R (and S-PLUS) Manual to Accompany
Agresti’s Categorical Data Analysis (2002)
2" edition

Laura A. Thompson, 2009°

Table of Contents

Introduction and Changes from First Edition 1
A. Obtaining the R Software for WINAOWS.............eiiiiiiiiiiiiiiiii e 1
B. Libraries in S-PLUS and Packages iN R.......ccoooi i 1
C. Setting contrast types uUSINg OPtIONS() «.vvveurieeeeriiiiiiiiiiine et 3
D. Credit fOr FUNCHIONS ... s 3
[o 1] o i 18] Tox 1o ISP 3
F. A note about USING SPIUS MENUScooeuiiiiiii e 4
(CT N\ (o] 1 od= N0) =T (o] £ TP 4
H. Introductions t0 the S LanNQUAQJEccoevveuuieiiiieeeieeeeiiee e et e e e e 4
L. REIEIENCES ...ttt e e e e et e ettt e e e e e e e eeeaneanns 4
J. ACKNOWIEAGEMENTSuiiii et e e e e e et e e e e e e e e e e e aaaaa e e e e eeeaeeennnnns 5

Chapter 1: Distributions and Inference for Categorical

DAL .. 6
A. Summary of Chapter 1, AQreSti.....ccccciiiiiieiie e e e e e e e e e e eeaaanes 6
B. Categorical Distributions in S-PLUS and Rooiiiiiiiiii e 6
C. Proportion of Vegetarians (Statistical Inference for Binomial Parameters)............. 8
D. The Mid-P-ValUE ... e e e e eeeenae 11
E. Pearson’s Chi-Squared StatiStiC...........cvuuuuvuiiiiieeeiieeeiiiccs e e e e e e e eeeaenns 11
F. Likelihood Ratio Chi-Squared StatiStiCcooeeiiiiiiiiiiiiiie e 12
G. Maximum Likelihood EStimation.............ccoooviiiiiiii 12

Chapter 2: Describing Contingency Tables..................... 16
A. Summary of Chapter 2, AQIreSti......ooiu it e e eeeeees 16
B. Comparing tWO PrOPOITIONSvueeiiee e e eeeeeeeiiiee e e e e e e e e e et s s e e e e e e e eeaaann s e eaeaeeeenenns 18
C. Partial Association in Stratified 2 X 2 TabIeScouuuviiiiiiiiiii e 19
D. Conditional OddS RALIOSuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieeibe bbb 23
E. Summary Measures of Assocation: Ordinal Trendscccoeeeeieviiiiiieeiiiie e, 24

Chapter 3: Inference for Contingency Tables.................. 28
A. Summary of Chapter 3, AQIreSti......ciii i i e e e e e e e e eeanne 28
B. Confidence Intervals for Association Parameters............cccoevveeeiiiiiiiiiiiiineeeeeeeeeeenns 29
C. Testing Independence in Two-way Contingency Tables.........ccccccccceiiieiieeieveeennne 35
D. Following Up Chi-SQUAred TeSES.......cciiiiieiiiiiiiieee et eeeeeeeeees 37
E. Two-Way Tables with Ordered Classification..............cuuuuiiiiiiieeieeiiecciee e 39
F. Small Sample Tests of Independencecooviiiiiiiiiiiiiiii e 41
G. Small-Sample Confidence Intervals For 2x2 Tablescouvveiiieeiecieveeeiin 44

Chapter 4: Generalized Linear Models............cccccouunee. 50

A. Summary of Chapter 4, AQIreSti.... oot a e eeeeees 50
B. Generalized Linear Models for Binary Data................uuviiiieieeiieeeiiiiiiie e eeeeeeeinannns 51
C. Generalized Linear Models for Count Datauueiiiinieiiiiiiiiiiii e 56
D. Overdispersion in Poisson Generalized Linear Models...........cccoevviiiiiiieeeeeecennnn, 61
E. Negative BINOMIal GLIMSouuiiiiiieie et e e e e e eeeees 63
F. RESIAUAIS TOF GLIMSuiiiiiiiiiiiiiiiiiiiiiiii s 65
G. Quasi-Likellhood and GLIMS..........ii i 67
H. Generalized Additive MOdelS (GAMS)uuuueiiiiieeeeeeeeie e e e e e enenns 68
Chapter 5 : Logistic Regression...........ccoeeeevveeviieeiineeennnnn, 72
A. Summary of Chapter 5, AQIeSti.....ccouue i e eeeees 72
B. Logistic Regression for Horseshoe Crab Dataceieiiiieiivciiiiiiiiee e, 73
C. Goodness-of-fit for Logistic Regression for Ungrouped Data..............cccoeeeveeennees 77
D. Logit Models with Categorical PrediCtorsccovvvviiiiiiiiieee e e e 78
E. Multiple LOQIStIC REGIESSION.......uuuiiii ettt e e e e e eeeenes 82
F. Extended Example (Problem 5.17)ccooveeiiiiiii e e e 88

Chapter 6 — Building and Applying Logistic Regression

MOAEIS ... 92
A. Summary of Chapter 6, AQIreSti......ccouieiiieeiiiiiis et e e e e e e e e e eeanen 92
Y oTo [T IS =1 [=Tox (o] o PSPPI 93
C. Using Causal Hypotheses to Guide Model Fittingcccovvvvviiiiiiiiieeeeeeeeeiiiinnn, 94
D. Logistic Regression DIagNOSHICScooiveiiiiiiiiiiee et eeeeeeees 96
E. Inference about Conditional Associationsin 2 x 2 x K Tablesccccuvvvvvveeeee. 102
F. Estimation/Testing of Common Odds RatiO..........c.ooevuiiiiiiiiiiiiiiiiiiice e 105
G. Using Models to Improve Inferential POWETcoeiiiiiiiiiiiiceieee e, 106
H. Sample Size and Power ConSIiderationsooouviieiiiiiiinieeeeeeeeeiiiee e eeeeens 107
l. Probit and Complementary Log-Log MOdElSccooviviiiiiiiiiiiieeeeeeeee e 109
J. Conditional Logistic Regression and Exact Distributionsccccovviiieiiiiinnnnn.n. 111
K. Bias-reduced LOgIStIC REQIESSIONcccvvvieiiiiiiiiie e e eee et e e e e e e e e e eeeees 116

Chapter 7 —Logit Models for Multinomial Responses....117

A. Summary of Chapter 7, AQIeSti.... oo eeeeees 117
B. Nominal Responses: Baseline-Category Logit ModelS............ccccvvvvviiiiiiieeeeeeee, 118
C. Cumulative LOgit MOUEISuiei e 121
D. Cumulative LinK MOGEISuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 125
E. Adjacent-Categories Logit MOdElS...........oouuiiiiiiii e 127
F. Continuation-Ratio LOgit MOUEIS..........ccovviiiiiiiiie e 128
G. Mean ReSPONSE MOUEISoiiiiiiiiiiiiiiiee et 134
H. Generalized Cochran-Mantel Haenszel Statistic for Ordinal Categories............ 139

Chapter 8 —Loglinear Models for Contingency Tables ..141

A. Summary of Chapter 8, AQIeSt.......coui it eeeeees 141
B. Loglinear Models for Three-way TabIescccccoovviiiiiiiiiiieeee e, 142
C. Inference for Loglinear MOUEIS.........ooouiiiiiiiiii e 145
D. Loglinear Models for Higher DIMENSIONSccoovviiiiiiiiiiiie e eeeeeeanns 147
E. Loglinear-Logit Model CONNECLION..........coouiuiiiiiiee e 150
F. Contingency Table Standardization...............cccoivieeiiiiiiiiiiiiie e 151

Chapter 9 —Building and Extending Loglinear Models... 152

A. Summary of Chapter O, AQIeSt......couu i eeeees 152
B. Model Selection and COmMPAriSON............uuuuuiiiiieeeiiiieiiiiie e e e e et e e e eeeaann 153
C. Diagnostics for Checking Models.............oiiiiiiiiiiii e 155
D. Modeling Ordinal ASSOCALIONS.......ciieiiiieeeiiiiie e e e e e e e et e e e e e e e eeeaa e e eeeeeeanes 156
E. ASSOCAION MOAEIS ...t e eeaaee 158
F. Association Models, Correlation Models, and Correspondence Analysis............ 164
G. P0iSsSON Regression fOr RALES.ccuuuiiiiiiieeceeeeeii e 170
H. Modeling SUIVIVal TIMEScoueiiiiiie et e e e e e e eeeeeeeanes 172
I. Empty Cells and SParSENESS.......couuuuiiiiiiieiieieieie e 174
Chapter 10 — Models for Matched Pairs 176
A. Summary of Chapter 10, AQIreSti......ccccuviiieiiiieee e e e e e e eeeene 176
B. Comparing Dependent ProportionsSe.oiiieiiiiiieiiiiiiiee et eeeeens 177
C. Conditional Logistic Regression for Binary Matched Pairs.............cccoeeeeeevvvvnnnnes 178
D. Marginal Models for Square Contingency Tables...........cccoooiiiiiiiiiis 181
E. Symmetry, Quasi-symmetry, and Quasi-independenceccccccvvvvciieeeeennnnn. 186
F. Square Tables with Ordered Categori€scoooviiiiiiiiiiiiiie e 189
G. Measuring Agreement Between ODSEIVerscceeviiiiiiiiiieiiiiiic e, 192
H. Kappa Measure Of AQreEmMENTcoooiiiiiiiiiiieee e eeeeeeees 195
|. Bradley-Terry Model for Paired Preferencesccooevvvveeiiiiiiii e 196
J. Bradley-Terry Model with Order EffecCt...........oouuuiiiiiiiiiii e 199
K. Marginal and Quasi-symmetry Models for Matched Sets..........ccccevvvviiieeeeeenn. 200

Chapter 11 —Analyzing Repeated Categorical Response

DAt ..o 203
A. Summary of Chapter 11, AQIreSti.....cccceiiiiieiiiiee e e e e e e e eeeaee 203
B. Comparing Marginal Distributions: Multiple RESPONSESccooeviiiiiiiiiiiiiiieeeeee, 203
C. Marginal Modeling: Maximum Likelihood Approach.........cccccciiiiniiieciieeceiiin, 205
D. Marginal Modeling: Maximum Likelihood Approach. Modeling a Repeated
MUItINOMIAI RESPONSE ... e e e e e e et e e e e e e e eeeeanees 211

E. Marginal Modeling: GEE Approach. Modeling a Repeated Multinomial Response215
F. Marginal Modeling: GEE Approach. Modeling a Repeated Multinomial Ordinal
RESPONSE ...t et e e e e e 219

G. Markov Chains: Transitional Modelingccoovvuuiiiiiiii e, 221

Chapter 12 — Random Effects: Generalized Linear Mixed

Models for Categorical Responses...........cccoevvvevneeennnnn. 226
A. Summary of Chapter 12, AQIreSti......cccciviieeiiiie e e e e e e e e eeane 226
B. Logit GLIMM for Binary Matched Pairs. ... 227
C. Examples of Random Effects Models for Binary Data.............ccccvvvveiiieeeeeeeeeennnnns 230
D. Random Effects Models for Multinomial Datauiiiiiniiiiiiiiiiiiee s 243
E. Multivariate Random Effects Models for Binary Datacccceevvvvvviiiiineeeeeene, 245

Chapter 13 — Other Mixture Models for Categorical Data252

A. Summary of Chapter 13, AQIreSti......coouiiiiiiiiiieee et eeeeees 252
B. Latent ClasS MOUEIS........uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii bbb nanannnne 252
C. Nonparametric Random Effects ModelS...........ooouuiiiiiiiiiiii e, 260
D. Beta-Binomial MOEISuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiii e 268
E. Negative-Binomial REQIreSSIONcooii i 273
F. Poisson Regression with Random EffeCtS..........ccccvvvvviiiiiii e 275

Introduction and Changes from First Edition

This manual accompanies Agresti’'s Categorical Data Analysis (2002). It provides assistance in
doing the statistical methods illustrated there, using S-PLUS and the R language. Although | have used
the Windows versions of these two softwares, | suspect there are few changes in order to use the code in
other ports. | have included examples of almost all of the major (and some minor) analyses introduced by
Agresti. The manual chapters parallel those from Agresti so that, for example, in Chapter 2 | discuss
using the software to conduct analyses from Agresti’'s Chapter 2. In most cases | use the data provided
in the text. There are only one or two occasions where | use data from the problems sections in Agresti.
Discussion of results of analyses is brief since the discussion appears in the text. That said, one of the
improvements in the current manual over the previous version of the manual (Thompson, 1999) is that it
is more self-contained. In addition, | include a summary of the corresponding chapter from Agresti at the
beginning of each chapter in the manual. However, it will still be helpful to refer to the text to understand
completely the analyses in this manual.

In the manual, | frequently employ functions that come from user-contributed libraries (packages)
of S-PLUS (or R). In the text, | note when a particular library or package is used. These libraries are not
automatically included with the software, but can be easily downloaded from the internet, especially for
the newest version of R for Windows. | mention in the next section how to get these libraries and how to
install them for use. Many times, the library or package has its own help manual or help section. | will
demonstrate how to access these from inside the software.

| used S-PLUS 6.1 through 7.0 for Windows and R versions 1.8 through 2.8.1 for Windows for the
analyses. However, S-PLUS for Windows versions as far back as 3.0 will do many of the analyses (but
not all). This is not so easily said for R, as user-contributed packages frequently apply to the newer
versions of R (e.g., at least 1.3.0). Many of the analyses can be applied to either S-PLUS or R. Some
need small changes in order to apply to both softwares; these changes | have provided where necessary.
In general, when | refer to both of the softwares, | will use the “generic” name, S. Also, if | do not indicate
that | am using either S-PLUS or R for a particular command, that means it will work in both softwares.

To separate input to R or S-PLUS and output from other text in this manual, | have put normal
text in Arial font and commands and output in courier font. The input commands are in bold font,
whereas the output is not. Also, all assignments will use the “<-* convention instead of “=" (or, “).

Finally, this manual assumes some familiarity in using the basic commands of S. To keep the
manual from being too long | do not discuss at great length functions that | use which are not directly
related to categorical data analysis. See Section H below for information on obtaining introductory
documentation for R or S-PLUS.

A. Obtaining the R Software for Windows

The language (and associated software interface) R can loosely be described as “open-source”
S. It is downloadable from the site http://cran.r-project.org. Information on how to install R, as well as
several PDF documents and user-contributed documents on the language and its features are included
on the website.

B. Libraries in S-PLUS and Packages in R

The S-PLUS libraries used in this manual that do not come with the software are
MASS (B. Ripley) - (used throughout)
Multiv (F. Murtagh) - (used for correspondence analysis)
cond (A Brazzale) — (used for conditional logistic regression in chapter 6, NOTE:

no longer supported) http://www.ladseb.pd.cnr.it/~brazzale/lib.html#ins

Design (F. Harrell) - (used throughout)
Hmisc (F. Harrell) - (support for Design library)
nnet (B. Ripley) - for the function multinom (chapter 7, multinomial logit models)
nolr (M. Mathieson) - (nonlinear ordinal models - supplement to chapter 9)
rmtools (A. Azzalini & M. Chiogna) - (used for chapter 11)

yags2 (V. Carey) - (used for chapter 11)

Most of these libraries can be obtained in .zip form from URL http://lib.stat.cmu.edu/DOS/S/Swin or
http://lib.stat.cmu.edu/DOS/S. Currently, the URL http://www.stats.ox.ac.uk/pub/MASS4/Winlibs/ contains
many ports to S-PLUS 6.0 for Windows. To install a library, first download it to any folder on your
computer. Next, “unzip” the file using an “unzipping” program. This will extract all the files into a new
folder in the directory into which you downloaded the zip file. Move the entire folder to the library
directory under your S-PLUS directory (e.g., c:/program files/Insightful/splus61/library).

To load a library, you can either pull down the File menu in S-PLUS and select Load Library or type one
of the following in a script or command window

library (“libraryname”, first=T) # loads libraryname into first database position
library (libraryname)

To use the library’s help manual from inside S-PLUS or R type in a script or command window

help (library="1libraryname”)

Many of the R packages used in this manual that do not come with the software are listed below
(not a compete list)

MASS — (VR bundle, Venables and Ripley)

rmutil (J. Lindsey) — (used with gnlm) http://alpha.luc.ac.be/~lucp0753/rcode.html
gnim (J. Lindsey) — http://alpha.luc.ac.be/~lucp0753/rcode.html

repeated (J. Lindsey) — http://alpha.luc.ac.be/~lucp0753/rcode.html

SuppDists (B. Wheeler) — (used in chapter 1)

combinant (V. Carey) — (used in chapters 1, 3)

methods — (used in chapter 3)

Bhat (E. Luebeck)- (used throughout)

mgcv (S. Wood) — (used for fitting GAM models)

modreg (B. Ripley) — (used for fitting GAM models)

gee and geepack (J. Yan) — (used in chapter 11)

yags (V. Carey) — (used in chapter 11)

gllm — (used for generalized log linear models and latent class models)

GImmGibbs (Myles and Clayton) — (used for generalized linear mixed models, chap. 12)
glmmML (G. Brostrom) — (used for generalized linear mixed models, chapter 12)
CoCoAnN (S. Dray) — (used for correspondence analysis)

e1071 (A. Weingessel) — (used for latent class analysis)

ved (M. Friendly)— (used in chapters 2, 3, 5, 9 and 10)

brir (D. Firth) — (used in chapter 6)

BradleyTerry (D. Firth) — (used in chapter 10)

ordinal (P. Lindsey) — (used in chapter 7) http://popgen.unimaas.nl/~plindsey/rlibs.html
design (F. Harrell) — (used throughout) http://heswebl.med.virginia.edu/biostat
Hmisc (F. Harrell) — (used throughout)

VGAM (T. Yee) — (used in chapters 7 and 9)
http://www.stat.auckland.ac.nz/~yee/VGAM/download.shtml

mph (J. Lang) — (used in chapters 7, 10)
http://www.stat.uiowa.edu/~jblang/mph.fitting/mph.fit. documentation.htm#availability
exactLoglinTest (B. Caffo) — (used in chapters 9, 10)
http://www.biostat.jhsph.edu/~bcaffo/downloads.htm

aod — used in chapter 13

Ica — used in chapter 13

mmlcr — used in chapter 13

flexmix — used in chapter 13

npmireg — used in chapter 13

Rcapture — used in chapter 13

R packages can be installed from Windows using the install.packages function. This function can be
called from the console or from the pull-down “Packages” menu. A package is loaded in the same way
as for S-PLUS. As well, the command help (package=pkg) can used to invoke the help menu for
package pkg.

To detach a library or package, named library.name Or pkg, respectively, one can issue the following
commands, among others.

detach (“library.name”) -PLUS

detach (“package:pkg”)

H*+ FHF

C. Setting contrast types using Options ()

The options function can be used to set the type of contrasts used in estimating models. The default
for S-PLUS is Helmert contrasts for factors and polynomial contrasts for ordered factors. The default for
R is treatment contrasts for factors and polynomial contrasts for ordered factors. | use treatment
contrasts for factors for most of the analysis so that they match Agresti’'s estimates. However, there are
times when | use sum-to-zero contrasts (contr.sum). The type of contrasts | use is usually indicated by a
call to options prior to fitting the model, if necessary. If the call to options has been omitted, please
assume | am using treatment contrasts for factors.

One can find out exactly what the contrasts are in a glm-type fit by using the functions model .matrix
and contrasts. Issuing the comand contrasts (model .matrix (fit)) gives the contrasts.

D. Credit for functions

The author of a function is named if the function was not written by me. Whenever | use functions that do
not come with S, | will mention the S-PLUS library or R package that includes them. 1 also give a URL, if
applicable.

E. Editing functions

In several places in the text, | mention creating functions or editing existing functions that come with
either S-PLUS or R. There are many ways to edit or create a function. Some of them are specific to your
platform. However, one procedure that works on all platforms from the command line is a call to £ix. For
example, to edit the method function update.default, and call the new version update.crosstabs, type
the following at the command line (R or S-PLUS)

update.crosstabs<-fix (update.default)

This will bring up the function code for update.default in a text editor from which you can make
changes to the function, save them, and exit the editor. The changes will be incorporated in
update.crosstabs. Note that the function edit works in mostly the same way here, but is actually a
generic function that allows editing of not just function objects, but all other S objects as well.

To create a function from scratch, put the name of the new function as the argument to fix. For
example,

fix (my.new. function)

To create functions from a script file (e.g., S-PLUS) or another editing program, one general procedure is
to source the script file using e.qg.,

source (“c:/path/name.of .script.file”)

F. A note about using S-PLUS Menus

Many of the more common methods | will illustrate can be accomplished via the S-PLUS menus. If you
want to know what code corresponds to a particular menu command, issue the menu command and call
up the History window (using the Window menu). All commands you have issued from menus will be
there in (gui) code form which can then be used in a command window or script.

G. Notice of errors

All code has been tested, but there are undoubtedly still errors. Please notify me of any errors in the
manual or of easier ways to perform tasks. My email address is [thompson10@yahoo.com.

H. Introductions to the S Language
This manual assumes some working knowledge of the S language. There is not space to also describe

it. Fortunately, there are many tutorials available for learning S. Some of them are listed in your User’s
Guides that come with S-PLUS. Others are listed on the CRAN website for R (see Section A above).

|. References

Agresti, A. (2002). Categorical Data Analysis 2" edition. Wiley.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Cambridge University Press
Chambers, J. (1998). Programming with Data. Springer-Verlag.

Chambers, J. and Hastie, T. (1992). Statistical Models in S. Chapman & Hall.

Ewens, W. and Grant. G. (2001) Statistical Methods in Bioinformatics. Springer-Verlag.

Gentleman, R. and llhaka, R. (2000). “Lexical Scope and Statistical Computing.” Journal of
Computational and Graphical Statistics, 9, 491-508.

Green, P. and Silverman, B. (1994). Nonparametric Regression and Generalized Linear Models,
Chapman & Hall.

Fletcher, R. (1987). Practical Methods of Optimization. Wiley.
Harrell, F. (1998). Predicting Outcomes: Applied Survival Analysis and Logistic Regression. Unpublished

manuscript. Now available as Regression Modeling Strategies : With Applications to Linear
Models, Logistic Regression, and Survival Analysis. Springer (2001).

Liao, L. and Rosen, O. (2001). “Fast and Stable Algorithms for Computing and Sampling From the
Noncentral Hypergeometric Distribution." The American Statistician, 55, 366-369.

Lloyd, C. (1999). Statistical Analysis of Categorical Data, Wiley.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, 2" ed., Chapman & Hall.

Ripley B. (2002). On-line complements to Modern Applied Statistics with SPLUS
(http://www.stats.ox.ac.uk/pub/MASS4).

Ross, S. (1997). Introduction to Probability Models. Addison-Wesley.
Selvin, S. (1998). Modern Applied Biostatistical Methods Using SPLUS. Oxford University Press.
Sprent, P. (1997). Applied Nonparametric Statistical Methods. Chapman & Hall.

Thompson, L. (1999) S-PLUS Manual to Accompany Agresti's (1990) Catagorical Data Analysis.
(http://math.cl.uh.edu/~thompsonla/5537/Splusdiscrete.PDF).

Venables, W. and Ripley, B. (2000). S programming. Springer-Verlag.
Venables, W. and Ripley, B. (2002). Modern Applied Statistics with S. Springer-Verlag.

Wickens, T. (1989). Multiway Contingency Tables Analysis for the Social Sciences. LEA.

J. Acknowledgements

Thanks to Gregory Rodd and Frederico Zanqueta Poleto for reviewing the manuscript and finding many
errors that | overlooked. Remaining errors are the sole responsibility of the author.

Chapter 1: Distributions and Inference for
Categorical Data

A. Summary of Chapter 1, Agresti

In Chapter 1, Agresti introduces categorical data, including its types, distributions and statistical
inference. Categorical variables measured on a nominal scale take values that do not have a natural
ordering, whereas categorical variables measured on an ordinal scale take values that do have an
ordering, but not necessarily a numerical ordering. Categorical variables are sometimes called discrete
variables because they only take on a discrete or countable number of values.

Agresti discusses three main distributions for categorical variables: binomial, multinomial, and
Poisson. The binomial distribution describes the distribution of the sum of a fixed number of independent
Bernoulli trials (i.e., binary outcomes), where the probability of success is fixed across trials. The
multinomial distribution extends the binomial distribution to handle trials with possibly more than two
outcomes. The Poisson distribution describes the distribution of the number of events occurring in a
specified length of time or space, where the intervals of time or space are independent with respect to the
occurrence of an event. Formal assumptions related to the Poisson distribution (which derives from the
homogeneous Poisson process) can be found in any text on stochastic processes (see, for example,
Ross, 1997). A nice explanation, however, can also be found in Ewens and Grant (2001).

When observations modeled as coming from a binomial or Poisson distribution are much more
variable than that predicted by the respective theoretical distributions, the use of these distributions can
lead to poor predictions because the excess variability is not considered. The prescence of this excess
variability is called overdispersion. There are options for dealing with overdispersion when it is suspected
in a data set that otherwise could be reasonably modeled using a conventional distribution like the
binomial or Poisson. One option is to incorporate random effects into the model (see Agresti, Chapter
12). Another option is to use a distribution with a greater variance than that dictated by the binomial or
Poisson (e.g., the beta-binomial distribution is a mixture of binomials with different probabilities of
success).

Given a particular probability distribution to describe the data, the likelihood function is the
probability of the data as a function of the parameters. The maximum likelihood estimate (MLE) is the
value of the parameter that maximizes this function. Thus, the MLE is the value for the set of parameters
that give the observed data the highest probability of occurrence. Inference for categorical data deals
with the MLE and tests derived from maximum likelihood. Tests of the null hypothesis of zero-valued
parameters can be carried out via the Wald Test, Likelihood Ratio Test, and the Score Test. These tests
are based on different aspects of the likelihood function, but are asymptotically equivalent. However, in
smaller samples they yield different answers and are not equally reliable.

Agresti also discusses confidence intervals derived from “inverting” the above three tests. As

mentioned on p. 13 of Agresti, “a 95% confidence interval for /3 is the set of [, for which the test of Ho:

B= [, has a P-value exceeding 0.05.” That is, it describes the set of /3, values for which we would

“keep” the null hypothesis (assuming a significance level of 0.05).
The chapter concludes with illustration of statistical inference for binomial and multinomial
parameters.

B. Discrete Probability Distributions in S-PLUS and R

S-PLUS and R come with support for many built-in probability distributions, and support for many
specialized distributions can be downloaded from statlib or from the CRAN website (see Introduction
Section). Each distribution has functions for obtaining cumulative probabilities, density values, quantiles,
and realizations of random variates. For example, in both S-PLUS and R

dbinom(x, size, prob) computes the density of the indicated binomial distribution at x
pbinom(x, size, prob) computes the cumulative density of the indicated binomial distribution

at x
gbinom(p, size, prob) computes the pth quantile of the indicated binomial distribution
rbinom(n, size, prob) draws n random variates from the indicated binomial distribution

Some of the other discrete distributions included with S-PLUS and R are the Poisson, negative binomial,
geometric, hypergeometric, and discrete uniform. rnegbin is included with the MASS library and can
generate negative binomial variates from a distribution with nonintegral “size”. The beta-binomial is
included in R with packages rmutil and gnlm (for beta-binomial regression via gnlr) from Jim Lindsey,
as well as the R package SuppDists from Bob Wheeler. Both the rmutil package and SuppDists
package contain functions for many other distributions as well (e.g., negative hypergeometric,
generalized hypergeometric, beta-negative binomial, and beta-pascal or beta-geometric). The library
wle in R has a function for generating from a discrete uniform using runif. The library combinat in R
gives functions for the density of a multinomial random vector (dmnom) and for generating multinomial
random vectors (rmultinomial). The rmultinomial function is given below

rmultinomial<-function (n, p, rows = max(c(length(n), nrow(p))))

{

rmultinomial.l <- function(n, p) {
k <- length(p)
tabulate(sample(k, n, replace = TRUE, prob = p), nbins = k)

}

n <- rep(n, length = rows)

p <- plrep(l:nrow(p), length = rows), , drop = FALSE]

t (apply (matrix(l:rows, ncol = 1), 1, function(i) rmultinomial.l(n[il, p[i, 1)))
could be replaced by

sapply(l:rows, function(i) rmultinomial.l(n[i]l, pli, 1))

Because of the difference in scoping rules between the two implementations of S (i.e., R uses lexical
scooping and S-PLUS uses static scooping), the function rmultinomial in R cannot just be sourced
into S-PLUS. One alternative is to use the following S-PLUS implementation, which avoids defining the
rmultinomial. 1 function, the source of the scoping problem above.

rmultinomial<-function (n, p, rows = max(c(length(n), nrow(p))))

{
n <- rep(n, length = rows)
p <- plrep(l:nrow(p), length = rows), , drop = FALSE]
sapply (l:rows, function(i,n,p) {
k <- length(pli,])
tabulate(sample(k, n[i], replace = TRUE, prob = pl[i,]), nbins = k)
},n=n,p=p)
}

See Gentleman and Ilhaka (2000) or the R-FAQ for more information on the differences in scoping rules
between R and S-PLUS.

Jim Lindsey’s gnlm package contains a function called £it.dist, which fits a probability distribution of
choice to frequency data. One can also use the sample function to generate (with or without
replacement) from multiple categories given a set of probabilities for those categories.

More information on the use of these functions can be found in the S-PLUS or R online manuals or on
pages 107-108 of Venables and Ripley (2002).

C. Proportion of Vegetarians (Statistical Inference for Binomial Parameters)

An example of the use of the S-PLUS distribution functions comes from computing the asymptotic
and exact confidence intervals on the proportion of vegetarians (p. 16). In a questionnaire given to an
introductory statistics class (n = 25), zero students said they were vegetarians. Assuming that the
number responding yes is distributed binomially with success probability 7, what is a 95% confidence
interval for 7, given that a point estimate, 7, is 0? Agresti cites three approximate methods and two
exact methods. The approximate methods are given first.

1. Approximate Confidence Intervals on 7

1) Inverting the Wald Test (AKA Normal Approximation)

) #(1-7)
rTtz,, 0 (1.1)
which is computed quite easily in S-PLUS “by hand”.
phat <- 0
n <- 25
phat + c(-1, 1) * gnorm(p = 0.975) * sqgrt((phat * (1 - phat))/n)
[1] 0 O

However, its value is available via the binconf function in the Hmisc library in both S-PLUS and R, using
the option method="asymptotic” .

library (Hmisc, T)
binconf (x=0, n=25, method="asymptotic")

PointEst Lower Upper
0 0 0

2) The score confidence interval contains the 7, values for which |z |< Zy,, where

z,=(7 —71'0)/« | 7,(1—7,)/ n. The endpoints of the interval solve the equations
(7 -) [\ 7 @=7) In = £ 2, (1.2)

Agresti gives the analytical expressions for these endpoints on his p. 16, which we could type into S-
PLUS or R to get the values. However, even if there were no analytical expression, or we didn’'t want to
try to find them, we could use the function nlmin to solve the set of simultaneous equations in (1.2),
yielding an approximate confidence interval. (See point 3) and Chapter 3 for examples).

Built-in functions that compute the score confidence interval include the prop.test function (S-PLUS
and R)

res<-prop.test (x=0,n=25,conf.level=0.95,correct=F)
res$conf.int

[1] 0.0000000 0.1331923

attr(, "conf.level"):
[1] 0.95

and the binconf function from Hmisc via its method="wilson” option:

library (Hmisc, T)
binconf (x=0, n=25, alpha=.05, method="wilson")

PointEst Lower Upper
0 1.202937e-017 0.1331923

3) A 95% likelihood-ratio (LR) confidence interval is the set of 7, for which the likelihood ratio test has a

p-value exceeding the significance level, &. The expression for the LR statistic is simple enough so that
we can find the upper confidence bound analytically. However, we could have obtained it using uniroot
(both R and S-PLUS) or using nlmin (S-PLUS only). These functions can be used to solve an equation,
i.e., find its zeroes. uniroot is only for univariate functions. nlmin can also be used to solve a system
of equations. A function doing the same in R would be function nim or function nls (for nonlinear least
squares) in library nls.

Using uniroot we set up the LR statistic as a function, giving as first argument the parameter for which
we want the confidence interval. The remaining arguments are the observed successes, the total, and the
significance level. uniroot takes an argument called interval that specifies where we want to search
for the root. There cannot be a singularity at either of these values. Thus, we cannot use 0 and 1.

LR <- function(pi.O, y, n, alpha) {
-2* (y*log(pi.0) + (n-y)*log(l-pi.0)) - gchisqg(l-alpha,df=1)
}

uniroot (£=LR, interval=c(0.000001,.999999), n=25, y=0, alpha=.05)

Sroot :
[1] 0.07395187

sf.root:
[1] -5.615436e-006

The function n1min can be used to solve the nonlinear equation

—50log(1-7,) = ;(12 (0.05)
for 7,. We can take advantage of the function solveNonlinear listed in the help page for nlmin in S-

PLUS. This function minimizes the squared difference between the LR statistic and the chi-squared
guantile at «.

solveNonlinear <- function(£f, y0, x, ...){
solve f(x) = yO
x is vector of initial guesses, same length as y0
... are additional arguments to nlmin (not to f)
g <- function(x, y0, f) sum((f(x) - y0)"2)
g$y0 <- yo0 # set g's default value for yo0

g$f <- £ # set g's default value for £
nlmin(g, x, ...)
}
LR <- function(x) -50*log(l-x) # define the LR function
solveNonlinear (£=LR, y0= gchisq(.95, df=1), x=.5) # start finding the solution at
0.5
Sx:

[1] 0.07395197

Sconverged:

10

[1] T

Sconv.type:
[1] "x convergence"

2. Exact Confidence Intervals on 7«

There are several functions available for computing exact confidence intervals in R and S-PLUS. In R,
the function binom.test computes a Clopper-Pearson interval. But, the same function in S-PLUS
doesn’t give confidence intervals, at least not automatically.

binom.test (x=0, n=25, conf.level=.95) # R
Exact binomial test

data: 0 and 25
number of successes = 0, number of trials = 25, p-value = 5.96e-08
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.0000000 0.1371852
sample estimates:
probability of success
0

The function binconf in the Hmisc library also gives Clopper-Pearson intervals via the use of the
“exact” method.

library (Hmisc, T)

binconf(x = 0, n = 25, alpha = .05, method = "exact") # SPLUS
PointEst Lower Upper
0 0 0.1371852

In addition, several individuals have written their own functions for computing Clopper-Pearson as well as
other types of approximate intervals besides the normal approximation interval. A search of “exact
binomial confidence interval” on the “S-news” search page (http:/lib.stat.cmu.edu/cgi-bin/ifform?SNEWS)
gave several user-made functions.

The improved confidence interval described in Blaker (2000, cited in Agresti) can be computed in S-PLUS
using the following function, which is a slight modification of the function appearing in the Appendix of the
original reference.

acceptbin<-function(x, n, p){
computes the acceptability of p when x is observed and X is Bin(n, p)
adapted from Blaker (2000)
pl<-1l-pbinom(x-1, n, p)
p2<-pbinom(x, n, p)
al<-pl + pbinom(gbinom(pl, n, p) - 1, n, p)
a2<-p2 + 1 - pbinom(gbinom(l-p2, n, p), n, p)
min(al, a2)

acceptinterval<-function(x, n, level, tolerance:le-04){
computes acceptability interval for p at 1 - alpha equal to level
(in (0,1)) when x is an observed value of X which is Bin(n, p)
adapted from Blaker (2000)

lower<-0; upper<-1

if(x) {

11

lower<-gbeta((l-level) /2, x, n-x+1)
while (acceptbin(x, n, lower) < (l-level)) lower<-lower+tolerance

}
if(x!=n) {
upper<-gbeta(l-(1l-level) /2, x + 1, n - x)
while (acceptbin(x, n, upper) < (l-level)) upper<-upper-tolerance

c (lower=lower, upper=upper)

}

acceptinterval (x=0, n=25, level=.95)

lower upper
0 0.1275852

D. The Mid-P-Value

A confidence interval can be based on the mid-p-value discussed in Section 1.4.5 of Agresti. For the
Vegetarian example above, we can obtain a 100(1—)% Clopper-Pearson confidence interval on 7

using the mid-p-value by finding all values of 7, for which
TP(y=k]|m,)+P(y<k|7,) >al2
and
P(y=n-K|z,)+P(y>n-K|7z,) > al2

where P(y = K|,) is the binomial probability mass function, y = 0, and n = 25. For the example, this
set of inequalities reduces to the inequality

7, <l-a’" =1-.05"* =0.113

because the lower limit is 0 when y = 0 (p. 18, Agresti).

E. Pearson’s Chi-Squared Statistic

In both S-PLUS and R, one can find functions that will compute Pearson’s Chi-Squared statistic.
However, they appear in different places across the two implementations. In R, the ctest library
contains the function chisqg.test, which takes as arguments a set of frequencies, x, and its
corresponding null probabilities, p. On Mendel’s results (p. 22, Agresti) we get

library(ctest)
chisqg.test (x=c(6022,2001) ,p=c(.75,.25))

Chi-squared test for given probabilities

data: ¢ (6022, 2001)
X-squared = 0.015, df = 1, p-value = 0.9025

In S-PLUS, there does exist a built-in function called chisq. test, but its arguments are different, and
the above code will not work. However, it calls a function .pearson.X2 (as does the function
chisqg.gof) which allows one to input observed and expected frequencies.

res<-.pearson.x2 (observed=c(6022,2001) ,expected=c(8023*.75,8023%*.25))
l-pchisg(res$x2,d£f=1)

[1] 0.902528

12

The S-PLUS function chisg.test is used for situations where one has a 2x2 cross-tabulation
(preferably computed using the function table) or two factor vectors, and wants to test for independence
of the row and column variables.

F. Likelihood Ratio Chi-Squared Statistic

The likelihood ratio chi-squared statistic is easily computed “by hand” for multinomial frequencies. Using
vectorized calculations, G is for Mendel's data

obs <- c(6022, 2001)
expected <- 8023 * ¢ (0.75, 0.25)
1-pchisg(2 * sum(obs * log(obs/expected)), df=1)

[1] 0.9025024

These methods can also be used on the dairy calves example on p. 25.

G. Maximum Likelihood Estimation

S-PLUS and R come with several functions for general optimization. We already saw examples of the
use of uniroot for finding a zero of a univariate function and nlmin for minimizing a sum of squares.
Here we look at some simple examples of using general optimization functions for maximum likelihood
estimation with categorical data. Venables and Ripley (2002, Chapter 16) discuss these methods in more
detail and give a few guidelines about parameterizing the objective function.

Lloyd (1999) gives data on the number of serious (fatal/nonfatal) accidents in the state of Victoria in
Australia in 1985, separated by age group (over and under 21 years). Thus, we have a 2 x 2 contingency
table with variables age and seriousness of accident. Lloyd initially treats the four accident counts as

independent Poisson random variables with means 4, 4,, 4, and 4,, then considers several sub-
models. One of the sub-models uses the (fictitious) information that 23.3% of serious accidents are
expected to be fatal. This information gives the restriction ¢, /(¢ + @,) =0.233, where ¢, = 4 + A, the

mean number of fatalities and ¢, = 4, + 4,, the mean number of nonfatalities. The expected counts can

be given by € =4, &, =4,, 6 =¢ -4, and € =3.292¢ —4,. Thus, this submodel has three
parameters to estimate. The likelihood is (equation 1.10 in Lloyd)

(A, Ay, ¢) =—4.292¢, + ¥, log 4 + Y, 1094, + Y, log(@, — 4,) + ¥, 109(3.292¢, — 4,) (1.3)

The observed values of the counts are 'y, =11, y, =62, Yy, =4,and Yy, = 7. The function nlminb in

S-PLUS finds a local minimum of a twice-differentiable function possibly subject to boundary constraints
on the parameters. A gradient function and Hessian function can be supplied as arguments. The
algorithm used is a quasi-Newton method if a Hessian is not supplied and Newton’s method if it is. If no
gradient is supplied, a finite difference approximation is used. Lloyd gives the first derivatives on p. 11,
but first we will try the estimation without analytically supplied derivatives. Of course, we must remember
to use the negation of (1.3) as the objective function to minimize (a VERY common mistake by me).

Here | set the objective function (with first argument the vector of parameters) and then send it into
nlminb, along with starting values and upper and lower bounds on each parameter. The starting values

were chosen as /1'(0) =Yy, (i=1,2) and ¢1(°) =2(y, +Y,) to ensure that the logs are positive at the
initial values. To help prevent warnings about NAs generated in log(x), | have scaled the step-length of

13

the ¢ parameter using the scale argument so that when p[1] is subtracted from p[3], we should always

get a positive value. | have also started ¢ at a value much larger than /11

obj.function<-function(p, y){
-(-4.292*p[3] + yl[1ll*log(pl[1l]) + yl[2l1*log(pl2]) + y[3]1*log(p[3]1-p[1l]) +
y[4]*log(3.292*p[3]-p[2]))

nlminb (start=c (11, 62, 2*(11+4)), obj.function, lower=c(0,0,0), upper=c(Inf, Inf,
Inf), scale=c(1,1,10), y=c(1ll1l, 62, 4, 7))

Sparameters:
[1] 14.35228 57.89246 19.57129

Sobjective:
[1] -216.6862

Smessage:
[1] "RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 0.00001071819

Siterations:
[1] 22

...snip

We get convergence (relative function convergence) in 22 iterations. The parameter estimates are
almost identical to those given by Lloyd.

Now, if we wanted to supply first derivatives, we can get them using the deriv function, which returns
the function along with an attribute that is a functional representation of the gradient. Or, we could supply
the gradient as a separate function that returns three values when evaluated (for the three elements of
the gradient). In this case the objective function is simple enough for deriv to handle. We make some
modifications first, however.

obj.res<-deriv(~-(-4.292*pil + yl*log(lal) + y2*log(la2) + y3*log(pil-lal) +
y4*log(3.292*pil-la2)),
c(lllalll, "13.2", llpilll) ,
function(lal, la2, pil, yl, y2, y3, y4) NULL)

obj.gr<-function(p, y){
lal<-p[1l]; la2<-pl[2]; pil<-p[3]; yl<-yI[1l]; y2<-yI[2]; y3<-yI[3]; yé<-yl[4]
attr (obj.res(lal, la2, pil, yl, y2, y3, y4), "gradient")

}

nlminb (start=c (11, 62, 2*(11l+4)), objective=obj.function, gradient=obj.gr,
lower=c(0,0,0), upper=c(Inf, Inf, Inf), scale=c(1,1,10), y=c(ll, 62, 4, 7))

Sparameters:
[1] 14.35228 57.89246 19.57129

Sobjective:
[1] -216.6862

Smessage:
[1] "RELATIVE FUNCTION CONVERGENCE"

$grad.norm:

14

[1] 5.191676e-007

Siterations:
[1] 22

We get the same result. One could supply the Hessian using the function deriv3. The Mass library
supplies a function called vcov.nlminb to extract the inverse of observed information (or a finite
difference approximation if the Hessian is not supplied) from an nlminb object.

In R, we can use the function n1m, which is similar in that it minimizes an objective function of several
variables, allows boundary constraints, and uses a quasi-Newton optimizer. However, it does not allow
box constraints on the parameters.

obj.res<-deriv(~-(-4.292*pil + yl*log(lal) + y2*log(la2) + y3*log(pil-lal) +
y4*log(3.292*pil-la2)),
c(lllalll, "1a2", Ilpilll) ,
function(lal, la2, pil, yl, y2, y3, y4) NULL)

obj.function<-function(p, y){
value<--(-4.292*p[3] + y[ll*log(pll]) + yI[2]*log(pl[2]) + yI[3]1*log(p[3]1-p[1l]) +
y[4]l1*log(3.292*p[3]-p[2]))
lal<-pl[1]; la2<-pl2]; pil<-pl[3]; yl<-yI[1]l; y2<-yI[2]; y3<-yI[3]; y4<-yl4]
attr(value, "gradient")<-attr(obj.res(lal, la2, pil, yl, y2, y3, v4),
"gradient")
value

}
nlm(f=obj.function, p=c(1l1l, 62, 2*(11+4)), y=c(ll, 62, 4, 7), typsize=c(1,1,.10))

Sminimum
[1] -216.6862

Sestimate
[1] 14.35229 57.89247 19.57130

Sgradient
[1] 1.276756e-06 -1.085920e-07 -4.459707e-09

Scode
[1] 1

Siterations
[1] 18

Again, we use the argument typsize to control warnings about NAs in log(x).

The function optim includes several other algorithms besides Newton-type methods (including simulated
annealing) and allows box constraints.

obj.function<-function(p, y){
-(-4.292*p[3] + yI[ll*log(p[l]l) + yI[2]*log(pl[2]) + yI[3]1*log(p[3]-p[1l]) +
y[41*log(3.292%p[3]-p[2]))

obj.res<-deriv(~-(-4.292*pil + yl*log(lal) + y2*log(la2) + y3*log(pil-lal) +
y4*log(3.292*pil-la2)),
c(lllallll "1a2"1 llpilll) ,
function(lal, la2, pil, yl, y2, y3, y4) NULL)

obj.gr<-function(p, y){
lal<-pl[1l]; la2<-pl[2]; pil<-p[3]; yl<-yI[1l]l; y2<-yI[2]; y3<-yI[3]; yé<-yl4]

attr (obj.res(lal, la2, pil, yl, y2, y3, y4), "gradient")

}

optim(par=c(11, 62, 2*(11+4)), fn=obj.function, gr=obj.gr, lower=c(0,0,0),
method="L-BFGS-B", control=list(parscale=c(1,1,10)), y=c(1l1l, 62, 4, 7))

$par
[1] 14.35235 57.89246 19.57130

Svalue
[1] -216.6862

Scounts

function gradient
25 25

Sconvergence

[1] ©

Smessage

[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR*EPSMCH"

15

The Mass library for S-PLUS and R also includes a version of optim. And, it contains a function called

fitdistr for univariate maximum likelihood estimation.

16

Chapter 2: Describing Contingency Tables

A. Summary of Chapter 2, Agresti

Chapter two in Agresti introduces two-way | X J contingency tables. If both the row and column
of a table denote random variables, then the probabilities {7[”} define the joint distribution of the two

variables. The marginal distributions are denoted by {7;,} for the row variable and {7, ;} for the column

variable. For a fixed value i of the row variable, the column variable has the conditional distribution
{71'jJi ,...,ﬁjli} . The conditional distribution is especially important if the row variable is fixed by design

and not free to vary for each observation.

With diagnostic tests for a disease, the sensitivity of the test is the conditional probability that the
diagnostic test is positive given that subject has the disease. The specificity of the test is the conditional
probability that the test is negative given that the subject does not have the disease. In a 2x2 table with
rows indicating disease status (yes, no) and columns indicating test result (positive, negative), the

sensitivity is Ty and the specificity is Ty -

Row and column variables are independent if the conditional distribution of the column variable
given the row variable is the same as the marginal distribution of the column variable (and vice versa).

That is, Ty =7, fori=1,...,1,and Ty, =T, j =1,..., J. Equivalently, if all joint probabilities equal the
product of their marginal probabilities: 7z, =7, 7, , for all i and j. Thus, when the two variables are
independent, knowledge of the value of the row variable does not change the distribution of the column
variable, and vice versa.

When the row variable is an explanatory variable and the column is a response variable, then
there is no joint distribution, and independence is referred to as homogeneity of the conditional
distributions of the column variable given a value for the row variable.

The distributions of the cell counts {Y;} differ depending on how sampling was done. If

observations are to be collected over a certain period of time and cross-classified into one of the | X J
categories, then a Poisson sampling model might be used where cell counts are treated as independent

Poisson random variables with parameters { ,uij} . If the total sample size of observations is fixed in

advance (e.g., in a cross-sectional study), then a multinomial sampling model might be used where cell
counts are treated as multinomial random variables with index n and probabilities {72'”} . If the row totals

are fixed in advance, perhaps as fixed-size random samples drawn from specific populations that are to
be compared, as in prospective studies, then a product multinomial sampling model may apply where for

each i, the counts {Y,;} have a multinomial distribution with index N and probabilities 77 j=1,...,J. If

both row and column totals are fixed by design, then a hypergeometric sampling distribution applies for
the cell counts.

However, there are times when certain sampling models are assumed, but sampling was actually
done differently. For example, when the row variable is an explanatory variable, product multinomial
sampling model may be used even though the row totals were not actually fixed in advance. Also, the
Poisson model is used even when the total sample size is fixed in advance (see Chapter 8 of Agresti).

Section 2.2 discusses comparing two proportions from two samples, including the difference of
proportions, relative risk, and odds ratio. The relative risk compares the proportions of the two groups in
a ratio. If the rows of a 2x2 table represent groups and the columns represent a binary response, then

the relative risk of a positive response is the ratio ”141/7[142' A relative risk of 1.0 corresponds to

independence. A relative risk of C means that 7z, =Cmy,. The odds ratio is the ratio of odds of a
positive response by group

17

— ”ﬂl/(l_”ﬂl) _ 7Tty

7[112/(1_”142) 715705
When @ =1, the row and column variables are independent. Values of & farther from 1.0 in a given
direction represent stronger association. For example, as on p. 45 of Agresti, when @ = 0.25, the odds
of “success” in group 1 (row 1) are 0.25 times the odds in group 2 (row 2), or equivalently, the odds of
success in group 2 are 4 times the odds in group 1. The odds ratio can be used with a joint distribution of
the row and column variables too. Indeed, it can be used with prospective (rows totals fixed),

retrospective (column totals fixed), and cross-sectional designs. Finally, if the rows and columns are
interchanged, the value of the odds ratio does not change. The sample odds ratio uses the observed

sample counts, I, .

6 (2.1)

Odds ratios can be computed for retrospective sampling designs (case-control studies). Relative
risk cannot be computed because the outcome variable is fixed by design. However, if the probability of
the outcome is close to zero for both groups, then the odds ratio can be used to approximate relative risk
using the formula on p. 47 of Agresti.

In observational studies, confounding variables can be controlled with stratification or
conditioning. The association between two variables X and Y given that another measured variable Z
takes the value z is called a conditional association. The 2 x 2 table resulting from cross-classifying all
observations with Z = z by their X and Y values is called a partial table. If Z is ignored, the X-Y table is
called a marginal table. Simpson’s Paradox is the result that a marginal association can have a different
direction than a conditional association. For example, in the death penalty example on p. 49-51, ignoring
victim’s race, the death penalty (Y) is more likely for whites than for blacks (X). However, conditioning on
victim’s race (either black or white), the death penalty is more likely for blacks than for whites. The
paradox in this case can be explained by the strong association between victim’'s race (ignored in the
marginal association) and defendant’'s race and that between victim’'s race and the death penalty. The
death penalty was more likely when the victims were white (regardless of defendant race). Also, whites
were more likely to kill whites than any other victim/defendant race combination in the sample. So, there
are a lot of whites receiving the death penalty in the sample. On the other hand, blacks were more likely
to kill blacks. Thus, there are fewer blacks receiving the death penalty in the sample. But, if we look at
only white victims, there are relatively more blacks receiving the death penalty than whites. The same is
true for black victims. An unmodeled association between victim's and defendant’'s race hides this
conclusion.

Does Simpson’s Paradox imply that we should distrust all contingency table analyses? After all,
there are undoubtedly unmeasured variables that could be potential conditioning variables in all
contingency tables. Could these variables change the direction of marginal associations? Page 51 in
Agresti paraphrases J. Cornfield’s result “that with a very strong XY association [marginal association], a
very strong association must exist between the confounding variable Z and both X and Y in order for the
effect to disappear or change ...".

