 
its inverse have magnitude less than (5, 10, 20). The Woolf 
logit interval behaved well, and logit intervals with c > 0 be- 

Table 1 
Coverage probabilities and expected lengths of nominal 95% confidence intervals for 

the log odds ratio for binomial samples with n1 = n 2  = 10 and parameters p l  and p2 

Coverage probability Expected length 

P l  P2 Woolf Gart Exact Woolf Gart Exact 

.5 

.5 

.5 

.4 

.4 

.4 

.3 

.3 

.2 

.2 

.2 

.1 

.1 

.5 

.3 

.1 

.4 

.2 

.1 

.3 

.1 

.2 

.1 

.05 

.1 

.05 

,961 
,973 
,971 
,967 
.984 
,975 
,983 
,988 
,996 
,996 
.993 
,9999 
.9996 

,960 
,978 
,959 
.965 
.979 
,973 
,980 
,980 
,995 
.995 
.984 
,9998 
.9992 

,986 
,982 
,991 
,984 
,981 
,990 
.977 
,990 
,974 
,990 
,987 
.991 
,996 

3.7 
3.9 
4.5 
3.8 
4.2 
4.6 
4.1 
4.7 
4.6 
4.9 
5.1 
5.2 
5.4 

3.5 
3.6 
4.0 
3.6 
3.8 
4.1 
3.8 
4.1 
4.1 
4.3 
4.4 
4.5 
4.6 

4.5 
4.9 
6.0 
4.7 
5.5 
6.1 
5.3 
6.4 
6.3 
6.9 
7.3 
7.5 
7.9 

~ ~ ~~~~~~ 

Note: Gart interval is the logit interval based on adding .5 to all cells for estimate and standard error. 
Expected lengths are conditional on all counts being positive. 
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Table 2 
Coverage probabilities of nominal 95% logit confidence 
intervals for the odds ratio f o r  binomial samples with 

(ni, 122) = (30,lO) and (20,20) and parameters p l  and pz .  

( 3 0 , ~  (20, 20) 
P l  P2 Woolf Gart Woolf Gart 

.5 .5 ,967 .968 ,961 .961 

.5 .3 .975 .973 ,959 .957 

.5 .1 .971 .954 ,972 ,963 

.4 .4 ,969 ,971 ,960 .964 

.4 .2 ,974 ,964 .967 .967 

.4 .1 ,969 ,955 ,970 .965 

.3 .3 ,971 ,972 ,959 .968 

.3 .1 ,971 .958 ,976 .974 

.2 .2 .971 .971 .977 .978 

.2 .1 .974 .957 .983 ,982 

.1 .I ,984 .981 .998 ,998 

.2 .05 ,971 ,941 ,978 ,975 

.1 .05 .980 .960 ,995 ,993 

haved well except when the true log odds ratio was very large. 
Similar results occurred for other sample sizes considered in 
this study. To illustrate, Table 4 shows results for uniform 
random generation of binomial probabilities for some other 
sample size combinations. In the random sample size case, 
for each of the 10,000 binomial probability combinations, the 
two sample sizes were chosen uniformly and independently be- 
tween 5 and 50. The Woolf interval performed very well when 
the true odds ratio is less than 10. The Gart interval per- 
formed well when the true odds ratio is less than five and the 
samples sizes are not highly unbalanced; e.g., in those 2932 of 
the random sample size cases in which the odds ratio is less 
than 5 and .5 5 nl/nz 5 2, the minimum coverage probabil- 
ity was ,947. Consistently in these analyses, the probability of 
underestimation of /log 61 exceeded the probability of overesti- 
mation, the discrepancy between the two being greater for the 

Gart interval. For instance, for the random sample size case, 
the average probability of underestimation was ,023 for the 
Woolf interval and ,039 for the Gart interval and the average 
probability of overestimation was ,008 for the Woolf interval 
and .007 for the Gart interval. Similar results as those dis- 
played in Tables 1-4 occurred in evaluations conducted with 
99% confidence coefficients. 

