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 BIOMETRICS 44, 539-548
 June 1988

 A Model for Agreement Between Ratings on an Ordinal Scale

 Alan Agresti

 Department of Statistics, University of Florida,
 Gainesville, Florida 32611, U.S.A.

 SUMMARY

 A class of models is proposed for describing agreement between raters who classify a sample on a
 subjective ordinal scale. The class is obtained by adding to the independence model a component
 describing baseline association between ratings and a main-diagonal component representing addi-
 tional incidence of exact agreement. Special cases include the quasi-uniform association model
 introduced by Goodman (1979, Journal of the American Statistical Association 74, 537-552) and a
 diagonal-parameter model for nominal-scale agreement proposed by Tanner and Young (1985,
 Journal of the American Statistical Association 80, 175-180). The model having the structure of
 uniform association plus a main-diagonal parameter is used to describe agreement between patholo-
 gists evaluating carcinoma in situ of the uterine cervix and between neurologists diagnosing multiple
 sclerosis. The models presented are log-linear and can be fitted using SAS and GLIM.

 1. Introduction

 Suppose two raters separately classify each subject in a sample on an ordinal scale. Many
 ordinal scales are quite subjective, such as the scale (yes, probably, about as likely as not,
 probably not, no) for diagnoses about whether a subject has a certain disease. There is
 rarely perfect agreement between raters for such scales, partly because of differing percep-
 tions about the meanings of the category labels and partly because of factors such as
 intrarater variability.

 A square contingency table can be used to display joint ratings of the two raters. Two
 matters are traditionally considered for this table. First, one can analyze differences in the
 marginal distributions. For ordered response categories, there is usually interest in whether
 classifications by one rater tend to be higher than those by the other rater. Second, one can
 analyze the extent of subject-wise agreement between raters, which involves investigating
 the frequency of main-diagonal occurrence within the joint distribution of the ratings. This
 article is concerned with the second issue. For discussion of the first type of analysis, see
 Koch et al. (1977), for instance.

 The measurement of interrater agreement has received attention primarily in the social
 and behavioral sciences, but it is also an important issue in the biomedical sciences. Landis
 and Koch ( 1975) presented an interesting review of several investigations of interrater error
 in biomedical applications. Among these were studies dealing with reliability of diagnoses
 based on chest radiography, diagnoses of emphysema and other respiratory diseases,
 diagnoses of cardiac conditions, and diagnoses of psychiatric disorders. In subsequent
 articles, Landis and Koch (1 977a, 1977b) analyzed (i) agreement between pathologists
 evaluating carcinoma in situ of the uterine cervix, and (ii) agreement between diagnoses of
 neurologists regarding multiple sclerosis. In Section 3 we analyze these data sets using
 models introduced in this article.

 Key words. Category distinguishability; Dependent samples; Kappa; Log-linear models; Quasi-
 independence; Quasi-symmetry; Uniform association.
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 540 Biometrics, June 1988

 Kappa (Cohen, 1960) is the most popular measure for summarizing degree of agreement
 between two raters. Landis and Koch (1977a, 1977b) and Darroch and McCloud (1986)
 listed several articles that have dealt with properties of kappa. The latter article, as well as
 one by Tanner and Young (1985a), have pointed out some of kappa's unsatisfactory
 features. These include (i) loss of information from summarizing the table by a single
 number, (ii) sensitivity of value to the form of the marginal distributions, and
 (iii) subsequent dangers in comparing values of kappa between two tables.

 Tanner and Young (1985a) proposed modeling the structure of the agreement between
 the raters, rather than describing it with a single summary measure. Their models are
 designed for use with nominal categorical variables. In this article, log-linear models of
 agreement are proposed for ordinal categorical scales. The primary model considered
 is an amalgamation of Tanner and Young's model and the uniform association model
 (Goodman, 1979). The models are log-linear, and they can be fitted using some of
 the statistical computer packages that have procedures for log-linear models, such as SAS
 and GLIM.

