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 BIOMETRICS 52, 1223-1234
 December 1996

 Mantel-Haenszel-Type Inference for Cumulative Odds
 Ratios with a Stratified Ordinal Response

 I-Ming Liu

 Department of Statistics, National Chung Hsing University,

 Taipei, Taiwan, R.O.C.

 and

 Alan Agresti

 Department of Statistics, University of Florida,

 Gainesville, Florida 32611, U.S.A.

 SUMMARY

 This article proposes a Mantel-Haenszel-type estimator of an assumed common cumulative odds
 ratio in a proportional odds model for an ordinal response with several 2xc contingency tables.
 It is useful, for instance, for comparing two treatments on an ordinal response for data from
 several centers when the data are highly sparse. The estimator has behavior similar to the Mantel-
 Haenszel estimator of a common odds ratio for several 2 x 2 tables. It is consistent under the ordinary
 asymptotic framework in which the number of tables is fixed and, unlike the maximum likelihood
 (ML) estimator, also under sparse asymptotics in which the number of tables grows with the sample
 size. Simulations reveal a considerable difference between it and the ML estimator when each table
 has few observations. Efficiency comparisons suggest that little efficiency loss occurs compared to
 the ML estimator when the data are not sparse. Tests and estimators are presented for detecting
 and handling heterogeneity in the odds ratios, and generalizations are available for stratified rxc
 contingency tables.

 1. Introduction

 This article considers estimation of odds ratios for 2xcxK contingency tables in which the c

 columns are an ordinal response, the two rows are levels of an explanatory factor, and the K strata

 are levels of a control variable. Tables of this type often refer to a comparison of two treatments

 when data are collected from K centers of some type, such as medical clinics. Such data are often

 sparse. For instance, a study might use many clinics because of the time it takes each clinic to

 recruit many patients; the three-way table might then have many strata but few observations per

 stratum.

 Table 1, analyzed by the first author during a summer internship at Merck Research Laboratories,

 is an example of this type. This table shows preliminary results from a double-blind, parallel-group

 clinical study conducted at a large number of centers. The purpose of the study was to compare an

 active drug with placebo in the treatment of patients suffering from asthma. Patients were randomly

 assigned to the treatments. At the end of the study, investigators described their perception of the

 patients' change in condition using the ordinal scale (better, unchanged, worse).

 Let Y denote the response variable, with c ordered categories. Let X denote a binary explanatory

 variable, and let Z denote a control variable with K categories. Let 7rijk denote the probability

 that Y falls at level j, when X is at level i and Z is at level k. The jth cumulative probability is

 Key words: Consistent estimators; Cumulative logit model; Maximum likelihood; Proportional

 odds: Sparse data.
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 1224 Biometrics, December 1996

 7Zjk = lilk + ?+ Jrijk, for j = I,., c. We consider the cumulative logit model

 log (1 i ) = C k +I{l} i = 1,2, j 1 i.. . -i, k=l,...,K, (1)
 Elk

 where If =1 1 when i = 1 and I{i-=1} 0 when i = 2. At each level of Z, the odds that Y falls
 below level j at level 1 of X are exp(/3) times the odds at level 2 of X. This simple model having

 a common effect of X for all j has a proportional odds structure (McCullagh, 1980). We refer to

 o = exp(/3) as the cumulative odds ratio for the X- Y conditional association.

 When c = 2, the Mantel-Haenszel (MH) (Mantel and Haenszel, 1959) estimator of a common

 odds ratio is a popular way of summarizing association. It is used not only when a common odds

 ratio assumption seems plausible, but also as a summary measure when the association varies

 only mildly among the tables. An alternative estimator results from fitting a logit model with no

 treatment-by-center interaction. When that model holds but K is large and the data are sparse, the

 model-based maximum likelihood (ML) estimator tends to overestimate the true log odds ratio. In

 practice, this happens whenever the number of tables grows at the same rate as the sample size, so

 the number of parameters also grows (Neyman and Scott, 1948). When each stratum consists of a

 single matched pair, such as in case-control studies, the unconditional ML estimator of a common

 log odds ratio converges to double the true value (Andersen, 1980, p. 244).

 We propose a simple extension of the Mantel-Haenszel estimator for the X- Y cumulative odds

 ratio in model (1), the goal being to improve on the ML estimator when the data are sparse. The

 proposed estimator is consistent for the two standard types of asymptotics (a) when the sample

 size within each stratum increases and the number of strata is fixed, and (b) when the number of

 strata increases proportional to the overall sample size. We call limiting situation (a) the large-stra-