For | x J x K tables (where X has | levels, Y has J levels, and Z has K levels), if X and Y are
independent in partial table k, then X and Y are conditionally independent given that Z takes on value k. If
X and Y are independent at all levels of Z, then X and Y are conditionally independent given Z. Or, X and
Y only depend on each other through Z. Once variability in Z is removed, by fixing it, X and Y are no
longer related statistically. Conditional independence does not imply marginal independence. For 2 x 2 x
K tables, X and Y are conditionally independent given Z if the odds ratio between X and Y equals 1 at
each category of Z. For the general case of | x J x K tables, independence is equivalent to all
(I =1)(J —1) local odds ratios equaling 1.0.

An analogy to no three-way interaction in ANOVA is homogeneous association. A 2 x 2 x K table
has homogeneous XY association if the conditional odds ratios comparing two categories of X to two
categories of Y are the same at each level of Z. When interaction exists, the conditional odds ratio for
any pair of variables (say X and Y) changes across categories of the third (say Z), wherein the third
variable is called an effect modifier because the effect of X on Y (the response) changes depending on
the level of Z. For the general case of | x J x K tables, homogeneous XY association means that any
conditional odds ratio formed using two categories of X and two categories of Y is the same at each
category of Z.

18

The chapter concludes with discussion of summary measures of association for nominal and
ordinal data. The measures described include Kendall and Stuart’s measure of proportional reduction in
variance from the marginal distribution of the response to the conditional distributions given the value of
an explanatory vector, Theil's uncertainty coefficient, the proportional reduction in entropy (or uncertainty)
in response given explanatory variables, and measures for ordinal association such as concordance and
Gamma.

B. Comparing two proportions

The Aspirin and Heart Attacks example is used to illustrate several ways to compare proportions between
two groups. The two groups are aspirin-takers and placebo-takers. Fatal and non-fatal heart attacks are
not distinguished. The data are in Table 2.1 on p. 37 of Agresti. Setting up the data is easy:

x<-c(104,189) # aspirin, placebo
n<-c(11037,11034)

Then, to test Ho:pi=p, (equal probabilities of heart attack per group), one can use the prop.test
function. The output given here is from S-PLUS.

prop.test(x, n)
2-sample test for equality of proportions with continuity correction
data: x out of n
X-square = 24.4291, df = 1, p-value = 0
alternative hypothesis: two.sided

95 percent confidence interval:
-0.010814914 -0.004597134

sample estimates:
prop'n in Group 1 prop'n in Group 2
0.00942285 0.01712887

The output from R is almost identical except that the p-value is stated as: p-value = < 2.2e-16. X-
square is the value of the chi-squared statistic. One can choose not to use the continuity correction with
correct=F.

We can obtain the p-value by extracting it from prop.test. Both S-PLUS and R give essentially O as
the value here.

prop.test(x,n) $p.value
[1] 7.709708e-007

A one-sided test of the hypotheses, Hq:pi1=p, V. Hi:pi<p,, can be obtained using the alternative
option:

prop.test(x,n,alt="1less")$p.value
[1] 3.854854e-007

The proportions themselves can be extracted from the estimate component, which is a numeric vector
of length two here. So, the sample difference of proportions is computed as:

temp<-prop.test(x,n)
names (temp$estimate) <-NULL # optional

19

tempS$estimate[l] -temp$estimate[2]
[1] -0.007706024

Other useful quantities are easily computed. Here, | calculate the relative risk and odds ratio using the
object temp above, as well as the original data vectors:

Relative risk:

tempSestimate[2] /temp$estimate[1]
[1] 1.817802

Odds ratio (simple enough not to need temp):

x[2]*(n[1]-x[1])/(x[1]1*(n[2]-x[2]))
[1] 1.832054

C. Partial Association in Stratified 2 x 2 Tables

The Death Penalty example is given on p. 48 of Agresti to illustrate partial tables and conditional odds
ratios. The effect of the defendant’s race (X) on the death penalty verdict (Y) is studied, treating the
victim’s race (Z) as a control variate. The 2 x 2 x 2 table can be created using the function crosstabs in
S-PLUS (xtabs in R). The function print.crosstabs can also be called directly with output from
crosstabs to control what is actually printed after the call.

vic.race<-c ("white", "black")

def.race<-vic.race

death.penalty<-c("yes", "no")

datalabel<-list (defendant=def.race,death=death.penalty,victim=vic.race)

table.2.6<-fac.design(c(2,2,2), factor.names=datalabel) # sets up the combinations of
the levels as a factorial design, using labels datalabel

data<-c (53, 11, 414, 37, 0, 4, 16, 139)

table.2.6<-cbind(table.2.6,count=data)

crosstabs (count~defendant+death+victim ,data=table.2.6)

crosstabs (formula = count ~ defendant + death + victim, data = table.2.6)
674 cases in table

| |
|N/RowTotal |
|N/ColTotal |
|N/Total |

victim=white
defendant |death

|yes |no | RowTot1 |
——————— et TN T
white 53 414 467

0.11 0.89 0.91

0.83 0.92

0.079 0.61
——————— e e |
black 11 37 48

0.23 0.77 0.093

0.17 0.082

0.016 0.055
——————— e |
ColTotl |64 451 515

0.12 0.88

20

victim=black
defendant |death

|yes |no | RowTot1 |
——————— e
white 0 16 16

0 1 0.1

0 0.1

0 0.024
——————— e R i
black 4 139 143

0.028 0.97 0.9

1 0.9

0.0059 |0.21
——————— R e e Y
ColTotl |4 155 159

0.025 0.97
——————— e i

Test for independence of all factors
Chi®2 = 419.5589 d.f.= 4 (p=0)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value

The differences in R are enough so that the above is worth repeating in R. Below is the same result
(including set up) from R’s xtabs. Note that the fac.design has been replaced by expand.grid.
The output is also much more terse by default.

vic.race<-c("white", "black")

def.race<-vic.race

death.penalty<-c("yes", "no")

datalabel<-list (defendant=def.race,death=death.penalty,victim=vic.race)
table.2.6<- expand.grid(defendant=def.race,death=death.penalty,victim=vic.race)
data<-c (53, 11, 414, 37, 0, 4, 16, 139)

table.2.6<-cbind(table.2.6,count=data)

xtabs (count~defendant+death+victim ,data=table.2.6)

, , victim = white

death
defendant yes no
white 53 414
black 11 37

, , victim = black

death
defendant yes no
white 0 16
black 4 139

The function crosstabs returns many results. One can extract the cell proportions via the marginals
attribute.

temp<-crosstabs (count~defendant+death+victim ,data=table.2.6)
attr (temp, "marginals") $"N/RowTotal" # return the cell proportions (Figure 2.1)

, , white

yes no
white 0.1134904 0.8865096
black 0.2291667 0.7708333

, , black

yes no
white 0.00000000 1.000000
black 0.02797203 0.972028

21

Getting the marginals can be done by re-calling the function without victim, or one can use the update
function to update the call by subtracting victim from the formula. update is a generic function for
which methods are written for different classes of objects. There is no method for class crosstabs, so a
call to update via the set of commands:

temp<-crosstabs (count~defendant+death+victim, data=table.2.6)
update (object=temp, formula=~ . -victim)

will cause S-PLUS to use the default method, update.default, to re-evaluate the call. However, this
method is not suitable for objects of class crosstabs. Thus, we can create our own method, which
turns out to change just one line of update.default (else | probably wouldn’'t have it in herel!).
Creating a method is equivalent operationally to creating a function. Thus, the same tools that work to
create functions work to create methods (which are just functions, themselves). See the Introduction to
this manual for how to edit functions in S-PLUS 6.1 and R.

First, | define a method function called update.crosstabs, which is the same code as
update.default, but changes the line in update.default

if (!missing(formula)) newcall$formula<-as.vector (update.formula(object, formula, evaluate = T))
to

if (Imissing(formula))newcall$formula<-as.vector (my.update.formula(object, formula, evaluate = T))

where the function my . update . formula changes the function update . formula by substituting the
line

form <- as.formula(object)

with

form <- as.formula(attr(object, "call"))

Then, | set the update method for crosstabs to be update.crosstabs

setMethod ("update", "crosstabs",update.crosstabs)

The call
update (object=temp, formula=~ . -victim)
gives
Call:
crosstabs (formula = count ~ defendant + death, data = table.2.6)
674 cases in table
e it +
|N |
|N/RowTotal |
|N/ColTotal |
|N/Total |
+---------- +
defendant |death
|yes |no | RowTot1 |
——————— R e i
white | 53 |430 |483

|
|o.11 |0.89 |0.72 |
[0.78 [0.71 | |

22

——————— +———————+———————l———————+
black | 15 |176 |191 |
|o.079 |0.92 |0.28 |
|0.22 [0.29 | |
[0.022 |0.26 | |
——————— R e e e
ColTotl|68 |606 | 674 |
[0.1 [0.9 | |
——————— B e e i

Test for independence of all factors
Chi®2 = 1.468519 d.f.= 1 (p=0.2255796)
Yates' correction not used

which is the bottom portion of Table 2.6 in Agresti.

In R, we also create an update method for xtabs, which is a function that we will call update.xtabs.
This will be the same as update.default, with the following substitutions:

Change the line

call <- object$call

to

call<-attr (object, "call")

And, change the line

call$formula <- update.formula(formula(object), formula.)
to

call$formula <- update.formula(call$formula, formula.)

The method has been constructed, as verified by a call t0 methods(“update”) or to
methods (class = xtabs). Note that this procedure uses the S3 scheme (see the help file), as
opposes to the S4 scheme used for the S-PLUS example.

Then, the update call gives the marginal table
update (temp, formula= ~.-victim)

death
defendant yes no
white 53 430
black 15 176

Paik Diagram

Tobias Verbeke has written a function that draws the Paik Diagram (Paik, 1985, citation in Agresti), which
is a graphical representation of Simpson’s Paradox. The diagram is similar to Figure 2.2 in Agresti (p. 50)
for the death penalty example. However, in the example sent to me, Verbeke plots Death Penalty by

proportion white defendant. From this plot, you can see the paradox in a different way.

The function code is given in the file that holds the R code for this manual.

paik (xtabs (count~defendant+death+victim ,data=table.2.6))

23

1.0

0.8

0.6

prop. defendant = white
0.4

0.2

yes no
death

In the body of the plot are the segments for white and black victims. The sizes of the circles connected
by segments represent the relative count at that particular cell of the table. The dotted segment
represents the marginal table (not conditioning on race of victim). It shows that the proportion of white
defendants is higher for the death penalty group than for those who did not get the death penalty.

From conditional associations, however, we see that a white victim is much more likely to have a white
defendant than a black defendant (due to the height of the “white” segment), and a black victim is much
more likely to have a black defendant. Those who receive the death penalty are more frequently those
who had white victims than those who had black victims (see the circles for the “yes” column).

D. Conditional Odds Ratios

As the objects returned by xtabs in R and crosstabs in S-PLUS are already arrays, we can just use
apply on the 2D slices representing the conditional tables.

apply (temp, 3, function(x) =x[1,1]1*x[2,2]/(x[2,1]1*x[1,2]))

white black
0.4306105 0.0000000

24

The R package vcd has a function oddsratio, which computes conditional odds ratios for 2x2x... tables,
along with asymptotic confidence intervals. If we use it on the death penalty table to get odds ratios
within victim’s race, we get

summary (oddsratio(temp, log=F, stratum=3))

Odds Ratio lwr upr
white 0.4208843 0.20498745 0.8641678
black 0.9393939 0.04838904 18.2367947

Note that the odds ratio for black victims is noticeably larger than that computed using apply. The
function oddsratio adds 0.5 to each count prior to computing the odds ratios. The estimate near 1.0
implies that for black victims, the odds of getting the death penalty are equal for white and black
defendants.

A plot method is also available for oddsratio (plot.oddsratio), which may be quite useful with a large
table.

E. Summary Measures of Assocation: Ordinal Trends

An example to illustrate ordinal measures of association comes from the income and job satisfaction data
in Table 2.8 (p. 57, Agresti). The respondents are black males in the U.S. Four ordinal classifications
constitute the response categories for both variables (see the table). We might postulate that as income
increases, reported job satisfaction increases as well, and vice versa. Measures analogous to correlation
measure the degree of monotonic relationship between the two variables. Agresti uses a concordance
measure to quantify the association.

A pair of individuals in the sample is concordant if the individual who is ranked higher (among the two
individuals) on one variable, say X, also ranks higher on the second variable, say Y. The pair is
discordant if the individual ranking higher on X ranks lower on Y. The pair is tied if the individuals have
the same classification on X and/or Y. If the number of concordant pairs, say C, exceeds the number of
discordant pairs, say D, then a positive monotonic relationship is supported. A statistic that is based on
this difference is Goodman and Kruskal's Gamma. It is the estimated difference between the probability

of concordance and the probability of discordance, given that a pair is untied. Gamma, 7, is estimated
as
. (C-D)
’=(C+D) @2

Gamma measures monotonic association between two variables, with range —1< 7 <1. Positive and
negative associations have the corresponding sign changes in 77 Perfect monotonicity in the sample
(|}7| =1) occurs when there are either no discordant pairs (D = 0: 77=1) or there are no concordant
pairs (C = 0: 7 =-1).

One can create a cross-classified table in S-PLUS out of Table 2.8 using the following commands (use
xtabs in R instead of crosstabs):

income<-c("<15000","15000-25000","25000-40000",">40000")
jobsat<_c (IIVDII , IILDII , IIMSII , IIVS II)
table.2.8<-expand.grid(income=income, jobsat=jobsat)
data<-¢(1,2,1,0,3,3,6,1,10,10,14,9,6,7,12,11)
table.2.8<-cbind(table.2.8,count=data)

(temp<-crosstabs (count~income+jobsat, table.2.8))

Call:
crosstabs (formula = count ~ income + jobsat, data = table.2.8)
96 cases in table

+-------- - +
| |
|N/RowTotal |
|N/ColTotal |
|N/Total |
+--------=- +
income |jobsat
VD |LD | MS |vs | RowTot1 |
——————— e d e e i il
<15000 | 1 3 10 6 20
0.05 0.15 0.5 0.3 0.21
0.25 0.23 0.23 0.17
0.01 0.031 |0.1 0.062
——————— B e e e i
15000-2| 2 3 10 7 22
0.091 |0.14 0.45 0.32 0.23
0.5 0.23 0.23 0.19
0.021 |0.031 |0.1 0.073
——————— R e A i il
25000-4| 1 6 14 12 33
0.03 0.18 0.42 0.36 0.34
0.25 0.46 0.33 0.33
0.01 0.062 |0.15 0.12
——————— R e e il S
>40000 | © 1 9 11 21
0 0.048 |0.43 0.52 0.22
0 0.077 |0.21 0.31
0 0.01 0.094 |0.11
——————— e d e e i il
ColTotl|4 13 43 36 96
0.042 |0.14 0.45 0.38
——————— R e e il Sl

Test for independence of all factors
Chi*2 = 5.965515 d.f.= 9 (p=0.7433647)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value

Here is a function for computing Goodman and Kruskal's gamma. There is a different version of this
function in Chapter 3 of this manual (called camma2 . £). This version uses the computations from problem

3.27 in Agresti, and also computes the standard error of Gamma. It is faster than camma . .

Gamma. f<-function (x)
¢ # x is a matrix of counts. You can use output of crosstabs or xtabs.
n<-nrow (x)
m<-ncol (x)
res<-numeric ((n-1)* (m-1))
for(i in 1:(n-1)) {
for(j in 1: (m-1)) res[j+(m-1)*(i-1)]<-x[i,jl*sum(x[(i+1) :n, (j+1) :m])
}

C<-sum(res)
res<-numeric ((n-1)* (m-1))
iter<-0
for(i in 1:(n-1))
for(j in 2:m) {
iter<-iter+l; resl[iter]l<-x[i,jl*sum(x[(i+1):n,1:(j-1)1)
}

D<-sum(res)
gamma<- (C-D) / (C+D)
list (gamma=gamma, C=C, D=D)

}

26

We can use this on table 2.8 by just inputting the result of the crosstabs call above:

Gamma. f (temp)

Sgamma :
[1] 0.2211009

SC:
[1] 1331
$D:
[1] 849

Selvin (1998) computes the number of concordant and discordant pairs using the outer function along
with ifelse statements (Selvin, p. 339). However, the procedure is memory intensive. The function
above takes between 0.33 and 0.60 CPU seconds on a Pentium 4, 1.4 GHz, with 512 MB RAM.

Other measures of association can be computed immediately from the chi-square value output from
chisqg.test (e.g., phi, Cramer’s V, Cramer’'s C). See Selvin p. 336ff for more details. The R package
ved has a function assoc. stats that computes these association measures along with the Pearson and
LR chi-square tests. For example, on the job satisfaction data (where we used xtabs instead of
crosstabs),

summary (assoc.stats (temp))

jobsat
income VD LD MS VS
<15000 1 3 10 6

15000-25000 2 3 10 7
25000-40000 1 6 14 12
>40000 0 1 9 11

X*2 df P(> X*2)
Likelihood Ratio 6.7641 9 0.66167

Pearson 5.9655 9 0.74336
Phi-Coefficient : 0.249
Contingency Coeff.: 0.242
Cramer's V : 0.144

A nice method for an object of class crosstabs is the “[“ method. This allows us to select smaller tables
in the following way. Suppose | want to print Table 2.8 with the last category of the income variable
eliminated. This is

temp[1:3,1:4]

Call:
crosstabs (formula = count ~ income + jobsat, data = table.2.8)
75 cases in table

| |
|N/RowTotal |
|N/ColTotal |
|N/Total |

| VD |LD | MS |vs | RowTot1 |

0.25 0.23 0.23 0.17

0.01 0.031 0.1 0.062
——————— e e e e e
15000-2| 2 3 10 7 22

0.091 0.14 0.45 0.32 0.29

0.5 0.23 0.23 0.19

0.021 0.031 0.1 0.073
——————— i e e e
25000-4| 1 6 14 12 33

0.03 0.18 0.42 0.36 0.44

0.25 0.46 0.33 0.33

0.01 0.062 0.15 0.12
——————— e e et e
ColTotl |4 12 34 25 75

0.053 0.16 0.45 0.33
——————— e e e e

Test for independence of all factors
Chi®2 = 1.432754 d.f.= 6 (p=0.9638357)
Yates' correction not used
Some expected values are less than 5, don't trust stated p-value

27

28

Chapter 3: Inference for Contingency Tables

A. Summary of Chapter 3, Agresti

This chapter discusses interval estimation and testing for two-way contingency tables, both
unordered and ordered. Confidence intervals for association parameters like the odds ratio, difference in
proportions, and relative risk for 2x2 tables can be computed using large-sample normality (Wolf's
procedure). Score and profile likelihood confidence intervals are better alternatives, especially for smaller
sample sizes.

For an | x J contingency table, the hypothesis that the row and column variables are independent
may be tested using a chi-square test (either likelihood ratio statistic or Pearson’s chi-squared statistic).
Although the two statistics are asymptotically equivalent and asymptotically chi-squared, Pearson’s chi-
squared statistic tends to be better for smaller counts. If the row and column variables are ordered, then
a trend may be used as the alternative hypothesis. Chi-squared tests can be followed up by residual
analysis and chi-squared tests on partitioned tables to indicate exactly where association lies. Rules for
partitioning likelihood ratio chi-squared tests appear on p. 84 of Agresti.

If independence of the two classification factors of an | x J contingency table approximately
describes the table, then the MLEs of the cell probabilities under the hypothesis of independence can
have lower MSE than can the MLEs under the alternative (i.e., the sample proportions), except for when
the sample size is very large. This is because the variance of the MLEs under independence is smaller
because they are based on fewer parameters. However, they are biased. The bias can dominate the
variance when the sample size increases, thereby causing the independence MLEs to lose their
advantage over the sample proportions. Agresti gives details on p. 85-86.

If row and column variables are ordered, then a test of independence that has a trend alternative
has greater power to detect a true association (if the association is a trend of that type) than would a
general-purpose chi-squared test. One reason for this is due to the fewer degrees of freedom for the
trend statistics versus the chi-squared statistics, as there are fewer parameters to estimate for the trend
statistics.

There is a disadvantage in using trend tests with ordinal level variables because one has to
choose the scores for the levels of each of the variables. An inappropriate choice can downplay an
association, making the test less sensitive to it. Agresti shows that the popular choice to use category
midranks as scores can affect sensitivity of test statistics if the cell sizes are quite disparate. A
suggestion is to use equally-spaced scores unless there is an inherent numerical order in the levels
already.

When either the row or column variable has two categories, then the tests based on linear or
monotone trend that are discussed in Section 3.4 of Agresti reduce to certain well-known nonparametric
tests. See p. 90 in Agresti. However, some care is needed when using midranks for the categories of
the response variable (reducing to Wilcoxon Mann-WhitneyTest), as there may be very many ties (see
Sprent, 1997).

With a small total sample size, the exact tests of Section 3.5 are preferred over analogous large-
sample tests. Fisher's Exact Test is for testing independence of row and column variables in a 2x2 table.
The same ideas apply for an | x J table, though the computing time is increased. The test assumes fixed
row and column totals, but as these are sufficient statistics for the row and column probabilities, which
determine the null distribution, the test can be applied even if row and column totals are not fixed by
design. If marginal totals were not fixed by design, an alternative is to use the “unconditional” test of
Section 3.5.5, which fixes row totals only and assumes independent binomial row samples. An
unconditional test may have more power than Fisher's Exact Test because the null distribution is less
discrete, allowing more values for the p-value to assume. Thus, one is not forced to be as conservative
as with a conditional test.

Small-sample “exact” confidence intervals for the odds ratio for a 2x2 table can be computed
using Cornfield’s tail method. However, if the data are highly discrete, then Agresti suggets an
adjustment to the interval using the mid-p-value.

29

B. Confidence Intervals for Association Parameters

Wald confidence intervals, score intervals, and profile likelihood intervals are illustrated for the
Aspirin and Myocardial Infarction example on p. 72 in Agresti. We briefly describe each type of interval.

1. Wald Confidence Intervals

Suppose the statistic T, is used to estimate an unknown parameter @ = E(I'n). Wald confidence

(Tn_g)
se(T) -

intervals are based on asymptotic normality of the standardized statistic, Inverting this statistic

gives the 100(1—)% confidence interval on 6, T, + z ,, o(T,), where Z,,, is the 100(1—/2)"
quantile of the standard normal distribution, and o (T,)) is the standard deviation of T,. An estimate of
O'(Tn) is given by the delta method (see Section 3.1.5 in Agresti), with sample statistics inserted where

parameters are required (e.g., replace cell probabilities with sample proportions). For the odds ratio (&),
difference in proportions (7, —7,), and relative risk (71'1/71'2) in a 2x2 table (assuming independent
binomial distributions for each of the two samples), the standard errors estimated using this method are:

6(10g6) = (it + i+t +mt)”’ 3.1)
~ ~ ~ ~ 1/2
6-(7%1_&2) :|:7[1(1r;7z.1) _ﬁz(lr;ﬁz)} (3.2)
and
6 (109, /7,) =[(- + (- 7,) 7] (3.3)

A Wald confidence interval on either the log odds ratio or the log ratio is more stable than one
constructed for the respective ratios, themselves. Take the antilog of the interval endpoints to get a
confidence interval on the ratio.

We can apply these formulae to the Aspirin and Myocardial Infarction data easily using arithmetic
operations in S. However, sometimes a function is useful. =~ The function wald.ci below computes
asymptotic confidence intervals for the proportion difference, odds ratio, and relative risk.

To set up the data, we first do so as a data frame, then use the design.table function (S-PLUS) to
change it to an array.

Drug<-c ("Placebo", "Aspirin")

Infarction<-c("yes", "no")

table.3.l<-expand.grid(drug=Drug, infarction=Infarction)
Data<-c(28,18,656,658)

table.3.1l<-cbind(table.3.1,count=Data)
(temp<-design.table(table.3.1)) # turn data frame into an array

yes no
Placebo 28 656
Aspirin 18 658

Remark: The bold line above used parentheses around an assignment statement. The effect is to make
the assignment and also to print the result. (Or, more technically, apply the print method associated
with the class of the object on the right hand side).

We apply the function wald.ci below to get the confidence intervals.

Wald.ci<-function(Table, aff.response, alpha=.05){

Gives two-sided Wald CI's for odds ratio,

Table is a 2x2 table of counts with rows giving the treatment populations

aff.response is a string like "c(1,1)" giving the cell of the beneficial response and the

treatment category
alpha is significance level

pow<-function(x, a=-1) x"a
z.alpha<-gnorm(l-alpha/2)

if (is.character (aff.response))

where<-eval (parse(text=aff.response))

else where<-aff.response

Next<-as.numeric (where==1) + 1

OR
odds.ratio<-

difference in proportions and relative risk.

30

Table [where[1l] ,where[2]]*Table [Next[1],Next[2]]/(Table[where[l],Next[2]]*Table [Next[1l],wherel

2]11)
se.OR<-sqrt (sum(pow(Table)))

ci.OR<-exp(log(odds.ratio) + c(-1,1)*z.alpha*se.OR)

difference of proportions

pl<-Table [where[l] ,where[2]]/ (nl<-Table[where[l] ,Next[2]] + Table[where[l],where[2]])
p2<-Table [Next [1] ,where[2]]/ (n2<-Table [Next [1] ,where[2]]+Table [Next[1l] ,Next[2]])

se.diff<-sqrt(pl* (1-pl)/nl + p2*(1l-p2)/n2)
ci.diff<-(pl-p2) + c(-1,1)*z.alpha*se.diff

relative risk
RR<-pl/p2

se.RR<-sqgrt((l-pl)/(pl*nl) + (1-p2)/(p2*n2))
ci.RR<-exp(log(RR) + c(-1,1)*z.alpha*se.RR)

list (OR=1list (odds.ratio=odds.ratio, CI=ci.OR), proportion.difference=list(diff=pl-p2,
CI=ci.diff), relative.risk=list(relative.risk=RR,CI=ci.RR))

}

Wald.ci(temp, “c(1, 1)”)

SOR :
SORSodds.ratio:
[1] 1.5602098

SORSCI:
[1] 0.8546703 2.8485020

Sproportion.difference:
Sproportion.difference$diff:
[1] 0.01430845

Sproportion.differencesSCI:
[1] -0.004868983 0.033485890

Srelative.risk:
Srelative.riskSrelative.risk:
[1] 1.537362

Srelative.risks$SCI:
[1] 0.858614 2.752671

or use Wald.ci(temp, c(1, 1))

31

So, the death rate for the placebo group ranges from 0.85 to 2.85 times that for the aspirin group (odds
ratio confidence interval). As the interval for the odds ratio covers 1.0 and somewhat below 1.0, there is
still a small chance that aspirin has slight negative effects. The intervals on the relative risk and
difference of proportions give similar conclusions.

Note that the relative risk estimate is very close to that of the odds ratio. This is not surprising because
the sample proportion of deaths from myocardial infarction were small in both groups. The relationship
between the odds ratio and relative risk (see p. 47 of Agresti) indicates that the two will be similar in this
circumstance.

The same code works in R with minor changes. R does not have the design.table function (although
with the change of one line, you can source it, as well as factor.names into R. Contact me for the one-
line change). However, a glance at the function design.table in S-PLUS shows that the “workhorse” is
the tapply function. So, just change the last line as follows:

Drug<-c ("Placebo", "Aspirin™")

Infarction<-c("yes", "no")

table.3.l<-expand.grid(drug=Drug, infarction=Infarction)
Data<-c(28,18,656,658) # note capital D (see comment below)
table.3.1l<-cbind(table.3.1,count=Data)

tapply(table.3.1%count, table.3.1[,1:2], sum) # turn data frame into an array

Then, use the wald.ci function. Make sure that “Data” above is capitalized, as “data” is a function in the
base environment of R.

2. Score Confidence Intervals

Computing a score interval on the difference of proportions (7, — 7,) is easy using some simple steps in
S-PLUS. To test the null hypothesis that 7z, — 7, = A, we can use the test statistic Z(A) given on p. 77
of Agresti. This statistic depends on the values of the unconstrained MLEs of 7; and 7,, and the values
of the constrained MLEs subject to the null equality, 77; —7, = A. The score confidence interval is then
the set of A suchthat | z(A)| <z ,,,.

To get the constrained MLEs of 7; and 7, in S, we use the method of Lagrange multipliers. The

Lagrangian is the log likelihood minus a constant, A, times an expression representing the left-hand side
of the constraint set equal to 0. Thus, the Lagrangian here is (up to an additive constant)

B(ﬂ.l’ﬂ.Z'/l) = L(ﬂ.liﬂ-z |y1) y2, n.l.’ nZ) - /?vC(ﬂ'l,ﬂ-z)
=% log(ﬂ’-l) + (nl - yl) log(1— 7[1) T Y |0g(7[2) + (nz - yz) Iog(1—7z'2) (3.4)
—A(m, — 7, — A)
L(7, 7, | i, 5,1y, 1) in (3.4) is the kernel of the log likelihood of two independent binomial counts.
C(z,,7,) is the constraint expression. To maximize L(7,,7,|Y;,Y,,N,N,) subjectto C(z,,7,)=0, we

search for a point in (r,,7,)-space that falls along C(7,,7,) = O but so that the level curve of

L(z,7,|Y;,Y,,n,Nn,) going through that point is tangent to C(7,,7,) = 0. This point will be a local

32

minimizer of L(7,,7,|Y;,Y,,N,N,) (see for example Fletcher, 1987). It can be shown that this implies
that the gradients of the two functions L and c are related as follows:

VL(z,, 7, |Y,, Y., 0, n,) = AVce(r,x,) (3.5)

implying that to find a local minimizer (note that we will negate L later to find a maximizer) we must solve
(3.5) and also the equation C(7z1,71'2) = 0. Thus, we must solve a system of three equations in three

unknowns (7[1, 7T,, A) , then discard the solution for the constant A (called the Lagrange multiplier).

The function £ below is the left-hand side of the system of equations we want to solve. This is a function
that returns a three-dimensional S vector whose first two values represent the gradient of (the negative

of) the Lagrangian, with respect to (7[1,71'2), with values for y; and n; given by the values in Table 3.1

(Agresti). The third value in the vector is (7, 7,) .

f <- function(p) {
c(-(28/pl[1]1)+(656/(1-p[1]))-p[3], -(18/p[21)+(658/(1-p[2]1))+p[3]1, pl1l]l-pIl2])

We now use the solveNonlinear function introduced in Chapter 1 to solve the system, where v, is equal
toc(o, 0, A). Notethatgin solveNonlinear is a sum of squared errors between £ and y,.

solveNonlinear <- function(£f, y0, x,...){
solve f(x) = y0
x is vector of initial guesses, same length as yO0
... are additional arguments to nlmin (not to f)
g <- function(x, y0, £) sum((f(x) - y0)72)
g$y0 <- yo0 # set g's default value for yo0
g$f <- £ # set g's default value for £
nlmin(g, x, ...)

}

Now, the function score.ci solves the equations given a value for A. Then, it computes z using the
solutions for 7, and ,. We use the unconstrained MLE's as starting values for (7,,7,) and use trial

and error for a starting value for A .

score.ci<-function(Delta) {
temp<-solveNonlinear (f, y0=c(0,0,Delta),
x=c (28/(28+656) ,18/(18+658) ,7) ,print.level=0,max.fcal=100,max.iter=100,
init.step=.001)
p<-temp$x[1l:2]
z<- (p[1]-p[2]-Delta) /sqrt(p[1l]l*(1-p[1])/684 + pl[2]*(1-p[2])/676)

}

Now, | find the values of A satisfying the inequality, | Z(A) | < Z, 4,5 for a 95% confidence interval.

Delta<-seg(-.2,.2,.001)
z<-sapply (Delta, score.ci)
range (Delta[abs (z)< gnorm(.975)1)

[1] -0.005 0.035

Thus, the score interval is (-0.005, 0.035), slightly wider than the Wald interval.

33

The same idea can be carried out with R, using, for example, the optim function. Then, the following
commands produce a score confidence interval. This time, the function g (here called gfun) is directly
used instead of just existing within solveNonlinear. Also, we control the step sizes (ndeps) for the
computation of the finite difference gradient to be much smaller than the default (see also, the R package
Bhat with function dfp to possibly get around this). And, we use a set of Deltas much narrower in order
to get better accuracy without needing much more computation time.

gfun<-function (p,y0) {
sum((c(-(28/p[1]1)+(656/(1-p[1]1)) -p[3]1,-(18/p[2]1)+(658/ (1-p[2]))+p[3],p[1]-p[2])-
y0) *2)

score.ci<-function(Delta) {

temp<-optim(fn=gfun,par=c(28/(28+656),18/(18+658),7),
method="BFGS",y0=c(0,0,Delta),
control=1list (ndeps=c(rep(.000000001,3))))

p<-tempS$par[1l:2]
z<- (p[1]l-p[2] -Delta)/sqrt(p[1]1*(1-p[1])/684 + p[2]*(1-p[2])/676)

Delta<-seq(-.05,.05,.0001) # range only from -.05 to 0.05 to get better accuracy
z<-sapply (Delta, score.ci)
range (Delta[abs (z)< gnorm(.975)1)

[1] -0.0042 0.0341

Thus, the confidence interval is (—0.0042, 0.0341).

3. Profile Likelihood Confidence Intervals

Agresti illustrates a profile likelihood confidence for the odds ratio of a 2x2 table. He notes that the
multinomial likelihood for the table can be expressed in terms of the odds ratio € and the two marginal

probabilities 7, and 7,,. This is easily seen by writing the four equations (9=7Z'117Z'22/7Z'217Z'12,
T, =n,+7,, &, =n,+7x,, and 7, + 7, + 7T, + 7, =1. Unfortunately, the actual expressions for
{m,, 7, 7,,, @,,} for use in the new likelihood are rather complicated to type into an optimization

program. However, if done, then the resulting likelihood can be maximized subject to setting € equal to
6, , and the maximized value is the profile likelihood for & at the value 6, .

If, as Agresti, we denote the value of the profile likelihood at 6, as L(6,,7,(6,),7.,(6,)), where

7,,), the
unconstrained log likelihood evaluated at the MLES, then the profile-likelihood based confidence interval
for @ includes all those values of &, for which

7, (6,) and 7,(6,) are the maximizers as a function of 6,, and we denote as L(6, 7,,,

2| LGy, 7, (6:), 72,4 (E) ~ L (8, 7., 7.,) | < £ (@) (3.6)

With a small amount of tedium, we could use optim Or nlminb to maximize the constrained log likelihood
for each value of @, and then check condition (3.6). Luckily, the R package Bhat contains a function
plkhci for profile-likelihood based confidence intervals which eliminates some of the work for us.

34

However, we still must type in the log likelihood as a function of @, 7, , and 7, ,. One can find the

necessary transformations very easily using a computer algebra system like Mathematica (2001)..much
more readily than using S!. These are then copied almost “word” for “word” into the following function,
nlogf:

library (Bhat)

neg. log-likelihood of "new" multinomial model
nlogf <- function (p) {
plp<-pl1]
ppl<-pl2]
theta<-p[3]
nll <- table.3.l$count[1] # recall table.3.1 above
n2l<-table.3.13$count[2]
nl2<-table.3.1l$count[3]
n22<-table.3.1%count [4]
the following are the transformations from Mathematica 4.0
p22<-(-1 + plp + ppl + 2*theta - (plp + ppl) *theta - sqgrt(-4*plp* (-1 + ppl)* (-1 + theta) +
(1 + plp + ppl*(-1 + theta) - plp*theta)”2))/(2*(-1 + theta))
pll <- (1 + plp*(-1 + theta) + ppl*(-1 + theta) - sqrt(-4*plp*(-1 + ppl)* (-1 + theta) +
(1 + plp + ppl*(-1 + theta) - plp*theta)”2))/(2*(-1 + theta))
p21 <- (-1 + plp + ppl*(-1 + theta) - plp*theta + sqrt(-4*plp*(-1 + ppl)* (-1 + theta) +
(1 + plp + ppl*(-1 + theta) - plp*theta)”2))/(2*(-1 + theta))
pl2 <- (-1 + ppl + plp*(-1 + theta) - ppl*theta + sqrt(-4*plp*(-1 + ppl)* (-1 + theta) +
(1 + plp + ppl*(-1 + theta) - plp*theta)”2))/(2*(-1 + theta))

-(nll*log(pll) + nl2*log(pl2) + n2l*log(p2l) + n22*log(p22))

Now, we must set up a list with names: 1abel for the parameter names, est for parameter estimates
(such as MLESs), and 1ow and upp for the upper and lower bounds of the parameters.

X <- list(label=c("plp","ppl", "theta"), # plp = row marginal, ppl = col marg
est=c((28+656)/(684+676), (28+18) /(684+676) ,1.56),
low=c(0,0,0) ,upp=c(1,1,100)) # needed theta < finite bound to work

Now, call the function with arguments, the named list, the name of the function, and finally the label of the
parameter for which you want confidence bounds.

plkhci (x,nlogf, "theta")

neg. log. likelihood: 1142.580
will atempt to compute both bounds (+/- direction)

trying lower bound ------------------------
starting at: 0.9352881
initial guess: 0.5029413 0.03382281 2.107252

begin Newton-Raphson search for profile 1lkh conf. bounds:
eps value for stop criterium: 0.001
nmax : 10

CONVERGENCE: 6 iterations

chisquare value is: 3.841455

confidence bound of theta is 2.896089

log derivatives: 2.161155e-06 6.867801e-06
label estimate 1log deriv log curv

1 plp 0.502911 2.16116e-06 341.928

2 ppl 0.0336962 6.8678e-06 42.171

3 theta 2.89609 -5.75779 7.95543

35

trying upper bound ------------------------
starting at: 0.9856728
initial guess: 0.5029411 0.03382424 1.153263

begin Newton-Raphson search for profile 1lkh conf. bounds:
eps value for stop criterium: 0.001
nmax : 10

CONVERGENCE: 6 iterations

chisquare value is: 3.841459

confidence bound of theta is 0.8617511

log derivatives: 2.122385e-06 6.523067e-06
label estimate 1log deriv log curv

1 plp 0.502946 2.12238e-06 339.335

2 ppl 0.0336989 6.52307e-06 41.8502

3 theta 0.861751 6.44456 10.8561

[1] 0.8617511 2.8960895

Thus, the profile likelihood based confidence interval for the odds ratio is: (0.862, 2.896), fairly close to
the Wald interval.

C. Testing Independence in Two-way Contingency Tables

For multinomial sampling with probabilities {ﬂ'ij} in an | x J contingency table, the null hypothesis of

statistical independence of the row and column variables is H, :7; =7, 7;, foralliandj. Pearson’s

chi-squared statistic can be used to test this hypothesis. The expected frequencies in an | x J
contingency table under Ho are (4, =Nz, =Nz, 7, , with MLEs given by ,[LU. = r\+nj+/n. Then, the

o

chi-squared statistic, X2, is given on p. 78 of Agresti.

The score test uses Pearson’s chi-squared statistics. But, as mentioned in Agresti, the likelihood ratio
test uses a different “chi-squared statistic” (they are both called chi-squared statistics because they both
have asymptotic chi-squared distribution under the null hypothesis of independence). The likelihood ratio
chi-squared statistic is given on p. 79 of Agresti. The degrees of freedom for each asymptotic chi-
squared distribution is (I —1)(J—1). The limiting distributions apply when the total sample size is large
and the number of cells is fixed. Agresti p.79-80 gives further details.

Agresti uses data on religious fundamentalism and degree of education to illustrate the two different chi-
squared tests of independence. The data are in Table 3.2 (p.80).

First, | set up the data in S-PLUS:

religion.counts<-c(178,138,108,570,648,442,138,252,252)

table.3.2<-cbind (expand.grid(list (Religious.Beliefs=c ("Fund", "Mod", "Lib"),
Highest.Degree=c ("<HS","HS or JH", "Bachelor or Grad"))),count=religion.counts)

(table.3.2.array<-t(design.table(table.3.2))) # t() is to arrange the table as in
Agresti

Fund Mod Lib
<HS 178 138 108

HS or JH 570 648 442
Bachelor or Grad 138 252 252

Now, we can use the chisqg.test function. In S-PLUS, type

chisqg.test (table.3.2.array)

36

Pearson's chi-square test without Yates' continuity correction

data: design.table(table.3.2)
X-square = 69.1568, df = 4, p-value = 0

To obtain the expected frequencies, we take advantage of the outer function, as well as the functions
rowSums and colSums:

expected. fregs<-
outer (rowSums (table.3.2.array) ,colSums (table.3.2.array) ,FUN="*") /gum(table.3.2.arra

y)
expected. fregs

Fund Mod Lib

<HS 137.8078 161.4497 124.7425

HS or JH 539.5304 632.0910 488.3786
Bachelor or Grad 208.6618 244.4593 188.8789

In R, the data set-up uses tapply directly, instead of going through design.table, as in Section 1.B.
The package ctest contains the function chisqg.test, which is similar to that above in output, except
that the function also returns the expected frequencies invisibly (A very nice addition. And, it happens to
be computed in the same way | computed it above!). For example,

table.3.2.array<-tapply(table.3.2%count,table.3.2[,1:2], sum)
(res<-chisqg.test (table.3.2.array))

Pearson's Chi-squared test

data: table.3.2.array
X-squared = 69.1568, df = 4, p-value = 3.42e-14

res$expected
Religious.Beliefs
Highest .Degree Fund Mod Lib
<HS 137.8078 161.4497 124.7425
HS or JH 539.5304 632.0910 488.3786

Bachelor or Grad 208.6618 244.4593 188.8789

The chi-square tests (both Pearson and LR) and expected frequencies (as well as marginal totals) can be
obtained just as easily with the package vcd, using functions, assoc.stats, expected, and mar.table,
respectively.

library (ved)
assoc.stats(table.3.2.array)

X*2 df P(> X*2)
Likelihood Ratio 69.812 4 2.4869e-14

Pearson 69.157 4 3.4195e-14
Phi-Coefficient : 0.159
Contingency Coeff.: 0.157
Cramer's V : 0.113

expected(table.3.2.array)

<HS HS or JH Bachelor or Grad

Fund 137.8078 539.5304 208.6618
Mod 161.4497 632.0910 244 .4593
Lib 124.7425 488.3786 188.8789

A nice feature of the R package version of chisq.test is that one has the option of computing the p-
value via Monte Carlo simulation. This is very nice in cases where the expected frequencies do not meet

37

the rules of thumb required for the asymptotic chi-squared distribution to be appropriate, and the table is
too large to use some of the exact tests offered. To request p-value computation via Monte Carlo
simulation, set the argument simulate.p.value (Or sim) to TRUE. The argument B controls the number
of replicates in the simulation.

chisqg.test(table.3.2.array, sim=T, B=2000)

Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)

data: table.3.2.array
X-squared = 69.1568, df = NA, p-value = < 2.2e-16

Here, the p-value is similarly very low, rejecting the hypothesis of independence of the two variables.

For the likelihood ratio test statistic, one can easily use the expected frequencies obtained above and the
formula for the statistic on p. 79 of Agresti. For example,

2*gum(table.3.2.array*log(table.3.2.array/expected.freqgs)) # R: Use res$expected instead
of expected.fregs

[1] 69.81162

Alternatively, jumping ahead a bit, we can use the glm function for generalized linear models (see
Chapter 4) and the Poisson distribution (which is the distribution of the counts in the table when the total
number of cases is not fixed — see p. 132 in Agresti) to get the likelihood ratio chi-squared statistic. For
example, in either S-PLUS or R, we get

fit.glm<-glm(count~Religious.Beliefs+Highest.Degree, data=table.3.2, family=poisson)
fit.glm$deviance

[1] 69.81162

The expected frequencies can then be obtained using the function predict.

temp<-predict(fit.glm, type="response")
matrix(temp, nc=3, byrow=T, dimnames=list(c("<HS","HS or JH", "Bachelor or
Grad") ,c ("Fund", "Mod", "Lib")))

Fund Mod Lib

<HS 137.8078 161.4497 124.7425

HS or JH 539.5305 632.0910 488.3786
Bachelor or Grad 208.6618 244.4593 188.8790

D. Following Up Chi-Squared Tests

After running a chi-squared test and rejecting the hypothesis of independence, one may want to know
where the association between the two variables lies. Agresti lists the use of residual analysis and
partitioning the overall chi-squared statistic for subtables as methods for assessing where association
may lie.

1. Standardized Pearson residuals
The (squared) Pearson residuals are actually components of the Pearson chi-squared statistic. One can

extract the Pearson residuals from a glm object in S by using the function residuals, with type argument
vpearson”. For example, using the data above,

resid.pear <- residuals(fit.glm, type = "pearson")

38

Note that the sum of the squared Pearson residuals equals the Pearson chi-squared statistic:

sum(resid.pear”2)
[1] 69.11429

To get the standardized residuals, just modify resid.pear according to the formula on p. 81 of Agresti.

ni<-rowSums (table.3.2.array) # row sums

nj<-colSums (table.3.2.array) # column sums

n<-sum(table.3.2.array) # total sample size

resid.pear.mat<-matrix(resid.pear, nc=3, byrow=T, dimnames=list(c("<HS","HS or JH",
"Bachelor or Grad"),c("Fund", "Mod", "Lib")))

n*resid.pear.mat/sqrt (outer (n-ni,n-nj,"*")) # standardized Pearson residuals

Fund Mod Lib

<HS 4.534062 -2.5520482 -1.941537

HS or JH 2.552988 1.2859745 -3.994669
Bachelor or Grad -6.806638 0.7007539 6.250329

Because the standardized residuals are asymptotically standard normal, we can compare them against
standard normal “critical values” such as +1.96 as an indication of lack of fit of the respective cell
frequency to an independence model. Thus, for the religious fundamentalism example, there is strong
lack of fit in three of the four corners of the table, indicating higher frequency than expected by Hy in the
cells for liberal/bachleor's and fundamentalist/<HS, and lower frequency than expected in the
bachelor/fundamentalist cell.

2. Partitioning Chi-Squared

Because a chi-squared random variable with v degrees of freedom can be partitioned into the sum of v
independent chi-squared random variables, we can also partition a chi-squared test of independence into
separate independent tests, the sum of which equal the overall chi-squared statistic. As Agresti says, this
partitioning may highlight where in a table association applies.

Not all partitions of an overall table yield independent component chi-squared statistics, but one that does
is given on p. 83 of Agresti, and explicit rules appear on p. 84. This partitioning is illustrated with the
Schizophrenia data set on p. 83, which cross-classifies a sample of psychiatrists by their school of
psychiatric thought and their opinion on the origin of schizophrenia. To calculate the likelihood ratio (LR)
chi-squared statistic for the test of the null hypothesis of independence of the two variables, School and
Origin, we can use the glm function again with the Poisson family.

schizo.counts<-c¢(90,12,78,13,1,6,19,13,50)

table.3.3<-cbind (expand.grid(list (Origin=c("Biogenic", "Environmental",
“Combination"), School=c("Eclectic","Medical", “Psychoanalytic"))),
count=schizo.counts)

The full LR test is

fit<-glm(count~Origin+School, family="poisson", data=table.3.3)
fit$deviance # LR statistic

[1] 23.03619

which is significant at the 0.05 level, rejecting independence. Now, to test independence of the row and
columns variables in Subtable 1 in Table 3.4 in Agresti p. 83, we can use the update function. This test
compares the Eclectic and Medical schools of thought on whether the origin of schizophrenia is biogenic
or environmental, given that classifications only in these last two categories are considered.

39

update (fit, subset=(School=="Eclectic" | School=="Medical") & (Origin=="Biogenic" |
Origin=="Environmental")) $deviance

[1] 0.2941939

Thus, we do not reject the hypothesis of independence for Subtable 1. Subtables 2 through 4 require a
bit more than just case selection via an update call. Subtable 2 compares the Eclectic and Medical
schools on whether the origin is a combination or not. So, we use the aggregate function to sum
columns.

First, | add a column called select that indicates the new categories. Then, | aggregate the counts in
table.3.3 by School and select, and sum these counts. This gives the new table, which is supplied as
the data argument to glm. Finally, to restrict the analysis to just the Eclectic and Medical schools, | use
the subset argument.

table.3.3$select<-rep(c("Bio+Env", "Bio+Env", "Com"), 3)

table.3.3.sub2<-aggregate(table.3.3$count,by=1ist (School=table.3.3$School,
select=table.3.3$select), sum)

(fit<-glm(x~select+School, family="poisson", data=table.3.3.sub2, subset=
School=="Eclectic" | School=="Medical")) $deviance

[1] 1.358793

Thus, we also do not reject the null hypothesis for Subtable 2, as the LR statistic is too small (for any
significance level less than about 0.24) compared to a chi-squared distribution with 1 df. So, in neither of
Subtables 1 and 2 does the association between Origin of Schizophrenia and School of Thought lie.

The remaining subtable tests are calculated similarly, and the sum of their LR statistics is the LR statistic
of the full table. The above functions can be used in R or S-PLUS. Pearson chi-squared tests can be
conducted as before using the chisqg.test function with the subtable data frames as arrays.

E. Two-Way Tables with Ordered Classification

The LR and Pearson chi-squared statistics ignore information about any inherent order that is present in
the categories of one or more classification variables. This section deals with tests of independence of
two classification factors where both factors have ordinal-level categories. The alternatives to
independence that Agresti discusses in this section are a linear association between the two factors and
a monotone association.

1. Linear Trend Alternative to Independence

The first test is one for detecting nonzero true correlation between two ordinal factors. Itis
M?=(n-1r? (3.7)

Thus, with a larger correlation, r, or larger sample, M? is larger. For large samples, it is approximately chi-
squared with 1 df. A small p-value indicates that there may be a strong linear component to any
association.

Implementation of (3.7) in S is just a matter of computing r on chosen scores. For example, for the Job
Satisfaction data in Table 2.8 of Agresti, he uses scores 1, 2, 3, and 4 for job satisfaction and scores 7.5,
20, 32.5, and 60 in thousands of dollars for income. The income scores represent approximate category
midpoints. In S-PLUS or R, correlation (via the product-moment formula) is computed using the function
cor. First, we must convert the levels of income and jobsat to numeric labels.

levels (table.2.8%income)<-c(7.5,20,32.5,60)
levels (table.2.8%jobsat)<-1:4

40

Then, we repeat the income and jobsat values in table.2.8 count times. We can do this in at least two
ways. One way is to use apply. The other is to just rep the row labels count times. Both methods are
fairly comparable in efficiency, but method 2 requires a subsequent change of class of the columns to
numeric. Then, we apply cor, which returns an entire matrix, from which we select the 2,1 element.

res<-table.2.8[,1:2] [rep(l:nrow(table.2.8),table.2.8%count),] # method 2 (see above)
res<-apply(table.2.8[,1:2],2,function(x){rep(x,table.2.8$count)}) # method 1

(cor (res) [2,1]"2) * (nrow(res) -1)

[1] 3.807461

l-pchisq(3.807461,1) # M"2 ~~ chisqg, 1 df
[1] 0.0510247

As the p-value is relatively low, we can conclude that an association that involves a linear component
may be likely.

2. Monotone Trend Alternative to Independence

One problem with the above analysis is that the scores impose an interval scale on the two factors, which
may not be appropriate because we really only have ordinal level variables. This section uses the
gamma statistic (Section 2.4.4 in Agresti) to test independence against the weaker alternative of
monotonicity. We can use our Gamma. £ function from Section 2.E to compute the monotonic association
between jobsat and income.

