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Bayesian Inference for Categorical Data Analysis

Summary

This article surveys Bayesian methods for categorical data analysis, with primary em-

phasis on contingency table analysis. Early innovations were proposed by Good (1953, 1956,

1965) for smoothing proportions in contingency tables and by Lindley (1964) for inference

about odds ratios. These approaches primarily used conjugate beta and Dirichlet priors.

Altham (1969, 1971) presented Bayesian analogs of small-sample frequentist tests for 2×2

tables using such priors. An alternative approach using normal priors for logits received

considerable attention in the 1970s by Leonard and others (e.g., Leonard 1972). Adopted

usually in a hierarchical form, the logit-normal approach allows greater flexibility and scope

for generalization. The 1970s also saw considerable interest in loglinear modeling. The ad-

vent of modern computational methods since the mid-1980s has led to a growing literature

on fully Bayesian analyses with models for categorical data, with main emphasis on general-

ized linear models such as logistic regression for binary and multi-category response variables.

Key words: Beta distribution; Binomial distribution; Dirichlet distribution; Empirical Bayes;

Graphical models; Hierarchical models; Logistic regression; Loglinear models; Markov chain

Monte Carlo; Matched pairs; Multinomial distribution; Odds ratio; Smoothing.
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1 Introduction

1.1 A brief history up to 1965

The purpose of this article is to survey Bayesian methods for analyzing categorical data.

The starting place is the landmark work by Bayes (1763) and by Laplace (1774) on esti-

mating a binomial parameter. They both used a uniform prior distribution for the binomial

parameter. Dale (1999) and Stigler (1986, pp. 100-136) summarized this work, Stigler (1982)

discussed what Bayes implied by his use of a uniform prior, and Hald (1998) discussed later

developments.

For contingency tables, the sample proportions are ordinary maximum likelihood (ML)

estimators of multinomial cell probabilities. When data are sparse, these can have undesir-

able features. For instance, for a cell with a sampling zero, 0.0 is usually an unappealing

estimate. Early applications of Bayesian methods to contingency tables involved smoothing

cell counts to improve estimation of cell probabilities with small samples.

Much of this appeared in various works by I. J. Good. Good (1953) used a uniform prior

distribution over several categories in estimating the population proportions of animals of

various species. Good (1956) used log-normal and gamma priors in estimating association

factors in contingency tables. For a particular cell, the association factor is defined to be the

probability of that cell divided by its probability assuming independence (i.e., the product

of the marginal probabilities). Good’s (1965) monograph summarized the use of Bayesian

methods for estimating multinomial probabilities in contingency tables, using a Dirichlet

prior distribution. Good also was innovative in his early use of hierarchical and empirical

Bayesian approaches. His interest in this area apparently evolved out of his service as the

main statistical assistant in 1941 to Alan Turing on intelligence issues during World War II

(e.g., see Good 1980).

In an influential article, Lindley (1964) focused on estimating summary measures of

association in contingency tables. For instance, using a Dirichlet prior distribution for the

multinomial probabilities, he found the posterior distribution of contrasts of log probabilities,

such as the log odds ratio. Early critics of the Bayesian approach included R. A. Fisher. For

instance, in his book Statistical Methods and Scientific Inference in 1956, Fisher challenged
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the use of a uniform prior for the binomial parameter, noting that uniform priors on other

scales would lead to different results. (Interestingly, Fisher was the first to use the term

“Bayesian,” starting in 1950. See Fienberg (2005) for a detailed discussion of the evolution

of the term. Fienberg notes that the modern growth of Bayesian methods followed the

popularization in the 1950s of the term “Bayesian” by, in particular, L. J. Savage, I. J.

Good, H. Raiffa and R. Schlaifer.)

1.2 Outline of this article

Leonard and Hsu (1994) selectively reviewed the growth of Bayesian approaches to categorical

data analysis since the groundbreaking work by Good and by Lindley. Much of this review

focused on research in the 1970s by Leonard that evolved naturally out of Lindley (1964). An

encyclopedia article by Albert (2004) focused on more recent developments, such as model

selection issues. Of the many books published in recent years on the Bayesian approach, the

most complete coverage of categorical data analysis is the chapter of O’Hagan and Forster

(2004) on discrete data models and the text by Congdon (2005).

The purpose of our article is to provide a somewhat broader overview, in terms of cover-

ing a much wider variety of topics than these published surveys. We do this by organizing

the sections according to the structure of the categorical data. Section 2 begins with estima-

tion of binomial and multinomial parameters, continuing into estimation of cell probabilities

in contingency tables and related parameters for loglinear models (Section 3). Section 4

discusses Bayesian analogs of some classical confidence intervals and significance tests. Sec-

tion 5 deals with extensions to the regression modeling of categorical response variables.

Computational aspects are discussed briefly in Section 6.

2 Estimating Binomial and Multinomial Parameters

2.1 Prior distributions for a binomial parameter

Let y denote a binomial random variable for n trials and parameter π, and let p = y/n. The

conjugate prior density for π is the beta density, which is proportional to πα−1(1− π)β−1 for

some choice of parameters α > 0 and β > 0. It has E(π) = α/(α+β). The posterior density
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h(π|y) of π is proportional to

h(π|y) ∝ [πy(1 − π)n−y][πα−1(1 − π)β−1] = πy+α−1(1 − π)n−y+β−1,

for 0 < π < 1 and is also beta. Specifically,

• π has the beta distribution with parameters α∗ = y+α and β∗ = n−y+β. Equivalently,

this is the distribution of

(

y+α
n−y+β

)

F

1 +
(

y+α
n−y+β

)

F

where F is a F random variable with df1 = 2(y + α) and df2 = 2(n − y + β).

•
(

n−y+β
y+α

)

π
1−π

has the F distribution with df1 = 2(y + α) and df2 = 2(n − y + β).

The mean of the beta posterior distribution for π is a weighted average of the sample pro-

portion and the mean of the prior distribution,

E(π|y) = α∗/(α∗ + β∗) = (y + α)/(n + α + β)

= w(y/n) + (1 − w)[α/(α + β)],

where w = n/(n + α + β). The variance of the posterior distribution equals

Var(π|y) = α∗β∗/(α∗ + β∗)2(α∗ + β∗ + 1),

which is approximately
√

p(1 − p)/n for large n.

The ML estimator p = y/n results from α = β = 0, which is improper. It corresponds

to a uniform prior over the real line for the log odds, logit(π) = log[π/(1 − π)]. Haldane

(1948) proposed this, arguing it was reasonable for genetics applications in which one expects

log(π) to be roughly uniform for π close to 0 (e.g., according to Haldane, “If we are trying

to estimate a mutation rate, ... we might perhaps guess that such a rate would be about as

likely to lie between 10−5 and 10−6 as between 10−6 and 10−7.”) The posterior distribution

in that case is improper if y = 0 or n. See Novick (1969) for related arguments supporting
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this prior. The discussion of that paper by W. Perks summarizes criticisms that he, Jeffreys,

and others had about that choice.

For the uniform prior distribution (α = β = 1), the posterior distribution has the same

shape as the binomial likelihood function. It has mean

E(π|y) = (y + 1)/(n + 2),

suggested by Laplace (1774). Geisser (1984) advocated the uniform prior for predictive

inference, and discussants of his paper gave arguments for other priors. Other than the

uniform, the most popular prior for binomial inference is the Jeffreys prior, partly because

of its invariance to the scale of measurement for the parameter. This is proportional to

the square root of the determinant of the Fisher information matrix for the parameters of

interest. In the binomial case, this prior is the beta with α = β = 0.5.

Bernardo and Ramón (1998) presented an informative survey article about Bernardo’s

reference analysis approach (Bernardo 1979), which optimizes a limiting entropy distance

criterion. This attempts to derive non-subjective posterior distributions that satisfy certain

natural criteria such as invariance, consistent frequentist performance (e.g., large-sample

coverage probability of confidence intervals close to the nominal level), and admissibility.

The intention is that even for small sample sizes the information provided by the data

should dominate the prior information. The specification of the reference prior is often

computationally complex, but for the binomial parameter it is the Jeffreys prior (Bernardo

and Smith 1994, p. 315).

An alternative two-parameter approach specifies a normal prior for logit(π). Although

used occasionally in the 1960s (e.g., Cornfield 1966), this was first strongly promoted by T.

Leonard, in work instigated by D. Lindley (e.g., Leonard 1972). This distribution for π is

called the logistic-normal. With a N(0, σ2) prior distribution for logit(π), the prior density

function for π is

f(π) =
1

√

2(3.14)σ2
exp

{

−
1

2σ2

(

log
π

1 − π

)2} 1

π(1 − π)
, 0 < π < 1.