 Table 1

 Evaluations of patients suffering from asthma

 Response Response

 Center Drug Better Unchanged Worse Center Drug Better Unchanged Worse

 1 Placebo 0 2 1 2 Placebo 0 1 0
 Active 1 1 0 Active 1 1 0

 3 Placebo 1 1 0 4 Placebo 1 0 0
 Active 0 1 0 Active 1 1 0

 5 Placebo 1 0 0 6 Placebo 1 0 0
 Active 1 0 0 Active 2 1 0

 7 Placebo 0 1 0 8 Placebo 0 0 1
 Active 2 1 0 Active 0 1 0

 9 Placebo 1 1 0 10 Placebo 0 2 0
 Active 1 1 0 Active 1 0 0

 11 Placebo 2 0 0 12 Placebo 0 1 0
 Active 1 0 1 Active 1 0 0

 13 Placebo 1 0 0 14 Placebo 0 1 0
 Active 1 0 0 Active 2 0 0

 15 Placebo 1 0 0 16 Placebo 0 1 0
 Active 1 0 0 Active 1 0 0

 17 Placebo 0 2 0 18 Placebo 0 1 0
 Active 1 1 0 Active 1 0 0

 19 Placebo 1 0 0 20 Placebo 1 0 0
 Active 1 0 0 Active 1 0 0

 21 Placebo 0 3 0 22 Placebo 0 2 0
 Active 0 1 0 Active 1 0 0

 23 Placebo 1 0 0 24 Placebo 1 1 0
 Active 1 0 0 Active 1 0 0

 25 Placebo 1 0 0 26 Placebo 0 1 1
 Active 1 0 0 Active 1 0 0

 27 Placebo 0 1 0 28 Placebo 1 0 0
 Active 0 2 0 Active 1 1 0
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 Mantel-Haenszel-Type Inference for Odds Ratios 1225

 ta case, and limiting situation (b) the sparse-strata case. We also provide an estimated standard

 error that is dually consistent. These results extend ones for the binary case by Gart (1962), Breslow

 (1981), and Robins, Breslow, and Greenland (1986).

 Section 2 introduces the estimator. Section 3 summarizes a simulation study showing that the

 ML estimator tends to overestimate the odds ratio when the data are sparse. Section 4 discusses

 large-sample efficiency relative to the ML estimator for the large-strata case. Section 5 presents tests

 of the common odds ratio assumption, and Section 6 extends the odds ratio estimator to rxcxK

 tables. The article's main emphasis is on r = 2 because the sparse-data bias of ML estimators

 diminishes as r increases. The consistency arguments are technical, and an appendix outlines the

 proofs.

 2. An Ordinal Odds Ratio Estimator

 We assume that each 2 x c table is formed by two independent multinomial samples (Xljk, X2jk, i
 1, ... , c), with sample sizes denoted by n1k and n2k. Let Nk = n1k + n2k, k = 1,.. . K, and

 denote cumulative counts by X7ijk = Xilk + * + Xijk. Let Rjk - Xljk(n2k - X2*k)/Nk, Sjk
 (n1k - Xljk)X2jk/Nk, and N = Sk Nk. The large-strata case refers to all Nk -> 00 with K fixed;
 the sparse-strata case refers to K -> oo as N -> 0o with {Nk, k = 1,.. , K} bounded.

 For model (1), the same odds ratio occurs for all collapsings of the response into the binary

 outcome (< j, > j), i = 1,... , c - 1. Suppose we naively treat the 2x2 tables for the c - 1
 collapsings of each stratum as independent. Then the Mantel-Haenszel estimator of the common

 odds ratio in the resulting (c - 1)K separate 2x2 tables equals

 K c-1 K c-1

 E E Xk (n2k - X2k)/Nk E E Rjk
 H k-1 j=1l k=1 J=1 2

 K c-1 K c-1

 E Z(nik - Xljk)X2jk/Nk E Sjk
 k=_ J=1 k=1 j=1

 The appendix shows that 0 is dually consistent for 0. This estimator also applies to a cumulative

 odds ratio for a more general model that replaces a%- + -k by ajk.

 The estimator 0 has the form Sk YZ Sjkjk/Zk Y3 S5A, where 0;k =[Xjjk(n2k -
 2X*jk(nlk - Xl*k)]. Thus, when the common cumulative odds ratio assumption does not hold,
 O estimates a weighted average of stratum-specific cumulative odds ratios. When the heterogeneity

 is not severe and the directions of the odds ratio are the same, this is still a useful summary of the

 conditional association.

 Though we motivated 0 by treating (c - 1)K separate 2x2 tables as independent, a standard

 error based on this would be inappropriate. Generalizing the method given by Robins et al. (1986)

 provides a relevant variance estimator,

 K

 E (k(O)

 var[log(H)] = K c-1 '(3)

 b2(Z E Sjk)
 k-1 j=1

 where (k(0) = I c/%jjk(0) + 2ZC> Xjj'k(0), with

 n1kn2k { (n1k isk 2)jk [1 X 1sk
 O4jsk(0) N2 n 1k ? ( - 1) n2kJ

 k

 ? X'k(n2k - X2*sk) [00 )Xsk1- Js,..c1
 + 3 [- (l1 i } j < s= 1, ... IC c1. n2k Ln1kJJ

 The appendix provides consistency arguments for this estimator for the two limiting cases. Liu

 (1995) showed that the estimator takes the same value if one reverses, for each of the K tables, the

 order of the rows. Unfortunately, it is not invariant to reversing the order of the response categories.