We'll modify camma. £ a little to get the standard error of gamma. One modification appears below in
Gamma2.f. This is based on problem 3.27 in Agresti. Instead of fiddling with table.2.8 to get the matrix
of counts needed for input into Gamma2 . £, we can just reuse the call to crosstabs (Or xtabs), or call it
again if it wasn't saved.

There is also a slight difference in implementation of camma2 . f across S-PLUS and R. Thus, | first check
(using version) whether we are using R or S-PLUS. The version object is different across the two
implementations. Check this for yourself.

Gamma2. f<-function(x, pr=0.95)
x is a matrix of counts. You can use output of crosstabs or xtabs in R.
A matrix of counts can be formed from a data frame by using design.table.

Confidence interval calculation and output from Greg Rodd

Check for using S-PLUS and output is from crosstabs (needs >= S-PLUS 6.0)
if (is.null (version$language) && inherits(x, "crosstabs")) { oldClass(x)<-NULL;
attr(x, "marginals")<-NULL}

n <- nrow(x)
m <- ncol(x)
pi.c<-pi.d<-matrix(0,nr=n,nc=m)

row.X<-row(x)
col.x<-col (x)

for(i in 1:(n)){
for(j in 1:(m)){
pi.cl[i, jl<-sum(x[row.x<i & col.x<j]) + sum(x[row.x>i & col.x>j])
pi.d[i, jl<-sum(x[row.x<i & col.x>j]) + sum(x[row.x>i & col.x<jl)

}

C <- sum(pi.c*x)/2
D <- sum(pi.d*x)/2

41

psi<-2* (D*pi.c-C*pi.d)/ (C+D) "2
sigma2<-sum(x*psi”®2) -sum(x*psi) "2

gamma <- (C - D)/(C + D)
pr2 <- 1 - (1 - pr)/2
CIa <- gnorm(pr2) * sqgrt(sigma2) * c(-1, 1) + gamma

list (gamma = gamma, C = C, D = D, sigma = sqgrt(sigma2), Level = paste(
100 * pr, "%", sep = ""), CI = paste(c("[", max(CIa[l]l, -1),
", ", min(CIa[2], 1), "]1"), collapse = ""))

temp<-crosstabs (formula = count ~ income + jobsat, data = table.2.8)
Gamma2. f (temp)

Sgamma
[1] 0.2211009

sc

[1] 1331
$D

[1] 849
$sigma

[1] 0.1171628

SLevel

[1] "97.5%"

SCI

[1] "[-0.00853400851071168, 0.450735843373097]"

Using the SE estimate of 0.117, a 95% confidence interval on yis (—0.01, 0.45).

The function camma2 . £ takes less than 1 CPU second on a Pentium 4 (original version) computer with
512 MB of RAM running S-PLUS 6.1, and takes even less time using R.

resources (res<-Gamma2. f (temp)) # S-PLUS (resources is available from Venables and
Ripley (2000))

CPU Elapsed % CPU Child Cache Working
0.16 0.16 100 0 0 6274

F. Small Sample Tests of Independence

When the total sample size for the table is small (where “small” in practice may be defined by your
computer software, as we will see shortly), exact tests and exact confidence intervals are preferred to
their large-sample “equivalents” for obvious reasons. In this section | describe how to use S for the exact
tests discussed in Section 3.5 in Agresti for testing independence of row and column variables.

1. Fisher's Exact Test

For 2x2 tables, given the marginal totals, the entire table is determined by one cell count (say the 1,1
cell). Under independence, this cell count has the hypergeometric distribution given in (3.16) in Agresti.
(In general, it has a noncentral hypergeometric distribution with noncentrality parameter the odds ratio).
For a 2x2 table, Fisher's Exact Test is a test of the null hypothesis that the odds ratio corresponding to
the table is 1. A one-sided p-value of the test is the sum of all hypergeometric probabilities that are more

42

consistent with the alternative hypothesis than the one corresponding to the observed table, plus the
probability corresponding to the observed table. One possible two-sided p-value is double this result,
provided the answer does not exceed 1. Other possibilities are given in Agresti p. 93. Some of these can
be implemented using dhyper (see below).

To demonstrate Fisher's Exact Test, Agresti uses the data from Table 3.8 (p. 92). The function
fisher.test in S-PLUS gives a two-sided test; the version in R gives either a one- or two-sided test.
The function can be used for | x J tables as well, with I, J < 10, but the total sample size in the table
cannot exceed 200. (Interesting, the “Tea Tasting” example is given in the help page for fisher.test in
R). In S-PLUS we get

(test<-fisher.test (matrix(c(3,1,1,3),byrow=T,ncol=2)))
Fisher's exact test

data: matrix(c(3, 1, 1, 3), byrow = T, ncol = 2)
p-value = 0.4857
alternative hypothesis: two.sided

To get the one-sided p-value, type:

test$p.value/2
[1] 0.2428572

Note that the one-sided p-value can be obtained using dhyper, as might be expected.

sum (dhyper (g=c(3,4) ,m=4,n=4,k=4))
[1] 0.2428571

In R, for 2x2 tables, we can specify the alternative to be “greater”. Plus, we get a confidence interval
result.

library(ctest)
(fisher.test (matrix(c(3,1,1,3),byrow=T,ncol=2), alternative="greater"))

Fisher's Exact Test for Count Data

data: matrix(c(3, 1, 1, 3), byrow = T, ncol = 2)
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.3135693 Inf
sample estimates:
odds ratio
6.408309

The R version allows for a null value of the odds ratio to be something other than 1 (using argument or).

Mid-p-values can be calculated using dhyper.

2. Unconditional Test of independence

If only row totals are fixed by design, a better alternative might be to use the unconditional small-sample
test of independence described in Section 3.5.5 in Agresti. If we assume that rows represent
independent binomial samples, then the hypothesis of independence (or homogeneity of proportions) is

that the column (or response) probabilities are equal across rows (H,: 7z, =7, =m). Using a test

statistic such as Pearson’s chi-squared, the p-value is the supremum over 0< 7 <1 of the probability
that Pearson’s chi-squared meets or exceeds the observed value. For the (3, 0/ 0, 3) table given on p.

43

95 of Agresti, X? = 6 and we need the supremum of P(X?>6)=27°(1-7x)°. InS, we can use general

optimization functions for this. The function optim exists for both R and S-PLUS implementations (in S-
PLUS it resides in the MASS library).

library (MASS) # S-PLUS only
(res<-optim(par=.25, fn=function(pi){ log(2) + 3*log(pi) + 3*log(l-pi)},
method="L-BFGS-B", lower=.00001, upper=.9999, control=1list(fnscale=-1)))

Spar:
[1] 0.5

Svalue:
[1] -3.465736

. (snip)

exp (res$value) # p-value
[1] 0.03125

Different ranges of 7z can be used by changing the 1lower and upper arguments.

3. Fisher's Exact Test for | x J Tables

For product multinomial sampling or ordinary multinomial sampling, conditioning on both the row and
column totals, under independence, yields the multiple hypergeometric distribution for the cell counts. As
mentioned in Agresti, the p-value of the test of independence is the probability of the set of tables with the
given margins that are no more likely to occur than the table observed. Sometimes the tables are
ordered using a statistic that describes distance from independence (such as Pearson’s chi-squared).
For a table with ordinal categories, the statistic might measure positive association (such as gamma).

Table 3.9 in Agresti cross-classifies level of smoking and myocardial infarction for a sample of women in
a case-control study. We can use an exact conditional test of independence for ordered categories that
uses the gamma statistic and calculates for the p-value, the probability of observing a gamma as large as
that corresponding to Table 3.9, under independence. This will involve the multiple hypergeometric
probability mass function given in equation (3.19) of Agresti.

We can easily calculate the p-value using the functions prod and factorial, but the function
fisher.test can also be used, as it now handles | x J tables.

(table.3.9<-matrix(c(25,25,12,0,1,3) ,byrow=T,ncol=3))
[,11 [,21 [,3]

(1,1 25 25 12

(2,1 0 1 3

Gamma. f (table.3.9) # observed gamma

Sgamma :
[1] 0.8716578

SC:
[1] 175
$SD:
[1] 12

To get the p-value, we can use the functions factorial and prod. For R, we must use the function
fact instead of factorial. fact is available in library combinat.

num<-prod (factorial (rep(1l,2)%*%table.3.9)) *prod(factorial (rep(1,3)%*%t(table.3.9)))
den<-factorial (sum(table.3.9)) *prod(factorial (table.3.9))
terml<-num/den

temp<-matrix(c(25,26,11,0,0,4), byrow=T, ncol=3) # only other table with C-D as least
as large

num<-prod (factorial (rep (1, 2) %$*%temp)) *prod (factorial (rep(1,3)%*%t (temp)))
den<-factorial (sum(temp)) *prod (factorial (temp))
term2<-num/den

terml+term2 # sum the two probabilities
[1] 0.01830808

Otherwise, we can use fisher.test:

fisher.test(table.3.9) $p.value/2
[1] 0.01704545

G. Small-Sample Confidence Intervals For 2x2 Tables

Conditional on the marginal totals, the distribution of the (1, 1) cell in a 2x2 table is noncentral
hypergeometric, with non-centrality parameter the odds ratio, 8. The distribution is given on p. 99 of

Agresti. A confidence interval for the odds ratio results from inverting the test of H,:6 =6, given the

observed cell counts. Cornfield’s (1956) tail method for constructing a confidence interval on @ is given
on p. 99 on Agresti. Briefly, the lower endpoint of a 100(1— ¢)% confidence interval is &, for which the

p-value equals &/ 2 in testing against an alternative hypothesis that & > 6, (the value of 6, that would
cause us to “just” accept Ho with the observed cell counts). The upper endpoint is the value of 6, for
which the p-value equals ¢/ 2 in testing against an alternative hypothesis that & < 6,. Because of the

discreteness of the p-value, the interval is the set of §, for which both one-sided p-values > /2.

As mentioned previously, the fisher.test function in R outputs a confidence interval on the odds ratio
for a 2x2 table. For the tea tasting data, it gives

library(ctest)
res<-fisher.test (matrix(c(3,1,1,3),byrow=T,ncol=2), alternative="two.sided", or=1)
res$conf.int

[1] 0.2117329 621.9337505

attr(,"conf.level")
[1] 0.95

and it gives the estimate

res$estimate

odds ratio
6.408309

The estimate of the odds ratio is the conditional MLE of € discussed by Agresti, that is, the value of 8
that maximizes the likelihood of the cell counts, conditional on the marginal totals.

45

Liao and Rosen (2001) give an R function for probability calculations from a non-central hypergeometric
distribution. Their function can be used to obtain the confidence interval above. The syntax (using

Agresti's notation) is hypergeometric(n,,n,,n, €). This returns a set of functions such as the

+17
cumulative distribution function (CDF), the probability mass function, and moment functions. The
confidence interval can be found by trial and error via the CDF, changing the odds ratio each time. Or,
one can use optim. We can determine both endpoints with the same function by summing the squared
differences of the two p-values from 0.025.

f<-function(x, alpha,t0) {
resl<-hypergeometric(4,4,8,x[1])
resu<-hypergeometric(4,4,8,x[2])
sum(c(l-resl$p(t0-1) - alpha/2, resu$p(t0)-alpha/2)”"2)

}

optim(par=c (.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, control=
list (parscale=c(1,100)))

Spar
[1] 0.2117342 626.2385687

Svalue
[1] 1.345465e-13

Scounts

function gradient
91 80

Sconvergence

[1] ©

So, the two endpoints are (0.211, 626.24), which we check using hypergeometric.

res<-hypergeometric(4,4,8,626.24) # Upper endpoint
res$p(3) # p is the CDF returned by hypergeometric. we evaluate it at t=3
[1] 0.02500014

res<-hypergeometric(4,4,8,.212) # lower endpoint
1-ress$p(2)
[1] 0.02505818

As both probabilities just exceed 0.025, we take the corresponding odds ratios as the endpoints. Note
the slight difference in the result compared with fisher.test above.

Using the non-central hypergeometric distribution function for the mid-p-value-adjusted confidence
interval is just as easy.

f<-function(x, alpha,t0){

resl<-hypergeometric(4,4,8,x[1])

resu<-hypergeometric(4,4,8,x[2])

sum(c(l-resl$p(t0-1) -.5*resl$d(t0) - alpha/2, resu$p(t0-1) + .5*resu$d(t0) -
alpha/2) *2)

optim(par=c (.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, control=
list (parscale=c(1,100)))

Spar
[1] 0.3100547 308.5567363

Svalue
[1] 6.545662e-16

46

Scounts

function gradient
58 46

Sconvergence

[1] o

res<-hypergeometric(4,4,8,308.5567363)
res$p(2) + .5*res$d(3)
[1] 0.02500000

res<-hypergeometric(4,4,8,0.3100547)
l-res$p(2) - .5*res$d(3)
[1] 0.02499998

Thus, the confidence interval is approximately (0.31, 309).

| have neglected to mention that the hypergeometric function, as it is, won't work in S-PLUS because it
uses R scoping rules that S-PLUS doesn’t follow. The functions returned by hypergeometric access
variables that belong to the environment in which the functions were created (i.e., the hypergeometric
environment). Thus, all the returned functions can use any variables created within hypergeometric.
The same won't work in S-PLUS because a function created in S-PLUS only has access to the objects
created in the evaluation frame (the environment created with the function) or that exist in the parent
frame (the environment in which the function was invoked) or on the search path. It is possible to modify
the function so that it will work in S-PLUS. A simple way to do so is to pass as arguments all variables
that are needed. Another way is to use a function that can make a closure (see the MC function in the
Appendix of Gentleman and Ihaka (2000)). A modified version of the hypergeometric function is given
below, that uses MC, as well as substitute():

hypergeometric.SPLUS <- function(nl, ml, N, psi)

n2 <- N - nl;
if(nl<0 | n2<0 | ml<0 | ml>N | psi<=0) stop("wrong argument in hypergeometric");

11 <- max (0, ml-n2);
uu <- min(nl, ml);

prob <- array(1, uu-11+1);

shift <- 1-11;

mode.compute <- substitute(function()
<- psi - 1;

<- -((ml+nl+2)*psi + n2-ml) ;

<- psi*(nl+l)* (ml+1);

<- b + sign(b) *sqgrt (b*b-4*a*c) ;
<- -q/2;

Qe oo

mode <- trunc(c/q):;
if (uu>=mode && mode>=11l) return (mode)
else return(trunc(g/a));
3} , list(psi=psi, ml=ml, nl=nl,1l1l=11, uu=uu, n2=n2))

mode <- mode.compute () ;

r.function <- substitute (function(i) (nl-i+1)* (ml-i+1)/i/(n2-ml+i)*psi, list(psi=psi,
ml=ml, nl=nl,11=11, uu=uu, n2=n2));

if (mode<uu) #note the shift of location

{

rl <- r.function((mode+l) :uu);
prob[(mode+l + shift):(uu + shift)] <- cumprod(rl);

if (mode>11)

{

rl <- 1/r.function(mode: (11+1));
prob[(mode-1 + shift): (11l + shift)] <- cumprod(rl);

prob <- prob/sum(prob) ;
mean <- function() sum(prob[(ll:uu)+shift]* (1l:uu));
var <- function() sum(prob[(ll:uu)+shift]*(1l:uu)”2) - mean()”"2;

d <- substitute(function(x) return(prob[x + shift]), list(prob=prob, shift=shift, 11=11,
uu=uu)) ;

p <- substitute(function(x, lower.tail=TRUE)

{

if (lower.tail) return(sum(prob[ll: (x+shift)]))
else return(sum(prob[(x+shift):uul));
},1list (prob=prob, shift=shift, 1l=11, uu=uu))

sample.low.to.high <- function(lower.end, ran)

{

for(i in lower.end:uu)

{

if (ran <= prob[i+shift]) return(i);
ran <- ran - probl[i+shift];

}
}

sample.high.to.low <- function (upper.end, ran)

{

for(i in upper.end:11)

{

if (ran <= prob[i+shift]) return(i);
ran <- ran - prob[i+shift];

}

r <- function()
ran <- runif(1);

if (mode==11) return(sample.low.to.high(ll, ran));
if (mode==uu) return(sample.high.to.low(uu, ran));

7

if (ran < prob[mode+shift]) return (mode);
ran <- ran - prob[mode+shift];

lower <- mode - 1;
upper <- mode + 1;

repeat

if (prob [upper + shift] >= probl[lower + shift])

if (ran < prob[upper+shift]) return (upper) ;
ran <- ran - prob[upper+shift];
if (upper == uu) return(sample.high.to.low(lower, ran));

upper <- upper + 1;

}

else
{
if (ran < prob[lower+shift]) return(lower) ;
ran <- ran - prob[lower+shift];
if (lower == 11) return(sample.low.to.high(upper, ran));
lower <- lower - 1;

MC (mean, list(prob=prob, shift=shift, 11=11, uu=uu))
MC(var, list(prob=prob, shift=shift, 11l=11, uu=uu))
MC (sample.low.to.high, list(prob=prob, shift=shift, 11=11, uu=uu)
MC (sample.high.to.low, list(prob=prob, shift=shift, 11=11, uu=uu)

MC(r, list(prob=prob, shift=shift, 11=11, uu=uu)

return (mean, var, d, p, r);

}

)

48

Thus, the small-sample confidence interval on the odds ratio, and its adjustment using the mid-p-value

can be obtained using the same commands as above:

f<-function(x, alpha,t0){
resl<-hypergeometric.SPLUS (4,4,8,x[1])
resu<-hypergeometric.SPLUS (4,4,8,x[2])

sum(c (l-resl$p(t0-1) - alpha/2, resu$p(t0)-alpha/2)"2)

}

library (MASS)

optim(par=c(.22, 622), fn=f, method="BFGS", alpha=.05, t0=3,

control=1list (parscale=c(1,100), trace=1l))

Spar:
[1] 0.2117342 626.2385697

Svalue:
[1] 1.345311e-013

Scounts:

function gradient
92 80

Sconvergence:

[1] ©

And for the mid-p-value:

f<-function(x, alpha,t0){
resl<-hypergeometric.SPLUS (4,4,8,x[1])
resu<-hypergeometric.SPLUS (4,4,8,x[2])
sum(c(l-resl$p(t0-1) -.5*resl$d(t0) - alpha/2,
alpha/2) *2)

}

resu$p(t0-1) +

optim(par=c (.22, 622), fn=£f, method="BFGS", alpha=.05, t0=3,

control=1list (parscale=c(1,100), trace=1l))

Spar:
[1] 0.3100547 308.5567363

Svalue:
[1] 6.546435e-016

Scounts:

function gradient
57 46

Sconvergence:

[1] ©

Smessage:

NULL

.5*resus$d (t0)

49

The small-sample confidence interval on the difference of proportions, mentioned in Section 3.6.4 of
Agresti, can be computed using the methodology from Section 3.F.2 of this manual.

50

Chapter 4: Generalized Linear Models

A. Summary of Chapter 4, Agresti

Chapter 4 in Agresti deals with generalized linear models (GLIMs). GLIMs extend the general
linear model by allowing nonnormal response distributions and allowing a nonlinear mean function.
There are three components of a GLIM, which are detailed on p. 116-117 of Agresti. Briefly, the random
component consists of independent observations from a distribution in the natural exponential family.
The pdf for this family is given in equation (4.1) of Agresti. Special discrete random variable cases are

the Poisson and binomial distributions. The systematic component relates a vector, 77 = (771,...77n)T, toa

set of explanatory variables through a linear model: 77 = X,B . 1 is called the “linear predictor”. The link
function links the random and systematic components. It describes the relationship between the mean of
the response, £, and the linear predictor, 77, = g(,ui) . When we specify a link function, g, we are saying

that the systematic effects are additive on the scale given by the link function.

A fourth component is sometimes specified explicitly. This is the variance function, which is a
function relating the variance to the mean (see Section 4.4 in Agresti). It is proportional to the variance of
the response distribution, with proportionality constant the inverse of a parameter called the dispersion
parameter. (If we use a particular random component, we automatically accept its variance function.
However, there are methods where we can use a particular variance function that we believe describes
the random phenomenon, but then refrain from “choosing” a distribution for the random component.
These methods use what are called “quasi-likelihood functions”.)

Typical cases of GLIMs are the binomial logit model (Bernoulli response with log odds link
function) and the Poisson loglinear model (Poisson response with log link). Other cases are given in
Table 4.1 in Agresti. For binomial and Poisson models, the dispersion parameter is fixed at 1.

GLIMs are fit by solving the set of likelihood equations. This leads to maximum likelihood
estimates of the coefficients of the linear predictor. As the likelihood equations are usually nonlinear in

the coefficients ,B of the linear predictor, the solutions are found iteratively. Iterative Reweighted Least

Squares (IRLS) is the iterative method commonly used to fit GLIMSs (it is used in S-PLUS). It uses Fisher
scoring, which is based on the Newton-Raphson method, which achieves second-order convergence of
the estimates. The difference between the two algorithms lies in the use of the observed information
matrix for Newton-Raphson and the expected information matrix for Fisher scoring (see p. 145-146,
Agresti). For canonical link models, these are the same. Fisher scoring will produce the estimated
asymptotic covariance matrix as a by-product, but it need not have second-order convergence. Plus, the
observed information matrix may be easier to calculate for complex models. The name IRLS comes from
the iterative use of weighted least squares estimation, where the weights and responses (linearized forms
of the link function evaluated at the observed data) change at each iteration. It is explained on p. 147 of
Agresti that IRLS and Fisher scoring are the same thing.

Model deviance is the LR statistic for testing the null hypothesis that the model holds against the
general alternative of a saturated model. It is twice the difference between the saturated log likelihood
and the log likelihood maximized under the restrictions of the model being tested. In certain cases, this
guantity has an asymptotic chi-squared distribution. If the dispersion parameter is not fixed at 1, then
twice the difference between the saturated log likelihood and the restricted log likelihood is equal to the
deviance scaled by the dispersion parameter (hence called the scaled deviance). Model deviance for a
two-way contingency table is equivalent to the likelihood ratio chi-squared statistic. The deviance has an
approximate chi-squared distribution for large Poisson expected values and large binomial sample sizes
per covariate combination. Thus, the model deviance for Bernoulli data (0/1, instead of counts out of a
total) is not asymptotically chi-squared.

One can compare two nested models (i.e., one model is a subset of the other) using the
difference between their deviance values. The deviance for the larger model (more parameters to
estimate) will be smaller. The comparison proceeds by first assuming that the larger model holds and
testing to see if the smaller model is not statistically significantly worse in deviance. The difference in
deviance is then a LRT and has an asymptotic chi-squared null distribution. For binomial or Bernoulli

51

data, the difference in deviance is the same, unlike their respective model deviances. Thus, the chi-
squared approximation holds for both. In general, the use of the chi-squared approximation is much
more reliable for differences of deviances than model deviances themselves (see also, McCullagh and
Nelder, 1989). Model comparison is examined in detail in later chapters. Standardized Pearson and
deviance residuals are additional ways to assess the fit of a model.

When we want to fit a GLIM such as the Poisson loglinear model to a data set, but the observed
variance of the data is greater than that allowed by the Poisson model, we may have a case for fitting an
overdispersed version of the model. If overdispersion is the result of subject heterogeneity, where
subjects within each covariate combination still differ greatly (perhaps because we didn't measure
enough covariates), then a random effects version of the model (e.g., random effects Poisson regression,
random effects logistic regression) may be appropriate. Another alternative is to fit a model with a
random component that allows for a greater variance than the ordinary Poisson or binomial. Some
examples are the negative binomial (for random count data) and the beta-binomial (for counts out of a
total).

A third alternative is to use quasi-likelihood estimation. In quasi-likelihood estimation, we take
advantage of the fact that the likelihood equations for GLIMS depend on the assumed response
distribution only through its mean and variance (which may be a function of the mean). Distributions in
the natural exponential family are characterized by the relationship between the mean and the variance.
Quasi-likelihood estimation is determined by this relationship. Thus, if we wanted to assume that the
variance of a random count was some specified function of its mean, but not equal to it, we could use
guasi-likelihood estimation to estimate the coefficients of the linear predictor.

Generalized Additive Models (GAMs) further generalize GLIMs by replacing the linear predictor
with smooth functions of the predictors (one for each predictor). A commonly used smooth function is the
cubic spline. Each smooth function is assigned a degrees of freedom, which determines how rough the
function will be. The GLIM is the special case of each smooth function being a linear function. GAMs are
fit via penalized maximum likelihood estimation in S-PLUS (Chambers and Hastie, 1992). GAMs have an
advantage over procedures like lowess because they recognize the form of the response variable and
only give predictions within its bounds, which is not true of lowess (although, one can use a lowess
function in a GAM). In general, the advantage of GAMs over GLIMS is that the form of the predictors
does not need to satisfy a particular functional relationship, like linear, logarithmic, etc. Finally, GAMs
may be used in an exploratory sense by determining a parametric function to use for a predictor based on
its fitted smooth function.

B. Generalized Linear Models for Binary Data

Suppose the response is binary, taking one of two possible outcomes. Then, three special cases of the
GLIM use an identity link (linear probability model), a logit link (logistic regression model), and an inverse
normal CDF link (probit regression model). | briefly remind you what these models are, then fit some data
to them using functions in S-PLUS and R.

For a binary response, the regression model
7(x) =+ fx

is called a linear probability model because it purports a linear relationship between the probability of
positive response and the explanatory variables. Although it has a simple interpretation, the linear
probability model has a structural defect in that the predicted probability of positive response can exceed
1 or be less than 0, due to the link function being the identity.

The regression model
(%) = exp(a + fx)
1+ exp(a+ px)

52

is called a logistic regression model. This model corresponds to a binomial GLIM with log odds link (i.e.,

9(7(x)) =log(7(x)/(1-7(x)))).

The regression model
7(x) = ®(a + fx)

for a normal(0, 1) cdf, @, is called a probit regression model. It is a binomial GLIM with link function
O (7 (x)) .

The decision to use each of these link functions can depend on the expected rate of increase of 7(x) as

a function of x or can depend on a comparison of appropriate goodness-of-fit measures (note that
otherwise identical models with different link functions are not nested models).

To illustrate a logit, probit, and linear probability model, Agresti uses Table 4.2 (Snoring and heart
disease, p. 121). The response variable is whether the subject had heart disease. The explanatory
variable is the subject’'s spouse’s report of the level of snoring (never, occasionally, nearly every night,
every night). These levels are changed into scores (0, 2, 4, 5). The levels of snoring are treated as
independent binomial samples.

To fit the three models using iterative reweighted least squares (IRLS), we can use the function gim, with
family="binomial” (for the logit and probit links, at least). However, gim doesn’t have a Newton-
Raphson method or any other type of optimization method. Thus, for more general maximum likelihood
estimation, we might use the function optim (both S-PLUS and R). Conveniently, Venables and Ripley
(2002) wrote a function for maximum likelihood estimation for a binomial logistic regression. We can
make minor changes to fit the linear probability model and the probit regression model.

To set up the data, type,

n<-c (1379, 638, 213, 254)
snoring<-rep(c(0,2,4,5),n)
y<-rep(rep(c(1,0),4),c(24,1355,35,603,21,192,30,224))

To fit a GLIM using maximum likelihood estimation, we use the following function slightly modified from
Venables and Ripley (2002, p. 445). The default optimization method is Nelder-Mead, which is useful in
many cases. Setmethod="BFGs” for a quasi-Newton method.

logitreg <- function(x, y, wt = rep(l, length(y)),
intercept = T, start = rep(0, p), ...)
{

if (lexists("optim")) library (MASS)

fmin <- function(beta, X, y, w) {
P <- plogis(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(l-p)))

}

gmin <- function(beta, X, y, w) {
eta <- X %*% beta; p <- plogis(eta)
t(-2 * (w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X

if(is.null(dim(x))) dim(x) <- c(length(x), 1)

dn <- dimnames (x) [[2]]

if(!length(dn)) dn <- paste("Var", l:ncol(x), sep="")

P <- ncol(x) + intercept

if (intercept) {x <- cbind(l, x); dn <- c("(Intercept)", dn)}
if (is.factor(y)) y <- (unclass(y) != 1)

fit <- optim(start, fmin, gmin, X = x, y =y, w = wt, ...)
names (fit$par) <- dn

cat ("\nCoefficients:\n"); print(fit$par)

53

cat ("\nResidual Deviance:", format (fit$value), "\n")
cat ("\nConvergence message:", fit$convergence, "\n")
invisible (fit)

}

The function is written for binomial logistic regression, but is easily modified for probit regression and
linear probability regression.

Thus, to fit a linear probability model, we change the functions fmin and gmin within 1ogitreg to read

fmin <- function(beta, X, y, w) {
P <- X %*% beta
-sum(2 * w * ifelse(y, log(p), log(l-p)))
}
gmin <- function(beta, X, y, w) {
P <- X %*% beta;
t(-2 * (w * ifelse(y, 1/p, -1/(1-p))))%*% X

These are the objective function and gradient function, respectively. For probit regression, we change
fmin and gmin to read

fmin <- function(beta, X, y, w) {
P <- pnorm(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(l-p)))
}
gmin <- function(beta, X, y, w) {
eta <- X %*% beta; p <- pnorm(eta)
t(-2 * (w *dnorm(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X

}

So, the respective fits are obtained with:

(logit.fit<-logitreg(x=snoring, y=y, hessian=T, method="BFGS"))

Coefficients:
(Intercept) Varl
-3.866245 0.397335

Residual Deviance: 837.7316

Convergence message: 0

(lpm.fit<-lpmreg (x=snoring, y=y, start=c(.05,.05), hessian=T, method="BFGS"))

Coefficients:
1: NAs generated in: log(x
2: NAs generated in: log(x
3: NAs generated in: log(x
(Intercept) Varl
0.01724645 0.01977784

)
)
)

Residual Deviance: 834.9919

Convergence message: 0

(probit.fit<-probitreg(x=snoring, y=y, start=c(-3.87,.40)))

Coefficients:
(Intercept) Varl
-2.06055 0.1877702

Residual Deviance: 836.7943

Convergence message: 0

The warnings given with the linear probability model are somewhat expected, as the probability can be
less than 0 or greater than 1. Also, note that we cannot use the default starting values.

Approximate standard errors for the two parameter estimates can be obtained using the inverse of the
observed information matrix.

sqgrt (diag(solve(logit.fit$hessian)))
[1] 0.11753115 0.03536285

sqgrt (diag(solve (lpm.fit$hessian)))
[1] 0.002426329 0.001976457

sqgrt (diag(solve (probit.fit$hessian)))
[1] 0.04981505 0.01670894

We can obtain fitted probabilities for all three link functions.

eta<-cbind (1, snoring) %*%logit.fit$par
logit.probs<- (exp (eta)/ (1l+exp(eta)))

eta<-cbind (1, snoring) %$*%1lpm.fit$par
lpm.probs<- (eta)

eta<-cbind (1, snoring) %*%logit.fit$par
probit.probs<- (pnorm(eta))

res<-cbind(logit=unique (logit.probs), lpm=unique (lpm.probs),
probit=unique (probit.probs))

dimnames (res) [[1]]<-unique (snoring)

R: dimnames (res)<-1list (unique (snoring) ,NULL)

res

logit lpm probit
0 0.02050626 0.01724271 0.00005524827
2 0.04428670 0.05683766 0.00106395563
4 0.09302543 0.09643260 0.01138590189
5 0.13239167 0.11623008 0.03005570088

To plot the predicted probabilities, use the following commands:

snoring.plot<-unique (snoring)

plot (snoring,logit.probs, type="n",xlim=c(0,5) ,ylim=c(-.005,.20) ,xlab="Level of
Snoring",
ylab="Predicted Probability", bty="L")

lines (snoring.plot,unique (logit.probs) , type="b",pch=16)

lines (snoring.plot,unique (probit.probs), type="b",pch=17)

lines (snoring.plot,unique (1lpm.probs), type="1",1lty=1)

key (x=.5,y=.18, text=1list (c ("Logistic", "Probit", "Linear")),

lines=1list(type=c("b","b","1")),1lty=c(1,1,1),pch=c(16,17,1),divide=3,border=T)

R: legend(x=.05,y=.18,legend=c("Logistic", "Probit","Linear"), lty=c(1,1,1),
pch=c(16,17,-1), cex=.85, text.width=1, adj=-.5)

55

Predicted Probability
0.
!

0.05
!

0.00
|

T T T T T T
0 1 2 3 4 5

Level of Snoring
Estimation with IRLS

If you were wondering what estimates and standard errors IRLS would give, you can fit all three of the
above models using the gim function, which is described in more detail in the next section. For example,
to fit the binomial with logit link using IRLS, type

snoring<-c(0,2,4,5)

logit.irls<-glm(cbind(yes=c(24,35,21,30), no=c(1355,603,192,224)) ~snoring,
family=binomial (link=1logit))

summary (logit.irls) $coefficients

Coefficients:
Value Std. Error t value
(Intercept) -3.8662481 0.16620356 -23.262125
snoring 0.3973366 0.05000865 7.945358

The difference in the standard errors as compared with the ML fit above (for the logit link) has to do with
the fact that the hessian is numerically differentiated in the first fit.

Similarly, the probit regression model is fit using

probit.irls<-glm(cbind(yes=c(24,35,21,30), no=c(1355,603,192,224)) ~snoring,
family=binomial (link=probit))

summary (probit.irls) $coefficients

Value Std. Error t value
(Intercept) -2.0605515 0.07016609 -29.366769
snoring 0.1877704 0.02348045 7.996883

Fitting the linear probability model using IRLS and gim requires using the quasi family with identity link
(and variance function implicitly set to constant). Specifying the quasi family uses a quasi-likelihood
instead of a binomial likelihood (for example). The score equations for both the
binomial (link=identity) and quasi (link=identity) estimations are the same. Thus, the estimates
will be the same, without having to specify a distribution for the response. Quasi-likelihood is discussed in
Section 4.7 of Agresti.

56

Notice also that, in the formula, we use the proportions for each category as the response, plus we add
the weights argument, which is the total number in each category.

prop<-c(24/1379, 35/638, 21/213, 30/254)
lpm.irls<-glm(prop~snoring, weights=c(1379,638,213,254),family=quasi(link=identity))

summary (lpm.irls) $coefficients
Value Std. Error t value
(Intercept) 0.01687233 0.0011341069 14.87719
snoring 0.02003800 0.0005094491 39.33269

All of the IRLS estimates are similar to the MLES.

C. Generalized Linear Models for Count Data

The Poisson distribution is frequently used for modeling responses that are counts. A Poisson loglinear
GLIM assumes a Poisson distribution for the response and the log function for the link function. So, the
linear predictor is related to the mean as

1 =exp(Xp) (4.1)
Thus, explanatory variables are modeled to have multiplicative impacts on the mean response.

Agresti uses the Horseshoe Crab data to fit a Poisson generalized linear model. Each female crab in the
data set had a male crab resident in her nest. The response variable measured was the number of
additional males (satellites) residing nearby each female. Explanatory variables were the female crab’s
color, spine condition, weight and carapace width. Width is the only explanatory variable used to fit the
Poisson model in this section. This data set is available on Agresti's text book web site. | copied it into a
text file, which | called crab. ssc.

First, however, we can reproduce Figures 4.3 and 4.4 on pages 128 and 129 of Agresti. Figure 4.3 plots
the number of satellites by carapace width, with numbered symbols indicating the number of observations
at each point. We first read in the data set. Then, to plot the numbered symbols, we first aggregate the
response and explanatory variables by unique pairs, then sum the number of observations with those
pairs. These sums are what appear as the symbols. | explain each step below.

First | read in the data

table.4.3<-read.table("crab.ssc", col.names=c("C","S","W","Sa","Wt"))

Now | get the number of observations using aggregate. The new data frame called plot.table.4.3
contains sa (humber of satellites), w (width), and the number of observations at that Sa, W combination.

plot.table.4.3<-aggregate(rep(1l,nrow(table.4.3)), list(Sa=table.4.3%Sa,
W=table.4.3$W), sum)

As aggregate Will change sa and w to factors, we must convert them back to numeric.

plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("Sa"),
column. type = "double")

#faster: plot.table.4.33$Sa<-as.numeric (levels (plot.table.4.335Sa)) [plot.table.4.33Sa]

R: plot.table.4.3$%$Sa<-as.numeric (as.vector(plot.table.4.3$Sa))

plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("w"),
column.type = "double")

R: plot.table.4.33%W<-as.numeric (as.vector(plot.table.4.33W))

Now, | plot figure 4.3 (plot not shown)

57

plot (y=plot.table.4.3$Sa,x=plot.table.4.3%W,xlab="Width (cm)",
ylab="Number of Satellites", bty="L", axes=F, type="n")

axis (2, at=1:15)

axis (1, at=seq(20,34,2))

text (y=plot.table.4.3$Sa,x=plot.table.4.3%$W,labels=plot.table.4.3%$x)

It is probably possible to do the above using table instead of aggregate.

Figure 4.4 plots the mean number of satellites for the mean width of eight width categories created from
the w variable. In addition, a fitted smooth from the result of a generalized additive model (GAM) fit to
these data is superimposed. Generalized additive models (as extensions to GLIMs) are discussed briefly
in Section 4.8 in Agresti, and in the corresponding section of this manual.

In the following code, first | cut the w variable into categories, then use aggregate again to get means of
sa and of w by the categories. Then, the points are plotted.

table.4.3$W.fac<-cut(table.4.3$W, breaks=c(0,seq(23.25, 29.25),Inf))
plot.y<-aggregate(table.4.3$Sa, by=1list (W=table.4.3$W.fac), mean) $x
plot.x<-aggregate(table.4.33$W, by=list(W=table.4.3$W.fac), mean) $x

plot (x=plot.x, y=plot.y, ylab="Number of Satellites", xlab="Width (cm)",bty="L",
axes=F, type="p", pch=16)

axis (2, at=0:5)

axis (1, at=seq(20,34,2))

Next, | use gam in S-PLUS (and gam from package mgcv in R) to fit the GAM using a Poisson distribution
with log link. The smooth that is used for the width means allows for five degrees of freedom (default was
three). This smooth is distinctly different from the smooth in Figure 4.4 in Agresti, as it falls between the
points and not directly below it.

res<-gam(plot.y~s(plot.x, df=5), family=poisson(link=log))

R: library(mgcv)

res<- gam(plot.y~s(plot.x, k=4, fx=TRUE), family=poisson(link=log))
lines (x=plot.x,y=res$fitted.values)

Number of Satellites

T T T T
24 26 28 30

Width (cm)

If we set d£=1 or 1.5 in s, we get a smooth that curves slightly upward at both ends.

58

To see exactly what the smoothed term in width in the gam call represents, we can plot (mean) width by
the smoothed term. The se=T argument adds plus and minus two pointwise standard deviations as
dashed lines to the plot.

plot.gam(res, se=T)

s(plot.x, df = 5)

24 26 28 30
plot.x

The smoothed term does not deviate too much from linearity, and Figure 4.4 shows a linear trend relating
the mean number of satellites to width. Agresti fits Poisson GLIMs with both log and identity links to the
data.

We will use IRLS and g1m to fit the Poisson models. For non-canonical links (e.g., identity), the estimates
may differ slightly from Agresti’s. A Poisson loglinear model is fit using

log.fit<-glm(Sa~W, family=poisson(link=log), data=table.4.3)
summary (log.£fit)

Call: glm(formula = Sa ~ W, family = poisson(link = log), data = table.4.3)
Deviance Residuals:
Min 10 Median 30 Max
-2.852632 -1.988425 -0.4933188 1.09697 4.922148

Coefficients:
Value Std. Error t value
(Intercept) -3.3047572 0.54222774 -6.094777
W 0.1640451 0.01996492 8.216665
(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 632.7917 on 172 degrees of freedom

Residual Deviance: 567.8786 on 171 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:
(Intercept)
W -0.996627

59

I've given the output from a call to summary (in S-PLUS), which summarizes model fitting by giving
coefficient estimates, their approximate SEs, residual deviance, and a summary of deviance residuals.
The dispersion parameter by default is set to 1 (we will change that later). The correlation between the
coefficient estimates is quite high (almost perfectly negative). This can be reduced by using the mean
deviation in width instead of width in the model. The null deviance is the deviance value (p. 119, Agresti)
for a model with only an intercept. The residual deviance is the deviance value for a model with both an
intercept and width. The reduction in deviance is a test of the width coefficient. That is

log.fit$null.deviance-log.fit$deviance
[1] 64.91309

is the LR statistic for testing the significance of the Width variable in the model. Compared to a chi-
squared distribution with 1 degree of freedom, the p-value of this test is quite low, rejecting the null
hypothesis of a zero-valued coefficient on width. We can get similar information from the Wald test given
by the t-value next to the coefficient estimate (z-value in R version). However, the LRT is usually
considered more reliable (see Agresti, and also Lloyd 1999).

The summary result for any gim.ocbject in S-PLUS has the following attributes that can be extracted:

attributes (summary (log.£fit)) # S-PLUS

Snames:
[1] "call" "terms" "coefficients" "dispersion" ndfn "deviance.resid"
[7] "cov.unscaled" "correlation" "deviance" "null.deviance" "iter" "nas"
[13] "na.action"
Sclass:
[1] "summary.glm"

The same summary call in R has a few additional components, notably AIC.

attributes (summary (log.fit)) # R

Snames
[1] "call" "terms" "family™" "deviance"
[5] "aic" "contrasts" "df .residual™" "null.deviance"
[9] "df.null" "iter" "deviance.resid" "aic"

[13] "coefficients™" "dispersion" "dfn "cov.unscaled"

[17] "cov.scaled"

As an example, to extract the estimated coefficients, along with their standard errors, type:
summary (log.fit) $coefficients
Value Std. Error t value

(Intercept) -3.3047572 0.54222774 -6.094777
W 0.1640451 0.0199649592 8.216665

Thus, the fitted model is
log it =—3.305+0.164 x (4.2)

The glm.object itself has the following components. It “inherits” all the attributes of 1m.objects

attributes(log.fit) # S-PLUS (R has quite a few more)

Snames:
[1] "coefficients" "residuals" "fitted.valuesg" "effectg" "R"
[6] "rank" "assign" "df .residual" "weights" "family™"
[11] "linear.predictors" "deviance" "null.deviance" "call™" "iter"
[16] "y" "contrasts" "terms" "formula" "control"
Sclass:

[l] llglmll lllmll

60

For example, the fitted response values (expected values) at each of the width values in the model can
be obtained by extracting the fitted.values.

log.fit$fitted.values

The same answer can be obtained by the call fitted(log.£fit). The functions, fitted, resid,
coef are shortened versions to extract fitted values, residuals, and coefficients, respectively, from glm
objects.

Using the predict method for glm, we can get the fitted response value for any width value we input.
For example, the expected number of satellites at a width of 26.3 is

predict.glm(log.fit, type="response", newdata=data.frame (W=26.3))

[1] 2.744581

Agresti also fits a Poisson model with identity link to the Horseshoe Crab data. This is fit in S-PLUS using

id.fit<-glm(Sa~W, family=poisson(link=identity),data=table.4.3, start=predict(log.fit,
type="1link")) # S-PLUS

summary (id.fit) $coefficients

Coefficients:
Value Std. Error t value
(Intercept) -11.4051613 0.99511013 -11.46121
W 0.5446717 0.04056604 13.42679

Because of convergence problems with the identity link, we give the initial estimate of the log of the mean
vector i as the estimated linear predictor vector 77 from the log link fit, instead of using the (log of the)

data values, which is the default (see bottom of p.147 of Agresti). In R, use the estimated coefficients
themselves. Thus,

R
id.fit<-glm(Sa~W, family=poisson(link=identity),data=table.4.3, start=coef(log.fit))

The fitted model is then
,[z =-11.41+ 0.55x 4.3)

Thus, carapace width has an additive impact on mean number of satellites instead of multiplicative, as
with the log link. The additive effect is 0.55 (about half a satellite) per 1 cm increase in width. A
comparison of the two models’ predictions is in Figure 4.5 in Agresti, which is reproduced below. | use
the guicreate function (in S-PLUS only) to make the Greek letter mu. (In R, there is a flexible package
called plotmath (in the “base” environment) that can be used to create mathematical notation. See
below and help(plotmath)). | also use the arrows command to make arrows. This function is
somewhat different in S-PLUS and R (most notably the coordinate arguments!).

plot (x=plot.x, y=plot.y, ylab="", xlab="Width (cm)",bty="L",axes=F, type="p", pch=16) # S-PLUS
R: plot(x=plot.x, y=plot.y, ylab=expression(paste("Mean number of satellites,",
{mu})), xlab="Width (cm)",bty="L", axes=F, type="p", pch=16)
axis (2, at=0:5)
axis(l, at=seq(20,34,2))

make y-axis title (Only needed in S-PLUS. See plot call for R above.)
guiCreate("CommentDate", Name = "GSD2$1",

Title = "Mean Number of Satellites, \\\"Symbol\"m",

FillColor = "Transparent", FontSize="16")

61

guiModify("CommentDate", Name = "GSD2$1",
xPosition = "0.542857",
yPosition = "3.52967", Angle = "90")

make arrows and text

ind<-order (table.4.33W)

lines (x=table.4.3$W[ind] ,y=log.fit$fitted.values[ind])

lines (x=table.4.3$W[ind] ,y=id.fit$fitted.values[ind])

arrows (x1=23.5,y1=2.9,x2=23.5,y2=predict(log.fit,newdata=data.frame (W=23.5),
type="response"), open=T, size=.3)

R: arrows(x0=23.5,y0=2.9,x1=23.5,yl=predict (log.fit,newdata=data.frame (W=23.5),
type="response"), length=.2)

text (x=23.5,y=3,"Log Link")

arrows (x1=29.75,y1=3.1,%x2=29.75,y2=predict (id.fit,newdata=data.frame (W=29.75),
type="response"), open=T, size=.3)

R: arrows(x0=29.75,y0=3.1,x1=29.75,yl=predict (id.fit,newdata=data.frame (W=29.75),
type="response"), length=.2)

text (x=29.75,y=2.9,"Identity Link")

5 /
3
7
2
T 4
5
%]
i)
3
£
Z 3 Log Link Lo
c Identity Link
I
3]
=
2 -
1
T T T T
24 26 28 30

Width (cm)

Using the R version of summary.glm (or the extractaIc function in Mass library in S-PLUS), we can
compare the AICs of these two link functions. The returned AIC assumes that the dispersion parameter
is known; so there is a caveat in using it when the dispersion parameter is actually estimated (see next
section).

summary.glm(log.£fit) $aic # R
[1] 927.1762

summary.glm(id.£fit) $aic# R
[1] 917.014

A lower AIC implies a better model fit. A comparison of residuals from each of the models may also be
helpful.

D. Overdispersion in Poisson Generalized Linear Models

62

If we examine Table 4.4 (p. 129 in Agresti) of the sample mean and variance of the number of satellites
per Width category, we see that the variance exceeds the mean in all cases. A Poisson model postulates
that for each Width, the variance and mean of the number of satellites is the same. Thus, we have
evidence of overdispersion, where the “ordinary” Poisson model is not correct. Incidentally, the function
tapply (Or by) can be used to get the sample means and variances:

tapply(table.4.3$Sa, table.4.3$W.fac, function(x) c(mean=mean(x), variance=var(x)))
by(table.4.3$Sa, table.4.3sW.fac, function(x) c(mean=mean(x), variance=var (x)))

The general density for the random component of a GLIM has an unspecified dispersion parameter that is
related to the scale of the density. This density is given in equation (4.14) in Agresti (2002). For
example, with a Gaussian random component, the dispersion parameter is the variance. For a binomial
or Poisson random component, the dispersion is fixed at 1, so we have not needed to deal with it yet.
However, if we believe that the mean response is like a Poisson mean, but the variance is proportional to
the Poisson mean (with proportionality constant the dispersion parameter), then we can leave the
dispersion parameter unspecified and estimate it along with the mean parameter. In this case, we no
longer have a Poisson distribution as our random component. Plus, the estimate of the dispersion
parameter must be used in standard error and deviance calculations. The general form of the scaled
deviance is given in equation (4.30) in Agresti.

If the actual Poisson means (i.e., per Width value) are large enough (or, in the case of binomial data, the
sample sizes at each covariate condition are large enough), then a simple way to detect overdispersion is
to compare the residual deviance with the residual df, which will be equal in the asymptotic sense just
mentioned. These two quantities are quite disparate for both link models. So, we decide to estimate the
dispersion parameter instead of leaving it fixed at 1. We can do this in S-PLUS using a dispersion=0
argument to summary.glm. In R, we must use the quasipoisson family first. (This makes sense after the
discussion of quasi-likelihood).

summary.glm(log.£fit, dispersion=0) $dispersion # S-PLUS

Poisson
3.181952

R
log.fit.over<-glm(Sa~W, family=quasipoisson(link=1log),data=table.4.3)
summary.glm(log.fit.over) $dispersion

[1] 3.181786

The estimate of the dispersion parameter is the sum of the squared Pearson residuals divided by the
residual degrees of freedom. The rationale for this is given on p. 150 in Agresti, and is based on moment
estimation. From the estimate given, the variance of our random component (the number of satellites for
each Width) is roughly three times the size of the mean.

Other estimates returned by summary.glm are adjusted using the dispersion estimate. For example, the
standard errors are multiplied by it. Compare the following in S-PLUS:

res<-summary.glm(log.fit)
sqgrt (diag(res$cov.unscaled) * summary.glm(log.fit, dispersion = 0)$dispersion) # see
also vcov.glm from MASS

[1] 0.96722735 0.03561348
summary.glm(log.fit, dispersion = 0)$coefficients
Value Std. Error t value

(Intercept) -3.3047572 0.96722735 -3.416733
W 0.1640451 0.03561348 4.606263

63

The usual deviance must be divided by the dispersion estimate to get the scaled deviance used in F-tests
for model comparison (see Venables and Ripley, 2002). An anova method is available for gim objects
that does these tests provided argument test="F~ is supplied. anova.glm will print the F-test that uses
the dispersion estimate from the larger model. Thus, if we wanted to compare the null model (with g =1
parameters) to 1og.fit (with p = 2) using the F-test (in Agresti’s notation)

r_(DGis)-Dlyiw))
(p-a)¢

(4.4)

we would do

null.fit<-glm(Sa~1, family=poisson(link=log),h data=table.4.3)
anova.glm(null.fit, log.fit,test="F") # S-PLUS
R: anova.glm(null.fit, log.fit.over, test="F")

Analysis of Deviance Table

Response: Sa

Terms Resid. Df Resid. Dev Test Df Deviance F Value Pr (F)
1 1 172 632.7917
2 W 171 567.8786 1 64.91309 20.4004 0.00001166917

Note that this is the correct F value because

(deviance (null.fit) -deviance (log.fit)) /summary.glm(log.fit, dispersion=0)$dispersion
R (deviance(null.fit)-deviance (log.fit))/summary.glm(log.fit.over) $dispersion
[1] 20.4004

Because the estimate of dispersion is based on a chi-squared statistic that has an approximate chi-
squared distribution (see p. 150 in Agresti), it is a good idea to meet the assumptions for this
approximation in terms of number of cases per unique covariate combination. Thus, Agresti uses the
satellite totals and fit for all female crabs at a given width to increase the counts and fitted values.