On the probability (π) scale this density is symmetric, being unimodal when σ2 ≤ 2 and

bimodal when σ2 > 2, but always tapering off toward 0 as π approaches 0 or 1. It is mound-

shaped for σ = 1, roughly uniform except near the boundaries when σ ≈ 1.5, and with more
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pronounced peaks for the modes when σ = 2. The peaks for the modes get closer to 0 and

1 as σ increases further, and the curve has essentially a U-shaped appearance when σ =

3 that is similar to the beta(0.5, 0.5) prior. With the logistic-normal prior, the posterior

density function for π is not tractable, as an integral for the normalizing constant needs to

be numerically evaluated.

Beta and logistic-normal priors sometimes do not provide sufficient flexibility. Chen and

Novick (1984) introduced a generalized three-parameter beta distribution. Among various

properties, it can more flexibly account for heavy tails or skewness. The resulting posterior

distribution is a four-parameter type of beta.

2.2 Bayesian inference about a binomial parameter

Walters (1985) used the uniform prior and its implied posterior distribution in constructing a

confidence interval for a binomial parameter (in Bayesian terminology, a “credible region”).

He noted how the bounds were contained in the Clopper and Pearson classical ‘exact’ con-

fidence bounds based on inverting two frequentist one-sided binomial tests (e.g., the lower

bound πL of a 95% Clopper-Pearson interval satisfies .025 = P (Y ≥ y|πL)). Brown, Cai,

and DasGupta (2001, 2002) showed that the posterior distribution generated by the Jeffreys

prior yields a confidence interval for π with better performance in terms of average (across

π) coverage probability and expected length. It approximates the small-sample confidence

interval based on inverting two binomial frequentist one-sided tests, when one uses the mid

P -value in place of the ordinary P -value. (The mid P -value is the null probability of more

extreme results plus half the null probability of the observed result.) See also Leonard and

Hsu (1999, pp. 142-144).

For a test of H0: π ≥ π0 against Ha: π < π0, a Bayesian P -value is the posterior

probability, P (π ≥ π0|y). Routledge (1994) showed that with the Jeffreys prior and π0 = 1/2,

this approximately equals the one-sided mid P -value for the frequentist binomial test.

Much literature about Bayesian inference for a binomial parameter deals with decision-

theoretic results. For estimating a parameter θ using estimator T with loss function w(θ)(T−

θ)2, the Bayesian estimator is E[θw(θ)|y]/E[w(θ)|y] (Ferguson 1967, p. 47). With loss func-

tion (T − π)2/[π(1− π)] and uniform prior distribution, the Bayes estimator of π is the ML
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estimator p = y/n. Johnson (1971) showed that this is an admissible estimator, for standard

loss functions. Rukhin (1988) introduced a loss function that combines the estimation error

of a statistical procedure with a measure of its accuracy, an approach that motivates a beta

prior with parameter settings between those for the uniform and Jeffreys priors, converging

to the uniform as n increases and to the Jeffreys as n decreases.

Diaconis and Freedman (1990) investigated the degree to which posterior distributions

put relatively greater mass close to the sample proportion p as n increases. They showed

that the posterior odds for an interval of fixed length centered at p is bounded below by a

term of form abn with computable constants a > 0 and b > 1. They noted that Laplace

considered this problem with a uniform prior in 1774. Related work deals with the consis-

tency of Bayesian estimators. Freedman (1963) showed consistency under general conditions

for sampling from discrete distributions such as the multinomial. He also showed asymp-

totic normality of the posterior assuming a local smoothness assumption about the prior.

For early work about the asymptotic normality of the posterior distribution for a binomial

parameter, see von Mises (1964, Chapter VIII, Section C).

Draper and Guttman (1971) explored Bayesian estimation of the binomial sample size

n based on r independent binomial observations, each with parameters n and π. They

considered both π known and unknown. The π unknown case arises in capture-recapture

experiments for estimating population size n. One difficulty there is that different models can

fit the data well yet yield quite different projections. A later extensive Bayesian literature on

the capture-recapture problem includes Smith (1991), George and Robert (1992), Madigan

and York (1997), and King and Brooks (2001a, 2002). Madigan and York (1997) explicitly

accounted for model uncertainty by placing a prior distribution over a discrete set of models

as well as over n and the cell probabilities for the table of the capture-recapture observations

for the repeated sampling. Fienberg, Johnson and Junker (1999) surveyed other Bayesian and

classical approaches to this problem, focusing on ways to permit heterogeneity in catchability

among the subjects. Dobra and Fienberg (2001) used a fully Bayesian specification of the

Rasch model (discussed in Section 5.1) to estimate the size of the World Wide Web.

Joseph, Wolfson, and Berger (1995) addressed sample size calculations for binomial ex-

periments, using criteria such as attaining a certain expected width of a confidence interval.
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DasGupta and Zhang (2005) reviewed inference for binomial and multinomial parameters,

with emphasis on decision-theoretic results.

2.3 Bayesian estimation of multinomial parameters

Results for the binomial with beta prior distribution generalize to the multinomial with a

Dirichlet prior (Lindley 1964, Good 1965). With c categories, suppose cell counts (n1, . . . , nc)

have a multinomial distribution with n =
∑

ni and parameters π = (π1, . . . , πc)
′. Let

{pi = ni/n} be the sample proportions. The likelihood is proportional to

c
∏

i=1

πni

i .

The conjugate density is the Dirichlet, expressed in terms of gamma functions as

g(π) =
Γ (
∑

αi)

[
∏

i Γ(αi)]

c
∏

i=1

παi−1
i for 0 < πi < 1 all i,

∑

i

πi = 1,

where {αi > 0}. Let K =
∑

αi. The Dirichlet has E(πi) = αi/K and Var(πi) = αi(K −

αi)/[K2(K + 1)]. The posterior density is also Dirichlet, with parameters {ni + αi}, so the

posterior mean is

E(πi|n1, . . . , nc) = (ni + αi)/(n + K).

Let γi = E(πi) = αi/K. This Bayesian estimator equals the weighted average

[n/(n + K)]pi + [K/(n + K)]γi,

which is the sample proportion when the prior information corresponds to K trials with αi

outcomes of type i, i = 1, . . . , c.

Good (1965) referred to K as a flattening constant, since with identical {αi} this esti-

mate shrinks each sample proportion toward the equi-probability value γi = 1/c. Greater

flattening occurs as K increases, for fixed n. Good (1980) attributed {αi = 1} to De Mor-

gan (1847), whose use of (ni + 1)/(n + c) to estimate πi extended Laplace’s estimate to

the multinomial case. Perks (1947) suggested {αi = 1/c}, noting the coherence with the

Jeffreys prior for the binomial (See also his discussion of Novick 1969). The Jeffreys prior

sets all αi = 0.5. Lindley (1964) gave special attention to the improper case {αi = 0}, also
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considered by Novick (1969). The discussion of Novick (1969) shows the lack of consensus

about what ‘noninformative’ means.

The shrinkage form of estimator combines good characteristics of sample proportions

and model-based estimators. Like sample proportions and unlike model-based estimators,

they are consistent even when a particular model (such as equi-probability) does not hold.

The weight given the sample proportion increases to 1.0 as the sample size increases. Like

model-based estimators and unlike sample proportions, the Bayes estimators smooth the

data. The resulting estimators, although slightly biased, usually have smaller total mean

squared error than the sample proportions. One might expect this, based on analogous

results of Stein for estimating multivariate normal means. However, Bayesian estimators

of multinomial parameters are not uniformly better than ML estimators for all possible

parameter values. For instance, if a true cell probability equals 0, the sample proportion

equals 0 with probability one, so the sample proportion is better than any other estimator.

Hoadley (1969) examined Bayesian estimation of multinomial probabilities when the

population of interest is finite, of known size N . He argued that a finite-population analogue

of the Dirichlet prior is a compound multinomial prior, which leads to a translated compound

multinomial posterior. Let N denote a vector of nonnegative integers such that its i-th

component Ni is the number of objects (out of N total) that are in category i, i = 1, . . . , c.

If conditional on the probabilities and N , the cell counts have a multinomial distribution,

and if the multinomial probabilities themselves have a Dirichlet distribution indexed by

parameter α such that αi > 0 for all i with K =
∑

αi, then unconditionally N has the

compound multinomial mass function,

f(N|N ; α) =
N ! Γ(K)

Γ(N + K)

c
∏

i=1

Γ(Ni + αi)

Ni!Γ(αi)
.

This serves as a prior distribution for N. Given cell count data {ni} in a sample of size n, the

posterior distribution of N - n is compound multinomial with N replaced by N − n and α

replaced by α + n. Ericson (1969) gave a general Bayesian treatment of the finite-population

problem, including theoretical investigation of the compound multinomial.

For the Dirichlet distribution, one can specify the means through the choice of {γi} and

the variances through the choice of K, but then there is no freedom to alter the correlations.