 2. Models of Baseline Association Plus Agreement

 Suppose each of n subjects is assigned to one of r response categories separately by two
 raters, A and B, and let mij = n7-ij denote the expected frequency of rating i by the first
 rater and rating j by the second rater. Tanner and Young (1 985a) suggested the log-linear
 model

 log Mj = ,u + XA + XJ + 6(i, j), (2.1)

 where

 ) 0, otherwise

 The parameter 6 included for the main-diagonal cells represents agreement beyond that
 expected by chance-that is, beyond what would be expected if classification by rater A
 were statistically independent of classification by rater B. The generalization of model (2.1)
 in which

 6(i j) = 0 otherwise

 is the quasi-independence model, which allows differential agreement by response category.
 Given that the raters disagree, these models imply that their ratings are independent. Such
 behavior does not appear to be the norm for ordinal rating scales. In examples we have
 considered, there is a moderate to strong positive association between the ratings; condi-
 tional on the ratings not being identical, there is still a tendency for high (low) ratings by
 one rater to occur with high (low) ratings by the other rater.

 For bivariate cross-classifications of ordinal variables, the linear-by-linear association
 model gives a simple and often adequate representation. When each classification has the
 same ordered categories, this model is

 log MI = , + XA + XB + fu1u1, (2.2)
 where u< < < ur are fixed scores assigned to the response categories. This model has
 only one more parameter than the independence model, and its local log-odds ratios

 log Oij = log[mijmi+1,j+1/(mij+1mi+1,A)] = f3(ui+1 - us)(u1+1 - u1)
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 Modeling Agreement for Ordinal Scales 541

 all have the same sign. For equal-interval scores (such as Iui = i ), this is the uniform
 association model discussed by Goodman (1979), having uniformity in the values of these
 odds ratios. The importance of this model derives partly from its interpretation as a discrete
 analog of the bivariate normal distribution (Goodman, 1985).

 Though often fine for describing association between ordinal classifications, model (2.2)
 is not an obvious candidate to use for modeling agreement, since it makes no allowance

 for behavior particular to the main diagonal. The class of models proposed next does this
 by allowing an extra increment of observations on the main diagonal, beyond what is
 predicted by an association model. In other words, overall agreement is partitioned
 into three parts: chance agreement (what would occur even if the classifications were
 independent), agreement due to a baseline association between the ratings, and an
 increment that reflects agreement in excess of that occurring simply from chance agreement

 or from the baseline association. This decomposition is represented by the model

 log mi=t + X + i ' + +3j + (i,j), (2.3)

 where the If3ij I are given a structural form that reflects the expected baseline association,
 and where 5(i, j ) = 0 whenever i $ j and I6(i, i) = bi }. Generally, one would choose a form
 for I 3ij I that represents a pattern of monotone association. In this article these terms are
 given the linear-by-linear association structure {I3ij = lui uj 1. For equal-interval scores Iui },
 model (2.3) then simplifies to the quasi-uniform association model proposed by Goodman

 (1979).

 Models having I6(i, i) = biI impose a perfect fit on the diagonal, with sample cell counts
 nij I and estimated expected frequencies Imij I satisfying m1ii = nii for all i. When possible,

 it is preferable to use more parsimonious models that are "unsaturated on the main

 diagonal." The simple version of model (2.3),

 log mij = ,u + + + fUi Uj + 6 (i, j) (2.4)

 with

 ((i, j) ={O otherwise'

 has this characteristic and yet seems to summarize agreement well for many data sets.
 Model (2.4) has residual degrees of freedom (df) = (r - 1)2 - 2, so it is unsaturated
 whenever r > 2. The special case d = 0 is the Tanner and Young model (2. 1) for nominal-
 scale agreement, the special case 6 = 0 is the linear-by-linear association model (2.2), and
 the special case d = 6 = 0 is the independence model. We will refer to (2.4) as the model
 of agreement plus linear-by-linear association.

 Model (2.4) is a special case of the quasi-symmetry (or "symmetric association") model,

 since the two-factor term Xij = 3ui uj + 5 (i, j ) satisfies Xij = Xj i for all i andj. For classification
 of subject a by rater b, let Pabc denote the probability the rating is in category c. In a
 population of S subjects, if one assumes (i) that classifications are made independently in

 the sense that 7rij = S` Xa PaliPa2j, and (ii) that IPabc} satisfies the condition of no three-
 factor interaction, then Darroch and McCloud (1986) showed that -7ij}I satisfy the quasi-
 symmetry model. In this sense, reasonable models for agreement are special cases of that
 model.