In S-PLUS or R, the chi-squared statistic is

Sa<-tapply(table.4.3$Sa, table.4.3$W, sum)

mu<-tapply (predict (log.fit, type="response"), table.4.3$W, sum)
(chi.squared<-sum(((Sa-mu) *2) /mu))

[1] 174.2737

with estimated dispersion parameter

chi.squared/64
[1] 2.723027

From the revised estimate, the variance of our random component (the number of satellites for each
Width) is a little less than three times the size of the mean. As a Poisson random component assumes
that the variance and mean are equal, an ordinary Poisson random component is probably not a good
model choice. In Chapter 12, Agresti discusses adding random effects to GLIMs, which can help account
for overdispersion. Another possibility is to fit a GLIM with negative binomial random component, as
described below. The negative binomial does not assume the variance and mean are equal.

E. Negative Binomial GLIMs

For count data, a negative binomial random component has a second parameter in additional to the
mean, called the dispersion parameter. The variance of the random component is a function of both the

64

mean and dispersion parameter. The pdf of the negative binomial is given in equation (4.12) of Agresti,
with
E(Y)=u and var(Y) = u+ u?/k

where k is the (positive) dispersion parameter. The smaller the dispersion parameter, the larger the
variance as compared to the mean. But, with growing dispersion parameter, the variance converges to
the mean, and the random quantity converges to the Poisson distribution. Actually, negative binomial is
the distribution of a Poisson count with gamma-distributed rate parameter (see Section 13.4 in Agresti).

There are several methods for going about fitting a negative binomial GLIM in S-PLUS and R. If the
dispersion parameter is known, then the MASS library has a negative.binomial family function to use
with glm. For example, to fit a negative binomial GLIM to the Horseshoe Crab data, where the dispersion
parameter (called theta in the function) is fixed to be 1.0, we can use

library (MASS)
glm(Sa~W, family=negative.binomial (theta=1.0,link="identity"),data=table.4.3,
start=predict(log.fit, type="link")) # for R use start=coef (log.fit)

Call:
glm(formula = Sa ~ W, family = negative.binomial (theta = 1, link = "identity"), data =
table.4.3, start = predict(log.fit, type = "link"))
Coefficients:
(Intercept) W

-11.62843 0.5537723

173 Total; 171 Residual

202.8936

Degrees of Freedom:
Residual Deviance:

A simpler version of negative.binomial (called neg.bin, with only the log link) is also available from
MASS, as well as a function called glm.nb. The function glm.nb allows one to estimate theta using
maximum likelihood estimation. The output is similar to that of g1m and has a summary method.

library (MASS)

nb.fit<-glm.nb(Sa ~ W, data = table.4.3,
start=predict(id.£fit, type="1link"))

summary (nb.fit)

init.theta=1.0, link=identity,
for R use start=coef (id.fit)

Call: glm.nb(formula = Sa ~ W, data = table.4.3, start = predict(id.fit, type =
"link"), init.theta = 0.931699963253856, link = identity)
Deviance Residuals:
Min 10 Median 3Q Max
-1.78968 -1.409158 -0.2558914 0.4522508 2.106918
Coefficients:
Value Std. Error t value
(Intercept) -11.6329804 1.08204466 -10.75092
W 0.5539562 0.05135274 10.78728

(Dispersion Parameter for Negative
Null Deviance: 216.5127 on 172

Residual Deviance: 195.5161 on 171

Binomial family taken to be 1)
degrees of freedom

degrees of freedom

Number of Fisher Scoring Iterations: 1

Correlation of Coefficients:
(Intercept)
W -0.9996673

65

Theta: 0.932
Std. Err.: 0.168

2 x log-likelihood: -747.929

The coefficient estimates are slightly different that those obtained by Agresti (p. 131).

LRTs are also available for comparing nested negative binomial GLIMs (via the anova method).
However, as theta must be held constant between the two models being compared, one must first
convert the glm.nb object to a glm object, which will fix theta if the model is then update'd. The
conversion is done using the glm. convert function.

To use custom GLIMs, one must create a family. The function make . family can be used to make a new
glm family. You must specify the name of the family, the link functions allowed for it (e.g., logit, log,
cloglog) and their derivatives, inverses, and initialization expressions (used to initialize the linear
predictor for Fisher scoring), and the variance and deviance functions.

For example, in the function listing for negative.binomial, you can see where the links and variances
lists are defined and where the function make.family is used. The reason why the link functions are not
actually typed out in function form is because all the links already appear in other gim families in S-PLUS.
Their information is stored in the matrix glm.links. negative.binomial accesses the appropriate link
function using glm.links [, 1ink].

Beta-binomial regression models can be fit using gnir in library gnim for R.

F. Residuals for GLIMs

To demonstrate how to obtain the residuals in Agresti's Section 4.5.5, | use the Horseshoe Crab data fit.
For example, the Pearson and deviance residuals are obtained from

resid(log.fit, type="deviance")
pear.res<-resid(log.fit, type="pearson")

The standardized Pearson residuals are obtained by dividing the output from resid by a function of the
hat diagonal values, obtained from the 1m. inf1luence function.

pear.std<-resid(log.fit, type="pearson")/sqgrt(l-1lm.influence(log.fit)$hat) # both S-
PLUS and R

However, as most of the hat diagonals are very small, there is really no difference between the two sets
of residuals, as the following graph shows.

par (mfrow=c(2,2))

plot (pear.res, xlab="observation",ylab="Pearson Residuals")

abline (h=0)

plot (pear.std, xlab="observation",ylab="Standardized Pearson Residuals")
abline (h=0)

Pearson Residuals

o
° o
o
o
° o o °
o P °
o ° oo 080 8
o o o
o&b%% oo% o %
o o
° 2 o © o 5 .o
) o

g0 00000t L0+

& %o o a® ©
| W © utgaRonoBngg

0

50

100

150

Standardized Pearson Residuals

observation

Issuing the command plot (log.£fit) may also be useful:

par (mfrow=c(1,2))
old.par<-par (pty="s")
par (PtY: ngm)
plot(log.fit)

par (old.par)

save old pty settings
change pty par setting

change back to old pty

Residuals vs Fitted

150
— 1490 560 .
< o %
OOO o (o] [}
o 000 00 o© ;
S O %Qo) 2 9 Q
o (boo OQD ©
0 o %0 o0 =S
& © o @y aD o
%o o % “@ o U
© () ®@ O o
O o @ o n
o~ O%""’%Q:: ° ?

Predicted values

to “g”

settings

observation

Normal Q-Q plot

Theoretical Quantiles

66

67

Scale-Location plot Cook's distance plot
150 —]
- 2 1490 560 2 | 115
G © o
o Q -
3 3- g3
8 T o
é o % u 5 149
. 0 _| 3 81
g ° S 87
N s il
| S T e
S 3
| | | | © T | | |
05 10 15 20 0 50 100 150
Predicted values Obs. number

G. Quasi-Likelihood and GLIMs

Quasi-likelihood estimation assumes only a mean-variance relationship rather than a complete
distribution for the response variable. However, many times the relationship specified determines a
particular distribution. This is because distributions in the natural exponential family are characterized by
the relationship between the mean and the variance function. Thus, using the R function quasipoisson
with 1og link (and constant variance) gives the same estimates as using the Poisson family with log link
because the Poisson is a distribution in the natural exponential family. The reason the estimates are the
same is because the estimating equations used for quasi-likelihood estimation are the same as the
likelihood equations in the case of a specified distribution with that mean and variance relationship.

In general then, quasi-likelihood estimates (QLES) are not MLEs, but in some cases where we are
assuming a particular distribution, but with a magnified variance (e.g., when the dispersion parameter
multiplies the variance), the point estimates will be identical because the dispersion parameter drops out
of the estimating equations.

Agresti uses data from a teratology experiment to illustrate overdispersion and the use of quasi-likelihood
estimation. Rats in 58 litters were on iron-deficient diets and given one of four treatments (groups 1-4).
The rats were made pregnant and killed after three weeks. The number of dead fetuses out of the total
litter size is the response variable. (The data set is available on Agresti's CDA website). | copied the data
into a text file called teratology.ssc. Itisthen read into S-PLUS/R by

table.4.5<-read.table("teratology.ssc",
col.names=c("","group","litter.size", "num.dead")) [, -1]
table.4.5%group<-as.factor(table.4.5%$group)

| changed the group column to be treated as a factor instead of numeric.

The response is assumed binomially distributed. Initially, the probability of death is assumed to differ only
across treatment groups, but is identical for all litters within a treatment group. This model can be fit via
maximum likelihood in S-PLUS/R using glm by removing the intercept term in the model formula. In this
way, we get an identity link

fitl<-glm(num.dead/litter.size~group-1, weights=1litter.size, data=table.4.5,
family=binomial)

68

The MLEs of the probabilities are then

(pred<-unique (round (predict (£itl, type="response"),3)))
[1] 0.758 0.102 0.034 0.048

with SEs

(SE<-sqgrt (pred* (1-pred) /tapply(table.4.5$litter.size, table.4.5%group, sum)))
1 2 3 4
0.02368473 0.02786104 0.02379655 0.0209615

Pearson’s chi-squared statistic gives

(chi.squared<-sum(resid(fitl, type = "pearson") "2))
[1] 154.7069

which compared to the residual degrees of freedom (58 — 4) = 54 is quite large. This may indicate
overdispersion, although the fitted counts (I’](g)fzg 's) are not all that large. To adjust for possible

overdispersion, Agresti uses the square root of the estimate of the dispersion parameter to multiply the
SEs.

SE*sqrt (chi.squared/54)
1 2 3 4
0.04008367 0.04715159 0.04027292 0.03547493

We could have found the same estimates using quasi-likelihood estimation. In particular, the following
gives the probability estimates as the coefficient estimates. | used a quasi family with identity link and
with variance related to the mean, mu, as mu(1-mu). Because | used an identity link, | first get starting
values from a previous fit (fit1).

glm(num.dead/litter.size~group-1l, weights=litter.size, data=table.4.5,
family=quasi (link=identity, variance="mu(l-mu)"),
start=predict (fitl, type="response"))
R: glm(num.dead/litter.size~group-1, weights=litter.size, data=table.4.5,
family=quasi (link=identity, wvariance="mu(l-mu)"), start=unique (predict (fitl,
type="response”)))

Coefficients:
groupl groupz2 group3 group4
0.7584098 0.1016949 0.03448276 0.04807692

Degrees of Freedom: 58 Total; 54 Residual
Residual Deviance: 173.4532

For R, we need to specify starting values in the range from 0 to 1, as the coefficients will be probabilities.
Thus, | take the (unique set of) predicted probabilities from £it1 to use as starting values.

H. Generalized Additive Models (GAMS)

As the name implies, GAMs generalize additive models in the same way that GLIMs generalize linear
models. GAMs extend GLIMs by allowing the predictors to enter the model in flexible ways, via a smooth
function that is not necessarily linear or some other simple transformation like logarithmic. Thus, the link
function of the mean response is

9(u) =25, (%) (45)

69

where the § are smooth functions of the predictors. When the s are linear, the GAM becomes a GLIM.

The functions § are fit using scatterplot smoothers. One example of a scatterplot smoother is locally
weighted least squares regression (lowess). Another example is a smoothing spline. A common function
for the § is a restricted cubic spline. A cubic spline in a predictor variable is a piecewise cubic polynomial
representation of the predictor, where the pieces are determined by “knot” locations placed over the
range of the predictor variable. The restriction occurs by forcing the resulting piecewise curve to have
vanishing second derivatives at the boundaries. Then the number of degrees of freedom for each original
predictor variable is equal to the number of knots minus 1. The more degrees of freedom allotted to a
predictor variable, the more complex the relationship between the predictor and the response.

A Fisher scoring-type outer loop (to update the working responses) with a backfitting inner loop (to
update the smooth functions) can be used to find the estimates of the 5 (see Chambers and Hastie,
1992, p. 300ff). When we assume that the 5 in a GAM are polynomial smoothing splines (like the cubic
splines above), then the algorithm corresponds to penalized maximum likelihood estimation, where the
penalty is for roughness of the 5 (Green and Silverman, 1994).

The function gam in S-PLUS can be used to fit GAMs. If the functions are restricted to be smoothing
splines (denoted by s in the gam formula) then gam uses a basis function algorithm, with a basis of cubic
B-splines, to find the smooth functions (see Green and Silverman, 1994, p. 44ff). The number of knots
covering the range of the predictor values is chosen by default to be the number of unique data points (if
these are less than 50), and otherwise “a suitable fine grid of knots is chosen”. The smoothing parameter
used in the penalized least squares estimation to find the basis function representation of the smooth
functions can be specified by the user or determined via generalized cross-validation (see Green and
Silverman, 1994, p. 35). Equivalently, the number of degrees of freedom for a smooth function can be
specified.

The function gam in S-PLUS “inherits” a lot of functionality from gim and 1m. But, the output is more
graphical because the fitted smooth functions usually must be graphed to interpret the model (Chambers
and Hastie, 1992).

Horseshoe Crab Data — Bernoulli response

Agresti fits a GAM to the binary response of whether a female crab has at least one satellite, using a
logit link and the width of carapace as a predictor. We fit a GAM using gam in S-PLUS and R, with 3
degrees of freedom for width. Then, we plot the fitted smooth function.

First, | get the binary response and the number of observations at each data point.

table.4.3$Sa.bin<-ifelse(table.4.3$Sa>0,1,0)

plot.table.4.3<-aggregate(table.4.3%Sa,
by=1list(Sa.bin=table.4.3$Sa.bin,W=table.4.3%$W), length)

plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec =
list("Sa.bin"), column.type = "double")

R: plot.table.4.33Sa.bin<-as.numeric (as.vector(plot.table.4.3$Sa.bin))

plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("w"),
column.type = "double")

R: plot.table.4.33W<-as.numeric (as.vector(plot.table.4.33W))

Plot the number of observations.

old.par<-par (pty="s") # save previous pty setting (use par(old.par) later to reset
previous setting)

par (pty="s") # change pty par setting to “s”

plot (y=table.4.3$Sa.bin,x=table.4.33%W,xlab="Width, x (cm)",

ylab="Probability of presence of satellites", axes=F, type="n")

R: plot(y=table.4.3$Sa.bin,x=table.4.3SW,xlab=expression (paste ("Width, ", italic(x),
"(cm) ")), ylab="Probability of presence of satellites", axes=F, type="n")

axis (2, at=c(0,1))

axis (1, at=seq(20,34,2))

text (y=plot.table.4.3$Sa.bin,x=plot.table.4.3$W,labels=plot.table.4.3%$x, cex=.5)

guiModify("XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle",

70

~o~

Title = "Width, “x~ (em)") # S-PLUS only (GSD2 is the name of the graphsheet.
Substitute the name of your graphsheet in place of it, if GSD2 is not it)

Fit the GAM and plot the fit.

res<-gam(Sa.bin~s (W, df=3), family=binomial (link=logit), x=T, data=plot.table.4.3)

R: library(mgcv)

R: res<-gam(Sa.bin~s (W, k=3, fx=TRUE, bg="cr"), family=binomial (link=logit),
data=plot.table.4.3)

lines (x=plot.table.4.3$W,y=res$fitted.values)

Get the proportions within each width category. Width categories were defined earlier in Section C of this
manual.

prop<-aggregate (table.4.3$Sa.bin, by=table.4.3$W.fac, mean) $x
R, must be: prop<-aggregate(table.4.3$Sa.bin, by=list(W=table.4.33W.fac), mean) $x

Now, put the proportions on the plot.

lines (plot.x, prop, type="p",pch=16) # see above for defn of plot.x

The figure shows that an S-shaped function may describe the data well. This signifies that a logistic
regression model may be appropriate. Indeed, the plot.gam function shows that the smoothing spline in
width is close to linear for at least the middle portion of width values.

l — 2 11 111 43161212 121641 4 21 41213412122 4223116 21113 1@ 11

Probability of presence of satellites

o :¢* 101 23 NRUR3IARL BMS 42121 211 111
T T T T T T |
22 24 26 28 30 32 34

Width, x (cm)

plot.gam(res,

par (old.par)

se=T)

10
!

s(W, df = 3)

22 24 26 28 30
w

change back to old pty setting

71

72

Chapter 5: Logistic Regression

A. Summary of Chapter 5, Agresti

This chapter treats logistic regression in more detail than did Chapter 4. It begins with univariate
logistic regression. The interpretation of the coefficient, A, in the univariate logistic regression (equation
5.1 in Agresti) is discussed initially. The direction of this coefficient indicates the direction of the effect of
the variable X on the probability of a positive response. The magnitude of ﬂ is usually interpreted in

terms of the odds of a positive response. The odds change multiplicatively by exp(/3) for each one-unit
increase in X. The expression exp(/f) is actually an odds ratio: the odds (of positive response) at

X =X+1 to the odds at X = X. Prior to fitting a logistic regression model to data, one should check
the assumption of a logistic relationship between the response and explanatory variables. A simple way
to do this is to use the linear relationship between the logit and the explanatory variable. The values of
the explanatory variable can be plotted against the sample logits (p. 168, Agresti) at those values. The
plot should look roughly linear for a logistic model to be appropriate. If there are not enough response
data at each unique X value (and categorizing X values is undesirable), then the technique of the last
section in Chapter 4 can be used (i.e., GAM). There, we saw that a sigmoidal (or S-shaped) trend
appeared in the plot of the response by predictor (Figure 4.7, Agresti).

Logistic regression can be used with retrospective studies to estimate odds ratios. The fit of a
logistic regression model to retrospective response data, given an explanatory variable whose values are
not known in advance, yields a coefficient estimate whose exponent is the same estimated odds ratio as
if the response variable had been prospective.

A logistic regression model is fit via maximum likelihood estimation. In practice, this can be
achieved via IRLS, as mentioned in the previous chapter. That is, the MLE is the limit of a sequence of
weighted least squares estimates, where the weight matrix changes at each iteration (see Section 5.5 in
Agresti).

Inference for the maximum likelihood estimators is asymptotic. Confidence intervals can be Wald
confidence intervals, LR confidence intervals or score confidence intervals. The Wald, LR, and score
tests can be used to test hypotheses. The LRT is preferred, as it uses both the null maximized likelihood
value as well as the alternative maximized likelihood value (providing more information than the other
tests), instead of just one of these values. When comparing two unsaturated fitted models, the difference
between their individual LRT statistics in comparison with the saturated model has an approximate chi-
squared null distribution, and this approximation is better than the chi-squared approximation by each
LRT statistic alone.

Overall chi-squared goodness-of-fit tests for a logistic regression model can only be done for
categorical predictors, and for continuous predictors only if they are categorized. This is because the
number of unique predictor combinations grows with increasing sample size when the predictors remain
continuous.

When a logit model includes categorical predictors (factors), there is a parameter for each
category of each predictor. However, one of those parameters per predictor is redundant. Setting the
parameter for the last category equal to zero, and changing the definition of the remaining parameters to
that of deviation from this last parameter, will eliminate redundancy of parameters in the logit model. But,
the interpretation of each parameter is modified. Another way to eliminate redundancy is to set “sum-to-
zero constraints”, where the sum of the parameters for a particular factor is constrained to equal zero.
However, any constraints for the category parameters does not affect the meaning of estimates of the
odds ratios between two categories or of the joint probabilities.

Multiple logistic regression is the direct extension of univariate logistic regression. The multiple
logistic regression model is given in equations (5.8) and (5.9) in Agresti. In that representation, the

guantity exp(ﬂ]) for the ith covariate represents the multiplicative effect on the odds of a 1-unit increase

in that covariate, at fixed levels of the other covariates, provided there are no interactions between the ith
covariate and other covariates. With all categorical predictors, the model is called a logit model. A

73

representation of a logit model with two predictors is given on p. 184 of Agresti. A logit model that does
not contain an interaction between two categorical predictors assumes that the odds ratio(s) between one
of the predictors and the binary dependent variable is(are) the same at or given each level of the other
predictor. (In the case of a binary predictor, there is just one odds ratio between that predictor and the
dependent variable). Then, the predictor and the dependent variable are said to be conditionally
independent. In terms of the model representation, this means that the parameters corresponding to the
categories of that predictor are all equal (see p. 184 in Agresti). A formal test of homogeneous odds
ratios can be carried out using the chi-squared goodness-of-fit statistic GZ.

It is possible for additivity of predictors (i.e., no interactions) to hold on the logit scale, but not
other link scales or vice versa.

B. Logistic Regression for Horseshoe Crab Data

One interpretation of the horseshoe crab data of Table 4.3 in Agresti has a binary response with
a positive response being that the female crab has at least one satellite. So, a logistic regression is
plausible for describing the relationship between width of carapace and probability of at least one
satellite. If the widths are grouped into eight categories (Table 4.4, p. 129 Agresti), then a plot of the
means of the width categories by the proportion of female crabs within each category having satellites is
in Figure 5.2 of Agresti, with a logistic regression fit superimposed.

We plotted these proportions in Section | of Chapter 4, where we superimposed a GAM with logit
link and binary response. Now, we will superimpose a logistic regression function.

Here is the logit fit, using g1lm.

table.4.3$Sa.bin<-ifelse(table.4.3%$Sa>0,1,0) # change number of satellites to binary
response
(crab.fit.logit<-glm(Sa.bin~W, family=binomial, data=table.4.3))

Call:
glm(formula = Sa.bin ~ W, family = binomial, data = table.4.3)

Coefficients:
(Intercept) W
-12.35082 0.4972305

Degrees of Freedom: 173 Total; 171 Residual
Residual Deviance: 194.4527

So, the estimated odds of having a satellite increase by 1.64 for each 1 cm increase in width (a 64%
increase). Figure 5.2 is created using similar steps as before, except now we add the predicted logistic
regression curve.

Recall from above the definitiomns:

table.4.33W.fac<-cut(table.4.33W, breaks=c(0,seq(23.25, 29.25),Inf))

prop<-aggregate (table.4.3$Sa.bin, by=table.4.33$W.fac, mean)$x

R: prop<-aggregate(table.4.3$Sa.bin, by=list (W=table.4.3$W.fac), mean)S$x
plot.x<-aggregate(table.4.3$W, by=1list (W=table.4.3sW.fac), mean) $x

old.par<-par (pty="s") # save previous pty setting (use par(old.par) later to reset
previous setting)
par (pty="s") # change pty par setting to “s”

create axes and labels

plot (y=table.4.3$Sa.bin,x=table.4.3$W,xlab="", ylab="", axes=F, type="n")
axis (2, at=seq(0,1,.2))

axis(l, at=seq(20,34,2))

guiModify("XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", Title = "Width, “x°
(cm) ") # S-PLUS only
guiModify("YAxisTitle", Name = "GSD2$1$Axis2dY1$YAxisTitle", Title = "Proportion

having satellites, \\\"Symbol\"p (\\\"Arial\"x\\\"Symbol\")") # S-PLUS only

74

plot points and regression curve (note the ordering of the widths first)

lines (y=prop, x=plot.x, pch=16, type="p")

ind<-order (table.4.33W)

lines (x=table.4.3$W[ind] ,y=predict(crab.fit.logit, type="response") [ind], type="1",
1lty=3)

par (old.par) # change back to old pty setting

1.0 hd - -
oo

0.8 e
X .
B 7
%)]
g
T . o
£06 K
e ;e
()] /
£ /
3 ;
< /
c 0.4 ’
g o
: /
S S0
o 7

0.2 e

0.0

T T T T T T \
22 24 26 28 30 32 34
Width, x (cm)

For the plot in R, use

plot(y=table.4.3%$Sa.bin,x=table.4.3$W,xlab=expression(paste ("Width, ", italic(x),
"(cm) ")), ylab=expression(paste("Proportion having satellites,", {pi}, "(x)")),
axes=F, type="n")

and do not use the two guiModify lines.

Inference for the logistic regression is asymptotic. Standard errors via the inverse of observed Fisher
information can be obtained (among other ways) using the summary.glm function.

summary (crab.fit.logit, correlation=F)
Call: glm(formula = Sa.bin ~ W, family = binomial, data = table.4.3)
Coefficients:
Value Std. Error t value

(Intercept) -12.3508154 2.6280373 -4.699635

W 0.4972305 0.1017079 4.888809
(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 225.7585 on 172 degrees of freedom

Residual Deviance: 194.4527 on 171 degrees of freedom

Number of Fisher Scoring Iterations: 4

75

The Wald test is shown in the t value column under coefficients (in R, thisis a z value). To get the
LRT, we need the log likelihood value at the estimate and at the null value 0. For this we can use the
deviance values.

crab.fit.logit$null.deviance-crab.fit.logit$deviance
[1] 31.30586

A profile likelihood ratio confidence interval can be found easily in R using package Bhat. We first define
the negative log likelihood, then use plkhci in the same way as in Chapter 2.

library (Bhat)

neg. log-likelihood of logistic model with width included
nlogf <- function (p) {

alpha<-p[l]; beta<-pl[2]

y<-table.4.3$Sa.bin

lp<-alpha+beta*table.4.33%W

-sum(y*1lp - y*log(l+exp(lp)) - (1-y)*log(l+exp(lp)))

}

define a list with parameter labels and estimates
X <- list(label=c("alpha", "beta"),est=c(-12.3508154, 0.4972305),low=c(-100,-100),
upp=c (100,100)) # we include upper and lower bounds for stability

CI on beta
plkhci (x,nlogf, "beta™")

...snip
CONVERGENCE: 4 iterations

chisquare value is: 3.823855
confidence bound of beta is 0.3087864
log derivatives: 5.526653
label estimate log deriv log curv
1 alpha -7.47862 5.52665 90404 .4
2 beta 0.308786 1217.3 61821100

[1] 0.3087864 0.7090134

CI on alpha
plkhci (x,nlogf, "alpha")

...snip
CONVERGENCE: 4 iterations

chisquare value is: 3.828054
confidence bound of alpha is -17.79965
log derivatives: -24.78501

label estimate log deriv log curv
1 alpha -17.7997 30.2999 68230.4
2 beta 0.708216 -24.785 48167900

[1] -17.799654 -7.467987

Thus, the confidence intervals match those obtained by SAS, appearing in Table 5.1 in Agresti. A 1-cm
increase in width has at least a 36% increase in odds (100*exp(0.308) = 136%) and at most about 100%
increase (100*exp(0.709) = 203%).

76

| have since found that the Mass library has a function confint that computes profile-likelihood
confidence intervals for the coefficients from gim objects. It is much simpler to use than plkhci for logit
models. Below, | use it on the logit model fit to the crab data

library (MASS)
confint (crab.fit.logit)

Waiting for profiling to be done...
2.5 % 97.5 %

(Intercept) -17.8104562 -7.4577421
W 0.3084012 0.7090312

A plot of the predicted probabilities along with pointwise confidence intervals can be obtained using
output from the predict function, which gives the standard errors of the predictions.

crab.predict<-predict(crab.fit.logit, type="response", se=T)

ind<-order (table.4.33W)

plot(table.4.3$W[ind],crab.predict$fit[ind], axes=F, type="1l", xlim=c(20,33),
ylab="Probability of satellite", xlab="")

R: plot(table.4.3$W[ind],crab.predict$fit[ind], axes=F, type="1", xlim=c(20,33),
ylab="Probability of satellite", xlab=expression (paste ("Width, ", italic(x),
"(cm)")))

axis (2, at=seq(0,1,.2))

axis (1, at=seq(20,32,2))

guiModify("XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle",

Title = "Width, “x~ (cm)") # S-PLUS only

lines (table.4.3$W[ind],crab.predict$fit[ind] -1.96*crab.predict$se[ind],1ty=3)

lines(table.4.3$W[ind],crab.predict$fit[ind]l+1.96*crab.predict$se[ind], lty=3)

see also the pointwise() function in S-PLUS

1.0

0.6

Probability of satellite

0.4

0.2

[T : T T T T 1
20 22 24 26 28 30 32

Width, x(cm)

77

The above plot is from R. Note that it extends on the left-hand side to only a width of 21.0 cm. However,
Figure 5.3 in Agresti extends to a width of 20.0 cm. As 21.0 cm is the lowest width in the data set, in
order to predict the probability of a satellite at a width of 20.0 cm using the function predict we need to
use the newdata argument. For example,

predict(crab.fit.logit, type="response", se=T, newdata=data.frame (W=seq(20,32,1)))

gives predictions and standard errors at widths from 20 to 32 cm, by cm.

C. Goodness-of-fit for Logistic Regression for Ungrouped Data

With categorical predictors (grouped data), one may use a chi-squared goodness-of-fit statistic where the
expected number of positive and negative responses per predictor value (or predictor combination, with
more than one predictor) are obtained from the fitted model. When the predictors are continuous
(ungrouped data), they must be categorized prior to using the test. In that case, one may assign the
midpoint of the category to the observations in that category in order to compute the expected number of
positives.

In Agresti's Table 5.2, the expected number of positives in each category (Fitted Yes) is obtained by
summing the predicted probabilities for each observation that falls within that category. Then, the
observed number of Yes's are compared to these expected numbers in a chi-square test. Roberto
Bertolusso has sent me code to compute the values within Table 5.2, and also compute the goodness-of-
fit statistics. | present his code (somewhat modified) below. The original code appears in the code files
for this document.

First, we create a table with the successes and failures per width category

cont.table<-crosstabs (~W+Sa.bin, data=table.4.3, margin=1list(),drop.unused.levels=F)
#R: cont.table<-xtabs (~W+Sa.bin, data=table.4.3)

The unique widths can be extracted from the dimnames of the crosstabs.

w.unique <-as.numeric(attr(cont.table, "dimnames") $W)

This gives the observed successes and failures for each unique width, in a matrix, so that successes are
listed first.

matrix.succ.fail<-structure(.Data=cont.table,dim=c(66,2))[,2:1]

Now, we create the first two columns of Table 5.2, summing elements in each column of
matrix.succ.fail over the width categories, created using the cut function.

w.cut <- cut(w.unique, breaks=c(0,seqg(23.25, 29.25),Inf), left.include=T)

observed<-apply (matrix.succ.fail, 2,aggregate,by=1ist (W=w.cut) , sum)

observed <- matrix(c(observed[[1l]] [,ncol (ocbserved.yes)],
observed[[2]] [,ncol (ocbserved.no)]), ncol = 2)

The last two columns contain the expected numbers of observations per category. The expected number
for each category is obtained by multiplying the fitted probability for each width in the category by the
number of observations at that width, and then summing up all these quantities.

fit.logit <- glm(matrix.succ.fail~w.unique, family=binomial)
fitted.yes <- aggregate(predict(fit.logit, type="response") *
apply (matrix.succ.fail,l,sum), by=list (W=w.cut), sum)
fitted.no <- aggregate((l-predict(fit.logit, type="response")) *
apply (matrix.succ.fail,1l,sum), by=list (W=w.cut), sum)
fitted.all <- matrix(c(fitted.yes$x,fitted.no$x), ncol = 2)

78

The Pearson chi-squared statistic is then easily computed

(x.squared = sum((observed - fitted.all)”"2/fitted.all))
[1] 5.320099

df <- length(observed[,1]) - length(fit.logit$coefficients)
1l-pchisqg(x.squared, df)
[1] 0.2560013

The likelihood ratio statistic is computed using the midpoints of the category spreads.

glm(observed ~ seq(22.75, 29.75), family = binomial) $deviance
[1] 6.24532

However, one might also consider taking the medians of the categories, as suggested by Roberto.

W.fac<-cut(table.4.3$W, breaks=c(0,seq(23.25, 29.25),Inf),left.include=T)

glm(observed~aggregate (table.4.3$W, by=list (W=W.fac), median) $x,
family=binomial) $deviance

[1] 6.03537

which gives a slightly lower deviance.

Instead of categorizing predictors one may use a test by Hosmer and Lemeshow, described by
Agresti. Their statistic forms groups based on the predicted probabilities. The observed counts per
group and the predicted probabilities are used in a Pearson-like statistic that has an approximate chi-
squared distribution if the number of distinct patterns of covariate values equals the sample size. It is
computed here for the horseshoe crab data. First, | create a grouping variable that groups the predicted
probabilities into ten groups. | give two alternative ways to do the grouping. Then, | calculate the statistic
for each group using the by () function. The value of the statistic differs somewhat from the number that
Agresti gives on p. 179. This may be due to the difference in forming groups.

table.4.3$prob.group<-cut (crab.predict$fit,breaks=quantile(crab.predict$fit,
seq(0,1,.1)), include.lowest=T)

#table.4.3$prob.group<-cut (crab.predictsfit,breaks=10)

#table.4.3$prob.group<-cut (order (crab.predict$fit), breaks=seq(0,173,17.3),
include.lowest=T)

table.4.3$predict<-crab.predict$fit

Hosmer.GOF<-sum(unlist (by(table.4.3, table.4.3$prob.group, function (x){
p<-sum(x$predict)
((sum(x$Sa.bin) -p) *2) / (p* (1-p/nrow(x)))

13RD)

[1] 4.38554

1-pchisqg(Hosmer.GOF,df=8)
R: pchisg(Hosmer.GOF,df=8,lower.tail=F)

[1] 0.8207754

D. Logit Models with Categorical Predictors

As discussed in Agresti, when fitting logit models with categorical predictors, we have to constrain the
category parameters to avoid redundancy in the model specification. We can set up either of the two
types of constraints mentioned. The constraints are set in S-PLUS and R by specifying a global option

via the options command. For example, to set “sum-to-zero” constraints, use

options (contrasts=c("contr.sum", "contr.poly"))

79

To constrain the first category parameter to be zero, use

options (contrasts=c("contr.treatment", "contr.poly"))

Thus, to fit a logit model to the data in Table 5.3 on maternal alcohol consumption and child’s congenital
malformations, we use glm with options set according to the constraint used.

Alcohol<-factor(c("0", ||<1||' Il1_2ll' Il3_5ll' Il>=6Il) , levels:c("O", ||<1||' Il1_2ll' Il3_5ll' Il>=6Il))
malformed<-c(48,38,5,1,1)
n<-c(17066,14464,788,126,37) +malformed

To set the first category parameter to zero,

options (contrasts=c("contr.treatment", "contr.poly"))
(Table.5.3.logit<-glm(malformed/n~Alcohol, family=binomial, weights=n)) # saturated
model

Coefficients:
(Intercept) Alcohol<l Alcoholl-2 Alcohol3-5 Alcohol>=6
-5.873642 -0.06818947 0.8135823 1.037361 2.262725

Degrees of Freedom: 5 Total; 0 Residual
Residual Deviance: -3.394243e-012

To set the last category parameter to zero,

revAlcohol <- factor(c("O", "<1v, "1-2", "3-5",6 "s=6g"), levels = rev(c("O", "<1", "1-
2Il' lI3_5lI, Il>=6Il)))

(Table.5.3.logit2<-glm(malformed/n~revAlcohol, family=binomial, weights = n)) #
saturated model

Coefficients:
(Intercept) revAlcohol3-5 revAlcoholl-2 revAlcohol<l revAlcoholO
-3.610918 -1.225364 -1.449142 -2.330914 -2.262725

Degrees of Freedom: 5 Total; 0 Residual
Residual Deviance: -4.331341e-012

Remark: There is a difference in the reported “Total” df for R and S-PLUS. S-PLUS gives the number of
cells. R gives the df for a null model, that is, one with an intercept only. Thus, for the above saturated
model, R gives Total (null) df =5-1 = 4. We lose a df for estimating an intercept.

The fitted proportions are the same for each constraint. The fitted proportions are the sample proportions
because each model is a saturated model that has the same number of parameters as data points (thus,
0 degrees of freedom for residual).

cbind(logit=predict (Table.5.3.1logit), fitted.prop= predict(Table.5.3.logit, type=
"response"))

logit fitted.prop

1 -5.873642 0.002804721
2 -5.941832 0.002620328
3 -5.060060 0.006305170
4 -4.836282 0.007874016
5 -3.610918 0.026315789

cbind(logit=predict (Table.5.3.1logit2), fitted.prop= predict(Table.5.3.logit2, type=
"response"))

logit fitted.prop
1 -5.873642 0.002804721
2 -5.941832 0.002620328

80

3 -5.060060 0.006305170
4 -4.836282 0.007874016
5 -3.610918 0.026315789

The sample proportions tend to increase with alcohol consumption.

A model that specifies independence between alcohol consumption and congenital malformations is fit by

(Table.5.3.1logit3 <- glm(malformed/n~1, family=binomial, weights = n))

Coefficients:
(Intercept)
-5.855811

Degrees of Freedom: 5 Total; 4 Residual
Residual Deviance: 6.201998

with likelihood-ratio and Pearson chi-squared statistics

LR statistic
summary (Table.5.3.logit3) $deviance
[1] 6.201998

Pearson chi-squared statistic

sum(residuals (Table.5.3.logit3, type="pearson") "2)
[1] 12.08205

The latter rejects the hypothesis of model fit.

1-pchisqg(12.08205, df=4)
[1] 0.01675144

1. Linear Logit Model

As mentioned by Agresti, these statistics ignore ordinality in the levels of alcohol consumption. A logit
model that incorporates monotone ordered categories of a predictor, but is more parsimonious than a
saturated model, is a linear logit model. This models the logit for the ith category as in equation (5.5) in
Agresti. To fit the model, one needs numerical scores to represent the ordered categories. For the
congenital malformation data, Agresti uses scores {0, 0.5, 1.5, 4.0, 7.0} for the predictor alcohol
consumption. In S, this model can be fit using a numeric vector representing the scores.

scores<-c(0,.5,1.5,4,7)
Table.5.3.LL<-glm(malformed/n~scores, family=binomial,weights=n)
summary (Table.5.3.LL)

(.. snip)
Coefficients:
Value Std. Error t value
(Intercept) -5.9604602 0.1153620 -51.667434
scores 0.3165602 0.1254448 2.523503
(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 6.201998 on 4 degrees of freedom
Residual Deviance: 1.948721 on 3 degrees of freedom

Number of Fisher Scoring Iterations: 8

Correlation of Coefficients:

81

(Intercept)
scores -0.436482

chi-squared statistic
sum(residuals(Table.5.3.LL, type="pearson")"2)
[1] 2.050051

LR statistic

Table.5.3.LL$null.deviance - Table.5.3.LL$deviance
[1] 4.253277

with fitted logits and proportions

cbind(logit = predict(Table.5.3.LL), fitted.prop = predict(Table.5.3.LL, type =
"response"))

logit fitted.prop

1l -5.960460 0.002572092
2 -5.802180 0.003011863
3 -5.485620 0.004128846
4 -4.694219 0.009065079
5 -3.744539 0.023100295

Profile likelihood confidence intervals can be obtained using the plkhci function in the R package Bhat,
which is illustrated in subsection B of this chapter, or more easily using the confint function from library
MASS.

library (MASS)
confint (Table.5.3.LL)

Waiting for profiling to be done...
2.5 % 97.5 %

(Intercept) -6.19303606 -5.7396909
scores 0.01865425 0.5236161

A logit model with an ordered categorical predictor can also be fit using orthogonal polynomial contrasts.
However, by default, S-PLUS assumes the levels of the ordered factor are equally spaced. For
illustrative purposes, you could use

AlcoholO<-as.ordered (Alcohol)
res<-glm(malformed/n~AlcoholO, family=binomial,weights=n)

to get up to quartic contrasts.
2. Cochran-Armitage Trend Test

As an alternative to the Pearson chi-squared statistic or LR statistic to test independence of alcohol on
malformations, Agresti introduces the Cochran-Armitage Trend Test, which can test for a linear trend in

an ordinal predictor using an | x 2 contingency table with ordered rows and | independent binomial(n,
;) response variates. The test is actually equivalent to the score test for testing H,: #=0 in a linear

logit model: logit(z) =a + B%. It can be calculated using the statistic M? in equation (3.15) in Agresti,
but with n—1replaced by n. Thus, for the alcohol consumption and malformation data, using the same
scores as for the linear logit model, we can easily calculate the Cochran-Armitage trend statistic (denoted
by 7). We correlate the scores with the binary response variable.

X <- c(rep(scores, malformed), rep(scores, n - malformed))
y <- c(rep(l, sum(malformed)), rep(0, sum(n - malformed)))
(z2 <- 32574 * cor(x, y)*2) # n = 32,574

[1] 6.569932

82

1 - pchisg(z2, df = 1)
[1] 0.01037159

which suggests strong evidence of a positive slope.
E. Multiple Logistic Regression

1. Multiple Logit Model — AIDS Symptoms Data

Agresti introduces multiple logistic regression with a data set that has two categorical predictors. Thus,
the model is a logit model. Table 5.5 in Agresti cross-classifies 338 veterans infected with the AIDS virus
on the two predictors Race (black, white) and (immediate) AZT Use (yes, no), and the dependent variable

whether AIDS symptoms were present (yes, no). The model that is fit is the “main effects” model
logit[P(Y =1)]=ar+ B2 + Bone

white

In S, we will represent the predictors as factors with two levels each. This ensures that we have the
correct level specifications.

table.5.5<-expand.grid (AZT=factor (c("Yes", "No") ,levels=c("No", "Yes")),
Race=factor(c("White","Black"),levels=c("Black","White")))
table.5.5<-data.frame(table.5.5,Yes=c(14,32,11,12), No=c(93,81,52,43))

We can fit the logit model using g1m.

options (contrasts=c("contr.treatment", "contr.poly"))
summary (fit<-glm(cbind(Yes,No) ~ AZT + Race , family=binomial, data=table.5.5))

Call: glm(formula = cbind(Yes, No) ~ AZT + Race, family = binomial, data = table.5.5)

Coefficients:
Value Std. Error t value
(Intercept) -1.07357363 0.2629363 -4.0830185
AZT -0.71945990 0.2789748 -2.5789424
Race 0.05548452 0.2886081 0.1922487

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 8.349946 on 3 degrees of freedom

Residual Deviance: 1.38353 on 1 degrees of freedom

Thus, the estimated odds ratio between immediate AZT use and development of AIDS is around exp(-
0.7195) = 0.487. Wald confidence intervals are obtained using the approximate standard errors. LR
confidence intervals can be obtained using confint from the MASS library.

confint (£it)

Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) -1.6088540 -0.5735061
AZT -1.2773512 -0.1798808
Race -0.5022939 0.6334414

A LRT of the conditional independence of race and AIDS symptoms, given AZT treatment is given by
fitting another model which excludes race.

fit2<-update (object=fit, formula = ~ . -Race)

anova (fit2, fit, test="Chisg") # R output

83

Analysis of Deviance Table

Model 1: cbind(Yes, No) ~ AZT
Model 2: cbind(Yes, No) ~ AZT + Race

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 2 1.42061
2 1 1.38353 1 0.03708 0.84730

Thus, the reduction in deviance (0.03708) is not significantly greater than chance, and we conclude that
Race probably does not belong in the model.

As demonstrated above in Subsection D, one can easily change the type of constraint imposed on the
parameters in order to estimate them uniquely. Use the options statement above in either R or S-PLUS.

The estimated probabilities for each of the four predictor combinations is given by the function predict,
and standard errors are given by setting the argument se to TRUE.

res<-predict(fit, type="response", se=T)

To reproduce Figure 5.4 in Agresti, we need the asymptotic 95% confidence intervals on these
predictions. These are just the estimate +1.96 times the standard error. A convenient function for
getting these quantities is the function pointwise in S-PLUS. However, pointwise, by default, uses the
student-t quantile as its multiplier, not the Normal multiplier. Here is a version of pointwise that uses a
Normal quantile. | apply it to the output from predict.

pointwise.normal<-function(results.predict, coverage = 0.99)

{
fit <- results.predict$fit
limits <- qnorm(l. - (1. - coverage)/2.) * results.predict$se.fit
list (upper = fit + limits, fit = fit, lower = fit - limits)

}

(AIDS.bars<-pointwise.normal (res, coverage=.95))

Supper:
1 2 3 4
0.2095706 0.341256 0.210883 0.3525571

sfit:
1 2 3 4
0.1496245 0.2653998 0.1427012 0.2547241

Slower:
1 2 3 4
0.0896784 0.1895435 0.07451946 0.156891

The function error.bar in S-PLUS can be used to plot confidence intervals around a plotted point. For
R, just source in the code for error.bar from S-PLUS (e.g., source (“c:/path/errorbar.txt”), if the
error.bar code is saved in the text file errorbar.txt). It works without modification (at least for this
example). Here, we use it to draw a plot like Figure 5.4.

error.bar(c(2,2,1,1), y=AIDS.bars$fit, AIDS.bars$lower, AIDS.bars$upper,incr=F, gap=F, xlim=c(0,3),y:
ylab="Probability of AIDS (95% CI)", pch=".")

axis(l,at=c(2,1),labels=c("White", "Black"))

axis(2,at=c(0,.1,.2,.3))

lines(c(1,2) ,AIDS.bars$fit[c(3,1)])
lines(c(1,2),AIDS.bars$fit[c(4,2)])

Now, add the sample proportions to the plot.

attach(table.5.5)

propAIDS<-Yes/ (Yes+No)
points(c(2,2,1,1) ,propAIDS, pch=16)
detach(2)

o
w
|

©
N
|

Probability of AIDS (95% CI)

o
[
!

0.0

Black White

Race

The top line is for No AZT Use and the bottom line is for AZT Use. This plot is somewhat different-
looking than that in Figure 5.4. The reason why is because Agresti has inadvertently plotted error bars
which give only a single standard error on each side of the point estimate, instead of the (roughly) two
standard errors from a 95% CI. Thus, the ordinate label on Figure 5.4 is incorrect. In the plot above, the
confidence intervals overlap vertically.

The chi-squared and Pearson goodness-of-fit statistics for this model are obtained, respectively, by

fit$deviance
[1] 1.38353

sum(residuals (fit, type = "pearson") "2)
[1] 1.390965

which are both nonsignificant at the 0.05 level, implying that the homogeneous association model holds.
Thus, the odds ratio between AZT use and AIDS symptoms is deemed to be the same regardless of race.

2. Multiple Logistic Regression Model — Horseshoe Crab Data

The Horseshoe crab data has both continuous and categorical predictors. Agresti uses the carapace
width and color in a multiple logistic regression model to predict whether a crab has any satellites (the
dependent variable). The predictor, color, has four categories (medium light, medium, medium dark, and
dark), and it is treated in the regression model using three dummy variables. Crab color is dark when the
three dummy variables are zero. Although we could set up three dummy variables, it is more natural to
use factor in S. We construct the factor so that the coefficient set to zero is the dark color coefficient.

options (contrasts=c("contr.treatment", "contr.poly"))

85

table.4.3$C.fac<-factor(table.4.3$C, levels=c("5","4","3"n n2n), labels=c("dark", "med-
dark", "med", "med-1light"))
MLEs of the no-interaction model can be obtained using glm.

crab.fit.logist <- glm(Sa.bin ~ C.fac + W, family = binomial, data = table.4.3)
summary (crab.fit.logist, cor = F)

Coefficients:
Value Std. Error t value
(Intercept) -12.7151039 2.7604349 -4.606196
C.facmed-dark 1.1061211 0.5919829 1.868502
C.facmed 1.4023356 0.5483476 2.557384
C.facmed-1light 1.3299190 0.8523972 1.560210
W 0.4679557 0.1054959 4.435769

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 187.457 on 168 degrees of freedom

Number of Fisher Scoring Iterations: 4

As before, profile likelihood confidence intervals can be obtained using the R package Bhat, which is
illustrated in subsection B of this chapter, or using confint from library mMass.

library (MASS)

confint (crab.fit.logist)
2.5 % 97.5 %
(Intercept) -18.45748987 -7.579268
C.facmed-dark -0.02793259 2.314084
C.facmed 0.35268302 2.526314
C.facmed-1light -0.27381825 3.135721
W 0.27129460 0.687074

The model has a different intercept parameter (for the linear logit) for crabs of different colors. For
example, the logit model for dark crabs is logit(7) =-12.715+ 0.468width ; and for medium crabs it is

logit(7) = (-12.715+1.4023) + 0.468width. However, the slope on width is always the same:

Regardless of color, a 1-cm increase in width has a multiplicative effect of exp(0.468) = 1.60 on the odds
of having a satellite. Also, at any given width, the estimated odds that a medium crab has a satellite are
exp(1.4023 — 1.1061) = 1.34 times the estimated odds for a medium-dark crab.

Figure 5.5 can be produced as follows. First, we predict the probability at widths from 18 to 34 cm for
each of the colors.

resl<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1),
C.fac="med-1light"))

res2<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1),
C.fac="med"))

res3<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1),
C.fac="med-dark"))

res4<-predict (crab.fit.logist, type="response", newdata=data.frame (W=seq(18,34,1),C.fac="dark"))

Then, we plot the results. Here, | happen to use R.

plot(seq(18,34,1) ,resl, type="1",bty="L",ylab="Predicted Probability", axes=F,
xlab=expression (paste ("Width, ", italic(x), "(cm)")))

axis (2, at=seq(0,1,.2))

axis (1, at=seq(18,34,2))

86

lines(seq(18,34,1) ,res2) # add colors 2-4
lines(seq(18,34,1) ,res3)
lines(seq(18,34,1) ,res4)

add arrows and text

arrows (x0=29, resl[25-17],x1=25, yl=resl[25-17], length=.09)
text (x=29.1, y=resl[25-17], "Color 1", adj=c(0,0))

arrows (x0=23, res2[26-17],x1=26, yl=res2[26-17], length=.09)
text (x=21.1, y=res2[26-17], "Color 2", adj=c(0,0))

arrows (x0=28.9, res3[24-17],x1=24, yl=res3[24-17], length=.09)
text (x=29, y=res3[24-17], "Color 3", adj=c(0,0))

arrows (x0=25.9, res4[23-17],x1=23, yl=res4[23-17], length=.09)
text (x=26, y=res4[23-17], "Color 4", adj=c(0,0))

o
S
[e0]
g
Color 2
2
S o |
g o Color1
e
o
©
g
Q
g < | Color 3
n o
N
S
T T T T T T T T T T
18 20 22 24 25 26 28 30 32 34

Width, x(cm)

As mentioned previously, there are some differences in the use of arrows and text across R and S-
PLUS. Here is the code to plot Figure 5.5 in S-PLUS.

plot(seq(18,34,1) ,resl, type="1",bty="L",ylab="Predicted Probability", axes=F)

axis (2, at=seq(0,1,.2))

axis (1, at=seq(18,34,2))

guiModify("XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", Title= "Width, “x°
(cm) ")

lines(seq(18,34,1) ,res2)

lines(seq(18,34,1) ,res3)

lines(seq(18,34,1) ,res4)

arrows (x1=29, yl=resl[25-17],x2=25, y2=resl[25-17],size=.25,0pen=T)

text (x=29.1, y=resl[25-17], "Color 1", adj=0)

87

arrows (x1=23, yl=res2[26-17],x2=26, y2=res2[26-17], size=.25,o0pen=T)
text (x=21.1, y=res2[26-17], "Color 2", adj=0)

arrows (x1=28.9, yl=res3[24-17],x2=24, y2=res3[24-17], size=.25,o0pen=T)
text (x=29, y=res3[24-17], "Color 3", adj=0)

arrows (x1=25.9, yl=res4[23-17],x2=23, y2=res4[23-17], size=.25,open=T)
text (x=26, y=res4[23-17], "Color 4", adj=0)

To test whether the width effect changes at each color, we can test the significance of a color by width
interaction by fitting a new model with the addition of this interaction and comparing the model deviance
with that of the previous fit.

crab.fit.logist.ia <- update(object = crab.fit.logist, formula = ~ . + W:C.fac)
anova (crab.fit.logist, crab.fit.logist.ia, test = "Chisqg")

Analysis of Deviance Table

Response: Sa.bin

Terms Resid. Df Resid. Dev Test Df Deviance Pr (Chi)
1 C.fac + W 168 187.4570
2 C.fac + W + W:C.fac 165 183.0806 +W:C.fac 3 4.376405 0.2235832

The p-value implies that an interaction model is not warranted.

