A.2 R AND S-PLUS EXAMPLES

R is free software maintained and regularly updated by many volunteers. It is an
open-source version using the S programming language, and many S-Plus functions
also work in R. See http://www.r-project.org, at which site you can download R
and find various documentation. Our discussion in this Appendix refers to R version
2.13.0.

Dr. Laura Thompson has prepared an excellent, detailed manual on the use of R
and S-Plus to conduct the analyses shown in the second edition of Categorical Data
Analysis. You can access this at

https://home.comcast.net/~1thompson221/Splusdiscrete2.pdf

A good introductory resource about R functions for various basic types of cate-
gorical data analyses is material prepared by Dr. Brett Presnell at the University of
Florida. The sites

www.stat.ufl.edu/~presnell/Courses/sta4504-2000sp/R
and in particular,
www.stat.ufl.edu/~presnell/Courses/sta4504-2000sp/R/R-CDA.pdf

have details for an introductory course on categorical data analysis with many of the
examples from my books.

Another useful resource is the website of Dr. Chris Bilder
statistics.unl.edu/faculty/bilder/stat875

where the link to R has examples of the use of R for most chapters of my introductory
text, An Introduction to Categorical Data Analysis. The link to Schedule at Bilder’s
website for Statistics 875 at the University of Nebraska has notes for a course on this
topic following that text as well as R code and output imbedded within the notes.
Thanks to Dr. Bilder for this outstanding resource.

Another good source of examples for Splus and R is Dr. Pat Altham’s at Cam-
bridge, UK,

www.statslab.cam.ac.uk/~pat

An upcoming excellent resource of the use of R for contingency table analysis is a
soon-to-appear book by Dr. Maria Kateri. That text also provides functions for many
methods not readily available in R.

Texts that contain examples of the use of R for various categorical data methods
include Statistical Modelling in R by M. Aitkin, B. Francis, J. Hinde, and R. Darnell
(Oxford 2009), Modern Applied Statistics With S-PLUS, 4th ed., by W. N. Venables
and B. D. Ripley (Springer, 2010), Analyzing Medical Data Using S-PLUS by B.
Everitt and S. Rabe-Hesketh (Springer, 2001), Regression Modeling Strategies by F.
E. Harrell (Springer, 2001), and Bayesian Computation with R by J. Albert (Springer,
2009).
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Chapter 1: Introduction
Univariate binomial and multinomial inference

The function dbinom can generate binomial probabilities, for example, dbinom(6, 10,
0.5) gives the probability of 6 successes in 10 trials with “probability of success”
parameter m = 0.50. The function pbinom(6, 10, 0.5) would give the corresponding
cumulative probability of 6 or fewer successes.

The function prop.test gives the Pearson (score) test and score confidence inter-
val for a binomial proportion, for example, prop.test(6, 10, p=.5, correct=FALSE),
where “correct=FALSE” turns off the continuity correction, which is the default. The
function binom.test gives a small-sample binomial test, for example binom.test(8, 12,
p=0.5, alternative = c(”two.sided”)) gives a two-sided test of Ho: m = 0.50 with 8
successes in 12 trials.

The proportion package contains a great variety of confidence intervals for a bi-
nomial parameter, including Wald, likelihood-ratio, and score intervals. For instance,
for 95% confidence intervals based on 0 successes in 10 trials, the package reports:

> library(proportion)

> ciAllx(0, 10, 0.05)
method x  LowerLimit UpperLimit

1 Wald 0 0.000000e+00 0.00000000
3 Likelihood 0 2.525061e-05 0.17481827
4 Score 0 2.005249e-17 0.27753280

For special R functions for confidence intervals for a binomial parameter, see
www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html

The confidence intervals include the score (Wilson) CI, Blaker’s exact CI, the small-
sample Clopper-Pearson interval and its mid-P adaptation discussed in Section 16.6
of the textbook, and the Agresti—-Coull CI and its add-4 special case. Some of these
are also available in the PropCls package prepared by Ralph Scherer at the Institute
for Biometry in Hannover, Germany. For instance:

> library(PropCIs)

> addz2ci(9, 10, 0.95) # Agresti-Coull CI adding z"2 to success and failures
95 percent confidence interval:
0.5740323 1.0000000

> add4ci(9, 10, 0.95) # Wald CI after add 2 successes and 2 failures
95 percent confidence interval:

0.5707764 1.0000000

> scoreci(9, 10, 0.95) # score CI


www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html

95 percent confidence interval:
0.5958 0.9821

The confidence interval based on the test using mid P-value is available with the
midPci function in the PropCIs package.

> library(PropCIs)

> midPci(9, 10, 0.95) # 9 successes in 10 trials
95 percent confidence interval:
0.5966 0.9946

Binomial tests and confidence intervals using the mid P-value are available with
the ezactci package. Other available inferences with that package include the Blaker
exact confidence interval.

> library(exactci)

> binom.exact(9, 10, 0.50, alternative=c("greater"), midp=TRUE)
number of successes = 9, number of trials = 10, p-value = 0.005859

> binom.exact(9, 10, conf.level=0.95, midp=TRUE)
95 percent confidence interval:
0.5965206 0.9950264

> binom.exact(9, 10, conf.level=0.95, tsmethod=c("blaker"))
95 percent confidence interval:
0.5555 0.9949

Joseph Lang, in a 2017 article in The American Statistician (vol. 71, pp. 354-368),
has proposed “mean-minimum exact confidence intervals” for a proportion, for which
both the mean and minimum coverage probability never fall below specified values.
He has an R package CI.binom for this.

The table function constructs contingency tables.

The function chisq.test can perform the Pearson chi-squared test of goodness-of-fit
of a set of multinomial probabilities. For example, with 3 categories and hypothesized
values (0.4, 0.3, 0.3) and observed counts (12, 8, 10),

> x <- c(12, 8, 10)
> p <- c(0.4, 0.3, 0.3)
> chisq.test(x, p=p)

Chi-squared test for given probabilities



data: x
X-squared = 0.2222, df = 2, p-value = 0.8948

> chisq.test(x, p=p, simulate.p.value=TRUE, B=10000)

Chi-squared test for given probabilities with
simulated p-value (based on 10000 replicates)

data: x
X-squared = 0.2222, df = NA, p-value = 0.8763

The argument “simulate.p.value = TRUE” requests simulation of the exact small-
sample test of goodness of fit, with B replicates. So, the second run above uses
simulation of 10,000 multinomials with the hypothesized probabilities and finds the
sample proportion of them having X? value at least as large as the observed value of
0.2222.

Bayesian inference

For a Bayesian posterior interval based on a beta(a1, az) prior distribution and y
successes and n—y failures, we find percentiles of the beta distribution with parameters
a1 +y and as+n—y using the quantile function gbeta. We find a 95% posterior interval
here based on the uniform prior (a1 = a2 = 1.0) and y = 0 and n — y = 25. Likewise,
we can use the pbeta function of cumulative probabilities to find a tail probability,
such as the posterior probability that 7 is at least 0.50:

> gbeta(0.025, 1, 26); gbeta(0.975, 1, 26)
[1] 0.0009732879
[1] 0.1322746

> pbeta(0.50, 1, 26) # posterior beta cumulative prob. at 0.50
(11 1

> 1 - pbeta(0.50, 1, 26) # right-tail prob. above 0.50

[1] 1.490116e-08

> library(proportion}

> ciBAx(0, 25, 0.05, 1.0, 1.0) # y, n, CI error prob, beta prior values
bd LBAQx UBAQx LBAHx UBAHx # 2nd set are HPD

1 0 0.0009732879 0.1322746 2.440083e-10 0.1088304

One can also use the proportion package for Bayesian posterior intervals based on beta
priors, as shown above.

See logitnorm.r-forge.r-project.org/ for utilities such as a quantile function for the
logit-normal distribution.