 Following Robins et al. (1986), one can use the average of the estimators for the two orderings. In

 all cases we have studied, only trivial differences exist between the two estimates.
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 1226 Biometrics, December 1996

 For Table 1, log(O) =-1.153 has a standard error estimate of .571. For each center, the estimated

 odds that the evaluation for the active drug falls below any fixed level are exp(1.153) = 3.17 times

 the estimated odds for placebo. The ordinary unconditional ML estimator for model (1) equals

 -1.703, with estimated standard error equal to .598.

 When c = 2, 0 is the ordinary Mantel-Haenszel estimator. We refer to 0 and O' with c > 2
 as MH-type estimators. Mantel and Haenszel (1959) showed that a value of 0 for their statistic

 for testing conditional independence is equivalent to 0 = 1.0. Mantel (1963) generalized the test

 statistic to a single-degree-of-freedom statistic for rxcxK tables with ordered rows and column

 scores. When r = 2 and c > 2, it is straightforward to show that 0 = 1 is equivalent to a value of

 0 for Mantel's generalized ordinal statistic when one uses equally-spaced scores for the columns.

 Mantel's statistic is a natural one for testing the treatment effect. For Table 1, Mantel's statistic

 equals 4.84, with a P-value of .028. The value 0 3.17 is a supplementary measure that describes

 departure from the null hypothesis.

 When each row of the 2xcxK table has only one observation, such as with matched pairs, the

 MH-type estimator (2) and the standard error estimator simplify dramatically. One can express

 the estimators directly in terms of counts in a cxc table that expresses the joint ratings of the two

 observations from each partial table. Let x j be the sample count for the cell in the ith row and

 the jth column of such a table; this is the number of matched pairs for which the first subject in

 the pair made response i and the second made response j. The estimate of log(0) and its variance

 estimate simplify to

 log(O) log E - i)xiV / (i - j)ij1 ;,

 ]2 F 2

 '&i[log(O)] = 7 E(j - i)2X/ .l (j - i)Xij + (i -j)2X j3/ I (i -j)Xjj
 var [log [ L 3

 i< , 2i3j i>j t > j

 Agresti and Lang (1993) proposed this estimator for a proportional odds model for matched pairs.
 When the true odds ratios are heterogeneous within or between strata, 0 often still provides a

 useful descriptive summary, but the variance estimator (3) may no longer be valid. Under the large-

 strata situation, the asymptotic variance of log(0) follows from results in Lemma 2 in Appendix
 A.2 and is given there.

 Clayton (1974) provided a more complex estimator of log(0) that is a weighted average of estima-
 tors based on the separate collapsings for each partial table. The weights were chosen to minimize

 the variance of the estimator when 0 1 under the large-strata case. Clayton also proposed related

 estimators of Mantel-Haenszel form. It is unclear how to derive sparse-data standard errors for his

 estimators, as the estimated weights themselves are highly unstable in that case. In addition, the

 choice of weights is normally not critically important to the efficiency for these types of estimators

 (McCullagh and Nelder, 1989, p. 274).

 3. Simulation Study

 To investigate whether the ML estimator deteriorates relative to the MH-type estimator as sparse-

 ness increases, we conducted a simulation study with scenarios ranging from ones for which large-

 strata asymptotics should work well to ones for which sparse-strata asymptotics seem more ap-
 propriate. The results reported in Tables 2-4, for K = 10, are typical of those in Liu (1995) for

 a variety of cases that there is not space to report. These tables assume that model (1) holds
 with equal probabilities for the c-category response in the second row for each 2 x c table, and with

 -Yk = 0 for all k. For each case we generated 10,000 2xcxK sample tables based on independent
 multinomial distributions.

 For the simulated tables for each case, Table 2 summarizes the sample mean and the mean

 squared error for MH and ML estimators of , in model (1). Most of the standard errors for the
 sample means are less than .01. In comparing the estimators, a * symbol in this table indicates
 that that estimator is significantly better at the .05 level. The MH estimator tends to behave

 considerably better than the ML estimator for the sparse-strata cases (nit ? 3). The ML estimate
 averages nearly double the true parameter when n1k = 2k =1. The two estimators behave
 similarly for large-strata cases.