3. Multiple Logistic Regression Model with Quantitative Ordinal Predictor — Horseshoe Crab
Data

The predictor color is actually ordinal. Agresti uses codes of {1, 2, 3, 4} for the four levels of color and fits
a linear effect of color on the log odds of having a satellite. This model is easily fit using the variables in
the data frame table. 4.3, as C is already coded consecutively.

crab.fit.logist.ord<-glm(Sa.bin~C+W, family=binomial, data=table.4.3)
summary (crab.fit.logist.ord, cor=F)

Coefficients:
Value Std. Error t value
(Intercept) -9.5617875 2.8819273 -3.317845
C -0.5090466 0.2236485 -2.276101
W 0.4583095 0.1039784 4.407737
(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 225.7585 on 172 degrees of freedom

Residual Deviance: 189.1212 on 170 degrees of freedom

To test the hypothesis that the quantitative color model is adequate given that the qualitative color model
holds, we can use anova.

anova (crab.fit.logist.ord,crab.fit.logist, test="Chisg") # S-PLUS output
Analysis of Deviance Table
Response: Sa.bin
Response: Sa.bin
Terms Resid. Df Resid. Dev Test Df Deviance Pr (Chi)

1 C+ W 170 189.1212
2 C.fac + W 168 187.4570 1 vs. 2 2 1.664145 0.4351466

88

Judging by the p-value, we can go with the simpler (fewer parameters) quantitative color model.

Other scores can be created by using logical operators. For example, the set of binary scores {1, 1, 1, 0}
are created by

table.4.3$C.bin<-ifelse(table.4.3$C<5,1,0)
glm(Sa.bin~C.bin+W, family=binomial, data=table.4.3)

Coefficients:
(Intercept) C.bin W
-12.97953 1.300512 0.478222

Degrees of Freedom: 173 Total; 170 Residual
Residual Deviance: 187.9579

F. Extended Example (Problem 5.17)

This example illustrates some details in using S for a logit model. The analysis is patterned after the
section on binomial data in Venables and Ripley (2002, p. 190). Problem 5.17 in Agresti (p. 204)
describes data on 35 patients who received general anesthesia for surgery. The dependent variable is
whether the patient experienced a sore throat upon awakening (binary response). Here, we model the
probability of sore throat as a logistic function of duration of surgery in minutes and the type of device
used to secure the airway (0 = laryngeal mask airway, 1 = tracheal tube).

First, we set the type of contrast to treatment contrasts for factors.

options (contrasts=c(“contr.treatment”,”contr.poly”))

Now, we get the data set up:
duration<-c(45,15,40,83,90,25,35,65,95,35,75,45,50,75,30,25,20,60,70,30,60,
61,65,15,20,45,15,25,15,30,40,15,135,20,40)
type<-c¢(0,0,0,1,1,1,rep(0,5),1,1,1,0,0,1,1,1,rep(0,4),1,1,0,1,0,1,0,0,rep(1,4))
sore<-c(0,0,rep(1,10),0,1,0,1,0,rep(1,4),0,1,0,0,1,0,1,0,1,1,0,1,0,0)

sore.fr<-cbind(duration, type, sore)

Now, fit a binomial glm with interaction:

sorethroat.lg<-glm(sore ~ type*duration, family=binomial)
summary (sorethroat.lg, cor=T)

Coefficients:
Value Std. Error t value
(Intercept) 0.04978674 1.46940067 0.03388234
type -4.47205400 2.45694142 -1.82017120
duration 0.02847802 0.03428574 0.83060812
type:duration 0.07459608 0.05748718 1.29761230
(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 46.17981 on 34 degrees of freedom
Residual Deviance: 28.32105 on 31 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:
(Intercept) type duration

89

type -0.5980609
duration -0.9190218 0.5496310
type:duration 0.5481108 -0.9137683 -0.5964068

The high negative correlation between duration and the intercept can probably be reduced by
standardizing duration:

sorethroat.lg<-glm(sore ~ type*scale(duration), family=binomial)
summary (sorethroat.lg)

Coefficients:
Value Std. Error t value
(Intercept) 1.3589619 0.6216850 2.1859332
type -1.0427657 1.0744104 -0.9705470
scale(duration) 0.7953023 0.9574941 0.8306081
type:scale (duration) 2.0832361 1.6054380 1.2976123

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 46.17981 on 34 degrees of freedom
Residual Deviance: 28.32105 on 31 degrees of freedom
Number of Fisher Scoring Iterations: 5
Correlation of Coefficients:
(Intercept) type scale (duration)
type -0.5786290

scale (duration) 0.3631314 -0.2101184
type:scale(duration) -0.2165740 0.3701497 -0.5964068

The interaction does not appear significant based on the Wald test. A LRT of the interaction parameter
gives

sorethroat.lg2<-glm(sore ~ type + scale(duration), family=binomial)# no interaction
anova (sorethroat.lg2, sorethroat.lg, test = "Chisg")

Analysis of Deviance Table

Response: sore

Terms Resid. Df Resid. Dev Test Df Deviance Pr (Chi)
1 type + scale(duration) 32 30.13794
2 type * scale(duration) 31 28.32105 +type:scale(duration) 1 1.816886 0.1776844

which indicates that an interaction may not really be present.

We can plot the predicted probabilities. First, we plot the data using “T” and “L” to indicate tracheal tube
or laryngeal mask, respectively.

plot(c(15,135),c(0,1), type="n", xlab="duration",ylab="prob")
text (duration, sore, as.character (ifelse(type,"T","L")))

Now, we add the predicted lines for tracheal tube and laryngeal mask

lines(15:135,predict.glm(sorethroat.lg,data.frame (duration=15:135, type=1),
type="response"))

lines (15:135,predict.glm(sorethroat.lg,data.frame(duration=15:135, type=0),
type="response"), lty=2)

key (x=100, y=.6, text=list(c("Tracheal","Laryngeal")), lines=list(lty=1:2, size=2),
border=T) # S-PLUS only

90

R: legend(x=100, y=.6, legend=list ("Tracheal", "Laryngeal"), lty=1:2)
o
S T L L LT T L TTE
@ |
®
© |
[S) Tracheal —
a Laryngeal —
o
s
<
o
N
o
o |
o
T T T T T
20 40 60 80 100 120

duration

We can test for a type difference at a particular duration, say at 60 minutes, which is about 0.5 standard
deviations based on the mean and standard deviation of duration. The I() function is used so that
(scale(duration)-0.5) is interpreted as is, meaning as a number, here.

sorethroat.lgA <- glm(sore ~ type * I(scale(duration) - 0.502), family = binomial)
summary (sorethroat.1lgA) # S-PLUS output

Coefficients:
Value Std. Error t value
(Intercept) 1.758203676 0.9135373 1.924610748
type 0.003018773 1.5636194 0.001930632
I(scale(duration) - 0.502) 0.795302340 0.9574941 0.830608118
type:I(scale(duration) - 0.502) 2.083236102 1.6054380 1.297612304

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 46.17981 on 34 degrees of freedom
Residual Deviance: 28.32105 on 31 degrees of freedom

Number of Fisher Scoring Iterations: 5

Based on the very low magnitude t-value, there is no difference at one hour of duration of surgery.

Now, we test a model with parallel lines for each type (common slope), but different intercepts. The term
-1’ in the update formula removes the common intercept (forces it through 0) and gives separate
intercepts across types.

type.fac <- factor(ifelse(type, "trach", "laryn"), levels = c("trach", "laryn"))
sorethroat.lgB <- update(sorethroat.lg, . ~ type.fac + scale(duration) - 1)
summary (sorethroat.1lgB) $coefficients

Value Std. Error t value

type.factrach 0.08092534 0.6909792 0.1171169
type.faclaryn 1.73987442 0.6900319 2.5214407
scale (duration) 1.91795638 0.7373841 2.6010274

91

One result we can obtain from setting different intercepts is a prediction of the duration at which prob(sore
throat upon awakening) = .25, .5, .75 for tracheal tubes/laryngeal mask. We can use the function
dose.p from the MASS library. The second argument to the function (i.e., ¢(1, 3) or c(2, 3)) refers to the
coefficients specifying the common slope and separate intercept. For tracheal tubes, they are the
type.factrach coefficient and scale(duration) coefficient. The third argument refers to the
probability points (.25, .5, .75).

For tracheal tubes, we have the following predictions:

library (MASS)

dose.p(sorethroat.1gB, c(1, 3), (1:3)/4)
Dose SE

0.25: -0.61499711 0.3808615

0.50: -0.04219353 0.3567465

0.75: 0.53061006 0.4543964

P
P
P
And, for laryngeal mask, we have:

dose.p(sorethroat.1lgB, c(2, 3), (1:3)/4)
Dose SE

0.25: -1.4799537 0.5190731

0.50: -0.9071502 0.3720825

0.75: -0.3343466 0.3231864

p
p
p

Of course, the predicted durations are in standard deviation units. The probability of sore throat is
predicted to be higher at lower durations (“doses”) when one is using the laryngeal mask.

To print residual plots for this model, use the plot.glm function, which is called via plot with first
argument a glm object.

par (mfrow=c(2,2))
plot (sorethroat.1lgB, ask=T)

92

Chapter 6 — Building and Applying Logistic Regression
Models

A. Summary of Chapter 6, Agresti

This chapter discusses logistic regression further, emphasizing practical issues related to model
choice and model assessment. In Section 6.6, other link functions besides logit link are discussed for
binary data.

We would like to fit a model that is rich enough to describe the data, but does not overfit the data.
We also must be aware of issues such as multicollinearity among predictors. Multicollinearity may cause
related predictors to appear nonsignificant marginally. Stepwise procedures (forward selection, backward
elimination, or both) can be used to select predictors for an exploratory analysis. Forward selection adds
terms sequentially until further terms do not improve the fit (based on a criterion such as Akaike’'s
Information Criterion, AIC). Backward elimination starts with a model containing many terms and
sequentially removes terms that do not add “significantly” to the fit. Once the final model is obtained, p-
values must be interpreted cautiously because they are usually based on knowing the model form prior to
looking at the data (whereas, with stepwise selection we use the data to choose the model). Bootstrap
adjustments may be needed for hypothesis tests and standard errors. In certain cases, conceptually
important predictors should be included in a model, even though they may not be statistically significant.

Model building can take advantage of causal diagrams that dictate conditional independence
relations among a set of variables. In this way, the causal diagram guides what models should be fit.
Agresti gives an example from a British data set on extra-marital sex.

Section 6.2 expounds on diagnostics for logistic regression analysis. These include residuals
(Pearson and deviance), influence diagnostics or case-deletion diagnostics (e.g., Dfbetas, and
confidence interval diagnostic that measures the change in a joint confidence region on a set of
parameters after deleting each observation), and measures of predictive power (e.g. R-squared like
measures, ROC curves).

Section 6.3 deals with conditional inference from 2 x 2 x K tables. Testing conditional independence
of a binary response Y and a binary predictor X conditional on the level of a third variable Z can be done
using a test of the appropriate parameter of a logit model or using the Cochran-Mantel-Haenszel (CMH)
Test (The CMH test is a score statistic alternative for the LR test of the logit model parameters). The logit
model tests differ depending on whether the association between the predictor and response is assumed
the same at each level of the third variable (i.e., no XZ interaction) or it is assumed to differ.

The CMH test conditions on both response Y and predictor X totals within each level of Z. Then, the
first cell count in each table has a hypergeometric distribution (independent of the other tables). The
CMH statistic compares the sum of the first cell counts across the K tables to its expected value of
conditional independence within strata. The asymptotic distribution of the statistic is chi-squared.

Section 6.4 discusses the use of parsimonious models to improve inferential power and estimation.
One example of this concept is illustrated by showing the improved power in testing for an association in
the presence of a logit model when a predictor has ordinal levels. In this case, the use of numerical
scores in place of the nominal levels of the ordinal predictor results in fewer parameters in the model and
ultimately results in better power and smaller asymptotic variability of the cell probability estimates.

Section 6.5 discusses power and sample size calculations for the two-sample binomial test, test of
nonzero coefficient in logistic regression and in multiple logistic regression, and chi-squared test in
contingency tables. The formulas provide rough indications of power and/or sample size, based on
assumptions about the distribution of predictors and of the model probabilities expected.

When samples are small compared to the number of parameters in a logistic regression model,
conditional inference may be used. With conditional inference, inference for a parameter conditions on
sufficient statistics for remaining parameters, thereby eliminating them. What remains is a conditional
likelihood that only depends on the parameter of interest. In many respects, a conditional likelihood can
be used like an ordinary likelihood, giving conditional MLEs and asymptotic standard errors. Exact
inference for parameters uses the conditional distributions of their sufficient statistics. Conditional

93

inference is also used for sparse tables (with many zeroes) and tables that display “separation” where the
success cases all correspond to one level of the risk factor.

B. Model Selection for Horseshoe Crab Data

Backward elimination is done for the Horseshoe Crab data of Table 4.3 in order to select a
parsimonious logistic regression model that predicts the probability of a female crab having a satellite.
We begin by putting all the variables from Table 4.3 into a model. Agresti uses two dummy variables for
the variable spline condition, which we create by forming factors on the two variables.

options (contrasts=c("contr.treatment", "contr.poly"))
table.4.3%C.fac<-factor(table.4.33C, levels=c("5","4n, n3n npwn))
table.4.33$S.fac<-factor(table.4.33$S, levels=c("3", n2n nin))

Now, we fit the full model, with weight (Wt) being divided by 1000, as in the text. Note the use of () to
interpret the argument literally.

crab.fit.logist.full<-glm(Sa.bin~C.fac+S.fac+W+I(Wt/1000), family=binomial,
data=table.4.3)

summary (crab.fit.logist.full, cor=T)

Coefficients:
Value Std. Error t value
(Intercept) -9.2733819 3.8364636 -2.4171693
.fac4 .1198011 .5931762 1.8878052
.fac3 1.5057627 .5665525 2.6577638
.fac2 1.6086660 .9353686 1.7198203
.fac2 -0.4962679 .6290766 -0.7888830
.facl -0.4002868 .5025636 -0.7964899
W 0.2631276 .1952484 1.3476557
I(Wt/1000) 0.8257794 .7036640 1.1735422

nnnNnnnN
[y
[eNeoNeoNoNoNeoNo)

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 185.202 on 165 degrees of freedom
Number of Fisher Scoring Iterations: 4

Correlation of Coefficients:

(Intercept) Cc.fac4 Cc.fac3 Cc.fac2 S.fac2 S.facl W
.fac4 -0.1318818
.fac3 -0.0670015 0.7233703
.fac2 -0.0043035 0.4499020 0.5507148
.fac2 -0.2184819 -0.0733221 -0.1685117 -0.2471148
.facl -0.0120010 -0.0327826 -0.2074473 -0.3672790 0.2431179

W -0.9649203 0.0241011 -0.0308300 -0.0336341 0.1922667 0.0161518

I(Wt/1000) 0.6740016 -0.0097672 -0.0014684 -0.0365701 -0.0891985 -0.0402631 -0.8308544

nnhnNnOnN

with LR statistic

crab.fit.logist.full$null.deviance-crab.fit.logist.full$deviance
[1] 40.55652

Because of the high correlation between width and weight, Agresti eliminates the predictor wt in further
analyses.

94

To perform stepwise selection of predictor variables for various types of fitted models (including glm
objects), one can use the function step with a 1lower and upper model specified. The criterion is AlC.
Only the final model is printed unless trace=T is specified. An example of a call to the gim method is

step.glm(fit, scope=list(lower = formula(fit), upper = ~ .”"2), scale=1l, trace=T,
direction="both")

The above call specifies both forward and backward stepwise selection of terms (direction="both").
The scope of the selection has a lower bound or starting model as “fit”. The upper bound model
includes all two-way interactions. The component “anova” gives a summary of the trace path.

To illustrate stepwise procedures, we perform backward elimination on a model fitted to the horseshoe
crab data. This model includes up to a three-way interaction among Color, Width, and Spine Condition.
We fit this model in S-PLUS or R using

crab.fit.logist.stuffed<-glm(Sa.bin~C.fac*S.fac*W, family=binomial,data=table.4.3)

(Note that there are some warning messages after the fit.) The backward elimination begins with the
above three-way interaction model. The lower bound of the scope is a null model. The upper bound is
the saturated or “stuffed” model, as | appear to have called it.

res <- step.glm(crab.fit.logist.stuffed, list(lower = ~ 1, upper =
formula(crab.fit.logist.stuffed)), scale = 1, trace = F, direction = "backward")
res$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
Sa.bin ~ C.fac * S.fac * W

Final Model:
Sa.bin ~ C.fac + W

Step Df Deviance Resid. Df Resid. Dev AIC
1 152 170.4462 212.4462
2 - C.fac:S.fac:W 3 3.232082 155 173.6783 209.6783
3 - C.fac:S.fac 6 7.880494 161 181.5588 205.5588
4 - S.fac:W 2 0.078190 163 181.6370 201.6370
5 - S.fac 2 1.443615 165 183.0806 199.0806
6 - C.fac:W 3 4.376405 168 187.4570 197.4570

Compare the above table to Table 6.2 in Agresti. The models chosen at each step are the same as those
in Table 6.2, with the exception of step 5. At step 5, step.glm opts to drop S instead of the two-way
interaction C:W, giving a resulting AIC of 199.0806 instead of 200.6. Setting trace=T in the call of the
function shows this explicitly. The model chosen by step.glmis C + W with AIC = 197.46. The iterations
stop before steps 7 and 8 in Table 6.2 because at step 7, no model decreases AlC.

The stepa1c function from the MASS library also performs stepwise selection based on AIC. In some
cases, the AIC calculation from stepa1c is more accurate than that of step.glm. See the help library for
stepAIC or Venables and Ripley (2002). Here, stepaIc gives the same anova summary.

C. Using Causal Hypotheses to Guide Model Fitting
In this subsection, | show how to fit the various models derived from the causal diagram in Figure 6.1 in

Agresti. There are no new techniques learned, but it gives an illustration of fitting several related models
coming from the same contingency table. A 2x2x2x2 table of variables: gender, premarital sex,

95

extramarital sex, and marital status (divorced, still married) is given in Table 6.3 (p. 217, Agresti). The
data come from a British survey of a sample of men and women who had petitioned for divorce, and a
similar number of married people.

The causal diagram indicates a conditional independence relation: M and G are conditionally
independent given E and P. Thus, if we broke the arrows connecting E to M and P to M, there would be
no path between G and M. A logit model with M as response, then, might have E and P as explanatory
variables, but not G. This model and the remaining in Table 6.4 (p. 218, Agresti) are fitted below using S.

First, | enter the data (see note at end of this section)

table.6.3<-expand.grid(list (M=c ("divorced", "married") ,E=c("yes", "no"),
P=c("yes","no"), G=c("Female","Male")))

count<-c(17,4,54,25,36,4,214,322,28,11,60,42,17,4,68,130)

table.6.3.expand<-table.6.3[rep(1l: (length(count)),count),]

Then, | fit the models and compare the reductions in deviance.

Stage 1:

EMS.10<-glm(P ~ 1, family=binomial, data=table.6.3.expand)
EMS.1ll<-update (EMS.10, .~. +G)

anova (EMS.10, EMS.11)

Analysis of Deviance Table
Response: P
Terms Resid. Df Resid. Dev Test Df Deviance

1 1 1035 1123.914
2 G 1034 1048.654 1 75.2594

Thus, adding G reduces the deviance by about 75.3.

Stage 2:
EMS.20<-glm(E ~ 1, family=binomial, data=table.6.3.expand)
EMS.21<-update (EMS.20, .~. +P)

EMS.22<-update (EMS.21, .~. +G)
anova (EMS.20, EMS.21, EMS.22)

Analysis of Deviance Table
Response: E

Terms Resid. Df Resid. Dev Test Df Deviance

1 1 1035 746.9373
2 P 1034 700.9209 1 46.01636
3P+ G 1033 698.0138 +G 1 2.90718

Adding P reduces the deviance by about 46 (= 48.9 — 2.9). Adding G to this reduces the deviance by 2.9
more points.

Stage 3:

EMS.31<-glm(M ~ E+P, family=binomial, data=table.6.3.expand)
EMS.32<-update(EMS.31, .~. +E:P)

EMS.33<-update (EMS.32, .~. +G)

anova (EMS.31, EMS.32, EMS.33)
Analysis of Deviance Table
Response: M

Terms Resid. Df Resid. Dev Test Df Deviance
1 E + P 1033 1344.180

96

E E:P 1032 1331.266 +E:P 1 12.91404
P E:P

2 + P +
3E+ P+ G+ 1031 1326.718 +G 1 4.54768
Adding E:P to a model with E and P reduces the deviance by about 13 points (=18.2 — 5.2). Further
adding G reduces deviance by 4.5 points (= 5.2 — 0.7). Thus, we see how Table 6.4 is obtained.

I have since found this data set available in the R package vcd. Thus, if you have loaded the vcd library,
just issue the command: data(PreSex), to have the presex data array available. The function
as.data.frame () can be used to transform it to a data frame.

D. Logistic Regression Diagnostics

This section gives more details on diagnostics for logistic regression. After illustrating each set of
procedures, | use the two data sets in Subsections 6.2.2 and 6.2.3 in Agresti to demonstrate their use in
S.

1. Pearson, Deviance and Standardized Residuals

We already illustrated Pearson residuals in Chapter 3, Section D.1 and Chapter 4, Section F. The sum of
the squared Pearson residuals is equal to the Pearson chi-squared statistic. For a logistic regression

model, with responses as counts out of totals, n, i=1,...,N, the fitted response value at the ith

combination of the covariates is Nz, . So, the Pearson and deviance residuals use deviations of the

observed responses from these fitted values. Pearson residuals are divided by an estimate of the
standard deviation of an observed response, and the standardized version is further divided by the
square root of the 1— the ith estimated leverage value (ith diagonal of estimated “hat” matrix). This
standardized residual is approximately distributed standard normal when the model holds. Thus,
absolute values of greater than about three provide evidence of lack of fit.

Deviance residuals were illustrated for S in Chapter 4, Section F. These are the signed square
roots of the components of the LR statistic. Standardized deviance residuals are approximately
distributed standard normal.

These residuals can be plotted against fitted linear predictors to detect lack of fit, but as Agresti
says, they have limited use. When n = 1, individual residuals can be either uninteresting (Pearson) or

uninformative (deviance).

The heart disease data in Agresti (Table 6.5, p. 221) classifies blood pressure (BP) for a sample of male
residents aged 40-59, into one of 8 categories. Then, a binary indicator response is whether each man
developed coronary heart disease (CHD) during a six-year follow-up period. An independence model is
fit initially. This model has BP independent of CHD.

BP<-factor(c("<117","117-126","127-136","137-146","147-156","157-166","167-
186",">186"))

CHD<-c(3,17,12,16,12,8,16,8)

n<-c(156,252,284,271,139,85,99,43)

Independence model:

resCHD<-glm(CHD/n~1, family=binomial, weights=n)
resCHDS$deviance
[1] 30.02257

Predicted responses, deviance residuals, Pearson residuals, and standardized Pearson residuals.

pred.indep<-n*predict (resCHD, type="response")
dev.indep<-resid(resCHD, type="deviance")
pear.indep<-resid(resCHD, type="pearson")

pear.std.indep<-resid(resCHD,

structure (cbind (pred.indep,
c("fitted",

list (BP,

"deviance resid",
R: structure (cbind(pred.indep,

"pearson std resid")))

<117
117-126
127-136
137-146
147-156
157-166
167-186

>186

A plot of the standardized residuals shows an increasing trend.

10.
17.
19.
.759970
.622272
.884123
.853273
.976674

N o Ul

dev.indep,

"pearson resid",

pear.indep,
dimnames=1list (as.character (BP),c("fitted", "deviance resid",

dev.indep, pear.indep, pear.std.indep),

dimnames

type="pearson") /sqrt (1l-1lm.influence (resCHD) $hat)

"pearson std resid")))

fitted deviance resid pearson resid pearson std resid

799097
444695
659895

-0.
-0.
-0.
-0.

0.

0
0.
0

231005277
006979615
114009224
041094691
065059023

.093323311

314268383

.386702000

-2
-0
-1

-0.
0.

0
3.
3

.4599611
.1103592
.7906464
6604895
7945128
.9041221
6215487
.0178895

-2.
-0.
-2
-0.

0.

0.
3.
3.

6298091
1235339

.0374109

7464933
8428348
9365792
7743451
0712637

pear.std.indep),
"pearson resid",

plot (pear.std.indep,xlab="",ylab="Standardized Pearson Residuals", pch=16,

axis(1l,at=1:8,
axis(2);abline (h=0)

Standardized Pearson Residuals

labels=as.character (BP), srt=90)
N °
™ °
~
— ° []
© ®
o | °
;
N °
°
:
™~ © © © © © ©
— N ™ < Ln © <3}
v NG G NG G G NG
~ ™~ ~ ~ N~ ~
— N [32] <t o [{e]
— — — — — —

axes=F)

Agresti notes that this suggests that a linear logit model may be better to use, with scores for BP.

To indicate residuals greater than | 3 | on the plot, use text and then points, as follows

out<-abs (pear.std.indep) >3

plot (pear.std.indep, xlab="",ylab="Standardized Pearson Residuals",

text ((1:8) [out], pear.std.indeploutl],
points((1:8) [!lout], pear.std.indep[!out], pch=16)

axis(l,at=1:8,

axis (2)

abline (h=0)

Linear Logit Model:

scores<-c(seq(from=111.5,to=161.5,by=10),176.5,191.5)
resLL<-glm(CHD/n~scores, family=binomial,weights=n)

resLL$deviance
[1] 5.909158

pred.indep<-n*predict (resLL,

||>3||)

labels=as.character (BP), srt=90)

type="response")

axes=F,

type:"n")

98

dev.indep <- resid(resLL, type = "deviance")
pear.indep <- resid(resLL, type = "pearson")
pear.std.indep <- resid(resLL, type = "pearson")/sqrt(l - lm.influence(resLL) $hat)

structure (cbind (pred.indep, dev.indep, pear.indep, pear.std.indep), dimnames =
list (as.character(scores), c("fitted", "deviance resid", "pearson resid", "pearson
std resid")))

fitted deviance resid pearson resid pearson std resid

111.5 5.194869 -1.0616845 -0.9782938 -1.1046299
121.5 10.606767 1.8501055 2.0037958 2.3724980
131.5 15.072743 -0.8419675 -0.8127218 -0.9445420
141.5 18.081622 -0.5162313 -0.5064454 -0.5724088
151.5 11.616362 0.1170009 0.1175384 0.1260411
161.5 8.856988 -0.3087751 -0.3041875 -0.3260156
176.5 14.208763 0.5049658 0.5134918 0.6519597
191.5 8.361957 -0.1402427 -0.139493 -0.1773537

The residuals are generally smaller. We can plot the fitted proportions along with the observed
proportions using the following.

win.graph (width=10, height=8) # R only

plot (scores,CHD/n,pch="X",yaxt="n",xaxt="n",ylim=c (0, .2),
xlab="Blood Pressure Level",ylab="Proportion",bty="L")

axis(side=1, at=seq(from=110,to=200,by=10))

axis(side=2, at=seq(from=0,to=.2,by=.05))

lines (scores,predict(resLL, type="response"), type="1")

0.20
!

Proportion
0.10
|

0.05
1

T T T T T T T T T
110 120 130 140 150 160 170 180 190

Blood Pressure Level

The graduate admissions data in Table 6.7 p. 223 of Agresti cross-classifies applicants on gender (G),
whether admitted (A) and department of application (D). The number admitted of each gender for each
department are assumed to be independent binomials with different probabilities of success.

yes<-c¢(32,21,6,3,12,34,3,4,52,5,8,6,35,30,9,11,6,15,17,4,9,21,26,25,21,7,25,31,3,9,
10,25, 25,39,2,4,3,0,29,6,16,7,23,36,4,10)

no<-c(81,41,0,8,43,110,1,0,149,10,7,12,100,112,1,11,3,6,0,1,9,19,7,16,10,8,18,37,0,
6,11,53,34,49,123,41,3,2,13,3,33,17,9,14,62,54)

99

table.6.7<-cbind (expand.grid(gender=c("female", "male"),
dept=c ("anth", "astr","chem", "clas", "comm", "comp", Ilenglll , "geog", Ilgeolll ,"germ",
llhistll , “lati n , n 1ingll , Ilmathll , llphil n , “phys n , llpoli n , "pSyC n , n reli n , n romall , n SOCi n ,
"stat", "zool")) ,prop=yes/ (yes+no))

A model with no gender effect is

res.gradadmit<-glm(prop~dept, family=binomial, data=table.6.7, weights=yes+no)
res.gradadmit$deviance

[1] 44.73516

sum(resid(res.gradadmit, type="pearson")"2)

[1] 40.80606

Standardized Pearson residuals are obtained in the same way as above.

resid(res.gradadmit, type="pearson")/sqrt(l-lm.influence(res.gradadmit) $hat)
2. Influence Diagnostics

The estimated “hat” matrix for GLIMs can be used to assess leverage for each observation. For an
observation with large leverage, if it also has an outlying residual, then deleting the observation from the
model fit may cause large changes in the fit.

Case deletion diagnostics measure the change in fit after deleting an observation. A measure called
Dfbeta measures the standardized change in a parameter estimate when an observation is deleted from
the model fit. In S-PLUS, we can compute Dfbeta measures using the function cook.terms by John
Chambers (Chambers and Hastie, 1992). The signed square root of the output from this function gives
the Dfbetas. Using it on the linear logit model for blood pressure, we get

sign(resLL$coefficients[2] -1m.influence (resLL) $coefficients[,2,drop=F])

*gqgrt (Cook. terms (resLL) [,2])
scores

0.492099277

-1.142149031

0.327960528

0.081380326

0.007858333

-0.065196274

0.400949178

-0.123737455

W JO0O Uk WNR

In R, there is a function called influence.measures () that is used for computing influence measures for
an lm.object. There is also a dfbetas() function by itself. Here, if we use dfbetas on the
glm.object, resLL, We get values that are somewhat similar to those from S-PLUS.

dfbetas (resLL) [, 2,drop=F]

scores
0.564578573
-2.237161736
0.341496449
.078670948
0.007193748
-0.061424292
0.375986525
-0.114761146

W JO0O Uk WNR
o

Influence measures for logistic regression models are also available from Harrell's library/package
Design and Hmisc in the form of the function, residuals.lrm, with argument type="dfbetas”. The
function takes as input the output from the Design function 1rm. We discuss this function next.

100

3. Summarizing Predictive Power: R and R-squared Measures

The function 1rm from Harrell’s Design library (available for both R and S-PLUS) computes measures of
predictive ability of a logistic regression model, including R and R-squared-like measures. These
measures can also be validated using resampling (function validate.lrm). This function calculates
bias-corrected estimates of predictive ability. Bias is incurred when the data used to fit a model is also
used to assess its predictive ability on a potential new data set. Model selection, assessment, and tuning
of a model fit are usually not taken into account when one computes a measure of predictive power.
These activities can bias the computed measure upward. Thus, bias-correction is in order.

To illustrate the variety of measures computed by these functions, | use 1rm to fit the linear logit model to
the blood pressure data. 1rm requires binary responses instead of count response, so | form table.6.5
out of objects defined previously. Note that | set the arguments x and y to TRUE so that we can use
validate.lrm later on. First, when loading the libraries, set first=T so that certain functions from
Design don't get confused with built-in ones from S-PLUS (done automatically in R).

library (Hmisc, first=T) # first=T not needed in R
library (Design, first=T) # R: loads Hmisc upon loading Design

#BP<-factor(c("<117","117-126","127-136","137-146","147-156","157-166","167-
186",">186"))

#scores<-c(seq(from=111.5,to=161.5,by=10),176.5,191.5)

#CHD<-c(3,17,12,16,12,8,16,8)

#n<-c(156,252,284,271,139,85,99,43)

form the data

res<-numeric (2*length (CHD))

res[rep(c(T,F),length(CHD))]<-CHD

res [rep(c(F,T),length(CHD))]<-n-CHD

table.6.5<-data.frame (CHD=rep (rep(c(1,0),length(CHD)) ,res), BP=rep(BP,n),
scores=rep (scores,n))

fit the linear logit model
options (contrasts=c("contr.treatment", "contr.poly"))
(res.lrm<-1lrm(CHD~scores,data=table.6.5, x=T, y=T))

Logistic Regression Model

lrm(formula = CHD ~ scores, data = table.6.5, x =T, y = T)

Frequencies of Responses

0o 1
1237 92
Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier
1329 2e-005 24 .11 1 0 0.636 0.273 0.316 0.035 0.045 0.063

Coef S.E. Wald Z P
Intercept -6.08203 0.724320 -8.40 O
scores 0.02434 0.004843 5.03 0

The Model L.R. reported by lrm iS resLL$null.deviance-resLL$deviance for the same model fit
using glm (resLL). Thus, it is the reduction in deviance by fitting scores. However, because resLL was
fit using grouped data instead of binary responses, the absolute deviances will be different. This has
implications for the reported R-squared measure. The r2 measure reported by 1rm is the Nagelkerke
measure, Rﬁ , Which measures the proportionate reduction in deviance when fitting the unconstrained

model versus the null model. It is computed as

101

e -1 ep(Ly = L))
1T-exp(-L, /)

where Ly is the deviance (-2 times log likelihood) under the null model, and Ly, is the deviance under the
unconstrained model, and n is the number of responses. All three of these will differ when using grouped

versus ungrouped data, and the R-squared values will differ. Consider the value of Ri for the gim fit,
resLL<-glm(CHD/n~scores, family=binomial,weights=n) (from p. 94):

(1 - exp((resLL$deviance - resLL$null.deviance)/1329))/(1 - exp(-
resLL$null.deviance/1329))

[1] 0.8049576

This value is much larger. However, when we use binary responses with gilm, we get

temp <- glm(formula = CHD ~ scores, family = binomial, data = table.6.5)
(1 - exp((temp$deviance - temp$null.deviance)/1329))/(1 - exp(-
temp$null.deviance/1329)) # sum(n) = 1329

[1] 0.04546905
4. Summarizing Predictive Power: ROC Curve

The measure “c” reported by the 1rm output above is an index of the rank correlation between the
predicted probability of response under the fitted model and the actual response. It is the probability of
concordance between predictions and outcomes, and is equivalent to the area under a receiver operating
characteristic (ROC) curve. If we were to classify predicted probabilities as success if the predicted
probability exceeds some fixed value 7, and failure if not, then a plot of the sensitivity of the model
(predicting success when it should) by one minus the specificity (predicting failure when it should) for a
range of values of 7, is the ROC curve. The larger the area under this curve, the better the predictions.

The maximum area is 1.0, and an area of 0.5 implies random predictions (i.e., a prediction of success is
as likely whether success or failure is the truth). A value of ¢ = 0.636 above is not much better than
random predictions, in agreement with the very low r2 value. Harrell (1998) gives a guideline of c
exceeding 0.80 as implying useful predictability of the model.

Somer’s D is a transformation of C, equal to 2(C — 0.5), where D = 0 if predictions are random and D = 1
if predictions are perfect. The various rank measures (Somer’s D, tau-a, C) only measure how well the
predicted values can rank order responses, but the actual numerical predictions do not matter (i.e., only
ordinal information is used).

To validate the logistic model fit, we can use validate.lrm, from the same library. This can be called
using validate (), with an object of class 1rm (but, be careful, as there is a validate function in S-PLUS
that provides a completely different service). | will use the full name here, instead of taking advantage of
method dispatch.

Below is the output of a call to validate.1lrm, using 100 bootstrap repetitions, where sampling is done
with replacement. A repetition proceeds as follows. A bootstrap sample is drawn from the original data
and becomes the training set for the repetition. The model is fit to this sample, coefficients are estimated
and measures of predictive accuracy are obtained. Another bootstrap sample is drawn (called the test
sample), and the model is fit using the responses from that sample and one predictor: the linear predictor
formed using the covariate matrix from the test sample along with the coefficient estimates from the
training sample. Measures of predictive accuracy are calculated from this fit. After 100 repetitions, the
training sample indexes are averaged and the test sample indexes are averaged. These averages
appear in the validate.lrm output.

102

| only show the two indexes of predictive accuracy, Dxy (Somer’'s D) and R2, but several others are
output as well. The index.corrected column is the row index corrected for bias due to over-optimism
(i.e., index.orig — optimism). The optimism column is computed as the difference between the
average of the indexes calculated from the training samples and the average calculated from the test
samples. Here, there is very little over-optimism, so the corrected estimates are very close to the original
indexes.

validate.lrm(res.lrm, method = "boot", B = 100) # excerpt

index.orig training test optimism index.corrected n
Dxy 0.272819936 0.270357318 0.27281993603 -0.0024626183 0.27528255435 100
R2 0.045469052 0.047315513 0.04546905186 0.0018464612 0.04362259074 100

Harrell has written much about the topic of assessing predictive ability from linear, logistic, and survival
models. The above information came from a preprint (Harrell, 1998) of his now-published Springer book.
In addition, on the website for one of my courses at UHCL (http://math.cl.uh.edu/~thompsonla/5537), |
have html documents and S-PLUS scripts illustrating many of the 1rm model assessments on GLIMs,
with annotation.

After using Design and Hmisc, we should detach them.

detach("Design") # R: detach("package:Hmisc")
detach("Hmisc") # R: detach("package:Design")

E. Inference about Conditional Associations in 2 x 2 x K Tables

In this section, | show how to test for conditional independence between response Y and predictor X in 2
x 2 x K tables using S, where K is the number of levels of a stratification variable. Agresti illustrates a test
using an appropriate logit model and the Cochran-Mantel-Haeszel Test. Table 6.9 (p. 230, Agresti) gives
results of a clinical trial with eight centers. The study compared two cream preparations, an active drug
and a control, on their success in treating an infection. This data set is available on Agresti’s text website
(I have changed the name, and changed the extension to “ssc”). | read it in using scan in order to read
the numeric levels (1 and 2) for the response and treatment as characters. Then, | make it a data frame
and change the levels to something more meaningful.

table.6.9<-data.frame(scan(file="clinical trials table 69.ssc",
what=1list (Center="",Treatment="", Response="",Freg=0)))

levels(table.6.9$Treatment)<-c ("Drug", "Control")

levels (table.6.9%Response)<-c ("Success", "Failure")

The CMH test assumes that the odds ratios are in the same direction across strata. Thus, prior to
conducting the test, we can check the sample odds ratios across the centers. This can be done using
oddsratio from package vcd in R. The same function can be sourced into S-PLUS with modifications
due to restricted variable names and scoping rule differences between R and S-PLUS. | have modified
the function to be sourceable into S-PLUS as well as to use the non-corrected cell counts if desired.
Here, we will use them.

oddsratio.L<-
function (x, stratum = NULL, Log = TRUE, conf.level = 0.95, correct=T)
{
modified version of oddsratio in package vcd
1l <- length(dim(x))
if (1 > 2 && is.null(stratum))
stratum <- 3:1
if (1 - length(stratum) > 2)
stop("All but 2 dimensions must be specified as strata.")

103

if (1 == 2 && dim(x) != c(2, 2))
stop("Not a 2 x 2 - table.")
if (!is.null(stratum) && dim(x) [-stratum] != c(2, 2))

stop ("Need strata of 2 x 2 - tables.")
lor <- function(y, correct, Log) {
if (correct) y<-y + 0.5
or <- yl1, 11 * yl[2, 2]1/yl[1, 21/yl[2, 1]
if (Log)
log(or)
else or

}

ase <- function(y, correct) sqrt(sum(l/(ifelse(correct,y + 0.5,y))))
if (is.null(stratum)) {

LOR <- lor(x, correct)

ASE <- ase(x)

else {
LOR <- apply(x, stratum, lor, correct=correct, Log=Log)
ASE <- apply(x, stratum, ase)

}

I <- ASE * gnorm((1l + conf.level)/2)
Z <- LOR/ASE
structure (LOR, ASE = if (Log)
ASE, lwr = if (Log)
LOR - I
else exp(log(LOR) - I), upr = if (Log)
LOR + I
else exp(log(LOR) + I), Z = if (Log)
z, P = if (Log)
1l - pnorm(abs(Z)), log = Log, class = "oddsratio")

This function is meant to work in both R and S-PLUS. To use oddsratio.L we need the data as an
array. This is accomplished using design.table in S-PLUS (where I've moved the columns around to
match those in Table 6.9, so that Z comes after X and Y) and xtabs in R.

table.6.9.array<-design.table(table.6.9[,c(2,3,1,4)])
R: table.6.9.array<-xtabs (Freg~Treatment+Response+Center, data=table.6.9)

Then, we apply the function (here, in R)

oddsratio.L(table.6.9.array, correct=F, Log=F)

a b c d e £ g h
1.1880000 1.8181818 4.8000000 2.2857143 Inf Inf 2.0000000 0.3333333

If the odds ratios are very different across strata, we might opt to test for conditional independence by
comparing a logit model with no X effect to a saturated model with X effect, Z effect and XZ association.
If we assume that the actual odds ratios are nearer the same, we can use the Cochran-Mantel-Haenszel
test, with asymptotic null chi-squared distribution. It is available in both S-PLUS and R (however, the R
version offers an exact test as well). Here, we use the R version. The argument, correct, set to FALSE,
will not use a continuity correction for the asymptotic test.

mantelhaen.test(table.6.9.array, correct=F)
Mantel-Haenszel chi-squared test without continuity correction

data: table.6.9.array
Mantel-Haenszel X-squared = 6.3841, df = 1, p-value = 0.01151
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:

1.177590 3.869174

sample estimates:

common odds ratio

2.134549

104

Thus, we reject the null hypothesis of conditional independence between Treatment and Response given
Center. (The common odds ratio result is discussed later). We can also use the logit model test. This is
a test that the coefficient corresponding to Treatment in a logit model is zero, given the model includes
Center (see equation (6.4) in Agresti). If we use glm, we need to make a few modifications to the data
frame. Below, | add the total to each Center/Treatment combination.

n<-aggregate(table.6.9%Freq, list(table.6.9$Treatment,table.6.9%Center), FUN=sum) $x
table.6.9%n<-rep(n,rep(2,16))

Now, we fit model (6.4). Because of the alphabetical ordering of levels of factors, the coefficient is
negative. This can be changed by redoing the factor definition above.

options (contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only

res<-glm(Freq/n~Center+Treatment, family=binomial, data=table.6.9, weights=n, subset=
Response=="Success") # model 6.4

summary (res, cor=F)

Call: glm(formula = Freq/n ~ Center + Treatment, family = binomial, data = table.6.9,
weights = n, subset = Response == "Success")

Coefficients:
Value Std. Error t value
(Intercept) -0.5450944 0.2929052 -1.8609927
Centerb 2.0554344 .4200885 4.8928604
Centerc 1.1529027 .4245668 2.7154802
Centerd -1.4184537 .6635739 -2.1375972
Centere -0.5198903 .5337883 -0.9739635
Centerf -2.1469176 .0603341 -2.0247558
Centerg -0.7977076 .8149166 -0.9788824
Centerh 2.2079143 .7195076 3.0686463
Treatment -0.7769203 0.3066807 -2.5333195

OORFrOOOoOOo

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 93.5545 on 15 degrees of freedom
Residual Deviance: 9.746317 on 7 degrees of freedom

Number of Fisher Scoring Iterations: 5

The LRT is given by anova.

anova (res)

Analysis of Deviance Table
Binomial model

Response: Freg/n

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr (Chi)

NULL 15 93.55450
Center 7 77.13937 8 16.41513 0.000000000
Treatment 1 6.66882 7 9.74632 0.009811426

And, we reject the hypothesis of conditional independence. We can also use the CMH statistic, but
compare it to the exact null distribution. The p-value for this test is available in the R version of the
mantelhaen.test function, with argument exact.

mantelhaen.test(table.6.9.array, exact=T)

105

Exact conditional test of independence in 2 x 2 x k tables

data: table.6.9.array

S = 55, p-value = 0.01336
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:

1.137370 4.079523

sample estimates:

common odds ratio

2.130304

If we assume that the log odds ratios have different directions across strata, we can test conditional
independence using a logit model fit. The test is a likelihood-ratio test of model (6.5) in Agresti (only a
Center effect) compared with a saturated model (Center, Treatment and Center:Treatment). With this
test, we also reject the null hypothesis.

res2<-update(res, .~.-Treatment) # model (6.5)
res3<-update(res, .~.+Center:Treatment) # saturated model

anova (res2,res3, test="Chisg")
Analysis of Deviance Table

Response: Freqg/n

Terms Df Res. Dev Test Df Dev. Pr(Chi)
1 Center 8 16.41513
2 Center+Treatment+Center:Treatment 0 0.00060 +Treatment+Center:Treatment 8 16.41 0.037

F. Estimation/Testing of Common Odds Ratio

If we decide that the conditional odds ratios across strata are similar enough to be combined, we can get
an estimate of the common odds ratio using either the ML estimate of the Treatment coefficient in logit
model (6.4, p. 231 in Agresti) or the Mantel-Haenszel estimate (p. 234 in Agresti). The latter is given by
mantelhaen.test iN R, under common odds ratio, along with an approximate 95% confidence interval
(95 percent confidence interval). The ML estimate is the exponent of the Treatment coefficient
from fitting logit model (6.4). Thus, the MLE of the common odds ratio is

Recall p. 101: res<-glm(Freg/n~Center+Treatment, family=binomial, data=table.6.9,

weights=n, subset= Response=="Success")
exp (-res$coefficient[9]) # the negative relates to how factor levels are coded
Treatment
2.174764

To help us make a decision about whether to combine the odds ratios, we can perform a test of the
homogeneity of odds ratios across strata. As stated in Agresti, this is a test of the goodness-of-fit of
model (6.4). Thus, the test is

anova(res, test="Chisqg")
Analysis of Deviance Table
Binomial model
Response: Freqg/n
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr (Chi)

NULL 15 93.55450
Center 7 77.13937 8 16.41513 0.000000000

106

Treatment 1 6.66882 7 9.74632 0.009811426

Alternatively, the Woolf test is available in the R package vcd, under woolf.test. The null hypothesis is
no three-way (XYZ) interaction, or homogeneous odds ratios across Centers. The function can also be
used within S-PLUS with no modification.

library (vecd)
woolf.test(table.6.9.array)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data: table.6.9.array
X-squared = 5.818, df = 7, p-value = 0.5612

G. Using Models to Improve Inferential Power

As Agresti says, ordinal test statistics in categorical data analysis usually refer to narrower, more relevant
alternatives than do nominal test statistics. They also usually have more power when an approximate
linear trend actually exists between the response and a predictor variable. A linear trend model (e.g.,
linear logit model) has fewer parameters to estimate than does a nominal model with a separate
parameter for each level of the ordinal variable. The LR or Pearson goodness-of-fit statistic used to test
the linear trend parameter of a linear logit model has only 1 degree of freedom associated with it,
whereas the test of the corresponding nominal model against an independence model has degrees of
freedom equal to one less than the number of levels of the variable. Thus, the observed value of the test
statistic in the former case does not have to be as large (compared to the chi-squared distribution) as that
in the second case in order to reject the independence model over the linear logit model .

Agresti uses an example on the treatment of leprosy by sulfones and streptomycin drugs to illustrate the
difference in power to detect a suspected association (Table 6.11, p. 239). The degree of infiltration
measures the amount of skin damage (High, Low). The response, the amount of clinical change in
condition after 48 weeks, is ordinal with five categories (Worse, ..., Marked Improvement). The response
scores are {-1, 0, 1, 2, 3}. Agresti compares the mean change for the two infiltration levels, and notes
that this analysis is identical to a trend test treating degree of infiltration as the response and clinical
change as the predictor. Thus, a linear logit model has the logit of the probability of high filtration linearly
related to the change in clinical condition.

In S, first we set up the data, then fit a model with a separate parameter for each change category.

table.6.ll<-data.frame (change=factor (c ("worse", "stationary", "slight improvement",
"moderate improvement", "marked improvement"),
levels=c("worse","stationary","slight improvement", "moderate improvement", "marked
improvement")), high=c(1,13,16,15,7), n=c(12, 66, 58, 42, 18))

res.leprosy<-glm(high/n~change, weights=n, family=binomial, data=table.6.11)

The test statistic for testing the null hypothesis of all change coefficients equal to zero is obtained by
anova.

anova (res.leprosy, test="Chisqg")
Analysis of Deviance Table
Binomial model

Response: high/n

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr (Chi)

107

NULL 4 7.277707
change 4 7.277707 0 0.000000 0.1219205

With p = 0.12, this test does not reject an independence model. Now, we fit a linear logit model using
scores c(-1, 0, 1, 2, 3), and test it against an independence model.

resLL.leprosy<-glm(high/n~c(-1,0,1,2,3), weights=n, family=binomial,data=table.6.11)
anova (resLL.leprosy, test="Chisg")

Analysis of Deviance Table

Binomial model

Response: high/n

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr (Chi)
NULL 4 7.277707
c(-1, 0, 1, 2, 3) 1 6.651426 3 0.626282 0.009907651

We do reject the independence model here, in favor of the linear logit model that hypothesizes more
positive change with higher filtration.

H. Sample Size and Power Considerations

The power of a two-sample binomial test of two proportions and the sample sizes needed to attain a
particular power for this test can be computed using built-in functions in S-PLUS. The same functions are
not available in R, but Harrell's umisc library has similar functions. The functions do compute power for
unequal sample sizes.

To compute the power of a two-sided 0.05-level test comparing two proportions, where the sample sizes
are both 25, and the expected absolute difference in proportions is 0.10, we can use the functions
binomial.sample.size (S-PLUS) or bpower (R and S-PLUS). We use the former first.

binomial.sample.size(nl=25, n2=25, p=.6, p2=.7, alpha=.05, alternative="two.sided")

pl p2 delta alpha power nl n2 prop.n2
1 0.6 0.7 0.1 0.05 0.06137109 25 25 1

The argument p2 in binomial.sample.size iS the proportion for the second group. The argument p is
the proportion for the first group (it is not p1, in case there is only one sample).

With different sample sizes, 20 and 25, we expect the power to decrease.
binomial.sample.size(nl=20, n2=25, p=.6, p2=.7, alpha=.05,alternative="two.sided")

pl p2 delta alpha power nl n2 prop.n2
1 0.6 0.7 0.1 0.05 0.05610319 20 25 1.25

The formulae used by binomial.sample.size come from Fleiss (1981), and even with equal sample
sizes, they are not exactly the same as those appearing in Agresti p. 240-242. bpower more closely
matches Agresti (and the function contains less overhead).

With equal sample sizes, bpower gives

bpower (n=50, pl=.6, p2=.7, alpha=0.05)

Power
0.1135017

108

bpower (n=200, pl=.6, p2=.7, alpha=0.05)

Power
0.3158429

where we assume the 0.10 difference is divided as pl = 0.6 and p2 = 0.7, and n is the sum of n1 and n2
(with n1 = n2). bpower only computes power for a two-sided alternative.

With n1 = 20 and n2 = 25, we get slightly lower power
bpower (n1=20,n2=25,pl=.6,p2=.7)

Power
0.1084922

binomial.sample.size also computes sample size needed to achieve a given power. The function
bsamsize in package Hmisc does as well. Again, the latter is closer to Agresti’'s formula on p. 242, which
he says is an underestimate of the sample size.