So, what disadvantage is there in using the logit intervals? 
Not apparent from Tables 1 and 2 is a deficiency that the logit 
intervals using {pi j  = nij + c }  with fixed c > 0 necesssarily 
have. For any such interval with given nl and n 2 ,  there exists 
0Lo < Buo such that, for all 0 < 0 ~ 0  and for all 0 > Quo, the 
actual coverage probability equals zero. For instance, one can 
simply take 0 ~ 0  to be the maximum of the method’s upper 
confidence limits for all tables with those sample sizes. This is 
the upper confidence limit for the table with entries (nl , 0) in 
row 1 and (0 ,  n2) in row 2 since that table has the largest esti- 
mated odds ratio and since one can easily show that that table 
and the one with entries (0,nl)  in row 1 and ( n 2 , O )  in row 2 
have the greatest width. In this sense, all logit intervals with 
c > 0 have actual confidence coefficient (infimum of coverage 
probabilities) of 0. In addition, this property contributes to- 
ward the imbalance between probabilities of underestimation 
and overestimation. 

For the case n1 = n2 = 10, Figure 1 shows the coverage 
probability for the Gart logit interval plotted against the ab- 
solute value of the logarithm of the odds ratio for the 10,000 
pairs of binomial probabilities. The coverages behave very well 
until [log01 > 2.4 (odds ratio exceeds about ll), with serious 
cases of deterioration occurring when llog0l > 4 (odds ratio 
exceeds about 55). A similar figure occurs for any such interval 
with c > 0, with the deterioration starting at smaller log odds 
ratio values for estimates employing greater shrinkage. Figure 
1 also shows the coverage probability of the Woolf interval. 
It behaves better, of course, since not replacing 0 counts by 
.5 implies that the interval can contain indefinitely large true 
log odds ratios. 

Table 3 
Summary of results for  nominal 95% confidence intervals for odds ratio, applied 

with 10,000 randomly generated pairs of binomial distributions, when n1 = n 2  = 10 

Method 

Criterion Woolf Gart Indep. Exact Mid-P Pearson Like. 

Mean coverage probability 
Mean expected log length 
Mean [coverage probability - ,951 
Proportion coverage 

probability < .92 
Minimum coverage probability 
Mininimum coverage probability, 

Minimum coverage probability, 

Minimum coverage probability, 

odds ratio < 5 

odds ratio < 10 

odds ratio < 20 

,977 ,956 .969 

.027 ,030 .024 
4.54 4.03 4.17 

.OOO .077 ,025 
,941 ,000 366 

.949 ,956 ,958 

.949 .952 ,956 

,949 ,908 ,945 

,986 

.036 
5.92 

,000 
,970 

.970 

,970 

,970 

,970 

.020 
5.11 

.ooo 
,938 

,945 

,940 

.938 

,955 .944 

.012 ,023 
4.14 4.83 

,002 ,173 
,910 ,836 

,910 ,910 

,910 ,900 

,910 ,888 

Note: Indep., independence-smoothed logit interval; Pearson, inversion of Pearson chi-squared test; Like., 
profile likelihood interval based on inverting likelihood-ratio chi-squared test. Expected lengths are conditional 
on positive cell counts. 
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Table 4 
Summary of results for nominal 95% confidence intervals for odds ratzo 

0, applied with 10,000 randomly generated pairs of binomial distributions 

n1 = n 2  = 20 n1 = 30, n2 = 10 Random 5 _< n, 5 50 

Criterion Woolf Gart Indep. Woolf Gart Indep. Woolf Gart Indep. 