 Table 3 shows the proportion of times that the ML estimator was closer than the MH estimator

 to /3. The largest possible standard error of these estimates is (.5 x .5/10,00O0)1/2 =.005. The MH
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 Mantel-Haenszel-Type Inference for Odds Ratios 1227

 Table 2

 The sample mean and the mean squared error (in parentheses) of ML and

 Mantel-Haenszel-(MH) type estimators of /3, based on 10, 000 simulations with 10 strata

 c 3 c 5 c =7

 =2 =4 =2 Q= 4 =2 =4

 Estimator (nlk,n2k) 0: 0.693 1.386 0.693 1.386 0.693 1.386

 ML 20, 20 0.712 1.424 0.710 1.419 0.710 1.418
 (0.037) (0.044) (0.034) (0.039) (0.034) (0.038)

 2, 3 0.867 1.740 0.837 1.681 0.828 1.667
 (0.512) (0.724) (0.434) (0.583) (0.418) (0.547)

 1, 1 1.241 2.310 1.254 2.428 1.234 2.400
 (2.965) (3.295) (2.969) (4.041) (2.769) (3.672)

 MH 20, 20 0.699* 1.398* 0.699* 1.396* 0.699* 1.387*
 (0.036*) (0.042*) (0.033*) (0.038*) (0.032*) (0.037*)

 2, 3 0.740* 1.482* 0.731* 1.470* 0.724* 1.470*
 (0.358*) (0.486*) (0.318*) (0.432*) (0.310*) (0.409*)

 1, 1 0.666* 1.200* 0.742* 1.372* 0.759* 1.432*
 (0.741*) (0.632*) (0.838*) (0.744*) (0.870*) (0.824*)

 * The estimate is significantly better at the .05 level, based on the precision of simulation.

 Table 3

 Proportion of times that the ML estimate is closer than the

 Mantel-Haenszel-type estimate to /3, based on 10, 000 simulations with 10 strata

 c=3 c=5 c=7

 (nlk,n2k) 0: 1 2 4 1 2 4 1 2 4

 20, 20 .400 .462 .493 .417 .465 .499 .422 .472 .505
 2, 3 .223 .340 .414 .287 .358 .434 .298 .367 .424
 1, 1 .019 .199 .309 .113 .203 .290 .141 .220 .285

 Table 4

 Sample proportion estimates of the probability that the Wald statistic exceeds the 100(1 - x)

 percentage point of the chi-squared distribution, based on 10, 000 simulations with 10 strata

 c=3 c 5 c=7

 Estimator (nlk, n2k) (x: 0.05 0.10 0.05 0.10 0.05 0.10

 ML 20, 20 0.055 0.104 0.056 0.109 0.056 0.107
 2, 3 0.080 0.146 0.087 0.155 0.090 0.154
 1, 1 0.142 0.235 0.187 0.274 0.201 0.290

 MH 20, 20 0.052 0.099 0.052 0.104 0.052 0.102
 2, 3 0.048 0.099 0.052 0.103 0.053 0.101
 1, 1 0.017 0.073 0.060 0.115 0.068 0.122

 estimator becomes more preferable as the data become sparser and, to a lesser extent, as the

 association weakens.

 Finally, we analyzed the asymptotic chi-squared approximations in the upper tail for Wald

 tests about /3 based on these estimators. Table 4 reports sample proportion estimates of the null
 probability that the Wald statistic exceeds the 100(1 - c) percentage point of the chi-squared
 distribution with d.f. = 1. The largest possible standard error of these sample proportions is .005.
 For sparse-strata cases, the ML statistics are highly liberal. The MH statistics behave quite well.

 4. Efficiency Comparisons

 Though the MH-type estimator 0 behaves better than the ML estimator for sparse data, the ML
 estimator is asymptotically efficient for the large-strata case. The naive independence assumption

 used in motivating 0 is unrealistic, and the estimator could suffer some efficiency loss when the
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 1228 Biometrics, December 1996

 data are not sparse. We take some comfort from work by Liang and Zeger (1986) showing that such

 naive estimators for repeated measurement data can perform surprisingly well. For the large-strata

 case we studied the Pitman asymptotic relative efficiency (ARE) of the MH compared to the ML

 estimator, which is based on comparing their asymptotic variances. The ARE values are the same

 for the odds ratio scale and its log.

 Table 5 illustrates Pitman ARE results for the null case (0 1) when the response has three

 categories. The ARE does not vary much for different sample size structures. Though the ML

 estimator and its standard error do not have closed form for proportional odds models, an asymp-

 totically equivalent test statistic for testing 0 1 is based on the efficient score test for model (1).

 When there is a single stratum, this test statistic is equivalent to the Wilcoxon test using midranks

 (McCullagh, 1980), and for K strata it corresponds to a stratified version of that test. Using this

 connection, one can obtain a closed form for the ARE in the null case. For the single-stratum case
 Liu (1995) used this to show that the proposed estimator has full efficiency when the probabilities

 alternate, such as (2/9, 5/9, 2/9). For the binary response case there is no efficiency loss (Breslow,

 1981) under conditional independence.

 Table 6 shows some ARE values for some cases with 0 differing from 1 for a single stratum.