To compute sample size required to achieve 90% power with p1l = 0.6 and p2 = 0.7, and an 0.05-level
test, we need close to 500 subjects for each group.

binomial.sample.size(p=.6, p2=.7, alpha=.05,alternative="two.sided", power=.9)

pl p2 delta alpha power nl n2 prop.n2
1 0.6 0.7 0.1 0.05 0.9 497 497 1

bsamsize (power=.9, pl=.6, p2=.7, alpha=0.05)

nl n2
476.0072 476.0072

Sample size calculations for logistic regression can easily be programmed into a simple S function,
following the formulas on p. 242 in Agresti.

Power for a chi-squared test can be computed using the following function in S-PLUS:
chipower. f<-function (p=NULL, pm=NULL, n, alpha,df, pearson=T, fit=NULL)

S-PLUS only

if (pearson) nc<-n*.pearson.x2 (observed=p, expected=pm) $X2
else nc<-n*fit$deviance

1-pchisg(gchisqg(l-alpha,df),df=df,ncp=nc)

}

where p is a matrix or vector of true proportions, pm are the expected probabilities under the null
hypothesis, and fit is a glm fit (only used for LR chi-squared). In R, we use

chipower. f<-function (x=NULL, pm=NULL, n=NULL, alpha, df, pearson=T, £it=NULL)
{
R only
if (pearson) nc<-chisqg.test (x=x,p=pm) $statistic
else nc<-n*fit$deviance
1-pchisg(gchisg(l-alpha,df),df=df,ncp=nc)

}

where x is a matrix or vector of true counts, and the remaining arguments have the same definitions.

109

As a first example, | use Table 6.13 in Agresti. This table and its “true” joint probabilities from the
physician are input below. Then | fit two models, one with the standard and new therapies independently
influencing the response, and one model with standard therapy alone influencing the response. We will
compute the power for detecting an independent effect of the new therapy on response, over and above
that from the standard therapy.

table.6.13<-data.frame (expand.grid (New = c("very worry", "somewhat",
"reassuring") ,Standard=c ("worry", "reassure")),
prop=10000*c(.04*.4, .08*.32,.04*.27,.02*.3,.18*.22,.64*%.15))

weight<-10000*c(0.04,0.08,0.04,0.02,0.18,0.64)

fitl<-glm(prop/weight~Standard, data=table.6.13, family="binomial",weights=weight)
fit2<-glm(prop/weight~Standard+New, data=table.6.13, family="binomial",
weights=weight)

Now, | compute power for n = 400, 600, and 1000 with alpha = 0.05. First, | compute the difference in
residual deviances between the two models using the anova function.

res<-list (deviance=anova(fitl, fit2) $Deviance[2]/10000)
chipower.f (fit=res, alpha=.05, df=2, pearson=F, n=c(400,600,1000))

[1] 0.3466997 0.4948408 0.7266697

As a second example of power computations, | use the data in Table 2.5 as though they were the true
cell probabilities and compute power for a test of independence between smoking and lung cancer.

table.2.5<-data.frame (expand.grid (Smoker=c ("yes", "no"),
Lung.Cancer=c ("Cases", "Controls")),count=c(688,21,650,59))

The expected probabilities under independence can be computed using formula in Section 3.2 of Agresti
or found in R using the function expected from library vcd, which computes expected counts. Actually,
the expected function can be sourced into S-PLUS with no modification. To use it, we need an array,
however. So, we first change the data frame into an array.

table.2.5.array<-design.table(table.2.5)
#R: table.2.5.array<-xtabs (count~Smoker+Lung.Cancer,data=table.2.5)

Then, we apply expected, and get the power for a Pearson chi-square test assuming a total sample size
of 1,418, which happens to be the same as the observed sample size.

fit<-expected(table.2.5.array)
chipower. f (p=table.2.5.array/1418, pm=£fit/1418, n=1418, alpha=.05, df=1) # S-PLUS
[1] 0.992105

R: chipower.f (x=table.2.5.array, pm=fit, alpha=.05,df=1)
[1] 0.9892372

In this case, the noncentrality parameter is about 19. So, according to Table 6.12 in Agresti, the power
should be between 0.972 and 0.998.

For other sample sizes, in S-PLUS we just change the n argument to chipower.f. In R, for the Pearson
chi-squared test power we must specify the true cell counts using the true cell probabilities and our
specified sample size.

I. Probit and Complementary Log-Log Models

1. Probit Models

110

As described in Section 6.6 in Agresti, the idea behind probit models is that there is a latent tolerance
value underlying each binary response. The tolerance is subject-specific. When a linear combination of
the predictor variables is high enough to exceed an individual’s tolerance, the binary response becomes 1
and remains there. Otherwise, it remains at zero. The tolerance is a continuous random variable. When
it has a normal distribution, we get a probit model. Probit models are used in toxicological experiments
where the predictor is dosage. So, when the dosage exceeds a threshold (tolerance), the response is
death.

In GLIM terminology, the probit link function is the inverse CDF of the standard normal distribution
(equation 6.11 in Agresti). Agresti gives some differences between probit link and logit link for binomial
regression. Fitting the probit model is fitting a GLIM, so no new estimation procedures are introduced.
Estimates from Newton-Raphson and Fisher scoring will have slightly different estimated standard errors
because observed and expected information differ in the probit model. The probit is not the canonical link
for a binomial model.

Agresti fits a probit model to the beetle mortality data in Table 6.14.

table.6.l4<-data.frame(log.dose=c(1.691,1.724,1.755,1.784,1.811,1.837,1.861,1.884),
n=c(59,60,62,56,63,59,62,60),
y=c(6,13,18,28,52,53,61,60))

Here, we use Fisher scoring to fit the probit model. If we wanted to use Newton-Raphson, we could use
the function probitreg, defined earlier. The two methods give different standard errors.

options (contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only
(res.probit<-glm(y/n~log.dose,weights=n, family=binomial (link=probit),
data=table.6.14))

Coefficients:
(Intercept) log.dose
-34.95563 19.74073

Degrees of Freedom: 8 Total; 6 Residual
Residual Deviance: 9.986957

2. Complementary Log-Log Models

The logit and probit links are symmetric about 0.5, meaning that the probability of success approaches 0
at the same rate as it approaches 1. The complementary log-log link is asymmetric. Its probability of
success approaches 0 slowly but approaches 1 sharply.

For the beetle mortality data, we can see from the observed proportions that they quickly increase to 1
after a dosage of 1.784. Thus, the complementary log-log should be a better fit than a probit.

(res.cloglog <- glm(y/n ~ log.dose, weights = n, family = binomial (link = cloglog),
data = table.6.14))

Coefficients:
(Intercept) log.dose
-39.52232 22.01478

Degrees of Freedom: 8 Total; 6 Residual
Residual Deviance: 3.514334

The LR statistic is much lower for complementary log-log link. Here are the fitted values and Figure 6.6.

data.frame(table.6.14, fitted.probit = round(n * fitted(res.probit), 1),
fitted.cloglog = round(n * fitted(res.cloglog),1))

111

log.dose n vy fitted.probit fitted.cloglog

1 1.691 59 6 3.4 5.7
2 1.724 60 13 10.7 11.3
3 1.755 62 18 23.4 20.9
4 1.784 56 28 33.8 30.3
5 1.811 63 52 49.6 47.17
6 1.837 59 53 53.4 54.2
7 1.861 62 61 59.7 61.1
8 1.884 60 60 59.2 59.9

plot(table.6.14$log.dose,table.6.148y/table.6.143%n, pch=16, xlab="Log dosage",
ylab="Proportion Killed", bty="L", axes=F)

axis(1l, at=seqg(1.7, 1.9, .05))

axis (2, at=seq(0,1,.2))

lines(table.6.14%log.dose, fitted(res.probit), 1lty=2)

lines(table.6.14$log.dose, fitted(res.cloglog), 1lty=1)

key(x=1.8, y=.4, text=list(c("Complementary log-log", "Probit")),
lines=1list (type=c("1", "1"), 1lty=c(1,2)), border=F,text.width.multiplier=.8)

R: legend(x=1.8,y=.4,legend=c("Complementary log-log", "Probit"),lty=c(1,2),
cex=.85, text.width=1)

1.0
0.8
e)
2
X a
COﬁ
i
5]
o
o
a
0.4 7 Complementary log-log ———
Probit -
0.2

T T T T
1.70 1.75 1.80 1.85

Log dosage

J. Conditional Logistic Regression and Exact Distributions
1. Small-sample Conditonal Inference for 2x2 Contingency tables

Small-sample conditional tests for 2 x 2 tables use Fisher's Exact test. See the discussion in Chapter 3.

2. Small-sample Conditonal Inference for Linear Logit Models

Small-sample conditional inference for the linear logit model is an exact conditional trend test, and the
conditional distribution of the cell counts under the null hypothesis of £ =0 is multiple hypergeometric.

Agresti applies an exact test to Table 5.3 on maternal alcohol consumption and infant malformation. This

112

data set has a lot of cases, but the table is sparse in that there are few successes or cases. Thus,
ordinary maxmimum likelihood inference (with its asymptotic basis) breaks down.

To do conditional logistic regression in S, one can use the coxph function (or the clogit function in R,
which is just a wrapper for coxph). However, with more than about 500 cases (in my experience), the
function hangs “forever”. Thus, we turn to approximations to conditional logistic regression for large
samples. There are S functions available for doing approximate conditional logistic regression on a
scalar parameter of interest. One is cond.glm (normal approximation) from Alessandra Brazzale (see
http://www.ladseb.pd.cnr.it/~brazzale/lib.html#ins). Another is cox.test (for a normal approximation)
and cpvalue.saddle and cl.saddle (for a saddle-point approximation) from Chris Lloyd (Lloyd, 1999).
These latter functions are apparently available on the Wiley website (http://www.wiley.com), but | have
not been able to locate them yet. | contacted Professor Lloyd, via the Wiley website, for copies.

First, | show how to use coxph and clogit for an exact conditional test. However, the problem is much
too large to use this method. So, | do not give results. The response value must be binary (“cases”
indicate successes). Here | create a data frame with case as the response, and alcohol as a numeric
explanatory variable.

recall from chapter 5
malformed<-c(48,38,5,1,1)
n<-c(17066,14464,788,126,37) +malformed

temp<-length(10)

temp [rep (c(T,F),5)]1<-malformed

temp [rep (c (F,T),5)]l<-n-malformed

table.5.3<-data.frame (Alcohol=rep(c(0,.5,1.5,4,7), n), case=rep(rep(c(1,0),5),temp))

Now, we use coxph. The “time” argument for the function Surv is just a vector of ones with as many
values as persons. case is the status (whether success or failure) for the surv object.

fit<-coxph(Surv(rep(l,sum(temp)),h case)~Alcohol, table.5.3, method="exact")
#R: library(survival)
#R: fit<-clogit (case~Alcohol, data=table.5.3, method="exact")

However, the computation time is excessive. clogit offers a test that uses an approximate conditional
likelihood. Here the conditioning is on the sufficient statistic for the intercept, in order to remove that
parameter, and therefore get an exact test for the alcohol coefficient.

R only
fit<-clogit (case~Alcohol, data=table.5.3, method="approximate")

Call:

clogit(case ~ Alcohol, data = table.5.3, method = "approximate")
coef exp(coef) se(coef) b4 P

Alcohol 0.315 1.37 0.124 2.54 0.011

Likelihood ratio test=4.23 on 1 df, p=0.0397 n= 32574

Alessandra Brazzale’s original S-PLUS function cond.glm was written for S-PLUS 4.5 and 2000 (as well
as for unix), but it can be modified for sourcing into S-PLUS 6.0. On my website, | have one method for
doing so. However, it is very quick and dirty. So, you probably should make changes if you seriously
want to use this function in S-PLUS 6.x. In addition, she has recently provided an R package called
cond, that contains the function cond.glm.

The cond.glm function takes a glm.object and an offset that gives the name of the object that is the
explanatory variable of interest (for which you want the inference). The function returns the approximate

113

conditional estimate of the coefficient and its standard error. A summary function gives hypothesis tests
about this coefficient.

R: library(cond)
(fit<-cond (glm(formula=case~Alcohol, family=binomial, data=table.5.3),
offset=Alcohol))

summary (fit, test=T) # R output

Formula: case ~ Alcohol
Family: Dbinomial
Offset: Alcohol

Estimate Std. Error
uncond. 0.3166 0.1254
cond. 0.3165 0.1253

Confidence intervals

lower two-sided upper

MLE normal approx. 0.07069 0.5624
Cond. MLE normal approx. 0.07095 0.5621
Directed deviance 0.01870 0.5236
Modified directed deviance 0.03626 0.5312
Modif. direct. deviance (cont. corr.) 0.02301 0.5357
Diagnostics:

INF NP

0.097872 0.003178

Approximation based on 20 points

The p-values for the normal approximations are distinctly smaller than the exact p-values in Agresti.

Lloyd’s (1999) function c1.saddle computes a saddlepoint approximation to the conditional log-likelihood
for any parameter in a GLIM, given a range of values for the parameter. The function cpvalue.saddle
computes an approximation to the conditional p-value in testing that the parameter is zero. The
approximations are based on a saddlepoint approximation to the conditional density of the sufficient
statistic for the parameter of interest.

To use the functions in S-PLUS 6.x, we must make the following two modifications. The first modification
changes the function for computing the log of the determinant. The second changes the way a very large
diagonal matrix is handled in a matrix multiplication. So, in cpvalue.saddle, change

1dv.null <- - log.determinant (t(X.null) %*% diag(nullsweights) %$*% X.null)

to
ldv.null <- - log(det((t(X.null) * null$weights) %*% X.null))

and change

1ldv <- - sum(log(eigen(t(X) %*% diag(fitSweights) %*% X) S$value))

to
ldv <- - sum(log(eigen((t(X) * fit$weights) %*% X)S$value))

In c1.saddle, change

1dv.null[i] <- - sum(log(eigen(t(X.null)$%*%diag(nullsweights)%*% X.null)S$values))

to
ldv.null[i] <- - sum(log(eigen((t(X.null)*null$weights)%*%$X.null) Svalues))

114

Modifications within R would be similar.

To use cl.saddle On table.5.3, which is quite large, we type the following. | choose to compute B=20
points of the conditional log-likelihood, within the range -1 to 1 of the parameter value. The term
argument specifies the parameter of interest.

attach(table.5.3)
(approx.points<-cl.saddle(y=case, formula=case~Alcohol, term="Alcohol", family=
binomial, u=1l, 1l=-1, B=20))

Sx:
[1] 0.009 0.114 0.220 0.325 0.430 0.535 0.641 0.746 0.851 0.956 1.062 1.167 1.272 1.377 1.483
1.588 1.693 1.798 1.904 2.009

Sy:
[1] -2.0245273 -0.9880964 -0.2555597 0.0000000 -0.4881732 -2.1817449 -5.8389314
-12.3404829 -22.6823900
[10] -37.5292684 -57.2109348 -80.9817436 -108.3950206 -138.8544144 -172.2877420 -207.6226743 -

244.9780080 -284.1413107
[19] -325.2938305 -367.4350287

Although the x values are not in the range we specified, we can see that the maximum of the conditional
log-likelihood is attained at around 0.325 or so, which coincides with previous analyses. We can plot
these, if we like.

Now, to get the p-value, we use cpvalue.saddle, and take the complement of its approximation to the
CDF.

l-cpvalue.saddle(y=case, formula=case~Alcohol, term="Alcohol",family=binomial, H0=0)
detach(table.5.3)

Alcohol
0.02273689

3. Small-sample Conditonal Inference for 2 x 2 x K Tables

For 2 x 2 x K tables, where the separate 2 x 2 tables belong to K different strata, an exact test of the
coefficient on the risk factor conditions on the row and column totals within each table. Then, within each
table, the null distribution of the test statistic (the count in the first cell) is hypergeometric. In this case,
the null hypothesis is conditional independence of X and Y given Z (strata). The product of the
hypergeometric mass functions from the separate strata gives the joint null distribution of the cell counts.
Agresti gives more details on p. 254-255 (see also Chapter 3 in Agresti).

Agresti uses a data set on promotion decisions for similarly tenured government computer specialists for
three different months (strata). Conditional independence of promotion decision and race is equivalent to
a test of the race coefficient in a logistic regression model that includes month and race. However, ML
estimation is not recommended due to the prescense of three zero-count cells. Exact conditional tests of
independence for these tables can be carried out using mantelhaen.test in R, with argument exact=T.
In S-PLUS, the exact test is not an option.

table.6.15<-

data.frame (expand.grid(race=c("black", "white") ,promote=c("yes", "no") ,month=c ("july","a
ugust", "september")), count=c(0,4,7,16,0,4,7,13,0,2,8,13))

Recall that we need to have a three-dimensional array for mantelhaen.test.

R only (one-sided test; use alternative="two.sided” for two-sided test)

115

mantelhaen. test (xtabs (count~month+race, data=table.6.15), exact=T, alternative=
Illessll)

Exact conditional test of independence in 2 x 2 x k tables

data: xtabs(count ~ race + promote + month, data = table.6.15)
S = 0, p-value = 0.02566
alternative hypothesis: true common odds ratio is less than 1
95 percent confidence interval:
0.0000000 0.7795136
sample estimates:
common odds ratio
0

The result using S-PLUS and the correct=F argument is
mantelhaen.test (design.table(table.6.15), correct=F)

Mantel-Haenszel chi-square test without continuity correction

data: design.table(table.6.15)
Mantel-Haenszel chi-square = 4.5906, df = 1, p-value = 0.0321

A 95% two-sided confidence interval on the odds ratio is printed automatically.

R only
mantelhaen. test (xtabs (count~race+promote+month, data=table.6.15), exact=T, alternative
= "two.sided")

Exact conditional test of independence in 2 x 2 x k tables

data: xtabs(count ~ race + promote + month, data = table.6.15)
S = 0, p-value = 0.05625
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.000000 1.009031
sample estimates:
common odds ratio
0

A final example is given where the table displays “separation”. That is, the cases all correspond to one
level of the risk factor. In these situations, as Agresti says, maximum likelihood estimation gives infinite
estimates. Thus, exact inference is needed. Since the number of observations is quite large, we can't
use coxph. Even if we take advantage of the fact that we really have a 2x2 table in Cephalexin and
Diarrhea (as mentioned by Agresti, bottom of p. 256), we still have over 1,000 observations. However,
with the 2x2 table, we can use Fisher’'s Exact Test. Note that S-PLUS won’t handle this data set because
it is too large (> 200 counts total). However, R handles it.

table.6.l6<-expand.grid(Ceph=factor(c(0,1)), Age=factor(c(0,1)),
Stay= factor(c(0,1)), case=factor(c(0,1)))
table.6.16$%$count<-c(385,0,789-3,0,233-5,0,1081-47,0,0,0,3,0,5,0,47,5)

R only
fisher.test (xtabs (count~Ceph+case,data=table.6.16,subset=(Age==1 & Stay==1)))

Fisher's Exact Test for Count Data

data:
p-value = 2.084e-07
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
19.30481 Inf
sample estimates:

116

odds ratio
Inf

Note that we get the confidence interval as well.

K. Bias-reduced Logistic Regression

In cases of quasi or complete separation, a different kind of estimation can be done instead of ordinary
maximization. Bias-reduced logistic regression (Firth, 1993, as cited in R help file for package brilr)
maximizes a penalized likelihood with penalty function, Jeffreys invariant prior. This leads to less biased
estimates that are always finite. According to Firth, the bias reduction (toward zero) can be quite
noticeable for problems that display separation. Here, we fit the main-effects only logistic regression
model from subsection J to the diarrhea data, using glm (ML) and brlr (penalized ML). Note the
difference in the coefficient estimate for Cephalexin, as well as its smaller standard error from the
penalized estimation. The large magnitude of the Ceph estimate and its corresponding large standard
error from the gim fit indicate an infinite maximizer.

library (brlr)
fit<-glm(case~Ceph+Age+Stay, family=binomial,data=table.6.16)
fit2<-brlr (case~Ceph+Age+Stay, data=table.6.16)

summary (fit)

Coefficients:
Estimate Std. Error z value Pr(s>|z])
(Intercept) -6.6100 0.6928 -9.541 < 2e-16 **x*
Ceph 11.6454 19.6574 0.592 0.5536
Age 0.8519 0.4741 1.797 0.0723 .
Stay 2.6785 0.5898 4.541 5.59e-06 ***
Signif. codes: 0 “***' (0.001 “**' 0.01 “*' 0.05 ~.' 0.1 T ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 565.77 on 2492 degrees of freedom
Residual deviance: 475.60 on 2489 degrees of freedom
AIC: 483.6

Number of Fisher Scoring iterations: 7

summary (£it2)

Coefficients:

Value Std. Error t wvalue
(Intercept) -6.3793 0.6480 -9.8444
Ceph 5.2749 1.5041 3.5071
Age 0.7716 0.4527 1.7045
Stay 2.5403 0.5523 4.5994

Deviance: 476.7722
Penalized deviance: 470.8072
Residual df: 2489

117

Chapter 7 — Logit Models for Multinomial Responses

A. Summary of Chapter 7, Agresti

In Chapter 7, Agresti discusses logit models for multinomial responses, both nominal responses
and ordered responses. Multinomial logit models for nomial responses use a separate binary logit model
for each pair of response categories (some of which are redundant), and are fit using maximum likelihood
estimation subject to the individual response probabilities simultaneously satisfying their separate logit
models.

There are several types of models for ordinal response categories. Section 7.2 discusses
cumulative logit models, which use the logits of the cumulative probabilites P(Y<j|x)=

m(x)+..+7;(x),j=1,....0. So, the cumulative logit is the log of the odds of responding in category up

to j. A cumulative logit model models all J — 1 cumulative logits simulataneously. A popular cumulative
logit model is a proportional odds model. This model assumes the J — 1 logits have different intercepts,
increasing in j, but otherwise the coefficients are identical. Thus, the J — 1 response curves have the
same shape, but are shifted horizontally from one another. The term proportional odds applies because
the log of the odds ratio of cumulative probabilities (comparing the conditions in one covariate vector to
another) is proportional to the distance between the covariate vector. The same proportionality constant
applies to each logit. Proportional odds models are fit using maximum likelihood estimation.

A latent variable interpretation of the proportional odds model assumes an underlying
(unobserved) continuous response variable that has a logistic distribution. When this response falls
between the (j — 1)th and jth cutpoints on the response scale, the observed discrete response value is j.
Effects of explanatory variables are invariant to the choice of cutpoints for the response so that the
coefficients are identical across logits.

Section 7.3 discusses cumulative link models for ordinal response categories. Here, we use a
link function that relates the cumulative probabilities to a linear predictor involving the covariates. The
use of the logit link is the cumulative logit model. The probit link gives the cumulative probit model.
These models assume that the ordinal response categories have an underlying continuous distribution
that is related to the particular link function. They also assume that the distributions of each covariate
setting are stochastically ordered, so that the cumulative probabilities given one covariate setting are
always at least as great or at least as less as the cumulative probabilities of another covariate setting. If
this is not so, then one covariate setting may differ in dispersion of responses than another covariate
setting.

Other models for ordinal responses are discussed in Section 7.4. These include adjacent-
categories logit models, continuation-ratio logit models, and mean response models. The adjacent-
categories logits are the J — 1 logits formed by the log odds of the probability of response falling in
category j given that the response falls within either category jorj+1,j=1,...,J — 1. Adjacent-categories
logit models differ from cumulative logit models in that effects of explanatory variables refer to individual
response categories and not cumulative groups. They also do not assume an underlying latent
continuous response.

Continuation-ratio logits, as given in Agresti, are the logits of the conditional probabilities that the
response falls in the jth category given that it falls at least in the jth category for j = 1,...,J — 1. The full
likelihood is the product of multinomial mass functions, which can each be represented as a product of
binomial mass functions, leading to an easy way to estimate these models.

Finally, mean response models for ordered responses are linear regression models for ordinal
responses, represented by numerical scores. The linear probability model is a special case. They can
be fit using maximum likelihood estimation, where the sampling model is product multinomial.

To test conditional independence in | x J x K tables, where one factor Z is conditioned, one can
use multinomial models such as cumulative logit models or baseline-category logit models depending on
whether the response Y is ordinal or nominal, respectively. The test of homogenous XY association
across levels of Z is then a test of the inclusion of a term or terms involving X.

Generalized Cochran-Mantel Haenszel (CMH) tests can be used to test conditional
independence for | x J x K tables with possibly ordered categories. With both X and Y ordinal, the

118

generalization is Mantel's M? statistic. Some versions of the generalized CMH statistic correspond to
score tests for various multinomial logit models.

Discrete-choice multinomial logit models use a different set of values for a categorical
explanatory variable for different response choices. Conditional on the choice set (e.g., choosing which
type of transportation one prefers), the probability of selecting option j is a logistic function of the
explanatory variables. The model can also incorporate explanatory variables that are characteristic of the
person doing the choosing. Fitting these models using maximum likelihood can be done using the coxph
function in R or S-PLUS, as the likelihood has the same form as the Cox partial likelihood. This can be
seen from equation (7.22) in Agresti.

B. Nominal Responses: Baseline-Category Logit Models

When responses are nominal, for a given covariate pattern, x, the vector of counts at the J
response categories is assumed multinomial with probability vector {r,(x),...,7;(x)} . The J— 1 unique

logits pair each of J— 1 response categories with a baseline category (say, the Jth category). As shown
on p. 268 of Agresti, from these J — 1 logits that compare each category with a baseline, we can estimate
logits comparing any two categories.

Agresti uses the Alligator Food Choice data set to fit a multinomial logit model. The measured
response is the category of primary food choice of 219 alligators caught in four Florida lakes (fish,
invertebrate, reptile, bird, other). The explanatory variables are all categorical: L = lake of capture, G =
gender, S =size (£ 2.3 m, > 2.3 m). The data can be entered into S using the following commands. The
levels argument codes the first level indicated as the baseline category.

food.labs<-factor(c("fish","invert", "rep", "bird", "other"),levels=c("fish", "invert",
n rep n , Ilbirdll , llotherll))

size.labs<-factor(c("<2.3",">2.3"),levels=c(">2.3","<2.3"))

gender.labs<-factor(c("m","£f"),levels=c("m","£f"))

lake.labs<-factor (c("hancock", "oklawaha", "trafford", "george") ,levels=c ("george",
"hancock", "oklawaha","trafford"))

table.7.l<-expand.grid(food=food.labs,size=size.labs,gender=gender.labs,
lake=lake.labs)
temp<-
c(7,1,0,0,5,4,0,0,1,2,16,3,2,2,3,3,0,1,2,
1,1,4,0,1,0,0,0

I1I13I7IGIOI0131911101210111011’0
,3,7,1,0,1,8,6,6,3,5,2,4,1, 2,9

.2,9,0,0,1,2,3,9,1,0,1,8,1,0,0,1)

AN A NE VA NANA N

table.7.1l<-structure(.Data=table.7.1l[rep(l:nrow(table.7.1),temp),], row.names=1:219) #
structure gives back the row names

We fit the models from Table 7.2 using, first, the multinom function from library nnet in both S-PLUS and
R. This function fits multinomial logit models with nominal response categories.

library (nnet)
options (contrasts=c("contr.treatment", "contr.poly"))

fitS<-multinom(food~lake*size*gender,data=table.7.1) # saturated model
fit0O<-multinom(food~1l,data=table.7.1) # null
fitl<-multinom(food~gender,data=table.7.1) # G
fit2<-multinom(food~size,data=table.7.1) # S
fit3<-multinom(food~lake,data=table.7.1) # L
fit4<-multinom(food~size+lake,data=table.7.1) # L + S
fit5<-multinom(food~size+lake+gender,data=table.7.1) # L + S + G

The following give the LR chi-squared statistics for each model.

deviance (fitl) -deviance (£itS) # or fitl@edeviance - fitS@deviance (S-PLUS only)

deviance (fit2) -deviance (£itS)
deviance (fit3) -deviance (£itS)

119

deviance (fit4) -deviance (£itS)
deviance (fit5) -deviance (£itS)
deviance (£fit0) -deviance (£itS)

Collapsing over gender gives

options (contrasts=c("contr.treatment", "contr.poly"))
fitS<-multinom(food~lake*size,data=table.7.1) # saturated model
fitO<-multinom(food~1l,data=table.7.1) # null
fitl<-multinom(food~size,data=table.7.1) # S
fit2<-multinom(food~lake,data=table.7.1) # L
fit3<-multinom(food~size+lake,data=table.7.1) # L + S

deviance (fitl) -deviance (£itS) # or fitl@deviance - fitS@deviance (S-PLUS only)

deviance (fit2) -deviance (£fitS)
deviance (fit3) -deviance (£itS)
deviance (fit0) -deviance (£fitS)

[1] 66.2129

[1] 38.16723
[1] 17.07983
[1] 81.36247

The fitted values in Table 7.3 from the L+S model can be found using the fitted response probabilities,
which are given in a slot (attribute in R) from the appropriate object of class nnet (here, £it3). The
correct counts to multiply by the probabilities are the row counts from Table 7.3. Thus, first, we get these
row counts using tapply. (l use factor on the necessary variables from table. 7.1 in order to reorder
the levels so that they are in the same order as Table 7.3.)

marg.counts <- tapply(table.7.1%$food, list(factor(table.7.1l$size, levels = c("<2.3",
">2.3")),factor(table.7.1$lake,
levels =c("hancock", "oklawaha", "trafford", "george"))), length)

The row names of the fitted table of counts will come from the dimension names of marg.counts. We
start by using expand.grid on the dimnames Of marg.counts. However, we will soon concatenate
across rows to get row names.

row.names.71 <- rev(expand.grid(dimnames (marg.counts)))

Here are the fitted counts, rounded to 1 decimal place. In S-PLUS, we extract the fitted slot (which is a
matrix) from the £it3 object of class nnet, using @ along with the name of the slot (In R, we can use
fitted (). Actually, in S-PLUS you can as well.). The resulting matrix has duplicated rows, which we
eliminate using the duplicated method for data frames. Note that | had to coerce fit3efitted to a
data frame in order to do this.

fitted.counts <- round(as.vector (marg.counts)*
fit3@fitted[!duplicated(as.data.frame(fit3@fitted)), 1, 1) # S-PLUS only

Both R and S-PLUS:
fitted.counts<-round(as.vector (marg.counts)* fitted(£fit3) [!duplicated(as.data.frame (
fitted(£it3))),]1,1)

Now, we can print the table of fitted counts. | used the apply function to concatenate rows of
row.names. 71, USing paste. Also, to have the row names put to correct use, we must have a data frame
as our .pata argument.

structure(.Data = as.data.frame(fitted.counts), row.names = apply(row.names.71, 1,
paste, collapse = " "))

fish invert rep bird other

hancock <2.3 20.9 3.6 1.9 2.7 9.9
hancock >2.3 9.1 0.4 1.1 2.3 3.1
oklawaha <2.3 5.2 12.0 1.5 0.2 1.1
oklawaha >2.3 12.8 7.0 5.5 0.8 1.9
trafford <2.3 4.4 12.4 2.1 0.9 4.2
trafford >2.3 8.6 5.6 5.9 3.1 5.8

george <2.3 18.5 16.9 0.5 1.2 3.8

george >2.3 14.5 3.1 0.5 1.8 2.2

120

Each of the 4 binary logit models has a set of estimated effects or coefficients. These can be extracted
using the summary function, as here. Based on the way the factor levels were given in the definition of
table.7.1, the category fish is the baseline category, and each logit model compares the odds of

selecting another food to the odds of selecting fish.

library (MASS) # needed for vcov function
summary (fit3, cor = F)

Coefficients:
(Intercept) size lakehancock lakeoklawaha laketrafford
invert -1.549021 1.4581457 -1.6581178 0.937237973 1.122002
rep -3.314512 -0.3512702 1.2428408 2.458913302 2.935262
bird -2.093358 -0.6306329 0.6954256 -0.652622721 1.088098
other -1.904343 0.3315514 0.8263115 0.005792737 1.516461
Std. Errors:
(Intercept) size lakehancock lakeoklawaha laketrafford
invert 0.4249185 0.3959418 0.6128465 0.4719035 0.4905122
rep 1.0530583 0.5800207 1.1854035 1.1181005 1.1163849
bird 0.6622971 0.6424863 0.7813123 1.2020025 0.8417085
other 0.5258313 0.4482504 0.557544¢6 0.7765655 0.6214372

To estimate response probabilities using values on the explanatory variables that (together) did not
appear as a data record, you can use predict, with newdata, a data frame containing the labeled
explanatory values. In S-PLUS (but not R), when we have categorical variables entered as factors in the
original fit, we have to specify the prediction values as being levels of those factors. This can be done by
using factor along with the original levels. So, to estimate the probability that a large alligator in Lake

Hancock has invertebrates as the primary food choice, we use in S-PLUS

S-PLUS: options (contrasts=c("contr.treatment", "contr.poly"))

predict (fit3, type="probs", newdata=data.frame(size=factor(">2.3", levels=c(">2.3",
"<2.3")), lake=factor("hancock",levels=c("george", "hancock", "oklawaha",

"trafford")))) # S-PLUS or R

fish invert rep bird other
0.5701841 0.02307664 0.07182898 0.1408967 0.1940136

and in R, we can use

R only
predict (fit3, type="probs", newdata=data.frame(size=">2.3", lake="hancock"))

fish invert rep bird other
0.57018414 0.02307664 0.07182898 0.14089666 0.19401358

Obviously, the specification in R is how we would want to do it!

To get the estimated response probabilities for all combinations of levels of the predictors, use a call to

expand.grid as the newdata. For example,

predictions<-predict (fit3, type = "probs", newdata = expand.grid(size = size.labs,

lake = lake.labs))

121

cbind (expand.grid(size = size.labs, lake = lake.labs), predictions)

size lake fish invert rep bird other
1 <2.3 hancock 0.5352844 0.09311222 0.04745855 0.070402771 0.25374210
2 >2.3 hancock 0.5701841 0.02307664 0.07182898 0.140896663 0.19401358
3 <2.3 oklawaha 0.2581899 0.60188001 0.07723295 0.008820525 0.05387662
4 >2.3 oklawaha 0.4584248 0.24864188 0.19484366 0.029424140 0.06866547
5 <2.3 trafford 0.1843017 0.51682299 0.08877041 0.035897985 0.17420697
6 >2.3 trafford 0.2957470 0.19296047 0.20240167 0.108228505 0.20066230
7 <2.3 george 0.4521217 0.41284674 0.01156715 0.029664777 0.09379957
8 >2.3 george 0.6574619 0.13968168 0.02389991 0.081046954 0.09790956

The same multinomial model can be fit using 1cr in R package ordinal from P. Lindsey. However, that
function is much more complicated to use than multinom because it fits more flexible models. We will
see it in the next sections for ordinal responses.

Another function that is as easy to use as multinom is vglm from R package veaM (and soon to be
package for S-PLUS 6.X, although it exists for the Unix versions). The commands for fitting the main
effects model above is

library (vgam)
fit.vglm<-vglm(food~size+lake, multinomial, data=table.7.1)
-coef (fit.vglm, matrix=T) # need to negate coefficients to match those of Agresti

C. Ordinal Responses: Cumulative Logit Models

This section covers fitting models to data with ordinal responses using cumulative logits. Cumulative
logits are logits of cumulative probabilities. Since the responses are ordinal, a cumulative probability that
the response is less than a certain category has meaning. Cumulative logit models simultaneously fit all
J — 1 logit models for the J categories of the response. The individual category probabilities are found by
subtracting adjacent cumulative probabilities.

A proportional odds model assumes the same covariate effects for each logit, but different intercepts.
Thus, it has fewer parameters than an analogous multinomial logit model. There are many S-PLUS and
R functions to fit these models. We will use the Mental Impairment example to illustrate each one. This
data set has ordinal response categories (well, mild symptoms, moderate symptoms, impaired) to
indicate the state of each human adult subject. Explanatory variables are a score on the Life Events
Index and SES (1 = high, 0 = low). As the data set is available on Agresti's web site, we can just copy it
to a text file and read it in.

table.7.5<-read.table("mental.ssc",col.names=c("mental", "ses", "life"))

We will illustrate using the functions polr (library MASS), 1rm (library Desing), 1cr (library ordinal), and
nordr (library gnlm). The first two are in both R and S-PLUS. The last three are in R packages.

Function polr

As polr requires an ordered factor as a response, it is convenient for us to do the ordering within the
data set (but, we could have done it within the model formula). So,

table.7.5%mental<-ordered(table.7.5%$mentalC, levels=1:4, labels=c("well", "mild",
"moderate", "impaired"))

Also, as polr uses the parameterization mentioned on pp. 278-279 of Agresti (with the negative of the
effect vector), we negate the explanatory variables.

table.7.5%$ses<- -table.7.5%ses
table.7.5%$1ife<- -table.7.5%life

Now, we fit the main effects model

library (MASS)
fit.polr <- polr(mental ~ ses + life, data = table.7.5)
summary (fit.polr)

Coefficients:
Value Std. Error t value
ses 1.1112339 0.6108799 1.819071
life -0.3188611 0.1210038 -2.635134

Intercepts:
Value Std. Error t value
well|mild -0.2819 0.6423 -0.4389
mild|moderate 1.2128 0.6607 1.8357
moderate|impaired 2.2094 0.7210 3.0644

Residual Deviance: 99.0979
AIC: 109.0979

Function Irm

122

The function 1rm in library pesign uses the parameterization in equation (7.6) of Agresti. Thus, prior to

using it, we re-negate the columns ses and 1ife, returning them to their original values.

table.7.5%$ses <- - table.7.5%ses
table.7.5%$1ife <- - table.7.5$life

We also must reorder the levels of the mental variable, having “well” be the highest rating.

table.7.5$mental.rev<-ordered(table.7.5%$mentalC, levels=4:1, labels=c("impaired",
"moderate", "mild", "well"))

impaired < moderate < mild < well
The fit is as easy as using polr.

(fit.lrm <- lrm(mental.rev ~ ses + life, data = table.7.5))
Logistic Regression Model

Frequencies of Responses
impaired moderate mild well

9 7 12 12
Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier
40 8e-010 9.94 2 0.0069 0.705 0.409 0.425 0.31 0.236 0.146
Coef S.E. Wald Z p
y>=moderate 2.2094 0.7210 3.06 0.0022
y>=mild 1.2128 0.6607 1.84 0.0664
y>=well -0.2819 0.6423 -0.44 0.6607
ses 1.1112 0.6109 1.82 0.0689
life -0.3189 0.1210 -2.64 0.0084

Function lcr

The function 1cr in library ordinal for R is nowhere near as transparent to use as the above two
functions. However, it will fit proportional odds models and is flexible enough to allow repeated

123

measurements and time-varying covariates. To use the function, we have to set up the response and
covariate objects, then put them within a repeated object. These additional functions come from the
rmutil library, which is loaded with ordinal.

library(ordinal)

First, we must have a numeric response, as well as numeric covariates. So, we use the mentalc variable
of table.7.5. It also must begin at 0, not 1. (Factor covariates must be transformed to dummy coding or
another numeric coding scheme. One can do this using the function wr, in the rmutil library.)

set up response vector
y <- restovec(table.7.5%$mentalC-1,weights=rep(1l,40),type="ordinal")

create covariat object
tcec <- tcctomat(table.7.5$ses,name="ses")
tcc <- tcctomat(table.7.5$life,name="1life",o0ldccov=tcc)

create a repeated object, but with no repeats here
w <- rmna(response=y,ccov=tcc)

Once the repeated object is created, the fit is easy to specify. The distribution “prop” means fit a
proportional odds model.

fit.lcr<-lcr(w,distribution="prop",mu=~ses+life)

Call:
lcr(w, distribution = "prop", mu = ~ses + life)

Individual data.
Total number of individuals: 40
Number of observations: 40

Proportional odds distribution.
Transformation: identity.
Link: logit.

Regression coefficients

estimate s.e.
(InterceptO) -0.2819 0.6423
(Interceptl) 1.2128 0.6607
(Intercept2) 2.2094 0.7210
ses 1.1112 0.6109
life -0.3189 0.1210

Function nordr

The function nordr in library gnim also fits proportional odds models. It uses the function nim for the
maximum likelihood estimation. And, you must supply starting values. Also, it can take a repeated
object as input for the response and environment. We use the same one created above.

library (gnlm)
attach(table.7.5)

Starting values are specified in the pmu and pintercept arguments. The mu argument specifies how the
covariates enter into the model. It also fits an intercept as the first coefficient. So, the pintercept
argument includes one value less than the number of intercepts fit. The intercept estimates below are a
little off those estimated above.

nordr (w, dist="prop",mu=~ses+life,pmu=c(-.2,1,-.3), pintercept=c(1,2)) # see above
for definition of w

124

Call:
nordr (w, dist = "prop", mu = ~ses + life, pmu = c(-0.5, 1, -0.3),
pintercept = c(1, 2))

proportional odds model

-Log likelihood 49.54895
AIC 54 .54895
Iterations 17

Location coefficients
Location function:
~ges + life

estimate s.e.
(Intercept) -0.2817 0.6423
ses[.1] 1.1111 0.6109
lifel.1i] -0.3189 0.1210

Intercept contrasts

estimate s.e.
b[2] 1.495 0.3898
b[3] 2.491 0.5012

Correlation matrix

1 2 3 4 5
1.0000 -0.4449 -0.5924 -0.2557 -0.2229
-0.4449 1.0000 -0.1859 0.1885 0.2363
-0.5924 -0.1859 1.0000 -0.2312 -0.3003
-0.2557 0.1885 -0.2312 1.0000 0.71l68
-0.2229 0.2363 -0.3003 0.7168 1.0000

uad W

detach("table.7.5")

To obtain a score test, we extract the likelihood attribute from the fitted object fit.1lcr, and compare it to
the likelihood from fitting a model with separate sets of coefficients per response. This latter model can
be conveniently fitted using 1cr as well.

fit<-lcr(w,mu=~ses+life) # no dist argument implies multinomial

2* (fit$likelihood-fit.lcr$likelihood) # score test
[1] 2.399634

l-pchisqg(2* (fit$likelihood-fit.lcr$likelihood),4)
[1] 0.6626934

To create Figure 7.6, we use the predicted probabilities from the polr object.

plot (0:9, rowSums (predict (fit.polr, newdata=data.frame(ses=rep(-1,10), life=-c(0:9)),
type="probs") [,3:4]), axes=F,lty=2, type="1",ylim=c(0,1),bty="L",ylab="P(Y > 2)",
xlab="Life Events Index")

axis(2)

axis(1l, at=0:9)

lines (0:9, rowSums (predict (fit.polr, newdata=data.frame (ses=rep(0,10), life=-c(0:9)),
type="probs") [,3:4]1), lty=1)

text (2.5, .5, "SES=0")

arrows (2.5, .48,2.75, .42, open=T)

R: arrows(2.5,.48,2.75, .42, length=.1)

text (3.5, .33, "SES=1")

arrows (3.5,.31,3.75,.25, open=T)

R: arrows(3.5,.31,3.75,.25, length=.1)

125

1.0

0.8

0.6
|

P(Y >2)

0.4

0.2

T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

Life Events Index

We see that the probability of moderate or impaired mental health, P(Y > 2), is predicted to be greater
with a higher life events index, and furthermore that a low SES has a higher predicted probability than
higher SES.

Fitting interaction models is straightforward. Different link functions other than the logit link can be used
in the function 1cr and the function vgim, which is from the R package veam (coming soon to S-PLUS 6.x,
but available for S-PLUS under L/Unix). This is illustrated in the next section. The function vglm can also
fit partial proportional odds models mentioned on page 282 of Agresti. This is done by setting the zero
argument of the family function, cumulative. See the help file for details.

D. Ordinal Responses: Cumulative Link Models

To illustrate the use of different link functions within an ordinal categorical model, Agresti uses a life table
by race and sex (Table 7.7). The percentages within the four populations indicate that the underlying
continuous cdf of life length increases slowly at low to moderate ages, then increases sharply at older
ages. This pattern suggests a complementary log-log link function.

Several different link functions can be used within a proportional odds model. The function 1cr in the R
package ordinal fits a cumulative complementary log-log link model (as well as many other link
functions).

First, we set up the data. | created a numeric response, LifecC, as well as a categorical one. 1lcr
requires a numerical response.

table.7.7<-data.frame (expand.grid (Race=c(0,1),Sex=c(0,1), Life=ordered(c("0-20","20-
40","40-50","50-60","over 65"))), LifeC=rep(0:4, each=4),
percent=c(2.4,3.6,1.6,2.7, 3.4,7.5,1.4,2.9,3.8,8.3, 2.2,4.4,17.5,25,9.9, 16.3,
72.9,55.6,84.9,73.7))

Then, we can use the utility functions mentioned above to allow easier fitting of the model.

126

library(ordinal)
y <- restovec(table.7.7$LifeC,weights=table.7.7$percent, type="ordinal") # response

vector
tcc <- tcctomat(table.7.7$Race,name="Race") # create covariate object
tcec <- tcctomat(table.7.7$Sex,name="Sex",oldccov=tcc)
w <- rmna(y,ccov=tcc) # create a repeated object, with no repeats here

Finally, we attempt to use 1cr. The argument pcoef gives starting values.

fit.lcr<-lcr(w,distribution="prop",mu=~Sex+Race,link="cloglog", pcoef=c(-3.7,-2.8, -
2.2,-1.2,.658,-.626))

| have not been able to get convergence with this function.

The function vglm fits several multinomial models (including proportional odds and baseline-category)
using IRLS. In fact, it is much easier to use than 1cr for the purpose of fitting a proportional odds model.
Here, we use it to fit the cumulative complementary log-log link model. If you don’t use an ordered factor
as the response, the function apparently assumes that the response categories appear consecutively in
order.

library (vgam)

fit.vlgm<-vglm(Life~Sex+Race, family=cumulative (link=cloglog, parallel=T),
weights=percent, data=table.7.7)

In the above call we use the cumulative family with link c1oglog and proportional odds (parallel=T).

summary (fit.vlgm)

Coefficients:
Value Std. Error t value

(Intercept) :1 -3.73044 0.34277 -10.8832
(Intercept) :2 -2.79987 0.24392 -11.4788
(Intercept) :3 -2.21826 0.20688 -10.7227
(Intercept) :4 -1.15449 0.16960 -6.8072
Sex -0.65771 0.19566 -3.3614
Race 0.62641 0.194098 3.2127

Number of linear predictors: 4

Names of linear predictors:
cloglog (P[Y<=1]), cloglog(P[¥Y<=2]), cloglog(P[Y<=3]), cloglog(P[Y<=4])

Dispersion Parameter for cumulative family: 1
Residual Deviance: 699.7168 on 74 degrees of freedom
Log-likelihood: -349.8584 on 74 degrees of freedom

Number of Iterations: 6

Predictions are easy to get using the predict method. These are multiplied by 100 and rounded to the
first decimal place.

t (round (predict (fit.vglm, type="response") [1:4,]%*100,1))

1 2 3 4
0-20 2.4 4.4 1.2 2.3
20-40 3.5 6.4 1.9 3.4
40-50 4.4 7.7 2.4 4.3
50-60 16.7 26.1 9.6 16.3

127

over 65 73.0 55.4 84.9 73.7

The function vglm will support dispersion effects, but it requires some work. In theory, it is possible to
write your own family function to do this, by modifying the cumulative family.

E. Ordinal Responses: Adjacent-Categories Logit Models

Adjacent-categories logit models fit J — 1 logits involving the log odds of the probability that a response
falls in category j given that it falls in either category jorj+ 1, j=1,...,J. These logits are modeled as
linear functions of explanatory variables as

7; (x)

ﬂ‘-j +1(X)

log =0, +f4%, j=1..,J-1 (7.1)

Library functions exist for directly fitting these models in R. However, as Agresti shows on p. 287, they
can also be fit using the equivalent baseline-category logit model. Thus, they can be fit in S-PLUS as
well.

Agresti uses the Job Satisfaction Example to illustrate adjacent-categories logit models. The response
variable is job satisfaction in categories (Very Dissatisfied, Little Satisfied, Moderately Satisfied, Very
Satisfied). The explanatory variables are gender (1 = females) and income (< $5,000, $5,000 — $15,000,
$15,000 — $25,000, > $25,000). Scores of 1 to 4 are used for income. The data set is available on
Agresti's web site. Here we read it into R/S-PLUS and create an ordered factor out of the response.

table.7.8<-read.table("jobsat.r", col.names=c("gender","income", "jobsat", "freq"))
table.7.8$jobsatf<-ordered(table.7.8%jobsat, 1labels=c("very diss","little sat","mod
sat","very sat"))

To use vglm and the acat family (for adjacent categories), we need to modify the data set so that the
responses are “unstacked”. This is achieved as follows using the unstack function in R. (The weights
argument for vgim is for inputting prior weights, not frequencies.)

table.7.8a<-

data.frame (expand.grid(income=1:4,gender=c(1,0)) ,unstack(table.7.8, freg~jobsatf))
S-PLUS: table.7.8a<-data.frame (expand.grid(income=1:4,gender=c(1,0)),
menuUnstackColumns (source=table.7.8, source.col.spec=c(“freq”),

group=c (“*jobsatf”) , show.p=F)

income gender very.diss little.sat mod.sat very.sat

1 1 1 1 3 11 2
2 2 1 2 3 17 3
3 3 1 0 1 8 5
4 4 1 0 2 4 2
5 1 0 1 1 2 1
6 2 0 0 3 5 1
7 3 0 0 0 7 3
8 4 0 0 1 9 6

Now, we fit the model using the cbinded responses on the left hand side. Note that the fit uses a model
with negative the linear predictor £’x in (7.1). So, the signs are different from Agresti's. To fix that, we

could have negated gender and income prior to using them in the model. The acat family function has a
parallel argument, which if true, fits proportional odds type model.

library (vgam)

128

fit.vglm<-vglm(cbind(very.diss,little.sat,mod.sat,very.sat)~gender+income, family=
acat (link="loge",parallel=T), data=table.7.8a)
summary (fit.vglm)

Coefficients:

Value Std. Error ¢t value
(Intercept):1 0.550668 0.67945 0.81046
(Intercept) :2 0.655007 0.52527 1.24700
(Intercept) :3 -2.025934 0.57581 -3.51842
gender -0.044694 0.31444 -0.14214
income 0.388757 0.15465 2.51372
Number of linear predictors: 3
Names of linear predictors:
log(P[Y=2]/P[Y=1]), log(P[Y=3]1/P[Y=2]), log(P[Y=4]/P[Y=3])
Dispersion Parameter for acat family: 1

Residual Deviance: 12.55018 on 19 degrees of freedom
Log-likelihood: -103.3293 on 19 degrees of freedom

Number of Iterations: 4

Because the coefficient on income is positive here, the odds of lower job satisfaction decrease as income
increases.

F. Ordinal Responses: Continuation-Ratio Logit Models

Continuation-ratio logits are the logits of the probabilites P(Y =j|Y > j) for response Y, j=1,...,J — 1.

These equal equation (7.12) in Agresti. Agresti shows that the likelihood of n is a product of multinomial
mass functions which can in turn be factorized into products of binomial mass functions, using the
equivalence between a joint probability mass function and the products of conditional probability mass
functions. With different sets of parameters describing each of the J — 1 logits, maximization of the full
likelihood can be done by maximizing each of the terms involving one of the continuation-ratio logits.
These terms are products of binomial mass functions. Thus, maximum likelihood estimation can be
carried out by fitting binomial logit models. However, using specialized software can make the estimation
more efficient in practitioner-time.