The hpd function in the TeachingDemos library can construct HPD intervals from
a posterior distribution. The package hdrede is a more sophisticated package for such
methods. For the informative analysis of the vegetarians example at the end of Section
1.6.4:



library("TeachingDemos")

y <= 0; n <= 25

al <- 3.6; a2 <- 41.4

a<-al+y; b<-a2+n

h <- hpd(gbeta, shapel=a, shape2=b)

Chapters 2—-3: Two-Way Contingency Tables

For creating mosaic plots in R, see www.datavis.caland also the mosaic functions in
the ved and vedExtra libraries; see Michael Friendly’s tutorial at
cran.us.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf, which
also is useful for basic descriptive and inferential statistics for contingency tables. To
construct a mosaic plot for the data in Table 3.2, one can enter

x<- c¢(9,8,27,8,47,236,23,39,88,49,179,706,28,48,89,19,104,293)

data <- matrix(x, nrow=3,ncol=6, byrow=TRUE)

dimnames (data) = list(Degree=c("< HS","HS","College"),Belief=c("1",6"2" "3", "4" "5" "6"))
install.packages("vcdExtra")

library("vcdExtra")

StdResid <- ¢(-0.4,-2.2,-1.4,-1.5,-1.3,3.6,-2.5,-2.6,-3.3,1.8,0.0,3.4,3.1,4.7,4.8,-0.8,1.1,-6.7)
StdResid <- matrix(StdResid,nrow=3,ncol=6,byrow=TRUE)

mosaic(data,residuals = StdResid, gp=shading Friendly)

V V V V V V VYV

Chi-squared and Fisher’s exact test; Residuals

The function chisq.test also can perform the Pearson chi-squared test of independence
in a two-way contingency table. For example, for Table 3.2 of the text, using also the
stdres component for providing standardized residuals,

> data <- matrix(c(9,8,27,8,47,236,23,39,88,49,179,706,28,48,89,19,104,293),
ncol=6,byrow=TRUE)
> chisq.test(data)

Pearson’s Chi-squared test

data: data
X-squared = 76.1483, df = 10, p-value = 2.843e-12

> chisq.test(data)$stdres

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.368577 -2.227511 -1.418621 -1.481383 -1.3349600 3.590075
[2,] -2.504627 -2.635335 -3.346628 1.832792 0.0169276 3.382637
[3,1] 3.051857 4.724326 4.839597 -0.792912 1.0794638 -6.665195

Likewise, replacing the stdres component by ezpected would generate the expected
frequency estimates. As shown above, you can simulate the exact conditional distri-
bution to estimate the P-value whenever the chi-squared asymptotic approximation is
suspect.


www.datavis.ca
cran.us.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf

Here is an example of using Mantel’s ordinal test for a two-way table with the M?
statistic of Section 3.4 applied to the infant birth defects example:

> Malform <- matrix(c(17066, 14464, 788, 126, 37, 48, 38, 5, 1, 1), ncol=2)
> Malform
[,11 [,2]
[1,] 17066 48
[2,] 14464 38
[3,1 788 5
[4,] 126 1
[5,] 37 1
> library(vcdExtra)
> CMHtest (Malform, rscores=c(0, 0.5, 1.5, 4.0, 7.0))
Cochran-Mantel-Haenszel Statistics # test was proposed by Nathan Mantel
AltHypothesis  Chisq Df Prob
cor Nonzero correlation 6.5699 1 0.010372

The function fisher.test performs Fisher’s exact test. For example, for the tea
tasting data of Table 3.9 in the text,

> tea <- matrix(c(3,1,1,3),ncol=2,byrow=TRUE)
> fisher.test(tea)

Fisher’s Exact Test for Count Data

data: tea
p-value = 0.4857
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.2117329 621.9337505
sample estimates:
odds ratio
6.408309

> fisher.test(tea,alternative="greater")
Fisher’s Exact Test for Count Data

data: tea
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1

The P-value is the sum of probabilities of tables with the given margins that have prob-

ability no greater than the observed table. The output also shows the conditional ML
estimate of the odds ratio (see Sec. 16.6.4) and a corresponding exact confidence inter-

val based on noncentral hypergeometric probabilities. Use fisher.test(tea,alternative= “greater”)
for the one-sided test.

For an I x J table called “table,” using



> fisher.test(table, simulate.p.value=TRUE, B=10000)

generates Monte Carlo simulation with B replicates to estimate the exact P-value
based on the exact conditional multiple hypergeometric distribution obtained by con-
ditioning on all row and column marginal totals (proposed by Agresti, Wackerly, and
Boyett, 1979).

For mid-P values, you can use the ezact2z2 package:

> library(exact2x2)
> fisher.exact(tea,midp=TRUE,conf.int=FALSE,alternative="greater")
p-value = 0.1286
alternative hypothesis: true odds ratio is greater than 1
> fisher.exact(tea,midp=TRUE, conf.level=0.95)
p-value = 0.2571
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3100451 311.4363036

This also shows a confidence interval based on inverting the exact conditional nonnull
hypergeometric distribution, but using the mid P-value.

Confidence intervals for association measures

For a 2x2 table, the function prop.test provides the Wald confidence interval for the
difference of proportions, where one uses the option correct=FALSFE to suppress the
continuity correction.

For parameters comparing two binomial proportions such as the difference of pro-
portions, relative risk, and odds ratio, a good general-purpose method for constructing
confidence intervals is to invert the score test. Ralph Scherer at the Institute for Biom-
etry in Hannover, Germany, has prepared a package PropCls on CRAN incorporating
many of these confidence interval functions for proportions and comparisons of propor-
tions. For example, Here, we illustrate for the example on aspirin and heart attacks

> library(PropCIs)

> diffscoreci(189, 11034, 104, 11037, 0.95) # CI for difference of proportions
95 percent confidence interval:# score CI
0.004716821 0.010788501

> riskscoreci(189, 11034, 104, 11037, 0.95) # score CI for relative risk
95 percent confidence interval:
1.433904 2.304713

> orscoreci(189, 11034, 104, 11037, 0.95) # score CI for odds ratio
95 percent confidence interval:
1.440802 2.329551




Some of these functions are taken from
www.stat.ufl.edu/~aa/cda/R/two-sample/R2/index.html

where former students of mine prepared R functions for confidence intervals comparing
two proportions with independent samples (difference of proportions, relative risk,
odds ratio), and the site

www.stat.ufl.edu/~aa/cda/R/matched/R2_matched/index.html

which has R functions for confidence intervals comparing two proportions with depen-
dent samples. Most of these were written by my former graduate student, Yongyi Min,
who also prepared the Bayesian intervals mentioned below. Please quote this site if
you use one of these R functions for confidence intervals for association parameters.
We believe these functions are dependable, but no guarantees or support are available,
so use them at your own risk. Note that the score CI for the difference of proportions is
based on the formula on p. 79 of the text based on the work of Mee (1984). The slightly
different score interval suggested by Miettinen and Nurminen (1985) incorporates a
bias correction factor in the variance of (n1 4+mn2)/(n1 +n2 — 1) that can result in even
better coverage properties according to an article by Newcombe and Nurminen (2011,
Communications in Statistics, 40: 1271-1282). Bernhard Klingenberg has written an
R function for both of these score intervals, with the Miettinen and Nurminen as the
default. For details, go tohttp://sites.williams.edu/bklingen. Here is Bernhard’s
code, with examples:

# from Bernhard Klingenberg
# returns score test statistic, p-value and restricted MLEs for diff
of prop pl - p2:
score.test <- function(delta.null, y,n, alternative = "two.sided",
MN=TRUE) {

N=sum(n)

C=sum(y)

L3=N

L2=(n[1]+2*n[2])*delta.null-N-C

Li=(n[2]*delta.null-N-2*y[2])*delta.null+C

LO=y[2]*delta.null*(1-delta.null)

c=L273/(3+L3)"3 - L1xL2/(6%L372) + LO/(2xL3)

b=ifelse(c>=0,1,-1)*sqrt(L2°2/(3%L3) "2 - L1/(3*L3))

d <- min(c/b"3,1)

d <- max(d, -1)

a=(3.14159265358979+acos(d)) /3

p2=2*bx*cos(a)-L2/(3*L3)

p2 = max(p2, 0)

P2 = min(p2,1)

pl=p2+delta.null

pl = max(pl, 0)

pl = min(p1,1)

se0 <- sqrt(p1*(1 - p1)/n[1] + p2*(1 - p2)/n[2])

if (IMN) z=(y[1]/n[1]-y[2]/n[2]-delta.null)/se0 #Mee

else z=(y[1]1/n[1]-y[2]/n[2]-delta.null)/(se0*N/(N-1)) #Mietinnen and

Nurminen
if (se0 == 0){
z=0


www.stat.ufl.edu/~aa/cda/R/two-sample/R2/index.html
www.stat.ufl.edu/~aa/cda/R/matched/R2_matched/index.html
http://sites.williams.edu/bklingen
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pvalue <- switch(alternative,
"two.sided" = 1 - pchisq(z~2, df=1),
"less" = pnorm(z),
"greater" = pnorm(z, lower.tail = FALSE)
)
return(list(test.stat = z, p.value = pvalue, pl.null = pl, p2.null =
p2))
}