 The model of agreement plus linear-by-linear association has simple interpretations

 through odds ratios. For integer-spaced scores, such as Iui = i },

 F +26, i=j
 logOij= {:-a, li- il = 1.

 Ii-iI>l
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 542 Biometrics, June 1988

 Because log Oij is constant whenever all four cells fall off the main diagonal, we refer to the
 equal-interval-scores version of (2.4) as the model of agreement plus uniform association.
 Another odds ratio, of particular interest for square tables, is

 Tij= Miimjl(mijmji), for all i and j.

 Darroch and McCloud (1986) defined categories i and j to be indistinguishable if Tij = 1
 and if 1rik = Tjk for all other categories k. For model (2.4),

 log _rj = (uj - Ui)2f + 26.

 Thus, 6 = A = 0 (independence) implies that all categories are indistinguishable, and when
 A > 0 and 6 3 0, the degree of distinguishability increases as the distance between the
 categories increases. In particular, for integer-spaced scores, log rii+1 = log Oij = A + 26
 describes the distinguishability of categories i and i + 1, i = 1, . . ., r -1.

 Further interpretation of model (2.4) follows from its likelihood equations. Under the
 usual multinomial or Poisson sampling assumptions, these are

 mi+ = ni+, 1 = r;

 m+i = n+i , i= 1..,r;

 E E J uium=E uj UNnij

 mii= nii.

 The estimated joint probabilities are constrained to equal the observed joint distribution in
 the marginal distributions, in the correlation between the ratings, and in the proportion of
 exact agreement. Both for 'model (2.4) and nominal-scale model (2.1), the ratio of the total
 of the estimated expected frequencies under the model to the total expected under the
 independence model is n( nii)/( ni+n+i), and the numerator of sample kappa is the
 difference between this measure and 1.0.

 These models can be fitted using some statistical computer packages that have log-linear
 model options. The Appendix shows how to use PROC CATMOD in SAS (SAS Institute,
 1985) and GLIM (NAG, 1985) to fit agreement models for the first example discussed in
 Section 3.

 When model (2.4) holds, the null hypothesis of independence between the ratings is Ho:
 d = 6 = 0. The null hypothesis of no extra agreement beyond that due to the baseline
 association between ratings is Ho: 6 = 0, and the null hypothesis of no extra association
 beyond that due to exact agreement is Ho: fi = 0. These hypotheses can be tested by
 comparing likelihood-ratio statistics for the corresponding complete and reduced models.
 However, for the latter two hypotheses the relevant alternatives are usually Ha: 6 > 0 and
 Ha: i > 0. For thes'e one can use the test statistics z = /ff5(6) and z = a/fl), where the
 estimated asymptotic standard errors are obtained from the estimated information matrix.

 When model (2.4) is reparameterized with

 otherwise'

 and ui is replaced by u, - u, so that Ei /i = ii = 0, it is' seen that the beyond-chance
 agreement in cell (i, i) can be described by

 Xii = f(ui -_ [)2 + [(r -)lr]b,

 the amount by which log mij exceeds the value corresponding to independence. Thus, the
 agreement plus linear-by-linear association model predicts (when d > 0) that this beyond-
 chance agreement is greatest at the ends of the ordinal scale. In fact, the author's experience
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 Modeling Agreementfor Ordinal Scales 543

 in analyzing ordinal tables is that [irjj(j+r+j)] is commonly most extreme in the corners
 of the table. By contrast, models having diagonals parameters and no other association
 parameter, such as model (2.1), permit only constant beyond-chance agreement on the
 main diagonal.

 To summarize agreement by a single index, Darroch and McCloud (1986) argued that a

 measure based on the IrijI is preferable to kappa. Indistinguishability of all pairs of
 categories is not equivalent to a kappa value of zero. However, it is equivalent to zero for

 averages of {1 - Trij or {1 - rI or flog -rij }, for the special cases of the quasi-symmetry
 model expected to hold for agreement modeling [e.g., model (2.4) with d 0 0 and 6 > 0].