As an alternative, Leonard (1973), Aitchison (1985), Goutis (1993), and Forster and Skene
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(1994) proposed using a multivariate normal prior distribution for multinomial logits. This

induces a multivariate logistic-normal distribution for the multinomial parameters. Specif-

ically, if X = (X1, . . . , Xc) has a multivariate normal distribution, then π = (π1, . . . , πc)

with πi = exp(Xi)/
∑c

j=1 exp(Xj) has the logistic-normal distribution. This can provide

extra flexibility. For instance, when the categories are ordered and one expects similarity

of probabilities in adjacent categories, one might use an autoregressive form for the normal

correlation matrix. Leonard (1973) suggested this approach in estimating a histogram.

Here is a summary of other Bayesian literature about the multinomial: Good and Crook

(1974) suggested a Bayes / non-Bayes compromise by using Bayesian methods to generate

criteria for frequentist significance testing, illustrating for the test of multinomial equiprob-

ability. An example of such a criterion is the Bayes factor given by the prior odds of

the null hypothesis divided by the posterior odds. See Good (1967) for related comments.

Dickey (1983) discussed nested families of distributions that generalize the Dirichlet distri-

bution, and argued that they were appropriate for contingency tables. Sedransk, Monahan,

and Chiu (1985) considered estimation of multinomial probabilities under the constraint

π1 ≤ ... ≤ πk ≥ πk+1 ≥ ... ≥ πc, using a truncated Dirichlet prior and possibly a prior on

k if it is unknown. Delampady and Berger (1990) derived lower bounds on Bayes factors in

favor of the null hypothesis of a point multinomial probability, and related them to P -values

in chi-squared tests. Bernardo and Ramón (1998) illustrated Bernardo’s reference analysis

approach by applying it to the problem of estimating the ratio πi/πj of two multinomial

parameters. The posterior distribution of the ratio depends on the counts in those two

categories but not on the overall sample size or the counts in other categories. This need

not be true with conventional prior distributions. The posterior distribution of πi/(πi + πj)

is the beta with parameters ni + 1/2 and nj + 1/2, the Jeffreys posterior for the binomial

parameter.

2.4 Hierarchical Bayesian estimates of multinomial parameters

Good (1965, 1967, 1976, 1980) noted that Dirichlet priors do not always provide sufficient

flexibility and adopted a hierarchical approach of specifying distributions for the Dirichlet

parameters. This approach treats the {αi} in the Dirichlet prior as unknown and specifies
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a second-stage prior for them. Good also suggested that one could obtain more flexibility

with prior distributions by using a weighted average of Dirichlet distributions. See Albert

and Gupta (1982) for later work on hierarchical Dirichlet priors.

These approaches gain greater generality at the expense of giving up the simple conju-

gate Dirichlet form for the posterior. Once one departs from the conjugate case, there are

advantages of computation and of ease of more general hierarchical structure by using a

multivariate normal prior for logits, as in Leonard’s work in the 1970s discussed in Section

3 in particular contexts.

2.5 Empirical Bayesian methods

When they first consider the Bayesian approach, for many statisticians, having to select a

prior distribution is the stumbling block. Instead of choosing particular parameters for a

prior distribution, the empirical Bayesian approach uses the data to determine parameter

values for use in the prior distribution. This approach traditionally uses the prior density

that maximizes the marginal probability of the observed data, integrating out with respect

to the prior distribution of the parameters.

Good (1956) may have been the first to use an empirical Bayesian approach with contin-

gency tables, estimating parameters in gamma and log-normal priors for association factors.

Good (1965) used it to estimate the parameter value for a symmetric Dirichlet prior for

multinomial parameters, the problem for which he also considered the above-mentioned

hierarchical approach. Later research on empirical Bayesian estimation of multinomial pa-

rameters includes Fienberg and Holland (1973) and Leonard (1977a). Most of the empirical

Bayesian literature applies in a context of estimating multiple parameters (such as several

binomial parameters), and we will discuss it in such contexts in Section 3.

A disadvantage of the empirical Bayesian approach is not accounting for the source of

variability due to substituting estimates for prior parameters. It is increasingly preferred

to use the hierarchical approach in which those parameters themselves have a second-stage

prior distribution, as mentioned in the previous subsection.
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3 Estimating Cell Probabilities in Contingency Tables

Bayesian methods for multinomial parameters apply to cell probabilities for a contingency

table. With contingency tables, however, typically it is sensible to model the cell probabili-

ties. It often does not make sense to regard the cell probabilities as exchangeable. Also, in

many applications it is more natural to assume independent binomial or multinomial samples

rather than a single multinomial over the entire table.

3.1 Estimating several binomial parameters

For several (say r) independent binomial samples, the contingency table has size r × 2. For

simplicity, we denote the binomial parameters by {πi} (realizing that this is somewhat of an

abuse of notation, as we’ve just used {πi} to denote multinomial probabilities).

Much of the early literature on estimating multiple binomial parameters used an em-

pirical Bayesian approach. Griffin and Krutchkoff (1971) assumed an unknown prior on

parameters for a sequence of binomial experiments. They expressed the Bayesian estimator

in a form that does not explicitly involve the prior but is in terms of marginal probabilities of

events involving binomial trials. They substituted ML estimates π̂1, . . . , π̂r of these marginal

probabilities into the expression for the Bayesian estimator to obtain an empirical Bayesian

estimator. Albert (1984) considered interval estimation as well as point estimation with the

empirical Bayesian approach.

An alternative approach uses a hierarchical approach (Leonard 1972). At stage 1, given

µ and σ, Leonard assumed that {logit(πi)} are independent from a N(µ, σ2) distribution. At

stage 2, he assumed an improper uniform prior for µ over the real line and assumed an inverse

chi-squared prior distribution for σ2. Specifically, he assumed that νλ/σ2 is independent of

µ and has a chi-squared distribution with df = ν, where λ is a prior estimate of σ2 and ν is a

measure of the sureness of the prior conviction. For simplicity, he used a limiting improper

uniform prior for log(σ2). Integrating out µ and σ2, his two-stage approach corresponds

to a multivariate t prior for {logit(πi)}. For sample proportions {pj}, the posterior mean

estimate of logit(πi) is approximately a weighted average of logit(pi) and a weighted average

of {logit(pj)}.

11



Berry and Christensen (1979) took the prior distribution of {πi} to be a Dirichlet process

prior (Ferguson 1973). With r = 2, one form of this is a measure on the unit square that

is a weighted average of a product of two beta densities and a beta density concentrated

on the line where π1 = π2. The posterior is a mixture of Dirichlet processes. When r > 2

or 3, calculations were complex and numerical approximations were given and compared to

empirical Bayesian estimators.

Albert and Gupta (1983a) used a hierarchical approach with independent beta(α, K−α)

priors on the binomial parameters {πi} for which the second-stage prior had discrete uniform

form,

π(α) = 1/(K − 1), α = 1, . . . , K − 1,

with K user-specified. In the resulting marginal prior for {πi}, the size of K determines the

extent of correlation among {πi}. Albert and Gupta (1985) suggested a related hierarchical

approach in which α has a noninformative second-stage prior.

Consonni and Veronese (1995) considered examples in which prior information exists

about the way various binomial experiments cluster. They assumed exchangeability within

certain subsets according to some partition, and allowed for uncertainty about the partition

using a prior over several possible partitions. Conditionally on a given partition, beta priors

were used for {πi}, incorporating hyperparameters.

Crowder and Sweeting (1989) considered a sequential binomial experiment in which a

trial is performed with success probability π(1) and then, if a success is observed, a second-

stage trial is undertaken with success probability π(2). They showed the resulting likelihood

can be factored into two binomial densities, and hence termed it a bivariate binomial. They

derived a conjugate prior that has certain symmetry properties and reflects independence of

π(1) and π(2).

Here is a brief summary of other work with multiple binomial parameters: Bratcher and

Bland (1975) extended Bayesian decision rules for multiple comparisons of means of normal

populations to the problem of ordering several binomial probabilities, using beta priors. Sobel

(1993) presented Bayesian and empirical Bayesian methods for ranking binomial parameters,

with hyperparameters estimated either to maximize the marginal likelihood or to minimize

a posterior risk function. Springer and Thompson (1966) derived the posterior distribution
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of the product of several binomial parameters (which has relevance in reliability contexts)

based on beta priors. Franck et al. (1988) considered estimating posterior probabilities about

the ratio π2/π1 for an application in which it was appropriate to truncate beta priors to

place support over π2 ≤ π1. Sivaganesan and Berger (1993) used a nonparametric empirical

Bayesian approach assuming that a set of binomial parameters come from a completely

unknown prior distribution.

3.2 Estimating multinomial cell probabilities

Next, we consider arbitrary-size contingency tables, under a single multinomial sample. The

notation will refer to two-way r × c tables with cell counts n = {nij} and probabilities

π = {πij}, but the ideas extend to any dimension.

Fienberg and Holland (1972, 1973) proposed estimates of {πij} using data-dependent

priors. For a particular choice of Dirichlet means {γij} for the Bayesian estimator

[n/(n + K)]pij + [K/(n + K)]γij,

they showed that the minimum total mean squared error occurs when

K =
(

1 −
∑

π2
ij

)

/
[

∑

(γij − πij)
2
]

.