#returns lower and upper score bounds for diff of prop pl - p2:
score.int <- function(y,n,conflev=0.95, type="two.sided", MN=TRUE) {
if (type=="two.sided") c=gnorm(1-(1-conflev)/2)"2 else
c=qnorm(conflev) "2
deltal=(y[1]1+1)/(n[1]1+2) - (y[2]+1)/(n[2]+2) #starting point
if (any(type=="lower",type=="two.sided")) {
delta2=-1
while( abs(deltal-delta2)>10"(-6) ) {#Bisection for LB
delta=(deltal+delta2)/2
z=score.test(delta,y,n, MN = MN)$test.stat"2
if (z>c) delta2=delta else deltal=delta
}
}
delta.LB=deltal
deltal=(y[1]+1)/(n[1]1+2) - (y[2]1+1)/(n[2]+2) #starting point
if (any(type=="upper",type=="two.sided")) {
delta2=1;
while( abs(deltal-delta2)>10"(-6) ) {#Bisection for UB
delta=(deltal+delta2)/2
z=score.test(delta,y,n, MN = MN)$test.stat"2
if (z>c) delta2=delta else deltal=delta
}
}
delta.UB=deltal
return(switch(type,
"lower"=delta.LB,
"upper"=delta.UB,
"two.sided"=cbind(delta.LB,delta.UB)
))

### Example:
> y <= c(10,5)
> n <- c(20,20)
> score.int(y,n)
delta.LB delta.UB
[1,] -0.05793719 0.5161737
> score.int(y,n, MN=FALSE)
delta.LB delta.UB
[1,] -0.05026568 0.5104669



> score.test(delta.null=0,y,n)
$test.stat

[1] 1.592168

$p.value

[1] 0.1113469

$pl.null

[1] 0.375

$p2.null

[1] 0.375

> score.test(delta.null=0,y,n, MN=FALSE)
$test.stat

[1] 1.632993

$p.value

[1] 0.1024704

$pl.null

[1] 0.375

$p2.null

[1] 0.375

Here is code to obtain the profile likelihood confidence interval for the odds ratio
for Table 3.1 on seat-belt use and traffic accidents (using the fact that the log odds
ratio is the parameter in a simple logistic model):

> yes <- c(54,25)
> n <- c(10379,51815)
> x <= c(1,0)
> fit <- glm(yes/n ~ x, weights=n, family=binomial(link=logit))
> summary(fit)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.6361 0.2000 -38.17 <2e-16 *x**
X 2.3827 0.2421 9.84 <2e-16 *xx

> confint(fit)

Waiting for profiling to be donme...
2.5 % 97.5 %

(Intercept) -8.055554 -7.268025

X 1.919634 2.873473

> exp(1.919634); exp(2.873473)

[1] 6.818462

[1] 17.69838

Fay (2010a) described an R package ezact2z2 that constructs a small-sample confi-
dence interval for the odds ratio by inverting the test using the P-value (mentioned
in Section 16.6.1) that was suggested by Blaker (2000), which equals the minimum
one-tail probability plus an attainable probability in the other tail that is as close as
possible to, but not greater than, that one-tailed probability. See

journal.r-project.org/archive/2010-1/RJournal_2010-1_Fay.pdf

and

10


journal.r-project.org/archive/2010-1/RJournal_2010-1_Fay.pdf

cran.r-project.org/web/packages/exact2x2/index.html

For example, for a 2x2 table called data, the command exact2z2(data, tsmethod =
“blaker”) provides an exact test using Blaker’s P-value and the confidence interval
based on inverting that test.

You can construct a small-sample confidence interval for the odds ratio based on
the exact conditional test with mid P-value using the epitools package,

https://cran.r-project.org/web/packages/epitools/epitools.pdf

For the data in the tea-tasting example, we have:

> install.packages("epitools")

> library(epitools)

> ormidp.test(3, 1, 1, 3, or=1)
one.sided two.sided

1 0.1285714 0.2571429

> or.midp(c(3,1,1,3), conf.level=0.95)

$conf.int

[1] 0.3100508 306.6338538

This is also available in the exact2z2 package, although results differ slightly:

> library(exact2x2)
> fisher.exact(tea,midp=TRUE,conf.level=0.95)
p-value = 0.2571
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3100451 311.4363036

In a 2002 paper in the journal Biostatistics, Agresti and Min showed that for
independent binomial samples, one can obtain shorter exact confidence intervals for
the odds ratio using unconditional methods (inverting a score test) instead of the
conditional method. Their exact unconditional confidence interval for an odds ratio
is also available in the ezact2z2 package, using the uncondEzact2z2 function. For the
example in the Agresti and Min paper with sample sizes of 26 and success counts of 1
and 2:

> library(exact2x2)
> uncondExact2x2(1,26,2,26,parmtype="oddsratio",conf.level=0.95,
+ conf . int=TRUE,method="score",tsmethod="square")

Unconditional Exact Test on Odds Ratio, method= score, squared
data: x1/n1=(1/26) and x2/n2= (2/26)
proportion 1 = 0.038462, proportion 2 = 0.076923, p-value = 0.6794

alternative hypothesis: true p2(1-p1)/[p1(1-p2)] is not equal to 1
95 percent confidence interval:
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0.229944 29.342162

Fuijung Ryu, a former PhD student of mine who is now at Mayo Clinic, has
prepared R functions for various confidence intervals for the ordinal measure [P(Y'1 >
Y2) + (1/2)P(Y1 = Y2)] that is useful for comparing two multinomial distributions
on an ordinal scale. See

www.stat.ufl.edu/~aa/cda/R/stochastic/ryu-stochastic-code.pdf

for the functions, including the Wald confidence interval as well as score, pseudo-
score, and profile likelihood intervals that are computationally more complex and
require using Joe Lang’s mph.fit function (see below). Also, Euijung has prepared an
R function for multiple comparisons of proportions with independent samples using
simultaneous confidence intervals for the difference of proportions or the odds ratio,
based on the Studentized-range inversion of score tests proposed by Agresti et al.
(2008). See

www.stat.ufl.edu/~aa/cda/R/multcomp/ryu-simultaneous.pdf

Joseph Lang’s mph.fit function just mentioned is a general purpose and very pow-
erful function that can provide ML fitting of generalized loglinear models (Section
10.5.1) and other much more general “multinomial-Poisson homogeneous” models such
as covered in Lang (2004, 2005). These include models that can be specified in terms
of constraints of the form h(p) = 0, such as the marginal homogeneity model and the
calf infection example in Section 1.5.6 of the text. For details, see

www.stat.uiowa.edu/~jblang/mph.fitting/index.htm

Joe has also prepared an R program, ci.table, for computing (among other things)
score and likelihood-ratio-test-based (i.e., profile likelihood) intervals for contingency
table parameters. See

www.stat.uiowa.edu/~jblang/ci.table.documentation/ci.table.examples.htm

The ved package can construct the ordinal measure of association gamma and its
standard error, as well as many other things for contingency tables, such as odds ratios,
mosaics plots, and CMH tests for stratified tables. See

http://cran.us.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.
pdf

Bayesian inference for two-way tables

Surveys of Bayesian inference using R were given by J. H. Park,
cran.r-project.org/web/views/Bayesian.html

and by Jim Albert,
bayes.bgsu.edu/bcwr

The latter is a website for the text Bayesian Computation with R by Albert. It shows
examples of some categorical data analyses, such as Bayesian inference for a 2x2 table,
a Bayesian test of independence in a contingency table, and probit regression.

Yongyi Min has prepared some R functions for Bayesian confidence intervals for
2x2 tables using independent beta priors for two binomial parameters, for the differ-
ence of proportions, odds ratio, and relative risk. See
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www.stat.ufl.edu/~aa/cda/R/bayes/index.html

These are evaluated and compared to score confidence intervals in Agresti and Min
(2005). Here is an example for the difference of proportions and the odds ratio using
Jeffreys priors for a table with counts (3, 1) in row 1 and (1, 3) in row 2.