Continuation-ratio logit models in R/S-PLUS can be fit using the function glm, 1rm (in Design library),
nordr (package gnlm), and vglm (package vgam). The last two are only present in R.

For this model, Agresti uses the data in Table 7.9 (p. 290). They come from a developmental toxicity
study in pregnant mice. There were five concentration levels of the toxic substance (diEGdIME), one
being a control. The response to the fetus was measured two days later and recorded as Nonlive,
Malformed, or Normal. Continuation-ratio logits are used to model the probability of a nonlive fetus and
the conditional probability of a malformed fetus, given that the fetus was live.

1. Using Irm from library Design
First, a continuation-ratio model is fit using cr . setup and 1rm from the Design library.

It is important to add the libraries in this order:

library (Hmisc,T)
library (Design,T)

Now, we set up the data. | create two different data frames because we will use both later.

y<-ordered(c("non-live", "malformed", "normal"),levels=c("non-live", "malformed",
"normal"))

x<-c(0, 62.5, 125, 250, 500)

table.7.9<-data. frame (expand.grid(y=y, x=x), fregq= <(15,1,281,17,0,225,
22,7,283,38,59,202,144,132,9))

table.7.9a<-structure(.Data=menuUnstackColumns (source=table.7.9, source.col.spec=
c("freq"), group=c("y"), show.p=F), row.names=x, names=unique(levels(y)))

R: table.7.9a<-structure(.Data=unstack (table.7.9, freqg~y),row.names=x)

non-1live malformed normal

0 15 1 281
62.5 17 0 225
125 22 7 283
250 38 59 202
500 144 132 9

To use cr.setup, we expand the response and x vectors according to their frequencies.

y<-rep(rep(y,5),table.7.9%freq)
x<-rep (x, tapply(table.7.9$%$freq, table.7.9$x, sum))

129

cr.setup Will transform the response variable so that it can be used for a continuation-ratio model. In
particular, it will create the new variables, y and cohort. The newly created variables are longer (have
more observations) than the old response variable. cohort defines the denominator categories for each
logit (see equation (7.12) in Agresti). vy is the transformed response variable taking on values 0 or 1

depending on whether the observation is a success or not within its cohort.

For example, for the data in Table 7.9, there are two cohorts. The first cohort (j = 1) is the set of all three
categories: non-live, malformation, and normal, where an observation is considered a success if it falls in
non-live versus either of the other two categories. The second cohort (j = 2) is the set of the last two
categories, malformed and normal, where an observation is considered a success if it falls in malformed

over normal.
Here is how to fit the model:

First set up the response:

u<-cr.setup (y)
y.u<-uly
x.u<-x[u$subs] # this ensures that the covariate is the correct length

| will do separate fits first before showing how to fit both models (j = 1 and j = 2) together. After the fit of
the j = 1 model, | will discuss some of the output from 1rm and compare it to Agresti's results and to

results using glm and the other functions.

To fit the j = 1 model:

fitl<-lrm(y.ul[u$cohort=="all"]~x.u[u$cohort=="all"])
Logistic Regression Model

Frequencies of Responses

0 1
1199 236
Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier
1435 2e-009 253.33 1 0 0.781 0.561 0.667 0.154 0.274 0.108

Coef S.E. Wald Z P
Intercept -3.247934 0.1576602 -20.6 0
x.u 0.006389 0.0004348 14.7 O

130

The "Model L.R." given above is supposed to be the model likelihood ratio chisquare according to Harrell
(1998). However, if you examine what glm gives, you can see that model L.R. is actually equal to —
2LogLH(model with intercept + x). The d.f. above gives the number of d.f. used with the addition of x in
the model (i.e., 1). What Agresti gives (p. 291) is the model residual deviance. That is, he gives —
2LogLH(model with intercept only) — (-2LogLH(model with intercept + x). His d.f. correspond to the
resulting d.f. when going from an intercept model (df = 4) to a model with x (df = 3). These are the df and
LR statistic given directly by glm when modeling a linear logit, as shown later.

To fit the j = 2 model:
fit<-lrm(y.ul[u$cohort=="y>=malformed"] ~x.u[u$cohort=="y>=malformed"])
Logistic Regression Model

Frequencies of Responses

0 1
1000 199
Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier
1199 5e-006 646 .52 1 0 0.948 0.895 0.97 0.248 0.703 0.052

Coef S.E. Wald Z P
Intercept -5.70190 0.332249 -17.16 0
x.u 0.01737 0.001227 14.16 O

See Harrell (1998) or the help file for the library for a full discussion of the other statistics produced by
lrm.

To fit both models together (j = 1 and j = 2), fit an interaction term, as in the following.
fit<-lrm(y.u~u$cohort*x.u)
Logistic Regression Model

Frequencies of Responses

0 1
2199 435
Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier
2634 4e-006 899.86 3 0 0.884 0.768 0.819 0.212 0.489 0.083

Coef S.E. Wald Z P

Intercept -3.247934 .1576602 -20.60 O
cohort=y>=malformed -2.453968 0.3677581 -6.67 0

x 0.006389 0.0004348 14.70 O

cohort=y>=malformed * x 0.010986 0.0013020 8.44 0

o O O o

Thus, when y>=malformed (j = 2), the linear logit is =5.70 + .017x. When y=all (j = 1), the linear logit is —
3.247 + .0064x. The less desirable outcome is more likely as the concentration increases.

Notice that the values for model L.R. in the individual model sum to the model L.R. for the interaction
model above. However, the d.f. do not add.

1. Odds Ratios

To get selected odds ratios for the j = 2 model, first issue the datadist command and reissue the 1rm
call, as follows:

131

x.u<-x.u[u$cohort=="y>=malformed"]
dd<-datadist (x.u)

options (datadist='dd"')
fit<-lrm(y.ul[u$cohort=="y>=malformed"]~x.u)

Using summary (fit) will give odds ratios comparing the default levels of x.u (the lowest and highest
nonzero values)

summary (fit)
Effects Response : y.ul[u$cohort == "y>=malformed"]

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

X.u 62.5 250 187.5 3.26 0.23 2.81 3.71
Odds Ratio 62.5 250 187.5 25.99 NA 16.56 40.80

Thus, given that a fetus was alive, the estimated odds of it being malformed versus normal is 26 times
higher when a mouse is exposed to 500 mg/kg per day of the toxic substance than when it is exposed to
62.5 mg/kg per day. The NA for SE is apparently not a mistake. Also the value 3.26 = (.0174)*(250-62.5)
is the log odds.

To get an odds ratio comparing specific levels of x, for example comparing levels x=125 and x=250:
summary (fit,x=c (125,250))
Effects Response : y.ul[u$Scohort == "y>=malformed"]
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

X.u 125 250 125 2.17 0.15 1.87 2.47
Odds Ratio 125 250 125 8.77 NA 6.50 11.85

Or, levels x=250 and x=500
summary (fit,x=c (250,500))
Effects Response : y.ul[u$Scohort == "y>=malformed"]

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95

X.u 250 500 250 4.34 0.31 3.74 4.95
Odds Ratio 250 500 250 76.99 NA 42.20 140.48
2. Using gim

We can instead estimate the continuation-ratio logit model using g1m, as we did the linear logit model.

First, set x (the covariate) and the weights for the first linear logit model. Here, we use the table.7.9a
version of the data.

x<-c(0,62.5,125,250,500)
nl<-rowSums (table.7.9a) # use the whole table

For model j = 1, take the first column of table.7.9a as the “success”, as follows:
(fit<-glm(table.7.9al,1]/nl~x, family=binomial,weights=nl))
Coefficients:

(Intercept) x

-3.247934 0.006389069

Degrees of Freedom: 5 Total; 3 Residual
Residual Deviance: 5.777478

132

fit$null.deviance
[1] 259.1073

fit$null.deviance-fit$deviance # this is what lrm gave us as model L.R.
[1] 253.3298

summary (fit)
Null Deviance: 259.1073 on 4 degrees of freedom

Residual Deviance: 5.777478 on 3 degrees of freedom

The difference of the above sets of values gives Null Deviance-Residual Deviance = 253.3298 and df=1.
These are the Model L.R. and Model df reported by 1rm.

For the j = 2 model, take the second and third columns of table.7.9a, and use the second column as
the success:

n2<-rowSums (table.7.9al,c(2,3)])
glm(table.7.9al,2]/n2~x, family=binomial,weights=n2)

Coefficients:
(Intercept) X
-5.701891 0.01737464

Degrees of Freedom: 5 Total; 3 Residual
Residual Deviance: 6.060908

glm can also fit proportional odds models. However, there are advantages to using lrm or other
functions for these types of models because of the built-in features, like the odds ratios above. See
Harrell(1998) or the associated web site http://heswebl.med.virginia.edu/biostat (under Statistical
Computing Tools) for more information.

3. Using nordr from library gnlm and Icr from library ordinal

These two functions are very similar. However, they assume a common concentration slope across
continuation-ratio logits. | will illustrate 1cr. First, it becomes easier to use the function if we create a
repeated object as follows. The response factor must be transformed to a numeric vector, starting with
response 0. Then, we create response and covariate objects, followed by a repeated object using rmna.

table.7.9$yC<-codes(table.7.98y) -1 # must transform to 0:2 categories

y <- restovec(table.7.9%8yC,times=F,weights=table.7.9%freq, type="ordinal") # response
vector

tcec <- tcctomat(table.7.9$x,name="Concen") # create covariate object

w <- rmna(y,ccov=tcc) # create a repeated object, with no repeats here

The model is fit by

library (ordinal)
lcr (w,distribution="cont",direc="up",mu=~Concen)

Frequency table.
Number of non-empty cells: 15
Total number of events: 1435

Continuation-ratio distribution (upwards) .
Transformation: identity.

Regression coefficients
estimate s.e.
(InterceptO) -2.632877 0.1825725

133

(Interceptl) -2.404463 0.1078119
Concen 0.007184 0.0003578

Correlation matrix

1 2 3
1 1.0000 0.6162 -0.7963
2 0.6162 1.0000 -0.7738
3 -0.7963 -0.7738 1.0000

Note the different estimated concentraton effect.

4. Using vglm from library VGAM

Using vglm for continuation-ratio models is similar to using it for adjacent-categories logit models. We just
change the family function to sratio (Or cratio). First, | illustrate sratio, as this matches Agresti's
definition of continuation-ratio logit. Both sratio and cratio have an argument, reverse, which fits the
corresponding logits in reverse order (see the help files).

For the data, we use the contingency table format (table.7.9a), and cbind the response columns.

x<-c¢(0,62.5,125,250,500)

fit.vglm<-vglm(cbind(non.live, malformed,normal)~x,family=sratio(link ="logit",
parallel = F), data=table.7.9a)

summary (fit.vglm)

Coefficients:

Value Std. Error t value
(Intercept) :1 -3.2479337 0.15766019 -20.601
(Intercept) :2 -5.7018965 0.33062798 -17.246
x:1 0.0063891 0.00043476 14.695
X:2 0.0173747 0.00121260 14.328

Number of linear predictors: 2

Names of linear predictors: logit (P[Y=1|Y>=1]), logit(P[Y=2]|Y>=2])
Dispersion Parameter for sratio family: 1

Residual Deviance: 11.83839 on 6 degrees of freedom
Log-likelihood: -730.3872 on 6 degrees of freedom

Number of Iterations: 4

Note that the Residual Deviance reported is the sum of the individual Residual Deviances (the likelihood-
ratio fit statistics) reported by gim.

Now, the family function cratio fits the logits, logit(P(y >j|y = j), which is not the same as logit(P(y = |y
> j). Infactitis the logit of the complement, under the conditioning. Here is that fit.

x<-c(0,62.5,125,250,500) # this is the form of the covariate we use
fit.vglm<-vglm(cbind(non.live, malformed, normal)~x, family=cratio(link ="logit",
parallel = F), data=table.7.9a)

summary (fit.vglm)

Log-likelihood: -730.3871
Coefficients:

Value Std. Error t value
(Intercept):1 3.2479337 0.15766019 20.601
(Intercept) :2 5.7018965 0.33062798 17.246
x:1 -0.0063891 0.00043476 -14.695
X:2 -0.0173747 0.00121260 -14.328

134

Number of linear predictors: 2

Names of linear predictors: logit (P[Y>1|Y>=1]), logit(P[Y>2|Y>=2])
Dispersion Parameter for cratio family: 1

Residual Deviance: 11.83839 on 6 degrees of freedom
Log-likelihood: -730.3872 on 6 degrees of freedom

Number of Iterations: 4

It is not surprising to see that the estimates are all negated, as we are fitting the logits of the
complementary probabilities.

As a side note, as mentioned in Harrell (1998) as well as Agresti (Chapter 7 notes), the continuation-ratio
model is a discrete version of the Cox proportional hazards model. Thus, one could probably fit these
models using either coxph or cph, which is in the Design library. It is left to the reader to make the
connection.

G. Ordinal Responses: Mean Response Models

A mean response model for ordinal responses is a linear regression model with ordinal responses
represented by numerical scores. As in ordinary linear regression with continuous response, the
conditional mean is assumed linearly related to the explanatory variables. The response distribution is
assumed product multinomial (i.e., independent multinomial at each fixed set of covariates).

This type of model can be fit using something like the 1pmreg function of Chapter 4.

Also, using the Poisson/multinomial connection, we might try glm with a poisson (identity) family. Or,
we might try aov, as we are fitting a linear regression model. The functions glm and aov give similar
coefficient estimates. However, they are not exactly the same as those assuming the product-
multinomial model. Also, the standard errors are wrong.

fit.aov<-aov(jobsat ~ gender + income, data = table.7.8, weights = freq)
fit.aov$coefficients

(Intercept) gender income
2.57391211 -0.01703921 0.17985911

fit.glm<-glm(jobsat~gender+income, weights=freq, family=poisson(identity), data=
table.7.8)
summary (fit.glm)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.561845 0.557081 4.599 4.25e-06 ***

gender -0.007199 0.370796 -0.019 0.985
income 0.182282 0.169106 1.078 0.281
Signif. codes: 0 “***' 0.001 “**' 0.01 ~*' 0.05 ~.' 0.1 ~ ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 19.435 on 25 degrees of freedom
Residual deviance: 18.124 on 23 degrees of freedom
AIC: 332.31

Number of Fisher Scoring iterations: 3

135

Multinomial-Poisson Homogeneous Model

A better alternative for fitting mean response models using ML estimation is to use J. Lang’'s mph.fit
function for R, which fits Multinomial-Poisson Homogenous models. For the mean response model, we
assume product-multinomial sampling, given the totals from the eight populations.

To use the function mph . fit, we need Table 7.8 in the follow form, as a 8 x 4 matrix of counts.

table.7.8a<-data.frame (expand.grid(income=1:4,gender=c(1,0)),
unstack(table.7.8, freg~jobsatf))

table.7.8a<-structure(.Data=table.7.8a[,-(1:2)], row.names= apply(expand.grid(
income=1:4, gender=c(1,0)), 1, paste,collapse=" "), names=
levels(table.7.8%$jobsatf))

Because this manual was originally written when version 1.0 of mph.fit was available, | give a
description of its use, along with the most recent version 3.1. If a command is specific to a particular
version, | note that.

For version 1.0 of mph.fit, we define two sampling matrices, Z and ZF. Z is a 32 x 8 matrix, where
each column corresponds to a stratum or population (of which we have 8). If each response is possible
within each stratum, then the Z matrix (which is called a population matrix) can be generated using the
function pop, which creates a block diagonal matrix

Z<-pop (npop=8, nlev=4) # 8 populations, 4 levels of response
same as Z<-kronecker(diag(8), matrix(1l,4,1))

ZF is a sampling constraint matrix, whose columns tell whether each of the row totals is fixed or random
(Poisson distributed). If the jth column of Z is included in ZF, then the jth population total is fixed.

ZF<-2

Next, we need the vector of table counts and the design matrix, X

vector of table counts
Y<-c(t(as.matrix(table.7.8a)))

design matrix
X<-cbind(1l,unique(as.matrix(table.7.8[,1:2])))

X<-as.data. frame (X)

model.matrix (~gender+income, data=X)

(Intercept) gender income
1 1 1 1
5 1 1 2
9 1 1 3
13 1 1 4
17 1 0 1
21 1 0 2
25 1 0 3
29 1 0 4
attr(,"assign")
[1] 0 1 2

Next, the matrix 2 and the result of the function L. fct together define the formula that describes the
dependence of the mean response on the covariates. See the mph documentation for an explanation of
L.fct.

scores<-1:4

136

A<-kronecker (diag(8) ,matrix(scores,1,4))

L.fct <- function(m) {
p <- diag(c(1/(Z2%*%t(2)%*%m)))%*%m
A<-kronecker (diag(8) ,matrix(scores,1,4))
A%*%p

}

Finally, we fit a mean response model. For version 3.1, the argument L. mean=T indicates that L.. fct is
a function of the expected counts, and not of the table probabilities. The argument strata indicates
which count belongs to which of the eight strata, and fixed.strata="all” indicates that all stratum
totals are fixed. These arguments help to create the Z and ZF matrices within version 3.1 of mph. fit.

fit<-mph.fit (y=Y,Z=Z,2F=2F,X=X,L.fct=L.fct) # version 1.0

fit<-mph.fit (y=Y, X=model.matrix(~gender+income,data=X), L.fct=L.fct, L.mean=T,
strata=rep(1:8, each=4), fixed.strata="all", maxiter=500)

mph.summary (fit)

MODEL GOODNESS OF FIT: Test of Ho: h(m)=0 vs. Ha: not Ho...
Likelihood Ratio Stat (df= 5): Gsg = 5.06161 (pval = 0.4084)
Pearson's Score Stat (df= 5): Xsqgq = 4.64931 (pval = 0.4602)
Generalized Wald Stat (df= 5): Wsqg = 5.16351 (pval = 0.3963)

WARNING: 78.125% of expected counts are less than 5.
Chi-square approximation may be questionable.

Adj Resids: -1.436 -1.355 ... 1.436 1.436 , Number |Adj Resid| > 2: 0

SAMPLING PLAN INFORMATION. ..

Number of strata: 8

Strata identifiers: 1, 2, 3, 4, 5, 6, 7, 8

Strata with fixed sample sizes: all

Observed strata sample sizes: 17, 25, 14, 8, 5, 9, 10, 16

LINEAR PREDICTOR MODEL RESULTS...
BETA StdErr (BETA) Z-ratio p-value

(Intercept) 2.5927 0.2408 10.7685 0.0000000

gender -0.0298 0.1449 -0.2056 0.8371200

income 0.1807 0.0694 2.6027 0.0092496
OBS LINK ML LINK StdErr (L) LINK RESID

linkl 2.8235 2.7436 0.1237 0.6151

link2 2.8400 2.9242 0.0882 -0.7813

1link3 3.2857 3.1049 0.0996 1.3546

link4 3.0000 3.2856 0.1472 -1.4359

link5 2.6000 2.7734 0.1798 -0.4259

linké6 2.7778 2.9540 0.1278 -0.9911

link7 3.3000 3.1347 0.0999 1.0393

1links8 3.3125 3.3154 0.1152 -0.0320

CONVERGENCE INFORMATION. ..
Original counts used.

iterations = 288 , time elapsed = 9.03

norm.diff = 3.15141 = dist between last and second last iterates.
Did NOT meet norm diff convergence criterion [le-06]!

norm.score = 8.22404e-07 = norm of score at last iteration.

Norm score convergence criterion [le-06] was met.

FITTING PROGRAM USED: mph.fit, version 3.1, 5/20/09

Note that only one of the convergence criteria was met.

137

One can modify the mph.fit function to work with S-PLUS. To do so, one must take account of the
differences within the scoping rules of the two implementations.

Weighted Least Squares

It is possible to work through a WLS estimation in either S-PLUS or R using the formula on p. 600 — 604
of Agresti. We do this for the job satisfaction data.

First, | reorganize the table of data by unstacking the jobsat variable. The menuUnstackColumns
function in S-PLUS unstacks jobsat and creates a new data frame called table.7.8a. The unstack
function in R works similarly, but is easier to use.

menuUnstackColumns (source=as.data.frame(table.7.8), target=table.7.8a,
source.col.spec= c("freqg"), group=c("jobsat"), show.p=F)

R: table.7.8a<-data.frame (expand.grid(income=1:4,gender=c(1,0)),
unstack (table.7.8, freg~jobsatf))

structure(.Data=table.7.8a,row.names=apply (expand.grid(income=1:4,gender=c(1,0)),1,

paste,collapse=" "), names=levels(table.7.8$jobsatf))
R: structure(.Data=table.7.8a[,-(1:2)],row.names=apply (expand.grid(income=1:4,
gender=c(1,0)),1, paste,collapse=" "), names=levels (table.7.8$jobsatf))

very diss little sat mod sat very sat

11 1 3 11 2
21 2 3 17 3
31 0 1 8 5
4 1 0 2 4 2
10 1 1 2 1
20 0 3 5 1
30 0 0 7 3
4 0 0 1 9 6

Next, we need the sample size for each population (income x gender combination), and the sample
proportions for each population.

n<-rowSums (table.7.8a)

p<-sweep (table.7.8a,1,n,FUN="/")
pl<-pll,] # R: as.numeric(pll,])
p2<-pl2,]
p3<-pl3,]
pé<-pl4,]
p5<-pl5,1
p6<-pl6,]
p7<-pl7,1
p8<-pl8,]

J<-4 # number of response categories
I<-8 # number of populations

Now, | compute the block diagonal variance-covariance matrix, V, using V; through Vs (the population
specific covariance matrices). For the for-loop below, the object vnames stores the names of the objects
V; through Vg, and the object pnames stores the names of the vectors of sample proportions for each
group. First | calculate each V;, then | calculate V.

Vnames<-sapply(1:I, function(x) paste("V", x, collapse = " ", sep = ""))
pnames<-sapply(1:I, function(x) paste("p",x,collapse=" ",sep=""))
V<-matrix(0,nc=J,nr=J)

for(i in 1:I)

{

p<-as.numeric (eval (parse(text = pnames[i])))

138

diag(V)<-p*(1-p)

p<-as.matrix(p)
junk<-matrix (-kronecker (p,p) ,nc=J,nr=J,byrow=T)
V[lower.tri(diag(Jd))]l<-junk[lower.tri (junk)]

V<-t (V)

VIlower.tri(V)]<-junk[lower.tri (junk,diag=F)]
assign(Vnames[i], matrix(V/n[i]l, ncol = J, byrow = T))

}
| construct V using V; through Vg

zero<-matrix(0,J,J)

V<-rbind (

cbind (V1l, zero, zero, zero, zero, zero, 2zZero, 2zero),

cbind(zero, V2, zero, zero, zero, Zzero, zero, ZzZero),

cbind(zero, zero, V3, zero, zero, zero, zero, 2zero), # block-diagonal matrix, V
cbind (zero, zero, zero, V4, zero, zero, zero, ZzZero),

cbind(zero, zero, zero, zero, V5, zero, zero, zero),

cbind (zero, zero, zero, zero, zero, V6, zero, zero),

cbind(zero, zero, zero, zero, zero, zero ,V7, zero),

cbind (zero, zero, zero, zero, zero, zero, zero, V8)

)

Now, the model for this example has form F () = XB, where T is a 4 x 8 matrix of response probability
distributions for each population, B=(e, f,, ,BQ)T, and F(m) is a 8 x 1 vector of the 8 response
functions

F(m)=a+0-5,+1- B = v (Fyrysees Tay)

R(r)=a+ ﬂg +4-8 = v (71'1(2,4) !---!”4(2,4))

representing the 2 x 4 combinations of Gender and Income. The 4 x 1 vector v contains the scores for
the 4 job satisfaction categories.

Now, note that the matrix Q = [a;;:::q on p. 602 contains the 1 x 32 row vectors
jli

IR (m)
0 = (0., O yya s Vireos Vi 0,100, 055)

il

and the design matrix is

..1l gender income
1 1

PFRRRPRRRRR
cooRrRER
DWW R WN

0
All of the above is input into S via the following commands. For the F() functions, we use the sample
proportions instead of the probabilities, .

js<-1:4 # the vector nu

Q<-rbind (
c(js,rep(0,28)),

139

c(rep(0,4),js,rep(0,24)),
c(rep(0,8),js,rep(0,20)),
c(rep(0,12),js,rep(0,16)), # derivatives of F
c(rep(0,16),js,rep(0,12)),

c(rep(0,20),js, rep(0,8)),

c(rep(0,24),js, rep(0,4)),

c(rep(0,28),3js)

VF<-Q%*%V%*%t (Q) # transformed covariance matrix (p. 602 in Agresti)

Design matrix:
X<-as.matrix(cbind(rep(1,I),unique(table.7.8[,1:2]1)))

Functions
Fp<-c(js%*%pl, js%*%p2, js%*%p3, js%*%p4, js%*%p5, js%*%p6, js%*%p7, js%*%p8)

Now, | estimate beta using the formula in Section 15.1.2, the weighted least squares estimator.

InvVF<-solve (VF)
Covb<-solve (t (X)%$*%$InvVF%*%X)
b<-as.numeric (Covb%*%t (X) $*%InvVF%*%Fp)
[1] 2.61328732 -0.04155966 0.18163655

The asymptotic standard errors:

sqrt (diag(Covb))
[1] 0.2311374 0.1369473 0.0681758

| compute a Wald statistic for entire model using the formula on p. 603 in Agresti.

as.numeric (t (Fp-X%*%b) $*SInvVF%*% (Fp-X%*%b))
5.242789

H. Generalized Cochran-Mantel Haenszel Statistic for Ordinal Categories

The mantelhaen.test function in the R package ctest, which comes with R, can handle | x J x K tables,
but does not take special advantage of ordinal categories (The same built-in function in S-PLUS can only
handle 2 x 2 x 2 tables, but the statistic itself is easily calculable using formula that is already
programmed into the R function. A calculation is available in the S-PLUS scripts for this manual). To test
for conditional independence of job satisfaction and income given gender, treating job satisfaction and
income with scores {1, 3, 4, 5} and {3, 10, 20, 35}, respectively, we need to use equation (7.21) in Agresti.
This statistic has an approximate chi-squared distribution with 1 df.

With nominal categories for job satisfaction and income, mantelhaen.test calculates (7.20) in Agresti
using input from xtabs.

mantelhaen.test (xtabs (freg~jobsatf+income+gender, data=table.7.8))
Cochran-Mantel-Haenszel test

data: xtabs(freq ~ jobsatf + income + gender, data = table.7.8)
Cochran-Mantel-Haenszel M"2 = 12.5314, df = 9, p-value = 0.185

But, this gives a different answer than that given by SAS in Table 7.12 of Agresti. | don't know why, as it
is clear from the R code that it is computing (7.20).

140

The test of nonzero correlation uses the ordinal scores for both row and column variables and computes
(7.21). This computation is easy in either R or S-PLUS.

First, we add the scores to the data frame

table.7.8$%$jobsatS<-ifelse(table.7.8$%$jobsat==4,5,table.7.8$jobsat)
table.7.8$jobsatS<-ifelse(table.7.8%$jobsat==3,4,table.7.8$jobsats)
table.7.8$%$jobsatS<-ifelse(table.7.8$%$jobsat==2,3,table.7.8$jobsats)

~
~

table.7.8%incomeS<-ifelse(table.7.8%income==4,35,table.7.8$income)
table.7.8%incomeS<-ifelse(table.7.8%income==3,20, table.7.8%incomeS)
table.7.8$%$incomeS<-ifelse(table.7.8%income==2,10,table.7.8%$incomeS)
table.7.8%incomeS<-ifelse(table.7.8$income==1,3,table.7.8%incomeS)

Then, we compute Ty, its expected value under no correlation and its variance.

table.7.8.array<-xtabs (freg~jobsatf+income+gender, data=table.7.8)
Tk<-apply(table.7.8.array, 3, function(x,u,v) sum(outer(u,v)*x), u=c(l1,3,4,5),
v=c(3,10,20,35))
ETk<-apply(table.7.8.array, 3, function(x,u,v)
sum (rowSums (x) *u) *sum (colSums (x) *v) /sum(x), u=c(1,3,4,5), v=c(3,10,20,35))

varTk<-apply (table.7.8.array, 3, function(x,u,v) {
n<-sum(x)
rowsums<-rowSums (x)
colsums<-colSums (x)
(sum (rowsums*u”®2) - (sum(rowsums*u)”*2)/n)* (sum(colsums*v”™2) -
(sum(colsums*v) “2) /n) / (n-1)
}: u=c(1,3,4,5), v=c(3,10,20,35))

The statistic is

(sum (Tk-ETk) "2) /sum(varTk)
[1] 6.156301

with p-value

1l-pchisq((sum(Tk-ETk) “2) /sum(varTk) ,df=1)
[1] 0.01309447

The row mean scores differ association treats rows as nominal and columns as ordinal. The test statistic
can be computed in R or S-PLUS using the formula in the notes for Chapter 7 (p. 302, Agresti).
However, the matrices in this formula do not have the appropriate dimensions for multiplication. So, one
may have to check the original paper. In any case, the mantelhaen. test function can be modified easily
to incorporate the B matrix given on p. 302, to get the new statistic.

141

Chapter 8 —Loglinear Models for Contingency Tables

A. Summary of Chapter 8, Agresti

Loglinear models are used for modeling cell counts in a contingency table. As Agresti notes, these
models are usually used when we have a multivariate response, not a univariate response, as the model
treats all classification factors as responses. With a univariate response, methods such as logit models
or multinomial logit models are better alternatives, and there is a correspondence between logit models
with categorical explanatory variables and loglinear models (Section 8.5, Agresti). Loglinear models
model the expected cell frequencies as log linear combinations of effects (model parameters) due to each
classification factor by itself and possibly due to interactions among classification factors. Certain
contrasts involving parameters (such as differences between parameters for a given factor) are
interpreted as log odds of making one response on that variable, relative to another response. Contrasts
involving interaction parameters can have interpretations in terms of log odds ratios. Interaction
parameters by themselves are most useful in an association interpretation. That is, a three-factor
interaction parameter is zero if there is no three-factor association. For identifiability of all parameters,
arbitrary constraints are made. This makes the individual parameter estimates not unique across
constraints, but estimated contrasts that encode log odds ratios are the same across constraints.

A generalized linear model interpretation of loglinear models treats the N = 1J cell counts of an | x J
table as independent observations from a Poisson random component with corresponding means equal
to the expected cell counts. The same model can have a multinomial interpretation with two categorical
responses and N total observations. These statements also apply to three-way tables.

In a three-way table with response variables X, Y, and Z, several types of potential independence can
be present. Mutual independence of all three variables results in all interaction parameters in the loglinear
model being zero. In a multinomial interpretation, this means all joint cell probabilities equal the products
of the corresponding marginal probabilities. Joint independence of one variable, Y, and the combined
classifications of the other two (X and Z) results in a loglinear model with only one possible nonzero
interaction parameter, that between X and Z. Finally, variables X and Y are conditionally independent of
variable Z if independence holds within each partial table conditional on a given value of Z. This would
result in a loglinear model with two possible nonzero interaction parameters: that describing association
between X and Z and that describing association between Y and Z. Relationships among the types of
independence appear in Table 8.1. in Agresti.

A loglinear model for no three-factor interaction in a three-way table is called a homogenous
association model. This means that the conditional odds ratios between any two variables are identical at
each category of the third variable. Its parameters have interpretations in terms of conditional odds
ratios. Of the | B, x P, possible odds ratios, there are (I — 1)(J — 1) nonredundant odds ratios describing

the association between variables X and Y, at each of K levels of a third conditioning variable.
Conditional independence of X and Y (i.e., no three-factor interaction) means that all of the odds ratios
are equal to 1.0. The logs of these odd ratios are functions of the parameters of the homogeneous
association model, as shown in equation (8.14) in Agresti, and the functions do not depend on the level of
the conditioning variable.

Higher dimensional tables have straightforward extensions from the three-way table.

Chi-squared goodness-of-fit tests can be used to compare nested models. This usually means using
the likelihood ratio chi-squared statistic, which has an asymptotic chi-squared distribution when the
expected frequencies are large (with fixed number of cells). The degrees of freedom equal the difference
in dimension between the null and alternative hypothesis.

Loglinear models can be fit using one of two methods for doing maximum likelihood estimation,
Newton-Raphson or Iterative proportional fitting (IPF). Newton-Raphson is an iterative procedure that
solves a weighted least squares equation at each iteration. At each iteration of the IPF algorithm, the
fitted values satisfy the model and eventually converge to match the sufficient statistics (leading to
MLEs). However, IPF does not automatically produce the estimated covariance matrix of the parameters
as a byproduct. ML parameter estimates have asymptotic normal distributions and asymptotic standard
errors estimated by the inverse of the Information matrix of the log likelihood.

142

A generalized loglinear model generalizes mean modeling for loglinear models such as Poisson
GLIMs. Specifically, the link function relating the response mean to the linear predictor is not strictly
logarithmic and not necessarily invertible, and takes the form

C(logAu) =Xp

for matrices C and A, which are not necessarily invertible. With A and C identity matrices, we get
ordinary loglinear models. For example, the logit model for a three-way table that postulates
independence of the response and the two explanatory variables, each with two levels (i.e., the logit

model only has an intercept) has A equal to an 8 x 8 identity matrix so that & = (411,419 tsy,) @Nd

10-10000 O
|01 0 -100 0 O
C_000010—10
000 001 0 -1

With X a vector of four ones, and P=«, we get four row logits (two per each level of the second
explanatory variable) that are all equal.

B. Loglinear Models for Three-way Tables

With a three-way table, there are three response variables for a loglinear model. We can test the fit
of a saturated model (three-way interaction) against a homogeneous association model (all pairwise
associations) or that of homogeneous association versus conditional independence of two variables
given a third. Agresti uses a data set on alcohol, cigarette, and marijuana use to fit these various models.
We can set up the data as

table.8.3<-data.frame (expand.grid (
marijuana=factor(c("Yes", "No"),levels=c("No", "Yes")),
cigarette=factor(c("Yes", "No"),levels=c("No", "Yes")),
alcohol=factor(c("Yes","No"),levels=c("No", "Yes"))),
count=c(911,538,44,456,3,43,2,279))

Fitting a loglinear model can be done using Iterative Proportional Fitting (1oglin, loglm) or Newton
Raphson (g1m with poisson family). The former uses 1oglin, or loglm from MASS. The function 1oglm
is a front-end for 1oglin, and has a much more flexible input allowance. loglin requires input in the
form of output from table () or as an array. loglm accepts table output, crosstabs output (xtabs in R),
or a formula using variables from a data frame. As we have a data frame, we start with 1ogim. We fit the
saturated model, homogeneous association model, etc down to the marginal independence model.

Here are the fits. | set the arguments fit and param to T SO that | can get fitted values and parameter
estimates, as we see later.

library (MASS)

fitACM<-loglm(count~alcohol*cigarette*marijuana,data=table.8.3,param=T, £it=T) # ACM
fitAC.AM.CM<-update (fitACM, .~. - alcohol:cigarette:marijuana) # AC, AM, CM
fitAM.CM<-update (£itAC.AM.CM, .~. - alcohol:cigarette) # AM, CM
fitAC.M<-update(fitAC.AM.CM, .~. - alcohol:marijuana - cigarette:marijuana) # AC, M
fitA.C.M<-update (fitAC.M, .~. - alcohol:cigarette) #A, C, M

We can get the fitted counts using fitted on the loglm objects. fitted returns an array of expect
counts, but here we want a vector. | needed to transpose before concatenation so that the expected
counts followed that in the data frame.

143

data.frame(table.8.3[,-4], ACM=c (aperm(fitted(fitACM))),
AC.AM.CM=c (aperm(fitted (fitAC.AM.CM))), AM.CM=c(aperm(fitted(fitAM.CM))),
AC.M=c (aperm(fitted(fitAC.M))), A.C.M=c(aperm(fitted(fitA.C.M))))

marijuana cigarette alcohol ACM AC.AM.CM AM.CM AC.M A.C.M
1 Yes Yes Yes 911 910.383057 909.2395630 611.17749 539.98254
2 No Yes Yes 538 538.616089 438.8404236 837.82251 740.22607
3 Yes No Yes 44 44.616840 45.7604179 210.89632 282.09125
4 No No Yes 456 455.385590 555.1595459 289.10370 386.70007
5 Yes Yes No 3 3.616919 4.7604165 19.40246 90.59739
6 No Yes No 43 42.383881 142.1595764 26.59754 124.19392
7 Yes No No 2 1.383159 0.2395833 118.52373 47.32881
8 No No No 279 279.614380 179.8404236 162.47627 64.87991

Because we set param = T, we can get estimates of the model parameters (the lambdas), using
fit$param. These can be used to get estimates of conditonal odds ratios, as per equation (8.14) in
Agresti (see Thompson (1999, p. 27)). However, it may be simpler to just compute the odds ratios from
the array of fitted values. To do this, we use the apply function on the array. For example, for the
homogeneous association model (AC, AM, CM), which has fitted counts close to the observed counts, we
have the following conditional odds ratios:

fit.array<-fitted (£itAC.AM.CM)
odds.ratio<-function(x) xI[1,1]1*x[2,2]/(x[2,1]1*x[1,2])

apply(fit.array,1l,odds.ratio) # CM (given level of A)
Yes No
17.25144 17.25144 # these should be the same according to the model

apply(fit.array,2, odds.ratio) # AM
Yes No
19.80646 19.80646

apply(fit.array,3, odds.ratio) # AC
Yes No
7.80295 7.80295

To determine which dimension to apply the function odds.ratio over, | strongly recommend using R’s
version of fitted, which includes helpful variable labels instead of just levels (which are all the same,
here).

To get marginal odds ratios, we just need to sum the array over the dimension we are excluding in the
odds ratio. Here is a function that will sum the columns across an array.

sum.array<-function(array, perm=c(3,2,1)){
res<-aperm(array, perm)
colSums (res)

The perm argument is used to put the summed-over dimension in the rows place (place #1). In this way,
when we do column sums, we sum over the rows. Had | used rowsums in the function, we would need to
put the summed-over dimension in the columns place (place #2). The defaultis ¢ (3,2, 1), which causes
the matrices in the array to be summed, resulting in a single matrix which represents the sum. For
example,

junk<-array(c(matrix(1:4,2,2)), dim=c(2,2,2))

144

1,1 1 3
2, 2 4
I I 2

[,11 [,2]
(1,1 1 3
(2,1 2 4

sum.array (junk)

[,11 [,21]
1,1 2 4
2,1 6 8

Now, we compute the marginal odds ratios. The current dimensions of fit.array are A,C,M.

odds.ratio(sum.array(fit.array)) # AC (sum over M, so 3 needs to be listed first)
[1] 17.70244

odds.ratio(sum.array(fit.array, perm=c(1,2,3))) # CM (sum over A, so 1 is first)
[1] 25.13620

odds.ratio(sum.array(fit.array, perm=c(2,1,3))) # AM (sum over C, so 2 is first)
[1] 61.87182

As loglm is a front-end to 1oglin, there is no need to show the results from loglin. loglin requires
input of a table in the form of an array and also has an argument margin, where the model is specified
using a list of numeric vectors. As an example, to fit the homogeneous association model, we do

loglin(fitted (£itACM), margin=list(c(1,2), c(2,3), c(1,3)), param=T,fit=T)

Slrt:
[1] 0.3738868

Spearson:
[1] 0.4011037

sdf:
[1] 1

Smargin:
Smargin[[1]]:
[1] "alcohol" "cigarette"

Smargin[[2]]:
[1] "cigarette" "marijuana"

Smargin[[3]]:
[1] "alcohol™ "marijuana"

sfit:

, ., Yes

Yes No
Yes 910.382996 44.617058
No 3.616851 1.383149

’ INO

Yes No
Yes 538.61639 455.3836
No 42.38408 279.6159

145

The margin argument gives the associations allowed for the model. Here, we choose all pairwise
associations. 1rt and pearson give the associated goodness-of-fit statistics, and fit gives the fitted
counts.

The same model can be fit using glm with a poisson family. Here, the fit algorithm is Newton-Raphson.

options (contrasts=c("contr.treatment", "contr.poly")) # dummy coding for factors
(fit.glm<-glm(count~."2, data=table.8.3, family=poisson))

Coefficients:
(Intercept) marijuana cigarette alcohol marijuana:cigarette marijuana:alcohol
5.63342 -5.309042 -1.886669 0.487719 2.847889 2.986014

cigarette:alcohol
2.054534

Degrees of Freedom: 8 Total; 1 Residual

Residual Deviance: 0.3739859

The residual deviance is the likelihood ratio statistic. The sum of the squared pearson residuals gives the
Pearson chi-squared statistic.

sum(resid(fit, type="pearson")"2)
[1] 0.4011004

C. Inference for Loglinear Models

Likelihood ratio chi-squared test statistics are output using the summary methods for 1oglm and glm and
the print method for 1oglin. For example, the summary method for 1oglm gives the statistics and p-
values as compared to a chi-squared distribution with the appropriate degrees of freedom.

summary (£itAC.AM.CM) # homogeneous association model
Formula:
count ~ alcohol + cigarette + marijuana + alcohol:cigarette + alcohol:marijuana +

cigarette:marijuana
Statistics:
X*2 df P(> X*2)

Likelihood Ratio 0.3742223 1 0.5407117
Pearson 0.4011002 1 0.5265216

Comparison of nested models can be done using the anova method. For example,

anova (fitACc.M, fitAC.AM.CM, fitAM.CM, fitA.C.M)

LR tests for hierarchical log-linear models

Model 1:
count ~ alcohol + cigarette + marijuana
Model 2:
count ~ alcohol + cigarette + marijuana + alcohol:cigarette
Model 3:
count ~ alcohol + cigarette + marijuana + alcohol:marijuana + cigarette:marijuana
Model 4:
count ~ alcohol + cigarette + marijuana + alcohol:cigarette + alcohol:marijuana +

cigarette:marijuana

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)

146

Model 1 1286.0200195 4

Model 2 843.8267822 3 442.1932373 1 0.00000

Model 3 187.7544556 2 656.0723267 1 0.00000

Model 4 0.3742223 1 187.3802338 1 0.00000
Saturated 0.0000000 O 0.3742223 1 0.54071

gives the likelihood ratio tests comparing hierarchical loglinear models given in the list of arguments.
Each item in the pDelta (Dev) column compares Deviances between the current row and the previous
row. So, the test of conditional independence between A and C, which compares models AM.CM and
AM.CM.AC is 187.75 — 0.37 = 187.38. According to the output, the only model that fits well among the
four is the homogeneous association model (Model 4). It's deviance is close enough to the deviance for
the saturated model (zero) to give a nonsignificant p-value.

The parameter estimates returned by 1oglin and loglm (fit$param) come from a parameterization such
that the constant component describes the overall mean, each single factor sums to zero, each two
factor parameter sums to zero both by rows and columns, etc. Thus, the parameterization is not such
that the parameters in the last row and the last column are zero, and will not match those from SAS on p.
325 in Agresti. To obtain parameter estimates and standard errors from 1oglm matching those from SAS,
we can use plug-in calculations, as mentioned by Agresti. That is, take the fitted expected counts from
loglm output and plug them into the formula (8.25) on p. 339 in Agresti. (This is illustrated below)

However, we can get the parameter estimates and standard errors directly from the gim fit. In order that
our estimates match the SAS results given by Agresti on p. 325, we must first issue the command
options (contrasts= c("contr.treatment", "contr.poly")), and then ensure that our factor levels
match those of SAS. An inspection of the model.matrix from fit.glm shows the dummy coding used
by contr.treatment

model .matrix (fit.glm)

(Intercept) marijuana cigarette alcohol marijuana:cigarette marijuana:alcohol cigarette:alcohol
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 0 1 0 0 0 0
4 1 1 1 0 1 0 0
5 1 0 0 1 0 0 0
6 1 1 0 1 0 1 0
7 1 0 1 1 0 0 1
8 1 1 1 1 1 1 1

By the manner in which table.s.3 was set up, we see that the coding is 0 = Yes and 1 = No. We want 1
= Yes and 0 = No. Fortunately, we don’t have to redefine the factors in table.g.3. We just need to use
the contrasts argument of glm, as follows.

fit.glm2 <- update(fit.glm, contrasts = list(alcohol = as.matrix(c(l, 0)), marijuana =
as.matrix(c(l, 0)), cigarette = as.matrix(c(1l, 0))))

In the above, | reset the dummy coding to be 1 = Yes, 0 = No. In general, contrasts argument is a list
with each element matching the name of a variable in the model. The value of an element in the list is a
matrix of contrasts with number of rows equal to the number of levels of the variable.

Now, we can get estimates and ASEs to match those of SAS.

summary (fit.glm2, cor = F)

Coefficients:
Value Std. Error t value
(Intercept) 5.633420 .05970077 94.360930
marijuana -5.309042 0.47506865 -11.175316
cigarette -1.886669 .16269584 -11.596294
alcohol 0.487719 .07576708 6.437083
marijuana:cigarette 2.847889 0.16383796 17.382353

[eNeNeNoNo]

147

marijuana:alcohol 2.986014 0.46454749 6.427791
cigarette:alcohol 2.054534 0.17406289 11.803401

(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 2851.461 on 7 degrees of freedom
Residual Deviance: 0.3739859 on 1 degrees of freedom

Number of Fisher Scoring Iterations: 3

For 1og1m, we compute equation (8.25) using the model .matrix function to get X. Note that we still need
to modify the 0/1 coding using contrasts argument to match the coding in Agresti.

options (contrasts=c("contr.treatment", "contr.poly")) # ensure we have treatment
contrasts

X<-model.matrix (count~(alcohol+cigarette+marijuana) “2,data=table.8.3,
contrasts=list(alcohol=as.matrix(c(1,0)), marijuana=as.matrix(c(1,0)),

cigarette=as.matrix(c(1,0))))

sqrt (diag(solve (t (X)%*%diag(c (£itAC.AM.CM$fitted)) %$*%X)))

R output
(Intercept) alcoholl cigarettel
0.05970110 0.47519394 0.16269591
marijuanal alcoholl:cigarettel alcoholl:marijuanal
0.07576733 0.16383935 0.46467452

cigarettel:marijuanal
0.17406330

As a side note, we in fact do not have to use the contrasts argument t0 model.matrix Or t0 glm if we
specify the levels of the variables in table. 8.3 at the outset using the factor function. For example, we
did

table.8.3<-data.frame (expand.grid (marijuana=factor(c("Yes","No"), levels=c(“No”,
“Yes”)), cigarette=factor(c("Yes","No"),levels=c(“No”, “Yes”)),
alcohol=factor(c("Yes","No"),levels=c(“No”,”Yes”))),
count=c(911,538,44,456,3,43,2,279))

which gives the coding we want: 1=Yes, 0=No. However, it is instructive to see the contrasts argument
in its own right.

D. Loglinear Models for Higher Dimensions

Fitting of loglinear models with more than three dimensions is straightforward. Agresti uses a four-way
table displaying counts of accidents that either did or did not involve injury, and whether the driver wore a
seat belt, their gender, and location (rural, urban). We can fit several loglinear models specifying different
degrees of conditional independence using 1loglm.

table.8.8<-data.frame (expand.grid(belt=c ("No", "Yes"), location=c("Urban", "Rural"),
gender=c ("Female", "Male"), injury=c("No","Yes")),
count=c(7287,11587,3246,6134,10381,10969,6123, 6693,996, 759, 973, 757, 812, 380,
1084, 513))

We fit mutual independence model, a model with all pairwise interactions and no higher association (i.e.,
each pair of variables has the same odds ratio at each combination of the other two variables), and the
homogeneous three-way association model (i.e., no four-way interaction).

library (MASS)

148

fitG.I.L.S<-loglm(count~., data=table.8.8, fit=T, param=T) # mutual independence

fitGI.GL.GS.IL.IS.LS<-update(fitG.I.L.S, .~."2, data=table.8.8, fit=T, param=T) # all
pairwise associations

fitGIL.GIS.GLS.ILS<-update (fitG.I.L.S, .~."3, data=table.8.8, f£it=T, param=T) # all
three-way associations

A comparison of likelihood ratio statistics (next) tells us that the three-way association model fits best,
and is the only one to have a nonsignificant p-value.

anova (fitG.I.L.S, fitGI.GL.GS.IL.IS.LS, fitGIL.GIS.GLS.ILS)

LR tests for hierarchical log-linear models

Model 1:
count ~ Dbelt + location + gender + injury
Model 2:
count ~ belt + location + gender + injury + belt:location + belt:gender +

belt:injury + location:gender + location:injury + gender:injury
Model 3:
count ~ belt + location + gender + injury + belt:location + belt:gender +
belt:injury + location:gender + location:injury + gender:injury +
belt:location:gender + belt:location:injury + belt:gender:injury +
location:gender:injury

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2792.76245 11

Model 2 23.35137 5 2769.41113 6 0.00000
Model 3 1.32489 1 22.02648 4 0.00020
Saturated 0.00000 O 1.32489 1 0.24972

However, we would like a simpler model than all three-way interactions. Here is a fit of the all-pairwise
model plus the three-way interaction GLS.

(£itGI.IL.IS.GLS <- update(fitGI.GL.GS.IL.IS.LS, . ~ . + gender:location:belt))

Statistics:
X*2 df P(> X"2)
Likelihood Ratio 7.462791 4 0.1133613
Pearson 7.487374 4 0.1122673

The p-value is not significant, and this model is simpler to interpret than all three-way interactions. This
model says that whether or not injury occurred, the association between any two of the remaining
variables changes at each level of the third variable. For example, the association between gender and
seat belt use is not the same across urban and rural locations. However, any conditional odds ratio
between injury and another variable is the same at the combinations of the other two variables (because
injury does not appear in the three-way interaction). So, for example, Gl is the same no matter what the
levels of L and S.

Here are the fitted counts from this model.

fitted(£itGI.IL.IS.GLS) # output is from R
Re-fitting to get fitted values
, , gender = Female, injury = No
location
belt Urban Rural
No 7273.214 3254.662
Yes 11632.622 6093.502

, , gender = Male, injury = No

149

location
belt Urban Rural
No 10358.93 6150.193
Yes 10959.23 6697.643

, , gender = Female, injury = Yes

location
belt Urban Rural
No 1009.7857 964.3376
Yes 713.3783 797.4979

, ., gender = Male, injury = Yes

location
belt Urban Rural
No 834.0684 1056.8071
Yes 389.7681 508.3566

We can examine the three-way interaction by seeing how the conditional odds ratios of any two variables
of the trio (gender, location, belt use) change at the levels of the third variable. But, they are the same
regardless of injury status. (Output is given from R)

fit.array<-fitted(£itGI.IL.IS.GLS)
odds.ratio<-function(x) xI[1,1]1*xI[2,2]1/(x[2,1]1*x[1,2])

apply(fit.array,c(1,4) ,odds.ratio) # GL S (same for I = yes or no - column)

injury
belt No Yes
No 1.326766 1.326766
Yes 1.166682 1.166682

apply(fit.array,c(2,4) ,odds.ratio) # GS L (same for I = yes or no - column)

injury
location No Yes
Urban 0.6614758 0.6614758
Rural 0.5816641 0.5816641

apply(fit.array,c(3,4) ,odds.ratio) # LS G (same for I = yes or no - column)

injury
gender No Yes
Female 1.170603 1.170603
Male 1.029362 1.029362

For interpretation, we take the GS L = urban odds ratio, which is 0.66. This is the estimated odds that
males used seat belts over females when accidents occurred in urban locations. Thus, females are
about 1.0/0.66 = 1.5 times more likely to have used a seat belt when an accident occurred in an urban
area, regardless of whether there was an injury. The analogous odds ratio at rural locations is quite
similar (0.58), however. As this similarity between Urban and Rural carries over to other odds ratio
comparisons (i.e., the GL S and LS G comparisons), the three-way interaction may not be necessary in
this loglinear model.