The optimal K = K(γ, π) depends on π, and they used the estimate K(γ,p). As p falls

closer to the prior guess γ, K(γ,p) increases and the prior guess receives more weight in

the posterior estimate. They selected {γij} based on the fit of a simple model. For two-way

tables, they used the independence fit {γij = pi+p+j} for the sample marginal proportions.

For extensions and further elaboration, see Chapter 12 of Bishop, Fienberg, and Holland

(1975). When the categories are ordered, improved performance usually results from using

the fit of an ordinal model, such as the linear-by-linear association model (Agresti and

Chuang 1989).

Epstein and Fienberg (1992) suggested two-stage priors on the cell probabilities, first

placing a Dirichlet(K, γ) prior on π and using a loglinear parametrization of the prior means

{γij}. The second stage places a multivariate normal prior distribution on the terms in the

loglinear model for {γij}. Applying the loglinear parametrization to the prior means {γij}
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rather than directly to the cell probabilities {πij} permits the analysis to reflect uncertainty

about the loglinear structure for {πij}. This was one of the first uses of Gibbs sampling to

calculate posterior densities for cell probabilities.

Albert and Gupta wrote several articles in the early 1980s exploring Bayesian estimation

for contingency tables. Albert and Gupta (1982) used hierarchical Dirichlet(K, γ) priors for

π for which {γij} reflect a prior belief that the probabilities may be either symmetric or

independent. The second stage places a noninformative uniform prior on γ. The precision

parameter K reflects the strength of prior belief, with large K indicating strong belief in

symmetry or independence. Albert and Gupta (1983a) considered 2×2 tables in which the

prior information was stated in terms of either the correlation coefficient ρ between the

two variables or the odds ratio (π11π22/π12π21). Albert and Gupta (1983b) used a Dirichlet

prior on {πij}, but instead of a second-stage prior, they reparametrized so that the prior

is determined entirely by the prior guesses for the odds ratio and K. They showed how to

make a prior guess for K by specifying an interval covering the middle 90% of the prior

distribution of the odds ratio.

Albert (1987b) discussed derivations of the estimator of form (1 − λ)pij + λπ̃ij, where

π̃ij = pi+p+j is the independence estimate and λ is some function of the cell counts. The

conjugate Bayesian multinomial estimator of Fienberg and Holland (1973) shown above

has such a form, as do estimators of Leonard (1975) and Laird (1978). Albert (1987b)

extended Albert and Gupta (1982, 1983b) by suggesting empirical Bayesian estimators that

use mixture priors. For cell counts n = {nij}, Albert derived approximate posterior moments

E(πij|n, K) ≈ (nij + Kpi+p+j)/(n + K)

that have the form (1 − λ)pij + λπ̃ij. He suggested estimating K from the marginal density

m(n|K) and plugging in the estimate to obtain an empirical Bayesian estimate. Alterna-

tively, a hierarchical Bayesian approach places a noninformative prior on K and uses the

resulting posterior estimate of K.
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3.3 Estimating loglinear model parameters in two-way tables

The Bayesian approaches presented so far focused directly on estimating probabilities, with

prior distributions specified in terms of them. One could instead focus on association pa-

rameters. Lindley (1964) did this with r × c contingency tables, using a Dirichlet prior

distribution (and its limiting improper prior) for the multinomial. He showed that contrasts

of log cell probabilities, such as the log odds ratio, have an approximate (large-sample) joint

normal posterior distribution. This gives Bayesian analogs of the standard frequentist re-

sults for two-way contingency tables. Using the same structure as Lindley (1964), Bloch

and Watson (1967) provided improved approximations to the posterior distribution and also

considered linear combinations of the cell probabilities.

As mentioned previously, a disadvantage of a one-stage Dirichlet prior is that it does

not allow for placing structure on the probabilities, such as corresponding to a loglinear

model. Leonard (1975), based on his thesis work, considered loglinear models, focusing on

parameters of the saturated model

log[E(nij)] = λ + λX
i + λY

j + λXY
ij

using normal priors. Leonard argued that exchangeability within each set of loglinear pa-

rameters is more sensible than the exchangeability of multinomial probabilities that one gets

with a Dirichlet prior. He assumed that the row effects {λX
i }, column effects {λY

j }, and

interaction effects {λXY
ij } were a priori independent. For each of these three sets, given a

mean µ and variance σ2, the first-stage prior takes them to be independent and N(µ, σ2).

As in Leonard’s 1972 work for several binomials, at the second stage each normal mean is

assumed to have an improper uniform distribution over the real line, and σ2 is assumed to

have an inverse chi-squared distribution. For computational convenience, parameters were

estimated by joint posterior modes rather than posterior means. The analysis shrinks the

log counts toward the fit of the independence model.

Laird (1978), building on Good (1956) and Leonard (1975), estimated cell probabilities

using an empirical Bayesian approach with the loglinear model. Her basic model differs

somewhat from Leonard’s (1975). She assumed improper uniform priors over the real line

for the main effect parameters and independent N(0, σ2) distributions for the interaction
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parameters. For computational convenience, as in Leonard (1975) the loglinear parameters

were estimated by their posterior modes, and those posterior modes were plugged into the

loglinear formula to get cell probability estimates. The empirical Bayesian aspect occurs

from replacing σ2 by the mode of the marginal likelihood, after integrating out the loglinear

parameters. As σ → ∞, the estimates converge to the sample proportions; as σ → 0, they

converge to the independence estimates, {pi+p+j}. The fitted values have the same row and

column marginal totals as the observed data. She noted that the use of a symmetric Dirichlet

prior results in estimates that correspond to adding the same count to each cell, whereas her

approach permits considerable variability in the amount added or subtracted from each cell

to get the fitted value.

In related work, Jansen and Snijders (1991) considered the independence model and used

lognormal or gamma priors for the parameters in the multiplicative form of the model, noting

the better computational tractability of the gamma approach. More generally, Albert (1988)

used a hierarchical approach for estimating a loglinear Poisson regression model, assuming a

gamma prior for the Poisson means and a noninformative prior on the gamma parameters.

Square contingency tables with the same categories for rows and columns have extra

structure that can be recognized through models that are permutation invariant for certain

groups of transformations of the cells. Forster (2004b) considered such models and discussed

how to construct invariant prior distributions for the model parameters. As mentioned

previously, Albert and Gupta (1982) had used a hierarchical Dirichlet approach to smoothing

toward a prior belief of symmetry. Vounatsou and Smith (1996) analyzed certain structured

contingency tables, including symmetry, quasi-symmetry and quasi-independence models for

square tables and for triangular tables that result when the category corresponding to the

(i, j) cell is indistinguishable from that of the (j, i) cell (a case also studied by Altham 1975).

They assessed goodness of fit using distance measures and by comparing sample predictive

distributions of counts to corresponding observed values.

Here is a summary of some other Bayesian work on loglinear-related models for two-way

tables. Leighty and Johnson (1990) used a two-stage procedure that first locates full and

reduced loglinear models whose parameter vectors enclose the important parameters and then

uses posterior regions to identify which ones are important. Evans, Gilula, and Guttman
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(1993) provided a Bayesian analysis of Goodman’s generalization of the independence model

that has multiplicative row and column effects, called the RC model. Kateri, Nicolaou,

and Ntzoufras (2005) considered Goodman’s more general RC(m) model. Evans, Gilula,

and Guttman (1989) noted that latent class analysis in two-way tables usually encounters

identifiability conditions, which can be overcome with a Bayesian approach putting prior

distributions on the latent parameters.

3.4 Extensions to multi-dimensional tables

Knuiman and Speed (1988) generalized Leonard’s loglinear modeling approach by considering

multi-way tables and by taking a multivariate normal prior for all parameters collectively

rather than univariate normal priors on individual parameters. They noted that this permits

separate specification of prior information for different interaction terms, and they applied

this to unsaturated models. They computed the posterior mode and used the curvature of

the log posterior at the mode to measure precision. King and Brooks (2001b) also specified

a multivariate normal prior on the loglinear parameters, which induces a multivariate log-

normal prior on the expected cell counts. They derived the parameters of this distribution

in an explicit form and stated the corresponding mean and covariances of the cell counts.

For frequentist methods, it is well known that one can analyze a multinomial loglinear

model using a corresponding Poisson loglinear model (before conditioning on the sample

size), in order to avoid awkward constraints. Following Knuiman and Speed (1988), Forster

(2004a) considered corresponding Bayesian results, also using a multivariate normal prior on

the model parameters. He adopted prior specification having invariance under certain per-

mutations of cells (e.g., not altering strata). Under such restrictions, he discussed conditions

for prior distributions such that marginal inferences are equivalent for Poisson and multi-

nomial models. These essentially allow the parameter governing the overall size of the cell

means (which disappears after the conditioning that yields the multinomial model) to have

an improper prior. Forster also derived necessary and sufficient conditions for the posterior

to then be proper, and he related them to conditions for maximum likelihood estimates

to be finite. An advantage of the Poisson parameterization is that Markov chain Monte

Carlo (MCMC) methods are typically more straightforward to apply than with multinomial
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models. (See Section 6 for a brief discussion of MCMC methods.)