Mean coverage 
probability 

Mean expected 
log length 

Mean lcoverage 
probability - ,951 

P(coverage 
probability < 92) 

Minimum coverage 
probability 

Minimum coverage 
probability, 0 < 5 

Minimum coverage 
probability, 0 < 10 

Minimum coverage 
probability, 0 < 20 

.969 

3.49 

,019 

0 

.930 

,943 

,943 

,943 

.954 

3.18 

.021 

,057 

0 

,944 

,944 

,891 

,963 

3.28 

.016 

,024 

,863 

,944 

,944 

,944 

,973 

3.83 

.023 

0 

.927 

,958 

,951 

,936 

,954 

3.45 

.026 

,067 

0 

,909 

,880 

.871 

,968 

3.64 

.021 

,016 

,889 

,958 

,946 

.925 

,969 

3.39 

,019 

0 

,925 

.943 

.943 

.932 

,954 

3.08 

,021 

,058 

0 

,896 

,886 

,863 

,964 

3.22 

,017 

,019 

267 

,947 

,946 

,929 

Note: Expected lengths are conditional on positive cell counts 

3. Confidence Intervals Based on Smoothing 

So far, this paper has merely reported the performance of 
logit intervals rather than suggested new interval estimators. 
There seems to be scope for the development of simple confi- 
dence intervals that are much shorter than the exact interval 
but have better coverage performance than the logit intervals, 
and this is a useful topic for future research. For instance, in- 
tervals that use a variance estimate for the logit estimator of 
the log odds ratio that reduces the contribution of small cell 
counts (e.g., Bedrick, 1984) may provide improved results. In 
addition, just because the Gart estimator log(B.5) has small 
bias in estimating log(0) does not mean that that estimator 
should fall in the middle of a confidence interval for log(0). 

The logit interval (1) adding c to each cell count corre- 
sponds to using an effective sample size of n + 4c and cell 
proportion estimates 

Toward Independence 

that smooth toward the model of equiprobability. As pointed 
out by Bishop et al. (1975, p. 421), it is usually more sensi- 
ble to smooth toward the model of independence, with cell 
proportion estimates such as 

4c n,+n+, 
p23  = Sk (2) + (7) 

in which relatively more smoothing (in absolute terms) occurs 
for cells with larger row and column totals. If one uses c = 
.5 and an effective sample size of n + 2, as in the Gart inter- 
val, then one replaces the count n,, in the log odds ratio and 
standard error formulas by ntJ + 2(n,+n+?/n2) rather than 
n,,+.5. For n1 = n2 = 10, the first panel in Figure 2 shows the 

coverage probability for this independence-smoothed logit in- 
terval. Serious deterioration does not occur until the log odds 
ratio exceeds about 7.5, compared to 4.0 for the Gart interval 
(compare to the panel in Figure 1 for the Gart interval). 

A second potential improvement relates to the comment 
at the end of the last section about a deficiency of the logit 
intervals. If any nij  = 0, the Woolf interval is completely 
uninformative, yet the Gart interval and others with c > 0 
have the disadvantage of ruling out sufficiently large log odds 
ratio values. I t  seems more sensible to modify logit intervals 
for the log odds ratio to have a lower endpoint of -IXI if and 
only if min(nll,n22) = 0 and an upper endpoint of co if and 
only if min(nl2, ~ ~ 1 1 )  = 0 since indefinitely large log odds ratio 
values are completely consistent with such data. 

Gart Logit Interval 

I - . .  
0 .  .a:. * . 

. . . . .  ::.;-*-*.,:,:i.-*. . . . . . . . . . .  I 
0 2 4 6 8 10 12 

kgarithrn 01 odds Ratia 

Woolf Logit Interval 

. . . . . .  - 
e 

.g -.. "... 
i a  

I x l ,  , , , , , J 
I) 2 4 6 8 10 12 

Lcgarithm of Wds Ratio 

Figure 1. 
intervals for 10,000 pairs of binomials with n l  = n2 = 10. 