 Efficiencies for multi-strata cases were on the order of the average of the separate efficiencies for

 the single-stratum efficiencies of the component partial tables. Tables 5 and 6 and others in Liu

 (1995) for a variety of other cases suggest that the proposed estimator does not suffer a severe

 loss of efficiency, for large strata, compared to the ML estimator. The poorest ARE values that we

 observed, on the order of .90, tended to occur when the sample size is relatively small in a row for

 which the probabilities vary greatly, such as illustrated by the case having ARE = .909 in Table 6.

 Of course, for large strata there is no need to use the MH-type estimator because the ML

 estimator behaves adequately. The main purpose of the MH-type estimator is to handle sparse-

 strata cases, for which ML may perform poorly.

 5. Checks for Homogeneity of Cumulative Odds Ratios

 The proposed estimator refers to a model having the proportional odds assumption that the odds

 ratios are constant across the strata and for different possible collapsings within each stratum.

 Ordinary Pearson or likelihood-ratio goodness-of-fit tests of model (1) provides large-strata tests

 of homogeneity of cumulative odds ratios within and across strata. For the sparse-strata case we

 now provide a test of homogeneity within strata, assuming a common odds ratio across the strata.

 For 2xcxK contingency tables, consider the collapsed response (< j, > j) for j C {1, . . , c- 1}.

 Suppose that this odds ratio is the same for each stratum, with common value denoted by 0J. We
 test Ho: 1- 02 = , = r-1 against Ha: at least one of {O3} differs from the others. For the jth

 Table 5

 The Pitman ARE for the proposed estimator compared to the ML estimator, for K strata and

 three response categories when 0 1

 K nik 71ll1: 7121 : 7131 1r112: 7122: 7132 7r113 71123 :7133 ARE(MH, ML)

 1 I 1:1:1 N.A. N.A. 1.000
 I 2:9:2 N.A. N.A. 1.000
 I 1:1:2 N.A. N.A. 0.990
 I 2:4:5 N.A. N.A. 0.986
 I 1:1:10 N.A. N.A. 0.934
 III 1:1:1 2:9:2 N.A. 0.986

 2 II 1:1:1 2:8:2 N.A. 0.988
 III 1:1:1 2:8:2 N.A. 0.988
 II 1:1:1 1:1:10 N.A. 0.977
 III 1:1:1 1:1:10 N.A. 0.962

 3 II 1:1:1 2:9:2 1:1:1 0.990
 IV 1:1:1 2:9:2 1:1:1 0.992
 II 1:1:1 2:9:2 2:9:2 0.986

 IV 1:1:1 2:9:2 2:9:2 0.986

 Note: In the nik column we use J-JV to represent the different sample sizes structures, where I: n'ik is
 arbitrary; II: rtik is equal for i E {1,2}, k E {1,... K}; III: n1l : n2l : n12 : n2=1:2:3:4; and IV:

 nl~2l : 12 : 2: n13 23 = 1:2:1:1:1:4. The N.A. entry indicates 'not applicable.'
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 Mantel-Haenszel-Type Inference for Odds Ratios 1229

 Table 6

 The Pitman ARE for the proposed estimator compared to the ML estimator, for one stratum and

 three response categories when 0 differs from one

 0 nlk 7T1Fll: p121: 7131 7211: 7221: 7231 ARE(MH, ML)

 2 I 1:1:1 2:3:5 0.995
 II 1:1:1 2:3:5 0.999
 III 1:1:1 2:3:5 0.972
 I 2:1:1 5:4:6 0.998
 II 2:1:1 5:4:6 0.983
 III 2:1:1 5:4:6 0.997
 I 10:1:1 65:12:14 0.944
 II 10:1:1 65:12:14 0.929
 III 10:1:1 65:12:14 0.963

 4 I 1:1:1 1:2:6 0.976
 II 1:1:1 1:2:6 0.999
 III 1:1:1 1:2:6 0.909
 I 2:1:1 7:8:20 0.999
 II 2:1:1 7:8:20 0.978
 III 2:1:1 7:8:20 0.960
 I 10:1:1 75:24:36 0.955
 II 10:1:1 75:24:36 0.921
 III 10:1:1 75:24:36 0.986

 Note: In the nik column we use I, II, and III to represent the different sample sizes structures, where I:

 n1l: n2m = 1:1; II: n1l: n2i = 1:10; and III: n1l n2l 10:1.

 collapsed table, denote the Mantel-Haenszel estimator by Oj. Under the null hypothesis, {log(0j),
 j = 1, ... , c - 1} have an asymptotic multivariate normal distribution with a common mean. Thus,
 one can construct a Wald test statistic,

 where A' [log(02) - log(01),..., log(0_1) - log(01)] and E is the estimated covariance matrix
 for {log(0j) - log(01), j = 2,... , c - 1}. This quadratic form has asymptotically a chi-squared
 null distribution with c - 2 degrees of freedom. Its value is invariant to the choice of the baseline

 category for forming A. Under the null hypothesis, dually consistent estimators for the variance

 and covariance of {log(03) } are

 K

 E (jsk(0)

 cov[log(0j), log(Os)] = Cjsk=l j < s 1 . , c - 1,

 2 (E Sj k ) E Ss k)

 where (5jsk(0) is given in (3). Thus, coV[log(Oj) -log(01), log(Os) -log(01)] = Cj -Cj -Cis +Cii
 for all j < s E {2 ... , c - 1}. As mentioned before, if such a test provides evidence of heterogeneity

 but the degree of heterogeneity is mild, one might still use 0 to summarize the association, using

 the standard error mentioned in Section 2 that permits heterogeneity.