Loglinear model selection, particularly using Bayes factors, now has a substantial liter-

ature. Spiegelhalter and Smith (1982) gave an approximate expression for the Bayes factor

for a multinomial loglinear model with an improper prior (uniform for the log probabilities)

and showed how it related to the standard chi-squared goodness-of-fit statistic. Raftery

(1986) noted that this approximation is indeterminate if any cell is empty but is valid with

a Jeffreys prior. He also noted that, with large samples, -2 times the log of this approximate

Bayes factor is approximately equivalent to Schwarz’s BIC model selection criterion. More

generally, Raftery (1996) used the Laplace approximation to integration to obtain approxi-

mate Bayes factors for generalized linear models. Madigan and Raftery (1994) proposed a

strategy for loglinear model selection with Bayes factors that employs model averaging. See

also Raftery (1996) and Dellaportas and Forster (1999) for related work. Albert (1996) sug-

gested partitioning the loglinear model parameters into subsets and testing whether specific

subsets are nonzero. Using normal priors for the parameters, he examined the behavior of

the Bayes factor under both normal and Cauchy priors, finding that the Cauchy was more

robust to misspecified prior beliefs. Ntzoufras, Forster and Dellaportas (2000) developed a

MCMC algorithm for loglinear model selection.

An interesting recent application of Bayesian loglinear modeling is to issues of confiden-

tiality (Fienberg and Makov 1998). Agencies often release multidimensional contingency

tables that are ostensibly confidential, but the confidentiality can be broken if an individual

is uniquely identifiable from the data presentation. Fienberg and Makov considered loglinear

modeling of such data, accounting for model uncertainty via Bayesian model averaging.

Considerable literature has dealt with analyzing a set of 2 × 2 contingency tables, such

as often occur in meta analyses or multi-center clinical trials comparing two treatments on a

binary response. Maritz (1989) derived empirical Bayesian estimators for the log-odds ratios,

based on a Dirichlet prior for the cell probabilities and estimating the hyperparameters using

data from the other tables. See Albert (1987a) for related work. Wypij and Santner (1992)

considered the model of a common odds ratio and used Bayesian and empirical Bayesian

arguments to motivate an estimator that corresponds to a conditional ML estimator after

adding a certain number of pseudotables that have a concordant or discordant pair of obser-
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vations. Skene and Wakefield (1990) modeled multi-center studies using a model that allows

the treatment–response log odds ratio to vary among centers. Meng and Dempster (1987)

considered a similar model, using normal priors for main effect and interaction parameters

in a logit model, in the context of dealing with the multiplicity problem in hypothesis testing

with many 2×2 tables. Warn, Thompson, and Spiegelhalter (2002) considered meta analyses

for the difference and the ratio of proportions. This relates essentially to identity and log link

analogs of the logit model, in which case it is necessary to truncate normal prior distributions

so the distributions apply to the appropriate set of values for these measures. Efron (1996)

outlined empirical Bayesian methods for estimating parameters corresponding to many re-

lated populations, exemplified by odds ratios from 41 different trials of a surgical treatment

for ulcers. His method permits selection from a wide class of priors in the exponential family.

Casella (2001) analyzed data from Efron’s meta-analysis, estimating the hyperparameters as

in an empirical Bayes analysis but using Gibbs sampling to approximate the posterior of the

hyperparameters, thereby gaining insight into the variability of the hyperparameter terms.

Casella and Moreno (2003) gave another approach to the meta-analysis of contingency tables,

employing intrinsic priors. Wakefield (2004) discussed the sensitivity of various hierarchical

approaches for ecological inference, which involves making inferences about the associations

in the separate 2×2 tables when one observes only the marginal distributions.

3.5 Graphical models

Much attention has been paid in recent years to graphical models. These have certain con-

ditional independence structure that is easily summarized by a graph with vertices for the

variables and edges between vertices to represent a conditional association. The cell proba-

bilities can be expressed in terms of marginal and conditional probabilities, and independent

Dirichlet prior distributions for them induce independent Dirichlet posterior distributions.

See O’Hagan and Forster (2004, Chap. 12) for discussion of the usefulness of graphical rep-

resentations for a variety of Bayesian analyses.

Dawid and Lauritzen (1993) introduced the notion of a probability distribution defined

over probability measures on a multivariate space that concentrate on a set of such graphs. A

special case includes a hyper Dirichlet distribution that is conjugate for multinomial sampling
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and that implies that certain marginal probabilities have a Dirichlet distribution. Madigan

and Raftery (1994) and Madigan and York (1995) used this family for graphical model

comparison and for constructing posterior distributions for measures of interest by averaging

over relevant models. Giudici (1998) used a prior distribution over a space of graphical models

to smooth cell counts in sparse contingency tables, comparing his approach with the simple

one based on a Dirichlet prior for multinomial probabilities.

3.6 Dealing with nonresponse

Several authors have considered Bayesian approaches in the presence of nonresponse. Mod-

eling nonignorable nonresponse has mainly taken one of two approaches: Introducing pa-

rameters that control the extent of nonignorability into the model for the observed data and

checking the sensitivity to these parameters, or modeling of the joint distribution of the data

and the response indicator. Forster and Smith (1998) reviewed these approaches and cited

relevant literature.

Forster and Smith (1998) considered models having categorical response and categorical

covariate vector, when some response values are missing. They investigated a Bayesian

method for selecting between nonignorable and ignorable nonresponse models, pointing out

that the limited amount of information available makes standard model comparison methods

inappropriate. Other works dealing with missing data for categorical responses include Basu

and Pereira (1982), Albert and Gupta (1985), Kadane (1985), Dickey, Jiang, and Kadane

(1987), Park and Brown (1994), Paulino and Pereira (1995), Park (1998), Bradlow and

Zaslavsky (1999), and Soares and Paulino (2001). Viana (1994) and Prescott and Garthwaite

(2002) studied misclassified multinomial and binary data, respectively, with applications to

misclassified case-control data.

4 Tests and Confidence Intervals in Two-Way Tables

We next consider Bayesian analogs of frequentist significance tests and confidence intervals

for contingency tables. For 2×2 tables, with multinomial Dirichlet priors or binomial beta

priors there are connections between Bayesian and frequentist results.
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4.1 Confidence intervals for association parameters

For 2 × 2 tables resulting from two independent binomial samples with parameters π1 and

π2, the measures of usual interest are π1 − π2, the relative risk π1/π2, and the odds ratio

[π1/(1 − π1)]/[π2/(1 − π2)]. It is most common to use a beta(αi, βi) prior for πi, i = 1, 2,

taking them to be independent. Alternatively, one could use a correlated prior. An obvious

possibility is the bivariate normal for [logit(π1), logit(π2)]. Howard (1998) instead amended

the independent beta priors and used prior density function proportional to

e−(1/2)u2

πa−1
1 (1 − π1)

b−1πc−1
2 (1 − π2)

d−1,

where

u =
1

σ
log

(

π1(1 − π2)

π2(1 − π1)

)

.

Howard suggested σ = 1 for a standard form.

The priors for π1 and π2 induce corresponding priors for the measures of interest. For

instance, with uniform priors, π1 − π2 has a symmetrical triangular density over (-1, +1),

r = π1/π2 has density g(r) = 1/2 for 0 ≤ r ≤ 1 and g(r) = 1/(2r2) for r > 1, and

the log relative risk has the Laplace density (Nurminen and Mutanen 1987). The posterior

distribution for (π1, π2) induces posterior distributions for the measures. For the independent

beta priors, Hashemi, Nandram and Goldberg (1997) and Nurminen and Mutanen (1987)

gave integral expressions for the posterior distributions for the difference, ratio, and odds

ratio.

Hashemi et al. (1997) formed Bayesian highest posterior density (HPD) confidence inter-

vals for these three measures. With the HPD approach, the posterior probability equals the

desired confidence level and the posterior density is higher for every value inside the interval

than for every value outside of it. The HPD interval lacks invariance under parameter trans-

formation. This is a serious liability for the odds ratio and relative risk, unless the HPD

interval is computed on the log scale. For instance, if (L, U) is a 100(1− α)% HPD interval

using the posterior distribution of the odds ratio, then the 100(1− α)% HPD interval using

the posterior distribution of the inverse of the odds ratio (which is relevant if we reverse

the identification of the two groups being compared) is not (1/U, 1/L). The “tail method”

100(1 − α)% interval consists of values between the α/2 and (1 − α/2) quantiles. Although
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longer than the HPD interval, it is invariant.

Agresti and Min (2005) discussed Bayesian confidence intervals for association parameters

in 2×2 tables. They argued that if one desires good coverage performance (in the frequentist

sense) over the entire parameter space, it is best to use quite diffuse priors. Even uniform

priors are often too informative, and they recommended the Jeffreys prior.