 In this regard, the average of flog rij I is proportional to E Xii, the total of the category-
 specific agreements. For model (2.4) this total equals E Xii = E (Ui -_ [)2 + (r - 1). It can
 be overly simplistic to use such a measure to summarize or to compare levels of agreement,
 however, since the beyond-chance agreement has two separate components, the relative
 influences of which vary by response category.

 In some applications the choice of scores IuiI for model (2.4) is questionable. Equal-
 interval scores give simplest interpretations, and they are a reasonable choice unless there
 is a more natural scoring. An alternative approach is to fit a version of the model in which

 the scores are replaced by parameters; for instance, Xij = fi3i 1j + (i, j), where the {1jI
 satisfy location and scale constraints. This model, which has residual df= (r - 1)2 - r, is
 log-multiplicative rather than log-linear. It is related to a model discussed by Goodman
 (1979). When the model fits adequately, the distances between the estimated scores can be

 used in describing distinguishability of categories.

 3. Examples

 Table 1 is based on data presented in Landis and Koch (1 977b) and originally reported by
 Holmquist, McMahon, and Williams (1967). Seven pathologists classified each of 118
 slides in terms of carcinoma in situ of the uterine cervix, based on the most involved lesion,
 using the ordered categories (1) negative; (2) atypical squamous hyperplasia; (3) carcinoma
 in situ; (4) squamous carcinoma with early stromal invasion; (5) invasive carcinoma. The
 analysis given here ignores issues dealing with comparing marginal distributions of re-
 sponses; see Landis and Koch (1 977b) for such an analysis. Instead, it focuses on illustrating
 models for the degree of agreement using data provided for the first two pathologists,

 Table 1

 Cross-classification of pathologist ratings, with expected
 frequencies in parentheses for model of agreement plus

 uniform association

 Pathologist Pathologist B
 A 1 2 3 4 5

 1 22 2 2 0 0
 (22.1) (1.7) (2.2) (0.0) (0.0)

 2 5 7 14 0 0

 (4.4) (8.9) (12.5) (.1) (0.0)
 3 0 2 36 0 0

 (.4) (1.0) (36.1) (.5) (0.0)
 4 0 1 14 7 0

 (.1) (.4) (15.6) (5.4) (.5)
 5 0 0 3 0 3

 (0.0) (0.0) (2.6) (1.0) (2.4)
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 544 Biometrics, June 1988

 labeled A and B. The 5 x 5 cross-classification of their ratings contains 12 empty cells,
 indicative of the sparseness off the main diagonal that commonly occurs for such data.

 When goodness-of-fit tests are applied to sparse data, the distribution of the likelihood-
 ratio statistic G2 is not well approximated by the chi-squared distribution. However, this
 statistic does serve well for comparing unsaturated models, as do statistics based directly
 on model parameter estimates (Haberman, 1977; Agresti and Yang, 1986). For Table 1,
 the diagonal-parameter model (2.1) has G2 = 30.9 based on degrees of freedom (df) = 15.
 The addition to the model of a baseline uniform association between ratings yields a

 dramatic improvement, as model (2.4) with Iui = i has G2 = 8.4 with df = 14. Estimated
 expected frequencies for that model are presented in Table 1. Goodness-of-fit statistics for
 these and other models are summarized in Table 2.

 The maximum likelihood parameter estimates for model (2.4), with asymptotic standard
 errors given in parentheses, are ? = 1.067 (a.s.e. = .404) and A = 1.150 (a.s.e. = .342).
 There is strong evidence of extra agreement beyond that due to the baseline association,

 and there is strong evidence of extra association beyond that due to the exact agreement.
 Using these estimates, the beyond-chance agreement can be summarized as follows: For

 i = 1, 2, 3, 4, the odds that the diagnosis of pathologist A is i + 1 rather than i is
 estimated to be exp(f + 26) = 26.7 times higher when the diagnosis of pathologist B
 is i + 1 than when it is i. Similarly, one can summarize the baseline association: For

 I i - j I > 1, the odds that the diagnosis of pathologist A is i + 1 rather than i is
 estimated to be exp(fl) = 3.2 times higher when the diagnosis of pathologist B is j + 1 than
 when it is j.