> diffCI(3, 4, 1, 4, 0.5, 0.5, 0.5, 0.5, 0.95)
[1] -0.1093044 0.8812513

> orCI(3, 4, 1, 4, 0.5, 0.5, 0.5, 0.5, 0.95)
[1] 0.4712263 249.6543515

Missing data

The ACD package can conduct some analyses of categorical data (e.g. loglinear models
by ML, functions of count data using weighted least squares) when data are missing.
See

cran.r-project.org/web/packages/ACD/ACD.pdf

Chapter 4: Generalized Linear Models

Generalized linear models can be fitted with the glm function:
stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
www.statmethods.net/advstats/glm.html

That function can be used for such things as logistic regression, Poisson regression,
and loglinear models.

Consider a binomial variate y based on n successes with explanatory variable x
and a N X 2 data matrix with columns consisting of the values of y and n — y. For
example, for the logit link with the snoring data in Table 4.2 of the text, using scores
(0, 2, 4, 5), showing also a residual analysis,

snoring <- matrix(c(24,1355,35,603,21,192,30,224), ncol=2, byrow=TRUE)
scores <- ¢(0,2,4,5)

snoring.fit <- glm(snoring ~ scores, family=binomial(link=logit))
summary (snoring.fit)

vV V V V

Call:
glm(formula = snoring ~ scores, family = binomial(link = logit))

Deviance Residuals:
1 2 3 4
-0.8346 1.2521 0.2758 -0.6845

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.86625 0.16621 -23.261 < 2e-16 *xx*
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scores 0.39734 0.05001  7.945 1.94e-15 *xx*x*

Signif. codes: 0 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 65.9045 on 3 degrees of freedom
Residual deviance: 2.8089 on 2 degrees of freedom
AIC: 27.061

Number of Fisher Scoring iterations: 4

pearson <- summary.lm(snoring.fit)$residuals # Pearson residuals
hat <- 1lm.influence(snoring.fit)$hat # hat or leverage values
stand.resid <- pearson/sqrt(l - hat) # standardized residuals
cbind(scores, snoring, fitted(snoring.fit), pearson, stand.resid)
scores pearson stand.resid

0 24 1355 0.02050742 -0.8131634 -1.6783847

2 35 603 0.04429511 1.2968557 1.5448873

4 21 192 0.09305411 0.2781891  0.3225535

5 30 224 0.13243885 -0.6736948 -1.1970179

vV V Vv VvV

S w N

For the identity link with data in the form of Bernoulli observations, use code such
as

>  fit <- glm(y ~ x, family=quasi(variance="mu(l-mu)"),start=c(0.5, 0))
>  summary(fit, dispersion=1)

The fitting procedure will not converge if at some stage of the fitting process, proba-
bility estimates fall outside the permissible (0, 1) range.

The profile likelihood confidence interval is available with the confint function in
R, which is applied to the model fit object. It is also available with the profilelike.glm
function in the ProfileLikelihood library prepared by Leena Choi. See
cran.r-project.org/web/packages/ProfileLikelihood/ProfileLikelihood.pdf.

The glm function can be used to fit Poisson loglinear models and counts and for
rates. For negative binomial models, you can use the glm.nb function in the MASS
library.

stat.ethz.ch/R-manual/R-patched/library/MASS/html/glm.nb.html

However, in the notation of Sec. 4.3.4, this function identifies the dispersion parameter
(which it calls “theta”) as k, not its reciprocal . Negative binomial regression can
also be handled by Thomas Yee’s VGAM package mentioned for Chapter 8 below and
by the negbin function in the aod package:
cran.r-project.org/web/packages/aod/aod.pdf

To illustrate R for models for counts, for the data in Sec. 4.3 on numbers of satellites
for a sample of horseshoe crabs (Note: The complete data set is in the Datasets link
www.stat.ufl.edu/~aa/cda/data.html|at this website),

> crabs <- read.table("crab.dat",header=T)
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> crabs
color spine width satellites weight

1 3 3 28.3 8 3050
2 4 3 22.5 0 1550
3 2 1 26.0 9 2300
4 4 3 24.8 0 2100
5 4 3 26.0 4 2600
6 3 3 23.8 0 2100
173 3 2 24.5 0 2000

> weight <- weight/1000 # weight in kilograms rather than grams
> fit <- glm(satellites ~ weight, family=poisson(link=log), data=crabs)
> summary(fit)

> library(MASS)
> fit.nb <- glm.nb(satell ~ weight, link=log)
> summary(fit.nb)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.8647 0.4048 -2.136 0.0327 =*
weight2 0.7603 0.1578 4.817 1.45e-06 **xx

Null deviance: 216.43 on 172 degrees of freedom
Residual deviance: 196.16 on 171 degrees of freedom
AIC: 754.64

Theta: 0.931
Std. Err.: 0.168
2 x log-likelihood: -748.644

The function rstandard.glm has a type argument that can be used to request
standardized residuals. That is, you can type

> fit <- glm(... model formula, family, data, etc ...)
> rstandard(fit, type="pearson")

to get standardized Pearson residuals for a fitted GLM. Without the type argument,
rstandard(fit) returns the standardized deviance residuals.

The statmod library at CRAN contains a function gim.scoretest that computes
score test statistics for adding explanatory variables to a GLM.

Statistical Models in S by J. M. Chambers and T. J. Hastie (Wadsworth, Belmont,
California, 1993, p. 227) showed the use of S-Plus in quasi-likelihood analyses using
the quasi and make.family functions.

Following is an example of the analyses shown for the teratology data, including
the quasi-likelihood approach:

# This borrows heavily from Laura Thompson’s manual at
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# https://home.comcast.net/ lthompson221/Splusdiscrete2.pdf
> rats <- read.table("teratology.dat", header = T)
> rats # Full data set of 58 litters at course website

litter group n y
1 1 110 1
2 2 111 4
3 3 112 9
57 57 4 6 0
58 58 417 0

> rats$group <- as.factor(rats$group)
> fit.bin <- glm(y/n ~ group - 1, weights = n, data=rats, family=binomial)
> summary(fit.bin)

Coefficients: # these are the sample logits
Estimate Std. Error z value Pr(>|z])
groupl 1.1440 0.1292 8.855 < 2e-16 *x¥x
group2 -2.1785 0.3046 -7.153 8.51e-13 *xx
group3 -3.3322 0.7196 -4.630 3.65e-06 **x*
group4 -2.9857 0.4584 -6.514 7.33e-11 **x*

Null deviance: 518.23 on 58 degrees of freedom
Residual deviance: 173.45 on 54 degrees of freedom
AIC: 252.92

> (pred <- unique(predict(fit.bin, type="response")))
[1] 0.75840979 0.10169492 0.03448276 0.04807692 # sample proportions
> (SE <- sqgrt(pred*(1-pred)/tapply(rats$n,rats$group,sum)))
1 2 3 4
0.02367106 0.02782406 0.02395891 0.02097744 # SE’s of proportions

> (X2 <- sum(resid(fit.bin, type="pearson")"2)) # Pearson stat.
[1] 154.707
> phi <- X2/(58 - 4) # estimate of phi for QL analysis
> phi
[1] 2.864945
> SExsqrt (phi)
1 2 3 4
0.04006599 0.04709542 0.04055320 0.03550674 # adjusted SE’s for proportions
> fit.ql <- glm(y/n ~ group - 1, weights=n, data=rats, family=quasi(link=identity,
variance="mu(1-mu)"),start=unique(predict(fit.bin,type="response")))
> summary(fit.ql) # This shows another way to get the QL results

Coefficients:

Estimate Std. Error t value Pr(>|t])
groupl 0.75841 0.04007 18.929 <2e-16 *x*x
group2 0.10169 0.04710 2.159 0.0353 *
group3 0.03448 0.04055 0.850 0.3989
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group4 0.04808 0.03551 1.354 0.1814

(Dispersion parameter for quasi family taken to be 2.864945)

Chapters 5-7: Logistic Regression and Binary Response
Analyses

Logistic Regression

Since logistic regression is a generalized linear model, it can be fitted with the glm
function, as mentioned above.