4.2 Tests comparing two independent binomial samples

Using independent beta priors, Novick and Grizzle (1965) focused on finding the posterior

probability that π1 > π2 and discussed application to sequential clinical trials. Cornfield

(1966) also examined sequential trials from a Bayesian viewpoint, focusing on stopping-

rule theory. He used prior densities that concentrate some nonzero probability at the null

hypothesis point. His test assumed normal priors for µi = logit(πi), i = 1, 2, putting a

nonzero prior probability λ on the null µ1 = µ2. From this, Cornfield derived the posterior

probability that µ1 = µ2 and showed connections with stopping-rule theory.

Altham (1969) discussed Bayesian testing for 2×2 tables in a multinomial context. She

treated the cell probabilities {πij} as multinomial parameters having a Dirichlet prior with

parameters {αij}. For testing H0: θ = π11π22/π12π21 ≤ 1 against Ha: θ > 1 with cell counts

{nij} and the posterior Dirichlet distribution with parameters {α
′

ij = αij + nij}, she showed

that

P (θ ≤ 1|{nij}) =
α

′

21
−1

∑

s=max(α
′

21
−α

′

12
,0)

(

α
′

+1 − 1

s

)(

α
′

+2 − 1

α
′

2+ − 1 − s

)

/

(

α
′

++ − 2

α
′

1+ − 1

)

.

This posterior probability equals the one-sided P-value for Fisher’s exact test, when one uses

the improper prior hyperparameters α11 = α22 = 0 and α12 = α21 = 1, which correspond to

a prior belief favoring the null hypothesis. That is, the ordinary P -value for Fisher’s exact

test corresponds to a Bayesian P -value with a conservative prior distribution, which some

have taken to reflect the conservative nature of Fisher’s exact test. If αij = γ, i, j = 1, 2, with

0 ≤ γ ≤ 1, Altham showed that the Bayesian P -value is smaller than the Fisher P -value.

The difference between the two is no greater than the null probability of the observed data.

Altham’s results extend to comparing independent binomials with corresponding beta

priors. In that case, see Irony and Pereira (1986) for related work comparing Fisher’s exact
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test with a Bayesian test. See Seneta (1994) for discussion of another hypergeometric test

having a Bayesian-type derivation, due to Carl Liebermeister in 1877, that can be viewed

as a forerunner of Fisher’s exact test. Howard (1998) showed that with Jeffreys priors the

posterior probability that π1 ≤ π2 approximates the one-sided P -value for the large-sample

z test using pooled variance (i.e., the signed square root of the Pearson statistic) for testing

H0 : π1 = π2 against Ha : π1 > π2.

Little (1989) argued that if one believes in conditioning on approximate ancillary statis-

tics, then the conditional approach leads naturally to the likelihood principle and to a

Bayesian analysis such as Altham’s. Zelen and Parker (1986) considered Bayesian analy-

ses for 2×2 tables that result from case-control studies. They argued that the Bayesian

approach is well suited for this, since such studies do not represent randomized experiments

or random samples from a real or hypothetical population of possible experiments. Later

Bayesian work on case-control studies includes Ghosh and Chen (2002), Müller and Roeder

(1997), Seaman and Richardson ( 2004), and Sinha, Mukherjee, and Ghosh (2004). For in-

stance, Seaman and Richardson (2004) extend to Bayesian methods the equivalence between

prospective and retrospective models in case-control studies. See Berry (2004) for a recent

exposition of advantages of using a Bayesian approach in clinical trials.

Weisberg (1972) extended Novick and Grizzle (1965) and Altham (1969) to the com-

parison of two multinomial distributions with ordered categories. Assuming independent

Dirichlet priors, he obtained an expression for the posterior probability that one distribution

is stochastically larger than the other. In the binary case, he also obtained the posterior

distribution of the relative risk.

Kass and Vaidyanathan (1992) studied sensitivity of Bayes factors to small changes in

prior distributions. Under a certain null orthogonality of the parameter of interest and the

nuisance parameter, and with the two parameters being independent a priori, they showed

that small alterations in the prior for the nuisance parameter have no effect on the Bayes

factor up to order n−1. They illustrated this for testing equality of binomial parameters.

Walley, Gurrin, and Burton (1996) suggested using a large class of prior distributions

to generate upper and lower probabilities for testing a hypothesis. These are obtained by

maximizing and minimizing the probability with respect to the density functions in that
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class. They applied their approach to clinical trials data for deciding which of two therapies

is better. See also Walley (1996) for discussion of a related “imprecise Dirichlet model” for

multinomial data.

Brooks (1987) used a Bayesian approach for the design problem of choosing the ratio

of sample sizes for comparing two binomial proportions. Matthews (1999) also considered

design issues in the context of two-sample comparisons. In that simple setting, he presented

the optimal Bayesian design for estimation of the log odds ratio, and he also studied the

effect of the specification of the prior distributions.

4.3 Testing independence in two-way tables

Gunel and Dickey (1974) considered independence in two-way contingency tables under

the Poisson, multinomial, independent multinomial, and hypergeometric sampling models.

Conjugate gamma priors for the Poisson model induce priors in each further conditioned

model. They showed that the Bayes factor for independence itself factorizes, highlighting

the evidence residing in the marginal totals.

Good (1976) also examined tests of independence in two-way tables based on the Bayes

factor, as did Jeffreys for 2×2 tables in later editions of his book. As in some of his earlier

work, for a prior distribution Good used a mixture of symmetric Dirichlet distributions.

Crook and Good (1980) developed a quantitative measure of the amount of evidence about

independence provided by the marginal totals and discussed conditions under which this is

small. See also Crook and Good (1982) and Good and Crook (1987).

Albert (1997) generalized Bayesian methods for testing independence and estimating

odds ratios to other settings, extending Albert (1996). He used a prior distribution for the

loglinear association parameters that reflects a belief that only part of the table reflects

independence (a “quasi-independence” prior model) or that there are a few “deviant cells,”

without knowing where these outlying cells are in the table. Quintana (1998) proposed

a nonparametric Bayesian analysis for developing a Bayes factor to assess homogeneity of

several multinomial distributions, using Dirichlet process priors. The model has the flexibility

of assuming no specific form for the distribution of the multinomial probabilities.
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Intrinsic priors, introduced for model selection and hypothesis testing by Berger and

Pericchi (1996), allow a conversion of an improper noninformative prior into a proper one.

For testing independence in contingency tables, Casella and Moreno (2002), noting that

many common noninformative priors cannot be centered at the null hypothesis, suggested

the use of intrinsic priors.

4.4 Comparing two matched binomial samples

There is a substantial literature on comparing binomial parameters with independent sam-

ples, but the dependent-samples case has attracted less attention. Altham (1971) developed

Bayesian analyses for matched-pairs data with a binary response. Consider the simple model

in which the probability πij of response i for the first observation and j for the second observa-

tion is the same for each subject. Using the Dirichlet({αij}) prior and letting {α
′

ij = αij+nij}

denote the parameters of the Dirichlet posterior, she showed that the posterior probability

of a higher probability of success for the first observation is

P [π12/(π12 + π21) > 1/2|{nij}] =
α

′

12
−1

∑

s=0

(

α
′

12 + α
′

21 − 1

s

)

(
1

2
)α

′

12
+α

′

21
−1.

This equals the frequentist one-sided P -value using the binomial distribution when the prior

parameters are α12 = 1 and α21 = 0. As in the independent samples case studied by Altham

(1969), this is a Bayesian P -value for a prior distribution favoring H0. If α12 = α21 = γ,

with 0 ≤ γ ≤ 1, Altham showed that this is smaller than the frequentist P -value, and the

difference between the two is no greater than the null probability of the observed data.

Altham (1971) also considered the logit model in which the probability varies by subject

but the within-pair effect is constant. She showed that the Bayesian evidence against the

null is weaker as the number of pairs (n11 + n22) giving the same response at both occasions

increases, for fixed values of the numbers of pairs giving different responses at the two

occasions. This differs from the analysis in the previous paragraph and the corresponding

conditional likelihood result for this model, which do not depend on such “concordant” pairs.

Ghosh et al. (2000a) showed related results.

Altham (1971) also considered logit models for cross-over designs with two treatments,

adding two strata for the possible orders. She showed approximate correspondences with
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classical inferences in the case of great prior uncertainty. For cross-over designs, Forster

(1994) used a multivariate normal prior for a loglinear model, showing how to incorporate

prior beliefs about the existence of a carry-over effect and check the posterior sensitivity

to such assumptions. For obtaining the posterior, he handled the non-conjugacy by Gibbs

sampling. This has the facility to deal easily with cases in which the data are incomplete,

such as when subjects are observed only for the first period.