Coverage probabilities for Gart and Woolf logit 
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Independence-Smoothed Logit Interval 

. . .  . .  8 - , I  . . . . . . . . .  
0 2 4 6 8 10 12 

Logarithm 01 odds Ratio 

Independence-Smoothed Logit Interval with Extended Endpoints 

-.. ”... . . . . . . .  g 2: 
P 

8 , j ,  , , , , , , 1 
0 2 4 6 8 10 12 

Logarithm 01 odds Ratio 

Figure 2. Coverage probabilities for independence- 
smoothed logit intervals for 10,000 pairs of binomials with 
n1 = n 2  = 10. 

Tables 3 and 4 show results (labeled Indep.) of using the 
logit confidence interval with the independence-smoothed 
counts with c = .5 but with the modified endpoints when 
any cell counts are zero. These intervals share the Gart prop- 
erty of being relatively short, but they exhibit much better 
behavior for the minimum coverage probability. The cover- 
age probabilities behave well unless the absolute log odds ra- 
tio is very large. To illustrate, the second panel of Figure 2 
shows coverage probabilities for this interval, again for the 
case nl = n 2  = 10. The coverage probability exceeds .94 for 
all odds ratios less than 24.5, it exceeds .92 for all odds ra- 
tios less than 33.8, and it exceeds .90 for all odds ratios less 
than 86.5. In the random sample size case, these odds ra- 
tio values are (10.2, 35.8, 81.6). Since these are based on a 
sample of cases, they are not absolute minima, but similar 
patterns occurred when 100,000 binomial pairs with particu- 
lar sample size combinations were considered. The use of the 
modified endpoints with zero counts affects coverage proba- 
bilities almost entirely when the odds ratio is extremely large. 
The effect is that the coverage probabilities do not diminish 
sharply as they otherwise would, and the overall appearance 
of the coverage probabilities is similar to that for the Woolf 
interval, which is completely uninformative when any counts 
equal zero. The results on minimum coverage are better yet 
if one enters {fitJ} in the delta-method formula with effective 
sample size n instead of n + 2 ,  as in the Woolf approach (i.e., 
f i l l  = nptj instead of jiL3 = (n  + a)&,), but those results are 
not reported here for lack of space. 

The proportion estimates for this approach and the ones 
for the Gart interval also result from a Bayesian construc- 
tion (Bishop et al., 1975). Bayesian approaches to interval 
estimation of B can use a variety of potential estimators, de- 
pending on such factors as whether one formulates the prob- 
lem in terms of multinomial parameters in the entire table or 
binomial parameters in each row, the form of the prior (e.g., 
Dirichlet for probabilities or normal for logits of probabilities), 
and how one selects parameters for the prior. One might also 

(as in Bishop et al., 1975, Section 12.5) use an empirical Bayes 
approach in which the amount of smoothing depends on the 
roughness of the data, although some limited work done with 
this estimator shows poorer coverage performance. 

4. Other Methods of Interval Estimation for 

This note has focused on the logit interval because it is the 
simplest method and the one commonly discussed in text- 
books. Of course, this is not the only existing large-sample 
method for interval estimation of the odds ratio. To approx- 
imate the Cornfield l O O ( 1  - a)% exact conditional interval, 
Cornfield (1956) and Fisher (1962) proposed the interval con- 
sisting of odds ratios resulting from expected frequencies hav- 
ing the same margins as the observed counts and for which 
the Pearson chi-squared statistic with continuity correction 
has a P-value exceeding a ,  i.e., an endpoint of the interval 
has the form [(rill - d ) ( n 2 2  - d ) ] / [ ( n 1 2  + d ) ( n 2 1 +  d ) ] ,  where 

Odds Ratios 

( I d ,  -.512 (___ 1 + ___ 1 + - - -  1 2 

rill-d n 2 2 - d  n l a f d  

This interval also tends to be conservative since it mimics the 
exact one. Much shorter intervals result while usually main- 
taining coverage probability near the desired level by invert- 
ing this test (which is the score test) without the continuity 
correction. 