If y is a binary variable (i.e., ungrouped binomial data with each n = 1), the vector
of y values (0 and 1) can be entered as the response variable. Following is an example
with the horseshoe crab data as a data frame, declaring color to be a factor in order
to set up indicator variables for it (which, by default, choose the first category as the
baseline without its own indicator variable). (Note that the complete data set is in
the Datasets link www.stat.ufl.edu/~aa/cda/data.html at this website.)

> crabs <- read.table("crabs.dat",header=TRUE)

> crabs
color spine width satellites weight
1 3 3 28.3 8 3050
2 4 3 22.5 0 1550
3 2 1 26.0 9 2300
173 3 2 24.5 0 2000

> y <- ifelse(crabs$satellites > 0, 1, 0) # y = a binary indicator of satellites
> crabs$weight <- crabs$weight/1000 # weight in kilograms rather than grams

> fit <- glm(y ~ weight, family=binomial(link=logit), data=crabs)
> summary (fit)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***
weight 1.8151 0.3767 4.819 1.45e-06 *x*xx

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 195.7371 on 171 degrees of freedom

AIC: 199.74

> crabs$color <- crabs$color - 1 # color now takes values 1,2,3,4

> crabs$color <- factor(crabs$color) # treat color as a factor

> fit2 <- glm(y ~ weight + color, family=binomial(link=logit), data=crabs)
> summary (£fit2)
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Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -3.2572 1.1985 -2.718 0.00657 *x*
weight 1.6928 0.3888 4.354 1.34e-05 *xx
color2 0.1448 0.7365 0.197 0.84410
color3 -0.1861 0.7750 -0.240 0.81019
color4 -1.2694 0.8488 -1.495 0.13479

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 188.5423 on 168 degrees of freedom
AIC: 198.54

For grouped data, rather than defining the response as the set of success and failure
counts as was done in the Chapter 4 discussion above for the snoring data, one can
instead enter the response in the form y/n for y successes in n trials, entering the
number of trials as the weight. For example, again for the snoring data of Table 4.2,

> yes <- c(24,35,21,30)

> n <- c(1379,638,213,254)

> scores <- ¢(0,2,4,5)

> fit <- glm(yes/n ~ scores, weights=n, family=binomial(link=logit))
> fit

Coefficients:

(Intercept) scores

-3.8662 0.3973

Degrees of Freedom: 3 Total (i.e. Null); 2 Residual
Null Deviance: 65.9
Residual Deviance: 2.809 AIC: 27.06

For the AIDS and AZT use example:

race <- c(1,1,0,0)

azt <- ¢(1,0,1,0)

symptoms <- c(14,32,11,12)

n <- c(107, 113,63,55)

response <- matrix(c(symptoms, n-symptoms), ncol=2)

fit <- glm(response ~ race + azt, family=binomial(link=logit))
summary (fit)

V V.V V V V VvV

Call:
glm(formula = response ~ race + azt, family = binomial(link = logit))

Coefficients:
Estimate Std. Error z value Pr(>|zl)
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(Intercept) -1.07357 0.26294 -4.083 4.45e-05 *x**
race 0.05548 0.28861 0.192 0.84755
azt -0.71946 0.27898 -2.579 0.00991 *x*

Signif. codes: O *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.3499 on 3 degrees of freedom
Residual deviance: 1.3835 on 1 degrees of freedom
AIC: 24.86

Number of Fisher Scoring iterations: 4

Hosmer-Lemeshow: One place I've seen a function for the Hosmer-Lemeshow test is
http://sas-and-r.blogspot.com/2010/09/example-87-hosmer-and-lemeshow-goodness.
html

The function rstandard can be used to request standardized residuals, after a
binary glm fit. For example, for the Berkeley admissions data shown on p. 63, the
model assuming no gender effect fits well except for the first department:

> data <- read.table("berkeley.dat",header=TRUE)
> data
dept gender yes no

male 512 313
female 89 19

male 353 207
female 17 8

male 120 205
female 202 391

male 138 279
female 131 244

male 53 138
female 94 299
11 male 22 351
12 female 24 317
> attach(data)
> n <- yes + no
> fit <- glm(yes/n ~ factor(dept), weights=n, family=binomial)
> summary(fit)
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.59346 .06838 8.679 <2e-16 *xx*
factor(dept)B -0.05059 .10968 -0.461 0.645
factor(dept)C -1.20915 .09726 -12.432 <2e-16 *xx*
factor(dept)D -1.25833 .10152 -12.395 <2e-16 *xx
factor(dept)E -1.68296 .11733 -14.343 <2e-16 *xx
factor(dept)F -3.26911 .16707 -19.567  <2e-16 *xx*
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Null deviance: 877.056 on 11 degrees of freedom
Residual deviance: 21.736 on 6 degrees of freedom
AIC: 102.68

> rstandard(fit, type="pearson")
1 2 3 4 5 6

7

-4.1530728 4.1530728 -0.5037077 0.5037077 0.8680662 -0.8680662 -0.5458732

8 9 10 11 12
0.5458732 1.0005342 -1.0005342 -0.6197526 0.6197526

Big data: The R package glmnet can apparently fit logistic regression to data sets
with very large numbers of variables or observations, and as mentioned below can use
regularization methods such as the lasso:

cran.r-project.org/web/packages/glmnet/index.html

Exact Conditional Logistic Regression

See the package logistiX at

https://cemsiis.meduniwien.ac.at/kb/wf/software/statistische-software/
logistiX/

and the package elrm for MCMC approximation of exact conditional distributions.

ROC curves

ROC curves can be constructed with the ROCR library. For example, for a probit
model for the beetle mortality data of Section 7.1.4,

dose <- c(rep(1.691,59),rep(1.724,60) ,rep(1.755,62) ,rep(1.784,56),
rep(1.811,63) ,rep(1.837,59) ,rep(1.861,62) ,rep(1.884,60))

y <- c(rep(1,6),rep(0,53),rep(1,13),rep(0,47) ,rep(1,18) ,rep(0,44),
rep(1,28) ,rep(0,28) ,rep(1,52) ,rep(0,11) ,rep(1,53),rep(0,6),
rep(1,61) ,rep(0,1) ,rep(1,60))

fit.probit <- glm(y ~ dose, family=binomial(link=probit))

summary (fit.probit)

vV V + + V + V

Estimate Std. Error z value Pr(>|zl)
(Intercept) -34.956 2.649 -13.20 <2e-16
dose 19.741 1.488 13.27 <2e-16

library("ROCR") # to construct ROC curve
pred <- prediction(fitted(fit.probit),y)
perf <- performance(pred, "tpr", "fpr")
plot(perf)

> performance(pred, "auc")

Slot "y.values":

[[1]1]

>
>
>
>
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[1] 0.9010852 # area under ROC curve

Cochran—Mantel-Haenszel test

The function mantelhaen.test can perform Cochran-Mantel-Haenszel tests for I x J x K
tables:

stat.ethz.ch/R-manual/R-patched/library/stats/html/mantelhaen.test.html

For example, for the clinical trials data in Table 6.9,

> beitler <- c¢(11,10,25,27,16,22,4,10,14,7,5,12,2,1,14,16,6,0,11,12,1,0,10,10,1,1,4,8,4,6,2,1)
> beitler <- array(beitler, dim=c(2,2,8))
> mantelhaen.test(beitler, correct=FALSE)

Mantel-Haenszel chi-squared test without continuity correction

data: beitler
Mantel-Haenszel X-squared = 6.3841, df = 1, p-value = 0.01151
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:

1.177590 3.869174
sample estimates:
common odds ratio

2.134549

When I = 2 and J = 2, enter “correct=FALSE” so as not to use the continuity
correction. In that case, the output also shows the Mantel-Haenszel estimate On g
and the corresponding confidence interval for the common odds ratio. With the exact
option,

> mantelhaen.test(beitler, correct=FALSE, exact=TRUE)

R provides the exact conditional test (Sec. 7.3.5) and the conditional ML estimate of
the common odds ratio (Sec. 16.6.6). When I > 2 and/or J > 2, this function provides
the generalized test that treats X and Y as nominal scale (i.e., df = (I —1)(J — 1),
given in equation (8.18) in the text).

Infinite estimates

Here is an example of the use of R for Table 6.11, in which center effect ML estimates
for centers 1 and 3 are actually —oo.