 The parameter-scores version of model (2.4) was also fitted, giving G2 = 8.0 with

 df = 11. The estimated scores, scaled so that I = 1 and 5 = 5 for ease of comparison with
 fixed-integer scores {ui = i}, are (1, 2.03, 2.91, 4.17, 5). This shows why the uniform
 association version of the model fits adequately.

 Table 3, taken from Landis and Koch (1977a), displays diagnoses of multiple sclerosis
 for two neurologists who classified patients in two sites, Winnipeg and New Orleans. The
 diagnostic classes are (1) certain multiple sclerosis; (2) probable multiple sclerosis;
 (3) possible multiple sclerosis; (4) doubtful, unlikely, or definitely not multiple sclerosis.
 For the Winnipeg patients, the agreement plus uniform association model has G2 = 9.4
 based on df = 7, with f = .804 (a.s.e. = .155) and 6 = -.028 (a.s.e. .243). For the
 New Orleans patients, the corresponding results are G = 8.8 with df = 7, ,B = 1.041
 (a.s.e. = .296), and 6 = .028 (a.s.e. = .348). The results are similar and suggest a single
 model for the full 4 x 4 x 2 cross-classification of neurologist A rating-by-neurologist B

 Table 2
 Summary of models of agreement fitted

 to Table 1

 Goodness
 Model of fit df

 Independence 131.2 16
 Diagonal-parameter 30.9 15
 Uniform association 16.2 15
 Agreement plus uniform 8.4 14

 association
 Quasi-uniform 1.3 10

 association
 Quasi-symmetry 1.0 6
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 Modeling Agreement for Ordinal Scales 545

 rating-by-site. For the model in which a uniform association parameter and a main-diagonal
 parameter (homogeneous for the two sites) are added to the model of conditional inde-
 pendence between ratings, given site, G2 = 19.2 based on df = 16, with: = .864 (a.s.e. =
 .138) and 6 = .017 (a.s.e. = .197). This result suggests the further simplification 6 = 0, for
 which there is homogeneous uniform association between the neurologists' ratings for each

 set of patients. This model fits adequately, with G2 = 19.2 and df = 17. The goodness of

 fit of these and other models is summarized in Table 4.
 For the data sets considered here, and for most others the authors has considered having

 ordered categories, much of the beyond-chance agreement is explained by the baseline

 association between the ratings. For ordinal rating scales, therefore, it is rarely adequate to
 use models for nominal-scale agreement that imply independence off the main diagonal.

 4. Comments

 Other models proposed for square tables with ordered categories may also be useful for
 describing agreement. These include a model proposed by Haber (1985) expressed as

 log rij = a + J -i, other diagonals-parameter models (Goodman, 1972; Tanner and
 Young, 1985b; Hout, Duncan, and Sobel, 1987), and other log-linear or log-multiplicative
 models (Hauser and Massagli, 1983; Cox, Przepiora, and Plackett, 1982; J0rgensen, 1985).
 The agreement plus linear-by-linear association model has several positive features. These

 include the following:

 (i) It utilizes the ordering of the response categories.

 (ii) Given that the raters disagree, it does not assume that the ratings are independent.
 (iii) The model is unsaturated on the main diagonal.
 (iv) The baseline association and extra agreement parameters are easily interpreted.
 (v) It is a quasi-symmetry model.
 (vi) It is a simple model that, in a wide variety of situations, explains most of the variation

 that remains after one has fitted the independence model.