 For Table 1, log(O1) =-1.206 and log(02) =-.903. The test of homogeneous odds ratios for the
 two collapsings has test-statistic value .06, based on d.f. = 1. The proportional odds assumption
 seems plausible. The small test-statistic value results from a large estimated standard error for
 log(02), since only four strata contribute to its calculation.

 For sparse strata with the odds ratios treated as fixed effects, it does not seem realistic to expect
 to construct a powerful test of homogeneous odds ratios across the strata. However, a referee has
 noted that one could use a random effects approach by assuming that the log cumulative odds
 ratios follow some distribution; the test of homogeneity is then a test that the variance of that

 distribution equals zero. More generally, an alternative way to permit heterogeneity of odds ratios

 is based on a mixed model that has components allowing for heterogeneity within and across strata.

 This model would generalize a binary response model given by Liu and Pierce (1993) that permitted

 between-strata heterogeneity of odds ratios.
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 1230 Biometrics, December 1996

 6. Extensions to Several Rows

 Generalizations of the MH cumulative odds ratio estimator apply to tables having more than two

 rows. Suppose, for instance, that the explanatory variable has r nominal categories, and consider

 the model

 log ( it + -Yk + ii,

 for i E {1, . . , r}, j E {1,.. ., c-1}, and k E {1, ... , K}. For this model the cumulative odds ratio

 for the ith and the hth rows equals Oih = exp( ii- /h) in each stratum.

 Denote the MH estimator for log(Oih) based on rows i and h alone by Lij, An alternative
 estimator uses the full rxcxK contingency table. It is

 Li = (Li+ - Lh+)/r,

 where Li+ = r Mickey and Elashoff (1985) defined analogous estimators for 2xcxK
 tables with c nominal response categories. Since Lih is dually consistent for log(Oih) = ii- Oh,
 Lih = Yim (L, - Lhi)/r is dually consistent as well for Zil [( - ii,) - (Oh - i31)]/r = i - Oh.
 For the large-strata case, Liu (1995) showed that the Pitman ARE for Lish compared to L1h is 1
 when K = 1 and independence applies, but otherwise Lih is more efficient than Lih.

 Liu (1995) also provided an estimate when the explanatory variable has r ordinal categories.

 The asymptotic variances for these estimators are complex. [See Liu (1995) or a technical report

 available from the authors for details on this, as well as consistency arguments.] For sparse-data

 examples with r > 2, the ML estimates do not tend to be as dramatically larger than the MH-type

 estimates as when r = 2. For instance, for r x 2 x K tables with one observation per row in each

 table, the bias of ML estimators has order r/(r - 1) as K increases. This follows from standard
 results for the Rasch model, which model (1) simplifies to in this binary-response case (Anderson,

 1980, p. 244). .

 7. Applications and Extensions

 We have seen that the ML estimator of a cumulative odds ratio can be unreliable when the data

 are highly sparse. We recommend using the MH estimator instead of the ML estimator when the

 sample size for most strata is on the order of 5 or less.

 The variance formulas for the estimator both in the homogeneous and heterogeneous strata cases

 are rather complex. An alternative standard error may be obtained using a parametric bootstrap.

 In the homogeneous case, for instance, one can base this estimate on the variability in the log(0)

 values obtained by generating independent multinomial samples of the given sizes from the rows

 of the partial tables with the structure of model (1), using the ML estimates of {ca } and { Yk } and
 the MH-type estimate of i. In our experience, the ML, MH, and bootstrap standard errors are

 similar unless the data are sparse.
 For very sparse data, the probability of obtaining an infinite MH or ML estimate of log(O) is

 nonnegligible. In such cases the parametric bootstrap estimate is not well defined, and in fact the

 standard error for a limiting distribution itself has limited meaning. We constructed a bootstrap
 standard error by conditioning on those cases in the bootstrap simulations that have a finite MH

 estimate for the log odds ratio, since the usual asymptotic standard error also ignores the fact that

 the exact distribution of the estimator has finite mass on an infinite value. For very sparse data, the

 bootstrap standard error is then usually anywhere from 5% to 30% larger than the MH estimate.
 This serves as a warning that the asymptotic variance estimate (3) for the MH estimate may be

 overly optimistic. In fact, some limited simulations suggest that in such cases the bootstrap tends

 to overestimate and the MH approach tends to underestimate the appropriate ASE value.