We can also see that the conditional odds ratio between injury and any other variable are the same at the
combinations of the remaining two.

apply(fit.array,c(1,2),odds.ratio) # GI (same for each combination of LS)

Urban Rural
No 0.5799410 0.5799411

150

Yes 0.5799411 0.5799412
apply(fit.array,c(1,3),odds.ratio) # IL (same for each combination of GS)

Female Male
No 2.134127 2.134127
Yes 2.134127 2.134127

apply(fit.array,c(2,3),odds.ratio) # IS (same for each combination of GL)

Female Male
Urban 0.4417123 0.4417123
Rural 0.4417122 0.4417123

Computing the dissimilarity matrix to check goodness-of-fit of this model to the data is simple in S.

Fitted.values <- c(fit.array)
sum(abs (table.8.8%count - Fitted.values))/(2 * sum(table.8.8$count))

[1] 0.002507361

Approximate standard errors for these models can be obtained using the “brute force” calculations
mentioned above (see pp. 338-339 of Agresti and pp. 28-29 of Thompson, 1999) or by using glm with
poisson family to fit the model (see previous section B, above).

E. Loglinear-Logit Model Connection

The correspondence between a loglinear model with three variables and a logit model with one of those
variables a response is shown in equation (8.15) of Agresti. The four-way loglinear model that was fit to
the auto accident data (Gl, LI, IS, GLS) is equivalent to the logit model (G + L + S) with response I. This
is because any term in the logit model that does not have the symbol | disappears. Thus, GLS
disappears, leaving the symbols (Gl, LI, IS), which together specify that given injury, G, L, and S are
independent. The equivalent logit model is then that G, L, and S are independent in their effects onl. To
get the connections between the parameter estimates, we can fit both models using gim. We use
treatment contrasts.

options (contrasts = c("contr.treatment", "contr.poly"))
fit.loglinear <- glm(count ~ ."2 + gender:location:belt, data = table.8.8, family =
poisson)

fit.logit <- glm(injury ~ gender + belt + location, data = table.8.8, family =
binomial, weight = count)

fit.loglinear$coefficients

(Intercept) belt location gender injury belt:location belt:gender belt:injury
8.891954 0.4696151 -0.8041099 0.3536508 -1.97446 0.1575195 -0.413282 -0.8170974

location:gender location:injury
0.2827442 0.7580583

gender:injury gender:location:belt
-0.5448292 -0.1285802

fit.logit$coefficients

(Intercept) gender belt location
-1.97446 -0.544829 -0.8170971 0.758058

Note that for the logit model, all terms in the loglinear fit that did not have injury (I) are removed. The
remaining coefficients become the coefficients for the logit model. The exact correspondence among

151

these remaining coefficients is a consequence of having only two levels per variable and also of using
treatment contrasts. To see that this is so, read subsection 8.5.2 in Agresti, and recall that we set the last
coefficient in each row and column of a pairwise interaction to zero for constraints.

The fact that there is a correspondence between estimates from the two models, which assume two
different sampling distributions for responses, follows from the correspondence of the likelihoods with
respect to the parameters in question.

F. Contingency Table Standardization

Table standardization is useful for comparing tables with different marginal totals or matching sample
table data to standardized marginal distributions. Next, we show how to “rake” Table 8.15 by forcing all
row and column totals to equal 100. This is done using the tip on p. 346 of Agresti. We make the log of
the observed count an offset in a glm and create a pseudo response that satisfies the model and the
marginal totals.

First | input the data, coding factors with levels in the order most natural.

table.8.15<-data. frame (expand.grid (Attitude=factor (c ("Disapprove", "Middle", "Approve"),
levels=c ("Disapprove", "Middle", "Approve")),

Education=factor (c ("<HS", "HS",">HS"), levels=c("<HS","HS",">HS"))),

count=c(209,101,237,151,126,426,16,21,138))

Then, we fit an independence model using pseudo-values 100/3 for each cell.

fit <- glm(I(rep(100/3, 9)) ~ Attitude + Education + offset(log(count)), family =
poisson, data = table.8.15)
cbind(table.8.15, std = fitted(£fit))

Attitude Education count std
1 Disapprove <HS 209 49.42773
2 Middle <HS 101 32.01875
3 Approve <HS 237 18.55352
4 Disapprove HS 151 32.76098
5 Middle HS 126 36.64454
6 Approve HS 426 30.59448
7 Disapprove >HS 16 17.81129
8 Middle >HS 21 31.33671
9 Approve >HS 138 50.85200

In R, using 100/3 as a count gives a warning because it is not an integer. However, the estimation
continues, apparently still using 100/3.

152

Chapter 9 —Building and Extending Loglinear Models

A. Summary of Chapter 9, Agresti

This chapter extends loglinear models to ordinal variables and correlated variables, and also deals
with special issues like collapsibility and empty cells.

With higher order tables, the analysis is easier if we can collapse over some dimensions (variables).
Collapsibility describes the conditions under which a variable can be collapse over (i.e., ignored). For
three-way tables with variables X, Y, and Z, we can collapse over Z while keeping the XY association the
same for the marginal table as well as the conditional table (on levels of Z) if either Z and X are
conditionally independent given Y or Z and Y are conditionally independent given X. For four-way tables
with variables W, X, Y, and Z, if we collapse over Y, and association terms involving XY and WY are zero,
then the partial WX odds ratios, conditioning on Y, are the same as the marginal WX odds ratios after
collapsing. The general principle describing these examples is on p. 360 of Agresti.

Loglinear models treat all variables as responses. However, sometimes certain marginal totals are
fixed by sampling design. If the corresponding loglinear terms are not included in the model, then the
fitted marginal totals will not necessarily match the observed totals for these combinations. This is
because the likelihood will not match the observed total to the fitted total in the likelihood equation
(equation 8.22 in Agresti). In sum, the highest interaction term containing all explanatory variables should
be included in a loglinear model.

Nested loglinear models can be compared using the likelihood ratio statistic in equation (9.3) in
Agresti, or using the Pearson statistic in equation (9.4). These have asymptotic chi-squared distributions,
and are used to test the significance of an additional term or variable in the model. To check the fit of a
given model, one can examine cell residuals.

Just as with logit models, if there are ordinal responses, then greater power results from fitting
specific ordinal trends than either ignoring ordinality or fitting general association terms. The latter
situation may not even be possible without fitting a saturated model. The linear-by-linear association (L x
L) model assigns ordered row scores to rows and ordered column scores to columns, and includes, in
addition to main effect terms for the rows and columns, an interaction term in the row and column scores.
The interaction term has a single unknown parameter which represents positive or negative linear
association, depending on the sign of the parameter. Odds ratios are a function of the distance between
corresponding rows and columns and the magnitude of the interaction parameter.

L x L models are best fit when the observed counts show a linear trend in the rows at each column
and a linear trend in the columns for each row. The model is fit using ML estimation, and the correlation
between rows and columns is the same in both the observed and fitted counts.

Association models generalize loglinear models for ordinal responses to multi-way tables and to
mixed ordinal and nominal responses. The row effects model and column effects model have either rows
or columns as nominal responses, respectively, and the other as ordinal. The nominal variable has
parameter scores instead of fixed scores. Ordinal responses within multi-way tables are straightforward
generalizations of their two-way table analogs.

Other types of models that emphasize the estimation of association are Multiplicative Row and
Column effects models (RC Models), correlation models, and correspondence analysis. The RC model
modifies the L x L model by replacing the scores with parameters. Correlation models are similar to RC
models. In these models, each cell probability is augmented with an association term, dependent on row
and column scores. Correlation models can have either fixed or parameter scores. Correspondence
analysis is mostly a graphical technique to represent associations in contingency tables.

The Poisson loglinear model can also be used to model the rate of occurrence of an event over an
exposure time or space, dependent on covariates. The exposure is treated as an offset. Also, due to the
connection between ML estimation using a Poisson likelihood for numbers of events and a negative
exponential likelihood for survival time, one can model survival times using a Poisson loglinear model.

Sparse tables have many empty cells where there are no observations. A sampling zero occurs in a
cell when the data do not contain observations corresponding to that cell. A structural zero occurs when
it is impossible for the data to have an observation for the cell. For unsaturated models, MLEs exist
when all cell counts are positive, but do not exist when some counts in the sufficient marginal tables are

153

zero. They also may not exist when all sufficient counts are positive, but at least one cell is zero.
However, even if a point estimate is infinite, one endpoint of a likelihood-ratio confidence interval is
usually finite. Adding a constant like 0.5 to each cell to prevent sampling zeroes for fitting an unsaturated
model is not recommended, especially for large numbers of cells, because it influences estimates and
test statistics conservatively.

As an alternative to large-sample goodness-of-fit tests (which may not apply when a table is sparse),
one can use exact tests or Monte Carlo approximations to exact tests.

B. Model Selection and Comparison

Agresti uses the Student Survey example to illustrate model selection and comparison. We will use a
backwards stepwise procedure to help in comparing models by comparing likelihood ratio chi-square
statistics.

We start by inputing the data

table.9.1l<-data.frame (expand.grid(cigarette=c("Yes", "No"),
alcohol=c("Yes", "No") ,marijuana=c ("Yes","No"), sex=c("female", "male"),

race=c ("white", "other")),count=c(405,13,1,1,268,218,17,117,453,28,1,1,228,201,17,133,2
3,2,0, 0,23, 19,1,12,30,1,1,0,19,18,8,17))

Now, we fit some loglinear models using gim and the poisson family. Note that we must include the
highest interaction involving explanatory variables. Thus, sex:race is always included. The next two
models fit mutual independence + GR (Agresti uses G for gender and R for race) and homogeneous
association.

fit.GR<-glm(count~ . + sex*race,data=table.9.1,family=poisson) # mutual independence +
GR

fit.homog.assoc<-glm(count~ .”%2,data=table.9.1,family=poisson) # homogeneous
association

To reproduce Table 9.2 in Agresti, we can start by eliminating each two-way interaction in turn (with
exception of sex:race) and comparing likelihood ratio statistics with and without these terms. | use
stepAIc, which is part of library Mass in both R and S-PLUS. This will remove terms based on AIC,
which is a function of both the residual deviance (likelihood-ratio chi-square) and number of terms in the
model. Thus, it does not quite select the “best” model that Agresti’'s Table 9.2 does.

library (MASS)

summary (res<-stepAIC(fit.homog.assoc, scope= list(lower = ~ + cigarette + alcohol +
marijuana + sex*race), direction="backward")) # note that I have saved the final
model in an object called “res”

Start: AIC= 47.34
count ~ (cigarette + alcohol + marijuana + sex + race)”’2

Df Deviance AIC

- cigarette:race 1 15.78347 45.78347

- cigarette:sex 16.31718 46.31718

<none> NA 15.34034 47.34034

- alcohol:sex 18.71695 48.71695

- marijuana:race 18.92894 48.92894

- alcohol:race 20.32086 50.32086

- marijuana:sex 25.16101 55.16101

- alcohol:marijuana 106.95800 136.95800

- cigarette:alcohol 201.19931 231.19931
- cigarette:marijuana 1 513.47218 543.47218

[y

PR RRR R

Step: AIC= 45.78

count ~ cigarette + alcohol + marijuana + sex + race + cigarette:alcohol +
cigarette:marijuana + cigarette:sex + alcohol:marijuana +
alcohol:sex + alcohol:race + marijuana:sex + marijuana:race + sex:race

Df Deviance AIC

- cigarette:sex 1 16.73504 44.73504
<none> NA 15.78347 45.78347

- marijuana:race 18.95695 46.95695

- alcohol:sex 19.18046 47.18046

- alcohol:race 20.33869 48.33869

- marijuana:sex 25.56924 53.56924

- alcohol:marijuana 107.79480 135.79480

- cigarette:alcohol 201.21688 229.21688

- cigarette:marijuana 513.50057 541.50057

PRRPRRRRR

Step: AIC= 44.74

count ~ cigarette + alcohol + marijuana + sex + race + cigarette:alcohol +
cigarette:marijuana + alcohol:marijuana + alcohol:sex +
alcohol:race + marijuana:sex + marijuana:race + sex:race

Df Deviance AIC

<none> NA 16.73504 44.73504

- marijuana:race 1 19.90859 45.90859

- alcohol:race 1 21.29033 47.29033

- alcohol:sex 1 22.02148 48.02148

- marijuana:sex 1 25.81125 51.81125
- alcohol:marijuana 1 108.77579 134.77579
- cigarette:alcohol 1 204.11536 230.11536
- cigarette:marijuana 1 513.73033 539.73033

Call: glm(formula = count ~ cigarette + alcohol + marijuana + sex + race +
cigarette:alcohol + cigarette:marijuana + alcohol:marijuana +
alcohol:sex + alcohol:race + marijuana:sex + marijuana:race + sex:race, family =
poisson, data = table.9.1)

Coefficients:
Value Std. Error t value
(Intercept) 2.2651798 0.12467553 18.168600
cigarette -0.2822714 0.05491143 -5.140485
alcohol -1.4163287 0.12121797 -11.684149
marijuana 1.2671910 0.12443051 10.183925
sex 0.1090531 0.04581267 2.380413
race -1.1940934 0.05467500 -21.839842
cigarette:alcohol 0.5136335 0.04351564 11.803423
cigarette:marijuana 0.7119723 0.04095963 17.382295
alcohol:marijuana 0.7486558 0.11619789 6.442938

Value Std. Error t value

alcohol:sex 0.07321130
alcohol:race 0.11284083
marijuana:sex -0.06805431
marijuana:race 0.07958278
sex:race 0.03582621

.03190131 2.2949310
.05166169 2.1842266
.02261757 -3.0089132
.04495553 1.7702554
.03976789 0.9008829

O O O oo

(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 4818.051 on 31 degrees of freedom

Residual Deviance: 16.73504 on 18 degrees of freedom

The output is lengthy, but it indicates the eliminated coefficient (which I've bolded) at each step. Note
that we don’t quite get to Agresti's Model 6, but stop at Model 5. Model 6 would correspond to the
removal:

Df Deviance AIC

154

155

- marijuana:race 1 19.90859 45.90859

We now rename the result of the stepwise search:

fit.AC.AM.CM.AG.AR.GM.GR<-res # Agresti’s Model 5

The update method for gim can be used to remove additional specified terms. For example, to fit
Agresti's Model 6,

fit .AC.AM.CM.AG.AR.GM.GR<-update (fit.AC.AM.CM.AG.AR.GM.GR.MR, ~. - marijuana:race)

According the conditional associations that Model 6 implies, cigarette use is independent of both gender
and race, given alcohol and marijuana use. Thus, according to this model, we don't need to consider the
association between cigarette use and both gender and race if alcohol and marijuana use are already
considered. Furthermore, if we collapse over gender and race, the conditional associations between
cigarette use and alcohol and between cigarette use and marijuana are the same as in the homogeneous
association model (AC, AM, CM) that was fit in Chapter 8 (i.e., £itac.am.cuM in section C).

C. Diagnostics for Checking Models

Pearson residuals for loglinear models use an estimate of the Poisson standard error in the denominator.
Thus, they differ from Pearson residuals for logit models, which use an estimate of a binomial standard
error in the denominator. As in Chapter 4, standardized versions of the residuals multiply the
denominator by a function of the leverages from the hat matrix. This results in the variance of the
residual being 1.0, and an asymptotic normal distribution. Thus, residuals greater than about 3 in
magnitude are considered large.

To get standardized Pearson residuals for Model 6 from the Student Survey Example above, we use the
resid function. The only large residual is highlighted.

res.modelb6<-resid (fit.AC.AM.CM.AG.AR.GM.GR, type="pearson")/sqrt(1l-
lm.influence(fit.AC.AM.CM.AG.AR.GM.GR.MR) $hat)
fit.model6<-fitted(fit.AC.AM.CM.AG.AR.GM.GR)

data.frame(table.9.1, fitted=fit.model6, residuals=res.modelé6)

cigarette alcohol marijuana sex race count fitted residuals
1 Yes Yes Yes female white 405 394.81378138 2.31218352
2 No Yes Yes female white 13 19.34936858 -1.95386309
3 Yes No Yes female white 1 1.25568751 -0.26793681
4 No No Yes female white 1 0.48020744 0.79799852
5 Yes Yes No female white 268 267.43245628 0.07000670
6 No Yes No female white 218 226.10552205 -1.00689966
7 Yes No No female white 17 17.18531924 -0.06124557
8 No No No female white 117 113.37765755 0.94414973
9 Yes Yes Yes male white 453 452.25694845 0.16765462
10 No Yes Yes male white 28 22.16459202 1.77790180
11 Yes No Yes male white 1 1.92669440 -0.87173015
12 No No Yes male white 1 0.73681787 0.33769336
13 Yes Yes No male white 228 234.02052238 -0.74906553
14 No Yes No male white 201 197.85680885 0.39389108
15 Yes No No male white 17 20.14353803 -1.01794011
16 No No No male white 133 132.89407806 0.02722599
17 Yes Yes Yes female other 23 27.53248411 -1.38158402
18 No Yes Yes female other 2 1.34933533 0.57577121
19 Yes No Yes female other 0 0.15851532 -0.40463832
20 No No Yes female other 0 0.06062037 -0.24784091
21 Yes Yes No female other 23 18.64950060 1.32549550
22 No Yes No female other 19 15.76755166 1.02007047
23 Yes No No female other 1 2.16943817 -0.84701196

156

24 No No No female other 12 14.31255445 -0.88482760
25 Yes Yes Yes male other 30 35.77995571 -1.74121619
26 No Yes Yes male other 1 1.75353441 -0.58857418
27 Yes No Yes male other 1 0.27593320 1.41736166
28 No No Yes male other 0 0.10552401 -0.32855531
29 Yes Yes No male other 19 18.51435109 0.14864501
30 No Yes No male other 18 15.65328710 0.74381812
31 Yes No No male other 8 2.88487421 3.26629667
32 No No No male other 17 19.03254028 -0.74988607

D. Modeling Ordinal Associations

When both responses in a loglinear model are ordinal, a linear-by-linear association model can be used
to fit a linear trend in ordered row and column scores. These scores may be assumed to represent an
underlying continuous distribution. For an | x J table, the loglinear model adds an interaction term in the
scores, as follows

loguy = A+ A"+ A+ puy,, i=1..1;j=1..J

The parameter, , describes the linear association. It is positive or negative with the sign of #. Odds
ratios depend on /£, as well as the score distance between the corresponding rows and columns. When
{u =i} and {v,=j}, the local odds ratios for adjacent rows and columns are uniform, and equal

exp(f) . This is called the uniform association model.

Agresti fits a uniform association (UA) model to data from the 1991 General Social Survey on opinions
about premarital sex and birth control for teenagers. The four categories for opinions about premarital
sex range from “Always wrong” to “Not wrong at all”. The four categories for opinions about teenage birth
control sex range from “Strongly disagree” to “Strongly agree”. The scores used are {1, 2, 3, 4} for both
rows and columns, initially.

The data are available from Agresti’s web site. | have copied the data into a text file called sex.txt. We
first read in the data, and give the columns names.

table.9.3<-read.table("c:/program files/r/rwl070/cda/sex.txt",
col.names=c ("premar", "birth", "u","v", "count"))

Then, | noticed that “birth” is recorded so that the 1,1 cell corresponds to the upper right hand corner
instead of upper left (as might seem more natural), so | perform a transformation of the birth column.

table.9.38birth<-5-table.9.3$birth # rearrange scores so that table starts at 1,1 in
the upper left corner

| also noticed that the u and v scores in the data file are not uniform scores, but scores used later in the
section. So, | next create uniform scores: ul and v1.

table.9.3%ul<-table.9.3$premar
table.9.3%vl<-table.9.3%birth

Also, premar and birth need to be factors for the model fitting. | have coded the levels of the factors so
that the 4™ level is set to zero, as in the SAS analysis in Table 9.4 in Agresti.

table.9.3$premar<-factor (table.9.3$premar, levels=4:1)
table.9.3%birth<-factor(table.9.3%birth, levels=4:1)

Now, we fit the uniform association model. Note the use of the “:” term for the interaction between ul and
v1, which not factors.

157

options (contrasts=c("contr.treatment", "contr.poly"))
(fit.ua<- glm(count ~ premar + birth + ul:vl, data=table.9.3, family=poisson))

Coefficients:
(Intercept) premar3 premar2 premarl birth3 birth2 birthl ul:vl
0.4734922 -0.01633777 0.1077209 1.753685 1.155142 1.415559 1.879664 0.2858355

Degrees of Freedom: 16 Total; 8 Residual
Residual Deviance: 11.53369

The estimated local odds ratio for the UA model is

exp (coef (fit.ua) ["ul:v1"])

ul:vl
1.330873

and a Wald 95% Cl is obtained from the ASESs from the summary output.

exp (summary (fit.ua) $coef ["ul:v1", 1] +
1.96*c(-1,1) *summary (fit.ua) $coef["ul:v1", 2])
[1] 1.259221 1.406603

According to the estimate, the association is positive, implying that subjects with more favorable attitudes
about teenage birth control also tended to have more tolerant attitudes about premarital sex. But, the
assocation is rather weak. The odds of responding in the adjacent higher category on one variable are
1.33 times more likely if the subject responded in the higher category of the other variable (versus the
lower category).

However, with distance in categories, the odds ratios are larger. For example, the odds of responding
“Strongly agree” to teen birth control over “Strongly disagree” are 13.1 times higher if the subject
responded that premarital sex was “Not wrong at all” versus responding that it was “Always wrong”.

exp (coef (fit.ua) ["ul:v1i"] * (4 - 1) * (4 - 1))

ul:vl
13.09878

Fitted counts for the UA model are obtained using fitted. Note that since we reversed the “birth”
variable, we must also reverse the fitted values. Thus, | have labeled the columns of the matrix from
“Strongly Agree” to “Strongly Disagree” instead of the reverse labeling.

matrix(fitted(fit.ua), byrow = T, ncol = 4, dimnames = list (PreMar = c("Always wrong",
"Almost always wrong", "Wrong sometimes",
IINot wrongll) , llTeenBirthll = C("SA", IIAII’ "D“, IISDII)))
SA A D SD

Always wrong 29.09363 69.39574 67.65406 80.85657

Almost always wrong 17.59996 31.54350 23.10650 20.75004
Wrong sometimes 48.77315 65.68137 36.15178 24.39370

Not wrong 155.53326 157.37940 65.08766 32.99969

Standardized Pearson residuals can be obtained using the code from Section C of this chapter.

The deviance from a UA model is much smaller than that from an independence model:

(fit.ind<-glm(count ~ premar + birth, data=table.9.3, family=poisson))

158

Degrees of Freedom: 16 Total; 9 Residual
Residual Deviance: 127.6529

A LR test of the null hypothesis of independence (i.e., H,: f=0) has df =1:

anova (fit.ind, fit.ua, test = "Chi") # output from S-PLUS
Analysis of Deviance Table
Response: count

Terms Resid. Df Resid. Dev Test Df Deviance Pr (Chi)
1 premar + birth 9 127.6529
2 premar + birth + ul:vl 8 11.5337 +ul:vl 1 116.1192 0

E. Association Models

Association models generalize loglinear models to ordinal responses, and include the linear-by-linear
association models. The focus of these models is on estimating association. Row and column effects
models have rows or columns, respectively, as nominal responses, and model an ordinal effect at each of
the rows or columns. Multi-way tables with some ordinal responses generalize the two-way tables,
adding three or higher way interactions.

1. Row and Column Effects Models

The row effect model treats rows (X) as nominal and columns (Y) as ordinal. Each row has a parameter
associated with it, called the row effect. The model for the log expected count in cell ij is

loguy = A+ A+ A + 1y,

where the 4 are the unknown row effects (i = 1,..., 1), and the v; are known column scores. Thus, the

model has | — 1 more parameters than an independence model. An independence model here would
imply that all row effects are equal. That is, the linear effect of the column variable on the log expected
count is the same within each row. The column effects model is defined similarly.

For the row effects model, the distance between adjacent-categories logits is the same across rows.
However, the level of the logit will differ between rows i and k by g — g, . Thus, this model is called the
parallel odds model.

The Political Ideology Example (Table 9.5 in Agresti) uses a table that cross-classifies Party Affiliation
(Democrat, independent, Republican) and Political Ideology (Liberal, Moderate, Conservative) for a
sample of voters in a Wisconsin primary.

A row effects model is fit to Table 9.5, with rows as Party Affiliation. When we construct the table, the
variable c.Ideo are the scores (1, 2, 3) for Political Ideology.

table.9.5<-
data.frame (expand.grid (Affil=factor (c ("Democrat", "Independent", "Republican"),
levels=c ("Republican", "Independent", "Democrat")),
Ideology=factor (c("Liberal", "Moderate", "Conservative"),
levels=c("Conservative", "Moderate", "Liberal"))),
c.Ideo=rep(l:3,each=3), count=c(143,119,15,156,210,72,100,141,127))

159
| coded the levels of the factor variables so that the Republican and Conservative levels had zero-valued
coefficients, for identifiability. This is done to match the SAS results in Table 9.6 in Agresti.

To fit a row effects model:

options (contrasts = c("contr.treatment", "contr.poly"))
(fit.RE <- glm(count ~ Ideology + Affil * c.Ideo, family = poisson, data = table.9.5))

Coefficients: (1 not defined because of singularities)
(Intercept) Moderate Liberal Indep Demo c.Ideo Indepc.Ideo Demc . Ideo
4.856484 -0.6244464 -2.048811 2.953568 3.322995 NA -0.9426178 -1.213361

Degrees of Freedom: 9 Total; 2 Residual
Residual Deviance: 2.814931

The c.1deo main effect is confounded with Tdeoclogy. Thus, its coefficient is not estimable. Since the
Republican and Conservative category coefficients are set to zero, the two row effect estimates indicate
deviation from Conservativism relative to Republicans. The Republican row effect is thus at zero, and
Democrats are 1.21 units in the Liberal direction. Independents are 0.94 units in the Liberal direction.

We can get predicted logits (equation 9.9 in Agresti) using fit.RESlinear.predictors and taking
differences:

res<-matrix(fit$linear.predictors,byrow=F,ncol=3)
mat<-matrix(c(resl[,2]-res[,1],res[,3]-res[,2]),byrow=T,ncol=3)

[,1] [,2] [,3]
[1,] 0.2110031 0.4817465 1.4243643
[2,] -0.5889149 -0.3181714 0.6244464

Thus, the odds that Republicans are conservative instead of moderate (exp(1.424)), or moderate instead
of liberal (exp(0.211)) are exp(1.424 — 0.211) = exp(1.213) = 3.36 times the corresponding estimated
odds for Democrats, and exp(1.424 — 0.482) = exp(0.942) = 2.57 times the corresponding estimated odds
for independents.

The fitted values

matrix(fitted(£it.RE), byrow = F, ncol = 3, dimnames = list(Affiliation =
c("Democrat", "Independent", "Republican"), Ideology = c("Liberal", "Moderate",
"Conservative")))

Liberal Moderate Conservative

Democrat 136.63414 168.73171 93.63414
Independent 123.79454 200.41091 145.79454
Republican 16.57131 68.85738 128.57131

To compare independence and row effects models, use anova:

fit.ind<-glm(count~Affil+Ideology, family=poisson,data=table.9.5)
anova(fit.ind, fit.RE)

Analysis of Deviance Table

Response: count

Terms Resid. Df Resid. Dev Test Df Deviance
1 Affil + Ideology 4 105.6622
2 Ideology + Affil * c.Ideo 2 2.8149 +Affil:c.Ideo 2 102.8472

2. Ordinal Models in Multi-way Tables

160

An extension of association models to multi-way tables permits higher-order interaction models that are
more parsimonious than their corresponding nominal models. In particular, the three-way interaction
model for a three-way table is not saturated. For a three-way table, with X and Y ordinal, with scores

{u} and {v;} respectively, we model heterogeneous linear-by-linear XY association as
logthy = A+ A" + A + 2 + Buv, + A + A

In this model, the log XY odds ratios are uniform within each level of Z, but differ across levels of Z. If
B. = for all k, then the log odds ratios the same across k as well. The model is then called the
homogeneous linear-by-linear association model.

The data in Table 9.7 in Agresti are used to fit these models. The table cross-classifies smoking status
(S), breathing test results (B) and age (A) for workers in industrial plants.

The data are read in, and the levels are set so that the last category is zero. | also define scores for all
three variables. These are denoted with a “c” prefix.

table.9.7<-data.frame (expand.grid(Status=£factor (c ("Never", "Former", "Current"),
levels=c ("Current", "Former", "Never",)),
Breath=factor (c("Normal", "Borderline", "Abnormal"),
levels=c ("Abnormal", "Borderline", "Normal")),
Age=factor(c("< 40","40-50"), levels=c("40-50","< 40"))),
c.Status=rep(l:3, 6), c.Breath=rep(rep(l:3,each=3),2), c.Age=rep(l:3,each=6),
count=c(577,192,682,27,20,46,7,3,11,164,145,245,4,15,47,0,7,27)
)

The heterogeneous L x L model in SB is fit using

options (contrasts=c("contr.treatment", "contr.poly"))

fit.hetero<-glm(count~Age*Breath + Status*Age + Age:c.Breath:c.Status, data=table.9.7,
family=poisson)

summary (fit.hetero, cor=F)

Coefficients:
Value Std. Error t value
(Intercept) -3.6502502 1.2561249 -2.905961
Age 5.0922343 .4323399 3.555186
BreathBorderline 2.8020966 .4836257 5.793937
BreathNormal 6.8009953 .8208205 8.285606
StatusFormer 0.2983005 .1947371 1.531811

StatusNever 1.1478109
AgeBreathBorderline -1.0592502
AgeBreathNormal -2.0669718 .9340887 -2.212822
AgeStatusFormer -1.4076770 .2297316 -6.127485

AgeStatusNever -1.0888096 0.3799020 -2.866028
Value Std. Error t value
Age40-50c.Breathc.Status 0.7810585 0.14300764 5.461655
Age< 40c.Breathc.Status 0.1148594 0.08593526 1.336580

.3266340 3.514058
.5771326 -1.835367

[eNeoNeoNelNoNeNoN

(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 4097.2 on 17 degrees of freedom

Residual Deviance: 10.80173 on 6 degrees of freedom

The last two coefficient estimates give the estimated local log odds ratios for the older and younger
groups. The odds ratios for adjacent Smoking and Breathing categories are the same within each age

group.

161

A homogeneous L x L model is fit using

fit.homo<-glm(count~Age* (Breath + Status) + c.Breath:c.Status, data=table.9.7,
family=poisson)

If strata are ordered, and a linear trend in log odds ratios is suspected across levels of Z, Agresti fits a
model that extends the homogeneous L x L model to include the term Kl (i=j=1)J0 which adds a

multiple of o to the (1, 1, k) cell. The resulting XY log odds ratio at level k is then S+kl (i=]j=1)0J.

This model is fit to the famous Coal Miners Data, with Age group as strata. We read in the data using

table.9.8<-data.frame (expand.grid (Age=factor(c("20-24","25-29","30-34","35-39",
"40-44","45-49","50-54","55_59n ng0-64"),
levels=c("20-24","25-29","30-34","35-39","40-44","45-49","50-54","55-59","60-64")),
Wheeze=factor(c("Yes","No"), levels=c("Yes", "No")),

Breath=factor (c("Yes","No"), levels=c("Yes", "No"))),

c.Breath=rep(l:2, each=18), c.Wheeze=rep(rep(l:2,ea=9),2),
extra.term=c(1:9,rep(0,27)),
count=c(9,23,54,121,169,269,404,406,372,7,9,19,48,54,88,117,152,106,95,105,177,257,
273,324,245,225,132,1841,1654,1863,2357,1778,1712,1324,967,526))

Note that this data set is available in the R package vcd. Make it available by using

library (vecd)
data (CoalMiners)

To fit the linear term, we use the following command. | use the label, “extra.term” to stand for &

fit.ord.strata <- glm(count ~ Age * (Breath + Wheeze) + c.Breath:c.Wheeze +
extra.term, data = table.9.8, family = poisson)
summary (fit.ord.strata, cor = F)

Coefficients:
Value Std. Error t value
(Intercept) -1.2219654 0.2765376 -4.418804
Age25-29 0.8615296 0.3105417 2.774280
Age30-34 1.8983149 0.2809356 6.757117
Age35-39 2.8672944 0.2695779 10.636237
Age40-44 3.3305489 0.2713944 12.271990
Age45-49 3.9454944 0.2752234 14.335606
Age50-54 4.4348682 0.2829411 15.674175
Age55-59 4.6281967 0.29414802 15.734244

Age60-64 4.6227534 0.30864611 14.977520
Breath -1.5893957 0.39165235 -4.058180
Wheeze -4.3747047 0.40643062 -10.763718

extra.term -0.1306326 0.02948922 -4.429842

Age25-29Breath -0.7317030 0.31974770 -2.288376
Age30-34Breath -1.2547109 0.29009124 -4.325229
Age35-39Breath -1.8607640 .2779858 -6.693739
Age40-44Breath -2.2631757 .2794250 -8.099404
Age45-49Breath -2.7237497 .2816056 -9.672216
Age50-54Breath -3.4320488 .2866072 -11.974749
Age55-59Breath -3.8116499 .2929513 -13.011205
Age60-64Breath -4.2329837 .3017371 -14.028713
Age25-29Wheeze -0.2386797 .1416818 -1.684618
Age30-34Wheeze -0.6331931 .1280614 -4.944451
Age35-39Wheeze -0.7599432 .1206598 -6.298231
Age40-44Wheeze -1.1026877 .1200128 -9.188081
Age45-49Wheeze -1.2916855 .1177208 -10.972452
Age50-54Wheeze -1.3412138 .1197136 -11.203522

[oNeoNeoNoNoNololNololoNoNo]

162

Age55-59Wheeze -1.4479318 0.1233793 -11.735617
Age60-64Wheeze -1.6556074 0.1337443 -12.378905

c.Breath:c.Wheeze 3.676197 0.1998956 18.39058
(Dispersion Parameter for Poisson family taken to be 1)
Null Deviance: 25889.47 on 35 degrees of freedom

Residual Deviance: 6.801743 on 7 degrees of freedom

Thus, the estimated BW local odds ratio at level k of Age is 3.676 — 0.131k.

3. Conditional Tests for Ordinal Models in Multi-way Tables

For small samples, the asymptotic chi-squared approximations to goodness-of-fit tests, such as the
likelihood-ratio test, do not hold. Instead, theoretically, the p-value for a test of the goodness of fit of a
model can be computed from a conditional distribution of the test statistic, by conditioning on estimates of
certain nuisance parameters. Conditioning on these sufficient statistics leaves the conditional distribution
free of these unknown parameters. So, the p-value is the probability of the test statistic exceeding its
observed value, conditional on the sufficient statistic taking on its observed value.

The functions in exactLoglinTest give Monte Carlo estimates of conditional p-values for tests of
Poisson log-linear models. The function mcexact conditions on all sufficient statistics for parameters in a
given model, and simulates multi-way tables from the conditional distribution satisfying the observed
values of the sufficient statistics. The function approximates the conditional distribution, which is a
generalized hypergeometric by default, by sampling from it via either importance sampling (method =
“bab”) or MCMC (method = “cab”). The details of the procedures can found in the citations that are
listed in the documentation.

The default test statistics used are the LR test statistic of a model against the saturated model (model
deviance) and the Pearson chi-squared statistic.

For example, to fit model (9.12) in Agresti using a conditional test, we use mcexact with importance
sampling.

library (exactLoglinTest)
set.seed (1)

fit.mc<-mcexact (count~Age* (Breath + Wheeze) + c.Breath:c.Wheeze + extra.term,
data=table.9.8, method="bab", nosim=10"4, maxiter = 10"4, savechain=T)

The argument nosim is the number of simulations desired out of maxiter iterations. The reason that
nosim may not equal maxiter iS because some simulations from the conditional distribution apparently
can result in negative entries in the table. The option savechain=T saves the chain of simulations, which
can be used to evaluate the importance sampling or MCMC algorithm. summary gives more results.

summary (fit.mc)

Number of iterations = 9649

T degrees of freedom = 3

Number of counts = 36

df = 7

Next update has nosim = 10000

Next update has maxiter = 10000

Proportion of valid tables = 0.9649
deviance Pearson

observed.stat 6.80174259 6.80829750

163

pvalue 0.45862023 0.45123625
mcse 0.01003939 0.00998465

“Number of iterations” gives the number of simulations actually obtained. “T degrees of freedom” is a
tuning parameter, and df is the model df. “Proportion of valid tables” here is just proportion of simulations
done, out of maxiter.

In the second half of the output, we have the estimated p-values. We can compare these to their large-
sample versions

pchisqg(fit.mc$dobs, df=7, lower=F)

[1] 0.4498103 0.4491093
They are close, which is expected because of the large sample size.

However, before we “believe” these estimates, we might examine the trace plots and the autocorrelation
function of the iterations, as well as the logs of the importance weights (if we use importance sampling).
We saved these results by specifying savechain=T. They are saved as the chain attribute of fit .mc.

layout (matrix(c(1,1,2,3),2,2, byrow=T))

plot (fit.mec$chainl[,1], type="1l", xlab="iteration", ylab="deviance")
acf (fit.mc$chain[,1])

library (MASS)

truehist (fit.mc$chain[,3], xlab="log importance weight")

164

o
S
o
—
o
o —_
[ee]
o
s &1
2
$ 21
o
o p—
N
o p—
T T T T T T
0 2000 4000 6000 8000 10000
iteration
Series fitmc$chain[, 1]
o
S
n
[ee] —
o 7| o
© |
w © S
(@) o
< <
3 -
Lo
o
o o
o
o Ll _____________ e o
o e e e e e = T—— C) - —j
I I I I I o [I I I |
0 10 20 30 40 -109100 -108900 -108700
Lag log importance weight

The trace plot shows good mixing (“randomness”), and the acf shows low autocorrelations. Also, many of
the logs of the importance weights are similar.

To continue the sampling, we can use the update method for bab (update.bab). However, based on the
diagnostic plots, and the low Monte Carlo standard errors (in summary output) we probably have enough
iterations. Large, sparse tables may benefit most from these methods, and we will examine them later in
this chapter.

F. Association Models, Correlation Models, and Correspondence Analysis
1. Multiplicative Row and Column Effects Model
The row effects model and the column effects model (as well as the L x L model) are special cases of the

Row-and-column-effects model (Goodman’s RC model), which has parameter scores for both rows and
columns. The model multiplies the two sets of parameters in the model equation,

165

loguy; = A+ A + A + Buv,

where g and v, are parameter scores. So, instead of having to fix arbitrary scores, we can estimate

parameter scores. Agresti notes that finding MLEs is not always easy because the likelihood is not
always concave. An iterative modeling fitting algorithm is suggested by Goodman, where one alternates
between fitting row effects and column effects models, using the estimated scores from each in turn. In
this way, one can ideally get MLEs of the row and column scores. Actually, if corner-point constraints are
used for the parameter scores, then one gets the differences between each score and the last score (if
the last parameter score is set to zero for identifiability). Also, one set of either the row or column
parameter score estimates is multiplied by the estimate for . Thus, the method does not appear to be

useful as a way to estimate parameter scores.

In the R package VGAM, there is a function grc, which is a front end for the function rrvglm (reduced-
rank vector generalized linear models), also in the same package. This function will fit an RC model, but
not estimate the scores as per Agresti's (9.13) representation of the RC model. Instead, it estimates a

matrix of “interaction terms”, &;,i=1,...,1-1 j=1,..,J-1 where §, =3¢, = B4 -4)v;-Vv,),in

the language of model (9.13) in Agresti. Separating 5” into these three components appears to be

impossible. However, we can still fit the model, and compare its deviance to that of an L x L model. We
will see later that correspondence analysis will give us MLEs of the row and column scores.

When | prepare the data for grc, | use “reverse” levels for the factors so that the last category of the
respective factor is zeroed out instead of the first category.

table.9.9<-data.frame (expand.grid (MH=factor (c("well", "mild", "moderate", "impaired"),
levels=rev(c("well", "mild", "moderate", "impaired"))),

SES=factor (LETTERS[1:6], levels=LETTERS[6:1])),
count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71))

grc requires the data to be in array or table format. So, | transform it to a table.

table.9.9.matrix<-t (xtabs(count~MH + SES ,data = table.9.9)) # R only

Now, | fit the RC model. The rank is equivalent to Agresti's M* on p. 380, and rRank = 1 will result in
model (9.13). (By the way, there is full documentation for VGAM on the author's website and
corresponding papers. The remaining defaults are explained there.)

library (vgam)
options (contrasts=c("contr.treatment", "contr.poly"))
(fit.rc<-grc(table.9.9.matrix, Rank=1))

Call:
rrvglm(formula = as.formula(str2), family = poissonff, data = .grc.df,
control = myrrcontrol, constraints = cms)
Coefficients:
(Intercept) Row2 Row3 Row4 Row5 Rowé

4.298506527 0.040277163 0.197234822 -0.193454278 -0.543859296 -0.474304500
Col2 Col3 Col4 E D C
-0.432208305 -0.006267693 -1.184327467 0.172181348 0.376512091 0.467578503

B A
0.628055583 0.626074261

Residual Deviance: 3.480503 on 8 degrees of freedom
Log-likelihood: -73.81976 on 8 degrees of freedom

166

In the output, the Row and Column coefficients refer to the 4 and /1]Y 's. Because we set the last

category to zero, Row2 refers to SES E and Row6 refers to SES A. Also, Col2 refers to Moderate, and
Col4 refers to Well. The coefficients labeled A through E refer to the first five C; values (the last is 0). A

call to summary (i.e., summary (fit.rc)) gives some more information, as well as standard errors.

To get the matrix of 6”. 's, we first compute a biplot (without plotting it). The use of biplot reflects the

fact that the c; values are involved in a latent variable interpretation in the rrvglm context. However, we
only use biplot here to get the interaction term estimates.

res<-biplot(fit.rc, plot.it=F)
res$Cmatrix
res$Amatrix

The matrix of J;'s is then

Delta<-structure(rbind (0, res$Cmatrix)%*%t (res$Amatrix),
dimnames=1list (c (LETTERS[6:1]),c(rev(c("well","mild", "moderate", "impaired")))))

Delta

impaired moderate mild well
F 0 0.0000000 0.0000000 0.0000O0COQO
E 0 0.1721813 0.2088179 0.4150163
D 0 0.3765121 0.4566259 0.9075237
Cc 0 0.4675785 0.5670694 1.1270250
B 0 0.6280556 0.7616926 1.5138300
A 0 0.6260743 0.7592897 1.5090543

Now, | show that these values are the products S(¢ — 4,)(v; —v,) , within some rounding error.

mu<-c(-1.68, -.14, .14,1.41) # Agresti’s scores
nu<-c(-1.11,-1.12,-.37,.03,1.01,1.82)
mu<-mu-mu [4] # take differences with last category

nu<-nu-nul6]

structure(t(0.17*mu%*%t (nu)),
dimnames=1list (c (LETTERS[1:6]),c("well", "mild", "moderate", "impaired")))

well mild moderate impaired
A 1.539129 0.772055 0.632587 0
B 1.544382 0.774690 0.634746 0
C 1.150407 0.577065 0.472821 0
D 0.940287 0.471665 0.386461 0
E 0.425493 0.213435 0.174879 0
F 0.000000 0.000000 0.000000 0

However, working backwards from Delta to its component scores is what is desired.

To compare with an L x L model with equal interval scores, we fit this model by adding fixed scores
(c.sEs and c.MH) to the data frame (you could also put them directly into the formula in g1m).

table.9.9a<-data.frame (expand.grid (MH=factor (c("well", "mild", "moderate", "impaired"),
levels=rev(c("well", "mild", "moderate", "impaired"))),

SES=factor (LETTERS[1:6], levels=LETTERS[6:1])),

c.MH=rep(4:1,6), c.SES=rep(6:1,each=4),
count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71))

167

(fit.LL<-glm(count~MH + SES + c.MH:c.SES, family=poisson,data=table.9.9a))

Coefficients:

(Intercept) MHmoderate MHmild MHwell SESE SESD
4.141375 -0.370975 -0.182468 -1.200474 -0.009291 0.140934

SESC SESB SESA c.MH:c.SES

-0.374645 -0.768734 -0.946158 0.090929

Degrees of Freedom: 23 Total (i.e. Null); 14 Residual

Null Deviance: 217.3

Residual Deviance: 9.707 AIC: 173.9

A LR test of the parameter scores versus equal interval scores is

fit.LL$deviance-fit.rc@criterion$deviance

[1] 6.226855

with 14 — 8 = 6 df. Since

pchisqg(6.226855,df=6, lower.tail=F)

[1] 0.3982635

the RC model does not provide a significantly better fit.

2. Canonical Correlation Model

A canonical correlation model is also an association model. It fits the joint probabilities
M
Ty =70, 705, (1+Zﬂkﬂikvjk] (9.1
k=1

where M = min(l - 1, J—1), 4 is the correlation between scores {4, , i =1,..., I} and Vi, ji=1,..,J3,
and the scores {4, , i =1,..., I} and {v,, j = 1,..., J} maximize the correlation 4, (subject to 4, and

Uy, being uncorrelated, and v, and v, , being uncorrelated, if applicable). If the A, are zero, the
model reduces to the independence model.

We can fit a one-dimensional (M = 1) canonical correlation model using the corresp function from the
MASS library. Agresti notes that when A in (9.1) is close to zero, the MLEs of A and the score
parameters are similar to those of £ and the score parameters from the RC model. In fact, we can

check this because a one-dimensional fit shows that the MLE of A is small.

First, | define a new data frame called table.9.9b to have only the MH and SES factors, and to put the
levels back in “forward” order.

table.9.9b<-data. frame (expand.grid (MH=factor (c ("well", "mild", "moderate", "impaired"),
levels=(c("well","mild", "moderate", "impaired"))),

SES=factor (LETTERS[1:6], levels=(LETTERS[1:6]1))),

count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71))

Now, | use corresp with number of factors, nf = 1.

corresp (x=design.table(table.9.9b), nf=1)
R: corresp (x=xtabs (count~MH+SES,data=table.9.9b))

First canonical correlation(s):

MH scores:
well
-1.611765

SES scores:
A
-1.127146

-1.151843

mild

B

C
-0.3717666 0.07545902 1.018916 1.775564

168

0.1615119

moderate impaired
-0.1822571 0.08506316 1.470761

D E F

Compare these estimates with those on p. 381 in Agresti.

We could fit a saturated model (i.e., M = 3) by using nf =

analysis, described next.

3. Correspondence Analysis

3 or by using functions for correspondence

Correspondence analysis is a graphical method for describing associations among categorical variables.
The rows and columns of a contingency table are represented by points on a graph. The greater the
magnitude of the projections of the points onto an axis of the graph, the greater the association described

by that axis.
adjusted scores

Using the same notation as for equation (9.1) above, correspondence analysis uses the

X = Ay Yic = AVic

Then, the graph of the first two dimensions plots (X, X,) for each row, and (y;;, y;,) for each column.

There are many functions for doing correspondence analysis in S-PLUS and R.

different aspects of each.

I will try to illustrate

The library multiv in both S-PLUS and R has function ca for doing correspondence analysis and function
plaxes to help with creating a plot like that in Figure 9.4 of Agresti. It needs an array or table, so

table.9.9b.array<-t(design.table(table.9.9b))

transposed to match table 9.10

R: table.9.9b.array<-t (xtabs(count~MH+SES,data=table.9.9b))
library (multiv)
(fit.ca<-ca(table.9.9b.array, nf=3))
Sevals:
[1] 0.0260860808 0.0013648955 0.0002818488
Srproj:

"Factorl" "Factor2" "Factor3"
(1,1 0.18204759 -0.01965218 0.027711980
[2,1 0.18603645 -0.01028829 -0.026940068
[3, 0.06004474 -0.02157959 -0.010481182
[4,] -0.01218750 0.04121665 0.009748941
[5,] -0.16456708 0.04381706 -0.008189913
(6, -0.28677478 -0.06237160 0.003613989
Scproj

"Factorl" "Factor2" "Factor3"
1,1 0.26031947 0.01059579 0.022151845
[2,] 0.02943694 0.02487137 -0.018917788
[3,] -0.01373865 -0.06926409 -0.004141493
[4,] -0.23754551 0.01763209 0.015692677

169

evals are the squared correlations, the 4, above. The second and third are almost zero, showing lesser

importance of the second and third dimensions in explaining variability. rproj and cproj are the row and
column scores on each of the three dimensions.

To plot the scores, use

plot of first and second factors

plot(fit.ca$rprojl,1], fit.ca$rprojl,2],type="n",ylim=c(-.1,.1),xlim=c(-.3,.3),
xlab="",ylab="", axes=F)

text (fit.ca$rproj[,1], fit.ca$rprojl[,2], labels=dimnames (table.9.9b.array) $SES)

text (fit.ca$cproj[,1], fit.ca$cproj[,2], labels=dimnames (table.9.9b.array) $MH)

Place additional axes through x=0 and y=0:

my.plaxes (fit.ca$rprojl[,1], fit.ca$rprojl[,2],size=.15)
R: my.plaxes.f(fit.caS$rprojl[,1], fit.caSrproj[,2],Length=.15)

where my .plaxes is a modification of plaxes

S-PLUS

my.plaxes<- function(a, b, size = 0.1)

{
arrows (min(a), 0, max(a), 0, size = size)
arrows (0, min(b), 0, max(b), size = size)

}
R
my.plaxes<-function(a, b, Length = 0.1)
{
arrows (min(a), 0, max(a), 0, length = Length)
arrows (0, min(b), 0, max(b), length = Length)
}
E D4
mild
impaired
well
b
B
C A
F
moderate

Another way to do correspondence analysis is via the corresp function from the MASS library. However,
this time we set the number of factors (nf) to 3.

fit.corresp<-corresp (x=design.table(table.9.9b) ,nf=3)

The scores are scaled, so we must re-scale by multiplying by the canonical correlations
(fit.corresp$cor)

fit.corresp$cor
[1] 0.16151194 0.03694460 0.01678778

fit.corresp$rscore %*% diag(fit.corresp$cor)
[,1] [,2] [,3]

well -0.26031933 -0.01059603 0.022154293
mild -0.02943669 -0.02487118 -0.018914368
moderate 0.01373872 0.06926415 -0.004136768
impaired 0.23754547 -0.01763185 0.015693435

170

fit.corresp$cscore %*% diag(fit.corresp$cor)
[,1] [,2] [,3]

A -0.18204759 0.01965179 0.027712258
B -0.18603645 0.01028853 -0.026939901
C -0.06004474 0.02157969 -0.010480869
D 0.01218753 -0.04121676 0.009748570
E 0.16456713 -0.04381688 -0.008190311
F 0.28677477 0.06237172 0.003614761

Plotting is done via plot (fit.corresp)

The R package cocoan will do (constrained) correspondence analysis via the function cazv. The call
takes an array (table) and here would be

library (CoCoAn)
fit.CAIV<-CAIV(table.9.9b.array)

Finally, a generalization of correspondence analysis to multi-way tables is given in the R function rcak
from package pTak.

G. Poisson Regression for Rates

To model the rate of occurrence of an event over an exposure time, dependent on covariates, a Poisson
loglinear model is useful. If the response count for the ith in