> data <- read.table("fungal.dat",header=TRUE)

> data

center treatment y n
1 1 10 5
2 1 00 9
3 2 1113
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4 2 00 10
5 3 10 7
6 3 00 5
7 4 16 9
8 4 02 8
9 5 15 14
10 5 0214

> attach(data)

> fit <- glm(y/n
> summary(fit)

treatment + factor(center), weights=n, family=binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.459e+01 2.330e+04 -0.001  0.9992
treatment 1.546e+00 7.017e-01 2.203 0.0276 =*
factor(center)2 2.039e+01 2.330e+04 0.001 0.9993
factor(center)3 4.809e-03 3.172e+04 0.000 1.0000
factor(center)4d 2.363e+01 2.330e+04 0.001 0.9992
factor(center)5 2.257e+01 2.330e+04 0.001 0.9992

Null deviance: 28.53202 on 9 degrees of freedom
Residual deviance: 0.50214 on 4 degrees of freedom
Number of Fisher Scoring iterations: 21

> fit2 <- glm(y/n ~ treatment + factor(center) -1, weights=n, family=binomial)
> summary(£fit2)

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
treatment 1.5460 0.7017 2.203 0.027569 x*
factor(center)1 -24.5922 23296.3959 -0.001 0.999158
factor(center)?2 -4.2025 1.1891 -3.534 0.000409 **x
factor(center)3 -24.5874 21523.6453 -0.001 0.999089
factor(center)4 -0.9592 0.6548 -1.465 0.142956
factor(center)5 -2.0223 0.6700 -3.019 0.002540 *x*

Null deviance: 73.07369 on 10 degrees of freedom
Residual deviance: 0.50214 on 4 degrees of freedom
Number of Fisher Scoring iterations: 21

Other binary response models

For binary data, alternative links are possible. For example, continuing with the
horseshoe crab data from above,

> fit.probit <- glm(y ~ weight, family=binomial(link=probit), data=crabs)
> summary(fit.probit)
Coefficients:
Value Std. Error t value
(Intercept) -2.238245 0.5114850 -4.375974
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weight 1.099017 0.2150722 5.109989
Residual Deviance: 195.4621 on 171 degrees of freedom
For the complementary log-log link with the beetle data of Table 7.1, showing also
the construction of standardized residuals (which can also be obtained by requesting

rstandard(fit.cloglog, type="pearson”)) and profile likelihood confidence intervals,

> beetles <- read.table("beetle.dat", header=T)

> beetles

dose number killed
1 1.691 59 6
2 1.724 60 13
3 1.755 62 18
4 1.784 56 28
5 1.811 63 52
6 1.837 59 53
7 1.861 62 61
8 1.884 60 60

v

binom.dat <- matrix(append(killed,number-killed) ,ncol=2)

> fit.cloglog <- glm(binom.dat ~ dose, family=binomial(link=cloglog),
data=beetles)

> summary(fit.cloglog) # much better fit than logit

Value Std. Error t value
(Intercept) -39.52250 3.232269 -12.22748
dose 22.01488 1.795086 12.26397

Null Deviance: 284.2024 on 7 degrees of freedom
Residual Deviance: 3.514334 on 6 degrees of freedom

> pearson.resid <- resid(fit.cloglog, type="pearson")
std.resid <- pearson.resid/sqrt(1-1m.influence(fit.cloglog)$hat)

\

> cbind(dose, killed/number, fitted(fit.cloglog), pearson.resid, std.resid)

dose pearson.resid std.resid
1 1.691 0.1016949 0.09582195 0.1532583 0.1772659
2 1.724 0.2166667 0.18802653 0.5677671 0.6694966
3 1.755 0.2903226 0.33777217 -0.7899738 -0.9217717
4 1.784 0.5000000 0.54177644 -0.6274464 -0.7041154
5 1.811 0.8253968 0.75683967 1.2684541 1.4855799
6 1.837 0.8983051 0.91843509 -0.5649292 -0.7021989
7 1.861 0.9838710 0.98575181 -0.1249636 -0.1489834
8 1.884 1.0000000 0.99913561 0.2278334 0.2368981
> confint(fit.cloglog)

2.5 % 97.5 %
(Intercept) -46.13984 -33.49923
dose 18.66945 25.68877
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Bayesian fitting

Jim Albert in Bayesian Computation with R (Springer 2009, pp. 216-219) presented
an R function, bayes.probit, for implementing his algorithm for fitting probit models
with a Bayesian approach.

Penalized likelihood

The Copas smoothing method can be implemented with the R function ksmooth, with
lambda=bandwidth. For example, for the kyphosis example of Sec. 7.4.3,

> x <- c(12, 15, 42, 52, 59, 73, 82, 91, 96, 105, 114, 120, 121, 128, 130,
139, 139, 157, 1, 1, 2, 8, 11, 18, 22, 31, 37, 61, 72, 81, 97,
112, 118, 127, 131, 140, 151, 159, 177, 206)

y <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0)

k1 <- ksmooth(x,y,"normal",bandwidth=25)

k2 <- ksmooth(x,y,"normal",bandwidth=100)

plot(x,y)

lines (k1)

lines(k2, 1lty=2)

v

V V. V V VvV

The brglm function in the MASS library can implement bias reduction using the
Firth penalized likelihood approach for binary regression models, including models
with logit, probit, and complementary log-log links:

cran.r-project.org/web/packages/brglm/index.html

The Firth penalized likelihood approach can also be done using the R package
logistf. For example, for Table 6.11 analyzed above in the “infinite estimates” subsec-
tion:

> fit3 <- logistf(y/n ~ treatment + factor(center) -1, weights=n, family=binomial)
> summary (£it3)
logistf(formula = y/n ~ treatment + factor(center) - 1, weights = n,

family = binomial)

Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood

coef se(coef) lower 0.95 upper 0.95 Chisq
treatment 1.3678143 0.6436197 -3.125353 5.9101373 0.34269584
factor(center)1l -4.0036677 1.5193002 -8.998902 -1.6994870 17.89776479
factor(center)2 -3.6351503 1.0063781 -8.204822 -0.9953539 11.19907751
factor(center)3 -4.1707188 1.5811491 -9.187891 -1.6107831 14.20192563
factor(center)4 -0.8487087 0.6264638 -5.897048 4.2538020 0.03158963
factor(center)5 -1.8328467 0.6200202 -6.599538 2.9956561 0.00000000
p
treatment 5.582773e-01
factor(center)1l 2.330947e-05
factor(center)2 8.183801e-04

24


cran.r-project.org/web/packages/brglm/index.html

factor(center)3 1.642024e-04
factor(center)4 8.589313e-01
factor(center)5 1.000000e+00

Likelihood ratio test=40.72184 on 6 df, p=3.28493e-07, n=10
Wald test = 26.05109 on 6 df, p = 0.000217816

Covariance-Matrix:

[,1] [,2] [,3] [,4] [,5] [.6]
[1,] 0.4142463 -0.2747484 -0.3377549 -0.3456519 -0.2304370 -0.2758511

[2,] -0.2747484 2.3082730 0.2240156 0.2292533 0.1528371 0.1829579
[3,]1 -0.3377549 0.2240156 1.0127969 0.2818266 0.1878864 0.2249146
[4,] -0.3456519 0.2292533 0.2818266 2.5000323 0.1922793 0.2301733
[6,]1 -0.2304370 0.1528371 0.1878864 0.1922793 0.3924569 0.1534505
[6,] -0.2758511 0.1829579 0.2249146 0.2301733 0.1534505 0.3844251

Lasso for binary and count models is available in the R packages glmnet and
glmpath:

cran.r-project.org/web/packages/glmnet/index.html
cran.r-project.org/web/packages/glmpath/index.html
The group lasso is available with the grplasso package:

cran.r-project.org/web/packages/grplasso/index.html

Generalized additive models

For a generalized additive model, R has a gam package:
cran.r-project.org/web/packages/gam/index.html

Thomas Yee’s VGAM library can also handle GAMs:
www.stat.auckland.ac.nz/~yee/VGAM/doc/glmgam.pdf
rss.acs.unt.edu/Rdoc/library/VGAM/html/vgam.html

For example, for the ungrouped horseshoe crab data,

> library("VGAM")

> gam.fit <- vgam(y ~ s(weight), family=binomialff(link=logit), data=crabs)

> plot(weight, fitted(gam.fit))

GAMs can also be fitted with the gam function in the mgcv library:
cran.r-project.org/web/packages/mgcv/mgev. pdf