 In practice it is important to investigate and describe the heterogeneity across strata of cumu-

 lative odds ratios. We are developing an analysis using a generalized linear mixed model, as Liu

 and Pierce (1993) did in the binary case. Another possible extension is to allow for additional risk
 factors in the model and for dependencies in the data, as discussed by Liang (1987) for the binary
 case with an estimating equations approach.

 For binary responses (c = 2), an alternative dually consistent estimator results from fitting the
 logit model using conditional maximum likelihood. For c > 2, however, the cumulative logit model

 has no reduced sufficient statistics for the parameters, and conditional ML estimation does not

 apply. For K =1, McCullagh and Nelder (1989, p. 276) proposed a 'pseudo conditional likelihood'

 estimator using the conditional noncentral hypergeometric distributions for {X~k }. Computations
 in their method involve inverses of conditional cell means. For many data sets, including Table 1
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 and matched-pairs data having one observation in each row, some conditional cell means equal zero.

 Their measure is most appropriate for nonsparse-data cases. Though one cannot use conditional

 ML to eliminate the strata parameters {Yk}, one could do this by treating them as a random effect.
 One would use numerical integration to integrate out these terms with respect to their distribution,

 thus yielding a likelihood for a marginal model (see Hedeker and Gibbons, 1995).

 One could also consider a different model structure for the ordinal response, such as an adjacent-

 categories logit model. Liu (1995) proposed Mantel-Haenszel-type estimators for the odds ratio for

 this case and developed their properties. Another possibility is continuation-ratio logits (Thompson,

 1977). We have not discussed these two model types in this article partly because they have an

 optimal alternative the conditional maximum likelihood estimator. See McCullagh (1980) and

 Greenland (1994) for discussions regarding issues in choosing among ordinal models.

 A FORTRAN program is available for calculating the MH-type estimators and their standard

 errors. Readers can request it from the first author through e-mail (ILIU@STAT2.NCHULC.EDU.

 TW).
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 RESUME

 Cet article propose un estimateur de type Mantel-Haenszel d'un odds ratio cumulatif suppose
 commun dans un modele a chances proportionnelles pour une reponse ordinale avec plusieurs
 2 x c tableaux de contingence. II est utile, par exemple, pour comparer deux traitements sur une
 response ordinale pour des donnees provenant de plusieurs centres quand les donnees sont fortement
 disseminees. Lestimateur a un comportement similaire a celui de Mantel-Haenszel d'un odds ratio
 commun pour plusieurs tableaux 2 x 2. Il est consistent dans le cadre asymptotique ordinaire dans
 lequel le nombre de tableaux est fixed et egalement, a la difference de lestimateur du maximum
 de vraisemblance (ML), sous des conditions asymptotiques "disseminees" pour lesquelles le nom-
 bre de tableaux augmente avec la taille de l'echantillon. Les simulations revelent une difference
 considerable entre cet estimateur et lestimateur ML quand chaque tableau a peu d'observations.
 Les comparaisons d'efficacite suggerent une petite perte d'efficacite par rapport a l'estimateur ML
 quand les donnees ne sont pas disseminees. Des tests et des estimateurs sont presents pour detecter

 et traiter l'heterogeneite des odds ratios, et des generalisations sont deduites pour des tableaux de
 contingence r x c stratifies.
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 APPENDIX

 In certain places in this appendix, the calculations are long and tedious and we refer to the dis-

 sertation by Liu (1995) for the complete details. A technical report is also available that provides

 further details.

 A.1 Proof of Sparse-Strata Consistency

 We assume that 0 is positive and finite, and express 0-0 = Sk ZJ (Rk -OSjk)/Zk Zj Sjk Because
 for the sparse-strata case {Rjk} and {Sjk} are bounded random variables and E(R3k - OSjk) = 0,

 the Chebyshev weak law of large numbers implies that 0 is consistent for 0. Let vara, Ea, covy
 represent asymptotic variances, asymptotic expectations, and asymptotic covariances. From the

 Central Limit Theorem and Slutsky's Theorem, 0 - 0 is asymptotically normally distributed with

 lim K vara(0)
 K-*oo

 K c-1

 lim E var 1(Rjk -Sjk) /K

 [LmKOZ ( i) 7]

 k=1 j= l

 K

 K mZ E Eovar(R3k - OSjk) + E cov(Rjk -OSjk, Rjk -7SjKk)
 k=1 _ 3' _- 2 . (4)

 K c-1

 Ki oo E E (Sj k)I/
 k=1 j'=1

 Consider Kvar(0) = [Sk=I (k(6)/K]/[k=1 ZcIl Sjk/K]2. Lemma 1 shows that (k(0) (
 Zj=1 /jjk(0) + 2 Z'J 7, Ojj'k(0)) is an unbiased estimator of EC-I var(Rjk-Sjk) + Zc>= [2 x
 cov(R3k - OSjk, Rj3k - OSj'k)]- Thus, Sk Wk(0)/K is consistent for estimating the numerator of
 (4) by the Chebyshev weak law of large numbers for summing nonidentically distributed, bounded,

 and unbiased random variables. Also, since - P)0, Zk k(0)/K is also consistent. Furthermore,

 since {Sjk} are bounded random variables, we can use the same arguments to conclude that

 Zk Zj Sjk/K P liMnK+o Ek Zj E(Sjk)/K. Thus, the denominator of Kvar() is a consistent es-
 timator of the denominator of (4). Therefore, Kv ar(O) is consistent for (4).