 Table 3
 Diagnostic classifications regarding multiple sclerosis

 Winnipeg neurologist

 New Orleans Winnipeg patients New Orleans patients
 neurologist 1 2 3 4 1 2 3 4

 1 38 5 0 1 5 3 0 0
 2 33 11 3 0 3 11 4 0
 3 10 14 5 6 2 13 3 4
 4 3 7 3 10 1 2 4 14

 Table 4
 Summary of models of agreement fitted to Table 3

 Goodness
 Model of fit df

 Independence for each site 115.4 18
 Homogeneous diagonal-parameter 79.4 17
 Homogeneous uniform association 19.2 17
 Homogeneous agreement plus uniform association 19.2 16
 Homogeneous quasi-uniform association 16.8 13
 Homogeneous quasi-symmetry 13.4 12
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 546 Biometrics, June 1988

 Hence, this is a reasonable model to use in a first attempt to fit the data. Although it is too
 simple to give an adequate fit to some tables, the author's experience is that it almost
 always fits much better than quasi-independence models [such as (2.1)]. Even when it does
 not fit adequately, the pattern of the larger residuals provides interesting information about
 the structure of agreement.

 Multirater generalizations of the models discussed in this article can be formulated
 directly using the approach suggested in Tanner and Young (1985a). These generalized
 models can be useful for comparing levels and patterns of agreement for various pairs of
 raters. They can be difficult to implement unless the number of raters is small, however,
 since the relevant cross-classifications are very large and sparse. This author plans to present
 alternative ways of modeling pairwise and multiway agreement among several raters, both
 for nominal and ordinal rating schemes, in a future article.

 RESUME

 Une classe de mod&les est proposee pour la description de l'accord entre 2 juges qui classent des sujets
 selon une echelle subjective ordinale. Cette classe est obtenue par l'addition au modele d'ind&pendance
 de deux composantes, l'une decrivant I'association entre les deux classements et I'autre, dite de
 "diagonale principale," representant l'incidence additionnelle des accords reels. La classe englobe le
 modele d'association quasi uniforme de Goodman (1979, Journal of the American Statistical
 Association 74, 537-552) et le modele avec "parametre diagonal" propose par Tanner et Young
 (1985, Journal of the American Statistical Association 80, 175-180). Un modele particulier
 (association uniforme plus param&tre de diagonale principale) est utilise pour decrire I'accord entre
 anatomopathologistes evaluant le cancer in situ du col de l'uterus et entre neurologues diagnostiquant
 la sclerose en plaques. Les mod&les presentes sont log lineaires et peuvent etre estimes et ajustes grace
 aux logiciels SAS et GLIM.
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 APPENDIX

 Using SAS and GLIM to Fit Agreement Models

 PROC CATMOD in SAS can be used to fit a wide variety of models for categorical data. The default
 model is a generalized logit model in which each response category is paired with the last category.
 For instance, if the column variable is the response variable, then the generalized logit model
 corresponding to model (2.4) is

 log(mij/mir) = log(mij) - log(mir)

 - (XJ -r X) + u8i(uj - Ur) + [6(i,j) -6(i, r)]

 a. y+ 3xi, + byj, i = I,..r, j=I 1.,r- 1,

 where xij = Ui (u - Ur) and yij = 1 for i = j, yij = -1 for i = r, and yij = 0 otherwise. PROC CATMOD
 allows the user to specify the design matrix. For model (2.4), the design matrix has r(r - 1) rows,
 one for each of the (r - 1) logits in the r rows of the table. The parameter vector has elements

 (a,, * * *, ar-i, , 6), where f and 6 are the parameters of interest. Figure 1 gives the code for fitting
 this model to Table 1. The rows of the 20 x 6 design matrix are specified in the MODEL statement.
 For instance, the fifth entry in each row contains the values of xij for the 20 logits. The ML option in
 this statement requests the maximum likelihood fit.