False discovery rate (FDR)

R packages for FDR are listed at
strimmerlab.org/notes/fdr.html
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Chapter 8: Multinomial Response Models

For baseline-category logit models, one can use the multinom function in the nnet
library that has been provided by Venables and Ripley to do various calculations by
neural nets (see, e.g., p. 230 of Venables and Ripley, 3rd ed.):

cran.r-project.org/web/packages/nnet/nnet.pdf

Statements have the form

> fit <- multinom(y ~ x + factor(z),weights=freq, data=gators)

The VGAM package

Especially useful for modeling multinomial responses is the VGAM package and vglm
function developed by Thomas Yee at Auckland, New Zealand,

www.stat.auckland.ac.nz/~yee/VGAM

This package has functions that can also can fit a wide variety of models including
multinomial logit models for nominal responses and cumulative logit models, adjacent-
categories models, and continuation-ratio models for ordinal responses. For more
details, see “The VGAM package for categorical data analysis,” in Journal of Statistical
Software, vol. 32, pp. 1-34 (2010), www. jstatsoft.org/v32/i10. See also
www.stat.auckland.ac.nz/~yee/VGAM/doc/categorical . pdf

for some basic examples of its multiple capabilities for modeling categorical data.

Following is an example of the use of wvglm for fitting a baseline-category logit
model to the alligator food choice data in Table 8.1 of the textbook. The data file has
the five multinomial counts for the food choices identified as y1 through y5, with y1
being fish as in the text. The vglm function uses the final category as the baseline, so
to use fish as the baseline, in the model statement we identify the response categories
as (y2, ys, Y4, Ys, y1). By contrast, the multinom function in the nnet library picks
the first category of the response variable as the baseline. The following also shows
output using it. For both functions, a predictor identified as a factor in the model
statement has its first category as the baseline, so the lake estimates shown here differ
from those in the book, which used the last lake level as the baseline.

> alligators <- read.table("alligators.dat",header=TRUE)
> alligators
lake gender size yl y2 y3 y4 yb

1 1 1 1 7 1 0 0 5
2 1 1 0 4 0 0 1 2
3 1 0 116 3 2 2 3
4 1 0 0 3 0 1 2 3
5 2 1 1 2 2 0 0 1
6 2 1 013 7 6 0 O
7 2 0 1 01 0 1 0
8 2 0 0 3 9 1 0 2
9 3 1 1 3 7 1 0 1
10 3 1 0 8 6 6 3 b
11 3 0 12 4 1 1 4
12 3 0 0 0 1 0 0 O
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13 4 1 11310 0 2 2
14 4 1 0 9 0 0 1 2
15 4 0 13 9 1 0 1
16 4 0 0 8 1 0 0 1

> library(VGAM)
> vglm(formula = cbind(y2,y3,y4,y5,yl) ~ size + factor(lake),
family=multinomial, data=alligators)

Coefficients:
(Intercept):1  (Intercept):2  (Intercept):3  (Intercept):4 size:1
-3.2073772 -2.0717560 -1.3979592 -1.0780754 1.4582046
size:2 size:3 size:4 factor(lake)2:1 factor(lake)2:2
-0.3512628 -0.6306597 0.3315503 2.5955779 1.2160953
factor(lake)2:3 factor(lake)2:4 factor(lake)3:1 factor(lake)3:2 factor(lake)3:3
-1.3483253 -0.8205431 2.7803434 1.6924767 0.3926492
factor(lake)3:4 factor(lake)4:1 factor(lake)4:2 factor(lake)4:3 factor(lake)4:4
0.6901725 1.6583586 -1.2427766 -0.6951176 -0.8261962

Degrees of Freedom: 64 Total; 44 Residual
Residual Deviance: 52.47849
Log-likelihood: -74.42948

> library(nnet)
> fit2 <- multinom(cbind(yl,y2,y3,y4,y5) ~ size + factor(lake), data=alligators)
> summary (fit2)
Call:
multinom(formula = cbind(yl, y2, y3, y4, yb) ~ size + factor(lake),
data = alligators)

Coefficients:

(Intercept) size factor(lake)2 factor(lake)3 factor(lake)4
y2 -3.207394 1.4582267 2.5955898 2.7803506 1.6583514
y3 -2.071811 -0.3512070 1.2161555 1.6925186 -1.2426769
y4 -1.397976 -0.6306179 -1.3482294 0.3926516 -0.6951107
y5 -1.078137 0.3315861 -0.8204767 0.6902170 -0.8261528

Std. Errors:

(Intercept) size factor(lake)2 factor(lake)3 factor(lake)4
y2  0.6387317 0.3959455 0.6597077 0.6712222 0.6128757
y3 0.7067258 0.5800273 0.7860141 0.7804482 1.1854024
y4 0.6085176 0.6424744 1.1634848 0.7817677 0.7812585
y5  0.4709212 0.4482539 0.7296253 0.5596752 0.5575414

Residual Deviance: 540.0803
AIC: 580.0803
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The vglm function for ordinal models

The vglm function in the VGAM library can also fit a wide variety of ordinal models.
Many examples of the use of vglm for various ordinal-response analyses are available
at the website for my book, Analysis of Ordinal Categorical Data (2nd ed., 2010),
www.stat.ufl.edu/~aa/ordinal/ord.html, and several of these are also shown below
For example, for the cumulative logit model fitted to the happiness data of Table 8.5
of the textbook, entering each multinomial observation as a set of indicators that
indicates the response category, letting race = 0 for white and 1 for black, and letting

traumatic be the number of traumatic events,

> happy <- read.table("happy.dat", header=TRUE)

0

= O O O O O O

O O OO O O oo

> happy
race traumatic yl1 y2 y3

1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 0 0 1
8 0 0 0
94 1 2 0
95 1 3 0
96 1 3 0
97 1 3 0

> library(VGAM)

O B O

= O O =

> fit <- vglm(cbind(yl,y2,y3) ~ race + traumatic,
family=cumulative(parallel=TRUE), data=happy)

> summary(fit)

Coefficients:

Value Std.

(Intercept):1 -0.51812
(Intercept):2 3.40060
race -2.03612
traumatic -0.40558

O O O O

Names of linear predictors:

Error t value

.33819 -1.5320
.56481 6.0208
.69113 -2.9461
.18086 -2.2425

logit (P[Y<=1]), logit(P[Y<=2])

Residual Deviance: 148.407 on 190 degrees of freedom
Log-likelihood: -74.2035 on 190 degrees of freedom

Number of Iterations:

> fit.inter <- vglm(cbind(yl,y2,y3) ~

5

family=cumulative(parallel=TRUE), data=happy)

> summary(fit.inter)
Coefficients:

Value Std. Error t value
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(Intercept):1 -0.43927 0.34469 -1.2744
(Intercept):2 3.52745 0.58737 6.0055
race -3.05662 1.20459 -2.5375
traumatic -0.46905 0.19195 -2.4436
race:traumatic 0.60850 0.60077 1.0129

Residual Deviance: 147.3575 on 189 degrees of freedom
Log-likelihood: -73.67872 on 189 degrees of freedom
Number of Iteratiomns: 5

The parallel=TRUE option requests the proportional odds version of the model with
the same effects for each cumulative logit. Then entering fitted(fit) would produce the
estimated probabilities for each category for each observation. Here, we also fitted the
model with an interaction term, which does not provide a significantly better fit.

To use vglm to fit the cumulative logit model not having the proportional odds
assumption, we take out the parallel=TRUE option. Then, we do a likelihood-ratio
test to see if it gives a better fit:

> fit2 <- vglm(cbind(yl,y2,y3) ~ race + traumatic, family=cumulative,
data=happy)
> summary(£it2)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.56605 0.36618 -1.545821
(Intercept):2 3.48370 0.75950 4.586850

race:1 -14.01877 322.84309 -0.043423
race:2 -1.84673 0.76276 -2.421095
traumatic:1 -0.34091 0.21245 -1.604644
traumatic:2 -0.48356 0.27524 -1.756845

Residual Deviance: 146.9951 on 188 degrees of freedom
Log-likelihood: -73.49755 on 188 degrees of freedom
Number of Iterations: 14

> pchisq(deviance(fit)-deviance(fit2) ,df=df.residual(fit)-df.residual(fit2),lower.tail=FALSE)
[1] 0.4936429

Note that the ML effect estimate of race for the first logit is actually —oo, reflecting
the lack of any black subjects in the first happiness category.