 LEMMA 1. E(q5,k (0)) = cov(Rjk - OSjk, Rsk - OSsk) for j K s = 1, , c -1.
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 Proof. After collapsing the response into the three outcomes (< j, > j and < s, > s), the

 variance and covariance can be calculated from a 2x3xK table. Let X*.k X.(-+1)k +*+Xick
 and ?3ijk =i(j?1)k + + 7,ick. Define

 Zjsk =(2) (0- 1)I kn2k71k7Isk7r2jk7r2sk

 and

 Djsk kn2k Dj-sk = N2 {n2k[1 + (0 -1)(1 - ?32sk)]0?isk7T2Jk +hklI -k(0 -1)(1 - ZiSk)]7ljkr23sk}.
 k

 Liu (1995) showed that cov(Rjk - OSjk, Rsk - OSsk) = Zjsk + Djsk and E((jsk(0)) = Zjsk + Djsk
 for j < s, which generalize the arguments given by Robins et al. (1986) for binary responses.i

 A.2 Proof of Large-Strata Consistency

 The estimator 0 given in (2) has the form 0 = (Zk tk6k)/(Zk tk), where 0k [Zci Xljk(r2k-

 X*jk)]/[Z-c X~jk~ ilk-Xl*k)], and tk =Z Sjk. Under the large-strata case, by the weak law
 of large numbers, 6* is consistent for 0 under the common cumulative odds ratio assumption.

 A

 Consequently, 0 is consistent for 0.

 Guilbaud (1983) proposed a large sample variance of the Mantel-Haenszel estimator for 2x2xK

 tables in which the individual odds ratios need not be equal. For the ordinal response case, Lemma 2,

 proved by Liu (1995) using the delta method, generalizes it and presents the asymptotic distribution

 when the odds ratios for all strata and collapsings need not be equal.

 LEMMA 2. As N -* oc with Nask = nrik, where ai^k # 0 for i E {1,2} and k E {1,. . .I K,
 ArN( - 0) is asymptotically normal with mean 0 and variance

 +kKi a ik ( Ak ( )k

 E (aik + a7k)[wk(0t - Q)]2
 k

 where Ak =Sa<b (b - a)lriaklr2bk =Sj tjk(1-k 2jk) Bk - a>b (a-ab)7-iak7(2bk - b 2jk(1-
 flrlk)' tk = (ajj + a~k)i[Z 1r~jk(1 - l1jk)]' Wk = tk/Zktk, 0k = -1r7(1 - Br2jk)/

 Sj-12jk(1 lrl~k) and =Zkwk=I, forkz e {1,. .,K}.

 Under the common cumulative odds ratio assumption, the asymptotic variance simplifies to

 o2ZEt2 /w

 N vara (0) (Ztk)2 (5)

 E f( N vara [(RWk -Sjk)/N] + Z N2cova [(Rjk 0Sk)/N, (Rjk S3Ik)/N]1
 k j74j' J

 [ Ik 2Ea-1=Nj 2

 EC-I~~~ ~ ~ ~ 7*.(jkN
 j-_I23k 7TI,'k, ad 0= E Wkk*,fork= j=1...I j
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 where w1 = (1/alk)[a=l 7Takr71ak] + (1/a2k)[1Zl 7r2bkr7 bk], 71lak (1/Ak)[b=a+l (b - a) x
 7T2bk] - (1/Bk) [Za-I (a-b)'w2bk], and 172bk = (1/Ak)[EZb-I (b-a)wlTak] -(1/Bk) [Lc=b?1 (a-b)7lrak].
 Following the argument in Robins et al. (1986), one can prove that

 c-i

 E Djjk + E 2Djjlk
 ____ j=1 j< j' Otk = liMr
 Wk N-*oo N

 Because Zj5k/N is O(1/N) and Dj5k/N is 0(1), it follows that Djsk/N is the asymptotically
 nonnegligible portion of cov(Rjk - OSjk, Rsk - OSsk)/N for j < s. Also, since X1Jk/nlk and
 X2jk/n2k are consistent for 7T1rk and 7l2jk, respectively, it follows by the construction of Ojsk(O)

 that Ojs k(OI)/N converges to limNOO Dj5k/N. Furthermore, since Zj4 S I/N converges to tk,
 Nvar(O) -[ZE1 "k(O)/N]/[ZS2Kl ZjI~ SJk/N]2 is consistent for the asymptotic variance given in

 (5).
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