 DATA AGREE;

 INPUT A $ B $ COUNT @@;
 CARDS;

 1 1 22 f 2 2 1 3 2 1 4 0 1 5 0
 2 1 5 2 2 7 2 3 14 2 4 0 2 5 0

 3 1 0 3 2 2 3 3 36 3 4 0 3 5 0

 4 1 0 4 2 1 4 3 14 4 4 7 4 5 0

 5 1 0 5 2 0 5 3 3 5 4 0 5 5 3

 PROC CATMOD ORDER = DATA;

 WEIGHT COUNT;

 POPULATION A;

 MODEL B = (1 0 0 0 8 1, 0 1 0 0 6 0, 0 0 1 0 4 0, 0 0 0 1 2 0,
 1 0 0 0 4 0, 0 1 0 0 3 1, 0 0 1 0 2 0, 0 0 0 1 1 0,
 1 0 0 0 0 0, 0 1 0 0 0 0, 0 0 1 0 0 1, 0 0 0 1 0 0,
 1 0 0 0 -4 0, 0 1 0 0 -3 0, 0 0 1 0 -2 0, 0 0 0 1 -1 1,
 1 0 0 0 -8 -1, 0 1 0 0 -6 -1, 0 0 1 0 -4 -1, 0 0 0 1 -2 -1)

 /ML NOGLS PRED = FREQ;

 TITLE 'MODELING AGREEMENT';

 Figure 1. SAS code for fitting model (2.4) to Table 1.

 Landis, J. R. and Koch, G. G. (1975). A review of statistical methods in the analysis of data arising
 from observer reliability studies (part I). Statistica Neerlandica 29, 101-123.

 Landis, J. R. and Koch, G. G. (1977a). The measurement of observer agreement for categorical data.
 Biometrics 33, 159-175.

 Landis, J. R. and Koch, G. G. (1977b). An application of hierarchical kappa-type statistics in the
 assessment of majority agreement among multiple observers. Biometrics 33, 363-374.

 NAG (1985). The GLIM Release 3.77 Manual. Downers Grove, Illinois: Numerical Algorithms
 Group, Inc.

 SAS Institute, Inc. (1985). SAS User's Guide: Statistics, Version 5 Edition. Cary, North Carolina:
 SAS Institute, Inc.

 Tanner, M. A. and Young, M. A. (1 985a). Modeling agreement among raters. Journal of the American
 Statistical Association 80, 175-180.

 Tanner, M. A. and Young, M. A. (1985b). Modeling ordinal scale disagreement. Psychological
 Bulletin 98, 408-415.

 Received November 1986; revised September 1987.

This content downloaded from 
������������128.227.173.42 on Wed, 20 Nov 2024 19:02:40 UTC������������� 

All use subject to https://about.jstor.org/terms



 548 Biometrics, June 1988

 GLIM is a versatile interactive program for fitting generalized linear models. The response variable
 must have a distribution in the linear exponential family. Models are specified for monotone
 transformations (called links) of the mean of the response variable. Log-linear models treat the cell
 counts as independent Poisson responses, and they use the log-link function. Figure 2 contains code
 for fitting several agreement models using version 3.77 of GLIM on a personal computer. The first
 CALC directive sets up a vector of cross-products of integer scores, which is the coefficient of a in
 models of uniform association. The second CALC directive defines a vector with components equal
 to 1.0 when the two factors are at the same level and 0.0 otherwise. This is the coefficient of 6 in
 models (2.1) and (2.4). The YVAR directive specifies that the cell count is the response. The ERROR
 directive specifies the Poisson response distribution, for which the log-link is the default. The FIT
 directive specifies the independent variables for the model. This particular statement requests four
 models: the independence model, model (2.1), model (2.2), and model (2.4). From this directive,
 GLIM fits the model and reports the likelihood-ratio statistic as the "scaled deviance." Parameter
 estimates, standard errors, and estimated expected frequencies are given as a result of the DIS
 directive.

 $units 25
 $factor a 5 b 5
 $data a b count
 $read
 1 1 22 1 2 2 1 3 2 1 4 0 1 5 0

 2 1 5 2 2 7 2 3 14 2 4 0 2 5 0

 3 1 0 3 2 2 3 3 36 3 4 0 3 5 0

 4 1 0 4 2 1 4 3 14 4 4 7 4 5 0

 5 1 0 5 2 0 5 3 3 5 4 0 5 5 3

 $calc unif = a*b $
 $calc delta = %eq (a, b) $
 $yvar count
 $error p $
 $fit a + b: + delta: - delta + unif: + delta $
 $dis e r $

 Figure 2. GLIM code for fitting agreement models to Table 1.
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