5 Regression Models for Categorical Responses

5.1 Binary regression

Bayesian approaches to estimating binary regression models took a sizable step forward with

Zellner and Rossi (1984). They examined the generalized linear models (GLMs) h[E(yi)] =

x
′

iβ, where {yi} are independent binary random variables, xi is a vector of covariates for yi,

and h(·) is a link function such as the probit or logit. They derived approximate posterior

densities both for an improper uniform prior on β and for a general class of informative

priors, giving particular attention to the multivariate normal. Their approach is discussed

further in Section 6.

Ibrahim and Laud (1991) considered the Jeffreys prior for β in a GLM, giving special

attention to its use with logistic regression. They showed that it is a proper prior and

that all joint moments are finite, as is also true for the posterior distribution. See also

Poirier (1994). Wong and Mason (1985) extended logistic regression modeling to a multilevel

form of model. Daniels and Gatsonis (1999) used such modeling to analyze geographic and

temporal trends with clustered longitudinal binary data. Biggeri, Dreassi, and Marchi (2004)

used it to investigate the joint contribution of individual and aggregate (population-based)

socioeconomic factors to mortality in Florence. They illustrated how an individual-level

analysis that ignored the multilevel structure could produce biased results.

Although these days logistic regression is more popular than probit regression, for Bayesian

inference the probit case has computational simplicities due to connections with an under-

lying normal regression model. Albert and Chib (1993) studied probit regression modeling,

with extensions to ordered multinomial responses. They assumed the presence of normal
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latent variables Zi (such that the corresponding binary yi = 1 if Zi > 0 and yi = 0 if

Zi ≤ 0) which, given the binary data, followed a truncated normal distribution. The normal

assumption for Z = (Z1, . . . , Zn) allowed Albert and Chib to use a hierarchical prior struc-

ture similar to that of Lindley and Smith (1972). If the parameter vector β of the linear

predictor has dimension k, one can model β as lying on a linear subspace Aβ0, where β0

has dimension p < k. This leads to the hierarchical prior

Z ∼ N(Xβ, I), β ∼ N(Aβ0, σ
2I), (β0, σ

2) ∼ π(β0, σ
2),

where β0 and σ2 were assumed independent and given noninformative priors.

Bedrick, Christensen, and Johnson (1996, 1997) took a somewhat different approach to

prior specification. They elicited beta priors on the success probabilities at several suitably

selected values of the covariates. These induce a prior on the model parameters by a one-to-

one transformation. They argued, following Tsutakawa and Lin (1986), that it is easier to

formulate priors for success probabilities than for regression coefficients. In particular, those

priors can be applied to different link functions, whereas prior specification for regression

coefficients would depend on the link function. Bedrick et al. (1997) gave an example of

modeling the probability of a trauma patient surviving as a function of four predictors and

an interaction, using priors specified at six combinations of values of the predictors and using

Bayes factors to compare possible link functions.

Item response models are binary regression models that describe the probability that

a subject makes a correct response to a question on an exam. The simplest models, such

as the Rasch model, model the logit or probit link of that probability in terms of additive

effects of the difficulty of the question and the ability of the subject. For Bayesian analyses

of such models, see Tsutakawa and Johnson (1990), Kim et al. (1994), Johnson and Albert

(1999, Ch. 6), Albert and Ghosh (2000), Ghosh et al. (2000b), and the references therein. For

instance, Ghosh et al. (2000b) considered necessary and conditions for posterior distributions

to be proper when priors are improper.

Another important application of logistic regression is in modeling trend, such as in

developmental toxicity experiments. Dominici and Parmigiani (2001) proposed a Bayesian

semiparametric analysis that combines parametric dose-response relationships with a flexible

nonparametric specification of the distribution of the response, obtained using a Dirichlet
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process mixture approach. The degree to which the distribution of the response adapts

nonparametrically to the observations is driven by the data, and the marginal posterior

distribution of the parameters of interest has closed form. Special cases include ordinary

logistic regression, the beta-binomial model, and finite mixture models. Dempster, Selwyn,

and Weeks (1983) and Ibrahim, Ryan, and Chen (1998) discussed the use of historical controls

to adjust for covariates in trend tests for binary data. Extreme versions include logistic

regression either completely pooling or completely ignoring historical controls.

Greenland (2001) argued that for Bayesian implementation of logistic and Poisson models

with large samples, both the prior and the likelihood can be approximated with multivariate

normals, but with sparse data, such approximations may be inadequate. For sparse data, he

recommended exact conjugate analysis. Giving conjugate priors for the coefficient vector in

logistic and Poisson models, he introduced a computationally feasible method of augment-

ing the data with binomial “pseudo-data” having an appropriate prior mean and variance.

Greenland also discussed the advantages conjugate priors have over noninformative priors

in epidemiological studies, showing that flat priors on regression coefficients often imply

ridiculous assumptions about the effects of the clinical variables.

Piegorsch and Casella (1996) discussed empirical Bayesian methods for logistic regression

and the wider class of GLMs, through a hierarchical approach. They also suggested an exten-

sion of the link function through the inclusion of a hyperparameter. All the hyperparameters

were estimated via marginal maximum likelihood.

Here is a summary of other literature involving Bayesian binary regression modeling.

Hsu and Leonard (1997) proposed a hierarchical approach that smoothes the data in the

direction of a particular logistic regression model but does not require estimates to perfectly

satisfy that model. Chen, Ibrahim, and Yiannoutsos (1999) considered prior elicitation and

variable selection in logistic regression. Chaloner and Larntz (1989) considered determination

of optimal design for experiments using logistic regression. Zocchi and Atkinson (1999)

considered design for multinomial logistic models. Dey, Ghosh, and Mallick (2000) edited

a collection of articles that provided Bayesian analyses for GLMs. In that volume Gelfand

and Ghosh (2000) surveyed the subject and Chib (2000) modeled correlated binary data.
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5.2 Multi-category responses

For frequentist inference with a multinomial response variable, popular models include

logit and probit models for cumulative probabilities when the response is ordinal (such as

logit[P (yi ≤ j)] = αj + x
′

iβ), and multinomial logit and probit models when the response

is nominal (such as log[P (yi = j)/P (yi = c)] = αj + x
′

iβj). The ordinal models can be

motivated by underlying logistic or normal latent variables. Johnson and Albert (1999) fo-

cused on ordinal models. Specification of priors is not simple, and they used an approach

that specifies beta prior distributions for the cumulative probabilities at several values of the

explanatory variables (e.g., see p. 133). They fitted the model using a hybrid Metropolis-

Hastings/Gibbs sampler that recognizes an ordering constraint on the {αj}. Among special

cases, they considered an ordinal extension of the item response model.

Chipman and Hamada (1996) used the cumulative probit model but with a normal prior

defined directly on β and a truncated ordered normal prior for the {αj}, implementing it

with the Gibbs sampler. For binary and ordinal regression, Lang (1999) used a parametric

link function based on smooth mixtures of two extreme value distributions and a logistic

distribution. His model used a flat, non-informative prior for the regression parameters, and

was designed for applications in which there is some prior information about the appropriate

link function.

Bayesian ordinal models have been used for various applications. For instance, Chipman

and Hamada (1996) analyzed two industrial data sets. Johnson (1996) proposed a Bayesian

model for agreement in which several judges provide ordinal ratings of items, a particular

application being test grading. Johnson assumed that for a given item, a normal latent

variable underlies the categorical rating. The model is used to regress the latent variables

for the items on covariates in order to compare the performance of raters. Broemeling

(2001) employed a multinomial-Dirichlet setup to model agreement among multiple raters.

For other Bayesian analyses with ordinal data, see Bradlow and Zaslavsky (1999), Ishwaran

and Gatsonis (2000), and Rossi, Gilula, and Allenby (2001).

For nominal responses, Daniels and Gatsonis (1997) used multinomial logit models to

analyze variations in the utilization of alternative cardiac procedures in a study of Medicare

patients who had suffered myocardial infarction. Their model generalized the Wong and Ma-
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son (1985) hierarchical approach. They used a multivariate t distribution for the regression

parameters, with vague proper priors for the scale matrix and degrees of freedom.

In the econometrics literature, many have preferred the multinomial probit model to the

multinomial logit model because it does not require an assumption of “independence from

irrelevant alternatives.” McCulloch, Polson, and Rossi (2000) discussed issues dealing with

the fact that parameters in the basic model are not identified. They used a multivariate

normal prior for the regression parameters and a Wishart distribution for the inverse co-

variance matrix for the underlying normal model, using Gibbs sampling to fit the model.

See references therein for related approaches with that model. Imai and van Dyk (2004)

considered a discrete-choice version of the model, fitted with MCMC.

5.3 Multivariate response extensions and other GLMs

For modeling multivariate correlated ordinal (or binary) responses, Chib and Greenberg

(1998) used a multivariate probit model. A multivariate normal latent random vector with

cutpoints along the real line defines the categories of the observed discrete variables. The

correlation among the categorical responses is induced through the covariance matrix for the

underlying latent variables. See also Chib (2000). Webb and Forster (2004) parameterized

the model in such a way that conditional posterior distributions are standard and easily

simulated. They focused on model determination through comparing posterior marginal

probabilities of the model given the data (integrating out the parameters). See also Chen

and Shao (1999), who also briefly reviewed other Bayesian approaches to handling such data.