Alternatively, one could invert the likelihood-ratio chi- 
squared test, which gives the profile likelihood interval. Or one 
could form intervals using the conditional log likelihood, tak- 
ing the set of odds ratio values for which twice the conditional 
log likelihood falls within z:,~ of its maximum (Aitkin et al., 
1989, p. 198). The inversion of the Pearson or likelihood-ratio 
test also does not have the Woolf-interval deficiency of being 
uninformative in both directions when a cell count is zero. 
Another interval, which is shorter than the Cornfield exact 
interval, is the adaptation of that interval based on invert- 
ing the test using the mid-P value. Mehta and Walsh (1992) 
showed that this method, although not guaranteed to achieve 
at least the nominal confidence, usually does so and without 
the strong conservativeness that the exact interval can exhibit 
for small samples. 

In the cases studied, the interval based on inversion of the 
Pearson test (without the continuity correction) performed 
well, with coverages probabilities fluctuating around the nom- 
inal confidence level and with much shorter intervals than the 
exact or mid-P method. The coverage probabilities of the pro- 
file likelihood intervals behaved somewhat more erratically. 
The interval based on the test with mid-P value behaved well 
in terms of rarely having actual coverage probability much 
below the nominal confidence level, but on the average it was 
somewhat conservative. Though its intervals were consider- 
ably shorter than the exact conditional intervals, they tended 
to be longer than the logit intervals or the intervals based on 
inverting the Pearson test. Table 3 illustrates the performance 
of these methods for the case n1 = n 2  = 10. 

5. Conclusions 
Although Tables 1-4 describe behavior of the logit confidence 
intervals in a limited variety of cases, they do suggest some 
tentative recommendations: If one can tolerate the minimum 
coverage probability dipping below the nominal confidence 
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level as long as it never falls substantially below that level, 
then the Woolf interval seems adequate. If, in addition, the 
effective parameter space for the given application consists of 
small odds ratios (say, less than about five) and the sample 
sizes are not highly unbalanced, the Gart interval also seems 
adequate. The advantage of changing the choice of logit in- 
terval in cases where it is reasonable to assume a restricted 
parameter space is that the intervals are somewhat shorter, al- 
though they also have smaller minimum coverage probability. 
The independence-smoothed logit interval is recommended, 
however, over the Gart interval, i.e., add 2(n,+n+3/n2) rather 
than .5 to each cell and adjust endpoints appropriately for 
empty cells. In all cases considered here, the coverage prob- 
ability for this approach rarely fell substantively below the 
nominal level (cf., the second panel of Figure 2). Its interval 
width tended to be only slightly larger than the Gart interval, 
but its minimum coverages performed much better. There is 
scope for further improvement, but this logit interval seems 
adequate for most purposes. 

In some applications, the Woolf or independence-smoothed 
logit interval may even be preferable to the exact conditional 
interval because of the marked reduction in interval width at 
relatively little risk of the coverage probability falling much 
below the nominal confidence level. Of course, if one has no 
tolerance for the coverage probability possibly falling below 
the nominal confidence level, none of the logit intervals is 
adequate and one should use an exact interval. 
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RESUME 
A moins que la vBritable association soit trhs forte, de simples 
intervalles de confiance pour l’odds ratio, ktablis h, partir de la 
mkthode delta et pour de grands Bchantillons, ont de bonnes 
performances, m6me pour des petits Bchantillons. Ces inter- 
valles comprennent l’intervalle logit de Woolf et l’intervalle as- 
socik de Gart, oh l’on ajoute .5 avant le calcul de l’estimateur 
du logarithme de l’odds ratio et de son erreur standard. L’in- 
tervalle de Gart Bquilibre les valeurs observkes vers le modkle 
uniforme, mais on obtient de meilleures probabilitgs de recou- 
vrement en Cquilibrant vers le modhle d’indkpendance, et en 
Btendant l’intervalle dans la direction approprike lorsqu’une 
cellule correspond B. une valeur nulle. 
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