Logistic regression does not extend as easily to multivariate modeling, because of a lack

of a simple logistic analog of the multivariate normal. However, O’Brien and Dunson (2004)

formulated a multivariate logistic distribution incorporating correlation parameters and hav-

ing marginal logistic distibutions. They used this in a Bayesian analysis of marginal logistic

regression models, showing that proper posterior distributions typically exist even when one

uses an improper uniform prior for the regression parameters.

Zeger and Karim (1991) fitted generalized linear mixed models using a Bayesian frame-

work with priors for fixed and random effects. The focus on distributions for random effects

in GLMMs in articles such as this one led to the treatment of parameters in GLMs as random
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variables with a fully Bayesian approach. For any GLM, for instance, for the first stage of

the prior specification one could take the model parameters to have a multivariate normal

distribution. Alternatively, one can use a prior that has conjugate form for the exponen-

tial family (Bedrick et al. 1996). In either case, the posterior distribution is not tractable,

because of the lack of closed form for the integral that determines the normalizing constant.

Recently Bayesian model averaging has received much attention. It accounts for uncer-

tainty about the model by taking an average of the posterior distribution of a quantity of

interest, weighted by the posterior probabilities of several potential models. Following the

previously discussed work of Madigan and Raftery (1994), the idea of model averaging was

developed further by Draper (1995) and Raftery, Madigan, and Hoeting (1997). In their

review article, Hoeting et al. (1999) discussed model averaging in the context of GLMs. See

also Giudici (1998) and Madigan and York (1995).

6 Bayesian Computation

Historically, a barrier for the Bayesian approach has been the difficulty of calculating the

posterior distribution when the prior is not conjugate. See, for instance, Leonard, Hsu, and

Tsui (1989), who considered Laplace approximations and related methods for approximat-

ing the marginal posterior density of summary measures of interest in contingency tables.

Fortunately, for GLMs with canonical link function and normal or conjugate priors, the

posterior joint and marginal distributions are log-concave (O’Hagan and Forster 2004, pp.

29-30). Hence numerical methods to find the mode usually converge quickly.

Computations of marginal posterior distributions and their moments are less problematic

with modern ways of approximating posterior distributions by simulating samples from them.

These include the importance sampling generalization of Monte Carlo simulation (Zellner

and Rossi 1984) and Markov chain Monte Carlo methods (MCMC) such as Gibbs sampling

(Gelfand and Smith 1990) and the Metropolis-Hastings algorithm (Tierney 1994). We touch

only briefly on computational issues here, as they are reviewed in other sources (e.g., Andrieu,

Doucet, and Robert (2004) and many recent books on Bayesian inference, such as O’Hagan

and Forster (2004), Sections 12.42-46). For some standard analyses, such as inference about
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parameters in 2×2 tables, simple and long-established numerical algorithms are adequate

and can be implemented with a wide variety of software. For instance, Agresti and Min

(2005) provided a link to functions using the software R for tail confidence intervals for

association measures in 2×2 tables with independent beta priors.

For binary regression models, noting that analysis of the posterior density of β (in

particular, the extraction of moments) was generally unwieldy, Zellner and Rossi (1984)

discussed other options: asymptotic expansions, numerical integration, and Monte Carlo

integration, for both diffuse and informative priors. Asymptotic expansions require a mod-

erately large sample size n, and traditional numerical integration may be difficult for very

high-dimensional integrals. When these options falter, Zellner and Rossi argued that Monte

Carlo methods are reasonable, and they proposed an importance sampling method. In con-

trast to naive (uniform) Monte Carlo integration, importance sampling is designed to be

more efficient, requiring fewer sample draws to achieve a good approximation. To approxi-

mate the posterior expectation of a function h(β), denoting the posterior kernel by f(β|y),

Zellner and Rossi noted that

E[h(β)|y] =
∫

h(β)f(β|y) dβ/
∫

f(β|y) dβ

=
∫

h(β)
f(β|y)

I(β)
I(β) dβ/

∫

f(β|y)

I(β)
I(β) dβ.

They approximated the numerator and denominator separately by simulating many values

{βi} from the importance function I(β), which they chose to be multivariate t, and letting

E[h(β)|y] ≈
∑

i

h(βi)wi/
∑

wi,

where wi = f(βi|y)/I(βi).

Gibbs sampling, a highly useful MCMC method to sample from multivariate distribu-

tions by successively sampling from simpler conditional distributions, became popular in

Bayesian inference following the influential article by Gelfand and Smith (1990). They gave

several examples of its suitability in Bayesian analysis, including a multinomial-Dirichlet

model. Epstein and Fienberg (1991) employed Gibbs sampling to compute estimates of

the entire posterior density of a set of cell probabilities (a finite mixture of Dirichlet densi-

ties), not simply the posterior mean. Forster and Skene (1994) applied Gibbs sampling with
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adaptive rejection sampling to the Knuiman and Speed (1988) formulation of multivariate

normal priors for loglinear model parameters. Other examples include George and Robert

(1992), Albert and Chib (1993), Forster (1994), Albert (1996), Chipman and Hamada (1996),

Vounatsou and Smith (1996), Johnson and Albert (1999), and McCulloch, Polson, and Rossi

(2000).

Often, the increased computational power of the modern era enables statisticians to make

fewer assumptions and approximations in their analyses. For example, for multinomial data

with a hierarchical Dirichlet prior, Leonard (1977b) made approximations when deriving

the posterior to account for hyperparameter uncertainty. By contrast, Nandram (1998)

used the Metropolis-Hastings algorithm to sample from the posterior distribution, rendering

Leonard’s approximations unnecessary.

7 Final Comments

We have seen that much of the early work on Bayesian methods for categorical data dealt

with improved ways of handling empty cells or sparse contingency tables. Of course, those

who fully adopt the Bayesian approach find the methods a helpful way to incorporate prior

beliefs. Bayesian methods have also become popular for model averaging and model selection

procedures. An area of particular interest now is the development of Bayesian diagnostics

(e.g., residuals and posterior predictive probabilities) that are a by-product of fitting a model.

Despite the advances summarized in this paper and the increasingly extensive literature,

Bayesian inference does not seem to be commonly used yet in practice for basic categorical

data analyses such as tests of independence and confidence intervals for association param-

eters. This may partly reflect the absence of Bayesian procedures in the primary software

packages. Although it is straightforward for specialists to conduct analyses with Bayesian

software such as BUGS, widespread use is unlikely to happen until the methods are simple

to use in the software most commonly used by applied statisticians and methodologists.

For multi-way contingency table analysis, another factor that may inhibit some analysts

is the plethora of parameters for multinomial models, which necessitates substantial prior

specification.
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For many who are tentative users of the Bayesian approach, specification of prior distri-

butions remains the stumbling block. It can be daunting to specify and understand prior

distributions on GLM parameters in models with non-linear link functions, particularly for

hierarchical models. In this regard, we find helpful the approach of eliciting prior distribu-

tions on the probability scale at selected values of covariates, as in Bedrick, Christensen and

Johnson (1996, 1997). It is simpler to comprehend such priors and their implications than

priors for parameters pertaining to a non-linear link function of the probabilities.

For the frequentist approach, the GLM provides a unifying approach for categorical data

analysis. This model is a convenient starting point, as it yields many standard analyses

as special cases and easily generalizes to more complex structures. Currently Bayesian

approaches for categorical data seem to suffer from not having a natural starting point. Even

if one starts with the GLM, there is a variety of possible approaches, depending on whether

one specifies priors for the probabilities or for parameters in the model, depending on the

distributions chosen for the priors, and depending on whether one specifies hyperparameters

or uses a hierarchical approach or an empirical Bayesian approach for them. It is unrealistic

to expect all problems to fit into one framework, but nonetheless it would be helpful to data

analysts if there were a standard default starting point for dealing with basic categorical data

analyses such as estimating a proportion, comparing two proportions, and logistic regression

modeling. However, it may be unrealistic to expect consensus about this, as even frequentists

take increasingly diverse approaches for analyzing such data.

Historically, probably many frequentist statisticians of relatively senior age first saw the

value of some Bayesian analyses upon learning of the advantages of shrinkage estimates, such

as in the work of C. Stein. These days it is possible to obtain the same advantages in a fre-

quentist context using random effects, such as in the generalized linear mixed model. In this

sense, the lines between Bayesian and frequentist analysis have blurred somewhat. Nonethe-

less, there are still some analysis aspects for which the Bayesian approach is a more natural

one, such as using model averaging to deal with the thorny issue of model uncertainty. In

the future, it seems likely to us that statisticians will increasingly be tied less dogmatically

to a single approach and will feel comfortable using both frequentist and Bayesian paradigms.
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