This function can also fit the partial proportional odds model. Here is an example
with cumulative logit link for the mental impairment data on p. 62 of the 2nd edition
of my book, Analysis of Ordinal Categorical Data (with proportional odds for the life
events effect):

> fit < -vglm(impair ~ ses + life, family=cumulative(parallel=FALSE"ses))

> summary (fit)
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Coefficients:

Estimate Std. Error

(Intercept):1 -0.17660
(Intercept):2 1.00567

(Intercept):3 2.39555
ses:1 0.98237
ses:2 1.54149
ses:3 0.73623
life -0.32413

z value
0.69506 -0.25408
0.66327 1.51623
0.77894 3.07539
0.76430 1.28531
0.73732 2.09066
0.81213 0.90655
0.12017 -2.69736

Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2]), logit(P[Y<=3])

Residual deviance: 97.36467 on 113 degrees of freedom
Log-likelihood: -48.68234 on 113 degrees of freedom

For the same data, to fit the cumulative probit model with common effects for

each probit, we use

fit.probit <- vglm(cbind(yl,y2,y3) ~ race + traumatic,
family=cumulative(link=probit, parallel=TRUE), data=happy)

> summary(fit.probit)

Coefficients:

Value Std. Error t value

(Intercept):1 -0.34808
(Intercept):2 1.91607
race -1.15712
traumatic -0.22131

0.200147 -1.7391
0.282872 6.7736
0.378716 -3.0554
0.098973 -2.2361

Residual Deviance: 148.1066 on 190 degrees of freedom
Log-likelihood: -74.0533 on 190 degrees of freedom

Number of Iterations: 5

To fit the adjacent-categories logit model to the same data, we use

> fit.acat <- vglm(cbind(y1l,y2,y3) ~ race + traumatic,
family=acat (reverse=TRUE, parallel=TRUE), data=happy)

> summary(fit.acat)

Coefficients:

Value Std. Error t value

(Intercept):1 -0.49606
(Intercept):2 3.02747
race -1.84230
traumatic -0.35701

.31805 -1.5597
.567392 5.2751
.64190 -2.8701

0
0
0
0.16396 -2.1775

Names of linear predictors: log(P[Y=11/P[Y=2]), log(P[Y=2]1/P[Y=3])
Residual Deviance: 148.1996 on 190 degrees of freedom
Log-likelihood: -74.09982 on 190 degrees of freedom

Number of Iterations: 5
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To fit the continuation-ratio logit model to the same data, one direction for forming
the sequential logits yields the results:

> fit.cratio <- vglm(cbind(y1l,y2,y3) ~ race + traumatic,
family=cratio(reverse=TRUE, parallel=TRUE), data=happy)

> summary(fit.cratio)

Coefficients:
Value Std. Error t value

(Intercept):1 -0.45530 0.32975 -1.3808
(Intercept):2 3.34108 0.56309 5.9335
race -2.02555 0.67683 -2.9927
traumatic -0.38504 0.17368 -2.2170

Names of linear predictors: logit(P[Y<2|Y<=2]), logit(P[Y<3|Y<=3])
Residual Deviance: 148.1571 on 190 degrees of freedom
Log-likelihood: -74.07856 on 190 degrees of freedom

Number of Iterations: 5

The more common form of continuation-ratio logit is obtained by instead using RE-
VERSE=FALSE in the model-fitting statement.

Other multinomial functions

For the proportional odds version of cumulative logit models, you can alternatively
use the polr function in the MASS library, with syntax shown next. However, the data
file then needs the response as a factor vector, so we first put the data from the above
examples in that form.

library (MASS)

response <- matrix(0,nrow=97,ncol=1)

response <- ifelse(yl==1,1,0)

response <- ifelse(y2==1,2,resp)

response <- ifelse(y3==1,3,resp)

y <- factor(response)

polr(y ~ race + traumatic, data=happy)

Call:

polr(formula = y ~ race + traumatic, data=happy)

V V V V V V VvV

Coefficients:
race traumatic
2.0361187 0.4055724

Intercepts:
112 213
-0.5181118 3.4005955

Residual Deviance: 148.407
AIC: 156.407
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The profilelike.polr function in the ProfileLikelihood library can provide profile
likelihood confidence intervals for the proportional odds version of the cumulative
logit model. See
cran.r-project.org/web/packages/ProfileLikelihood/ProfileLikelihood.pdfl

The ordinal package at CRAN can fit cumulative link models. See
WWW.cran.r-project.org/package=ordinal/. Apparently it can also fit models with
random effects, using Gauss-Hermite quadrature or a Laplace approximation.

The MNP package can fit multinomial probit models using Bayesian methods. See

imai.princeton.edu/research/files/MNPjss.pdf

Chapters 9-10: Loglinear Models

Since loglinear models are special cases of generalized linear models with Poisson ran-
dom component and log link function, they can be fitted with the glm function. To il-
lustrate this, the following code shows fitting the models (A, C, M) and (AC, AM,CM)
for Table 9.3 for the high school survey about use of alcohol, cigarettes and marijuana.
The code also shows forming Pearson and standardized residuals for the homogeneous
association model, (AC, AM,CM). For factors, R sets the value equal to 0 at the first
category rather than the last as in the text examples.

> drugs <- read.table("drugs.dat",header=TRUE)
drugs
a c m count

v

1 yes yes yes 911

2 yes yes no 538

3 yes mno yes 44

4 yes no no 456

5 no yes yes 3

6 no yes no 43

7 mno mno yes 2

8 mno no mno 279

> A <- factor(a); C <- factor(c); M <- factor(m)
> indep <- glm(count ~ A + C + M, family=poisson(link=log), data=drugs)
> summary(indep) % loglinear model (A, C, M)
Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 6.29154 0.03667 171.568 < 2e-16 ***

A2 -1.78511 0.05976 -29.872 < 2e-16 *x*x*
c2 -0.64931 0.04415 -14.707 < 2e-16 *x**
M2 0.31542 0.04244  7.431 1.08e-13 *x*x*

Null deviance: 2851.5 on 7 degrees of freedom
Residual deviance: 1286.0 on 4 degrees of freedom
AIC: 1343.1

Number of Fisher Scoring iterations: 6
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> homo.assoc <- update(indep, .”. + A:C + A:M + C:M)
> summary (homo.assoc) # loglinear model (AC, AM, CM)

Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 6.81387 0.03313 205.699 < 2e-16 ***

A2 -5.52827 0.45221 -12.225 < 2e-16 **x*
Cc2 -3.01575 0.15162 -19.891 < 2e-16 **x*
M2 -0.52486 0.05428 -9.669 < 2e-16 *x**

A2:C2 2.05453 0.17406 11.803 < 2e-16 **x*
A2:M2 2.98601 0.46468 6.426 1.31e-10 **x*
C2:M2 2.84789 0.16384 17.382 < 2e-16 **x*

Null deviance: 2851.46098 on 7 degrees of freedom
Residual deviance: 0.37399 on 1 degrees of freedom
AIC: 63.417

Number of Fisher Scoring iterations: 4

\

library(car)

Anova(homo.assoc) # likelihood-ratio tests for pairwise conditional associations
LR Chisq Df Pr(>Chisq)

:C 187.38 1 < 2.2e-16

M 91.64 1 < 2.2e-16

M 497.00 1 < 2.2e-16

\

Q= =

> pearson.resid <- resid(homo.assoc, type="pearson") # Pearson residuals
> sum(pearson.resid”2) # Pearson goodness-of-fit statistic
[1] 0.4011006
> leverage <- lm.influence(homo.assoc)$hat # leverage values
> std.resid <- pearson/sqrt(l - leverage) # standardized residuals
> std.resid <- rstandard(homo.assoc, type="pearson")
# other way to get standardized residuals
> expected <- fitted(homo.assoc) # estimated expected frequencies
cbind(count, expected, pearson.resid, std.resid)
count expected pearson.resid std.resid
911 910.38317 0.02044342 0.6333249
538 538.61683 -0.02657821 -0.6333249
44 44.61683 -0.09234564 -0.6333249
456 455.38317 0.02890528 0.6333249
3 3.61683 -0.32434086 -0.6333250
43 42.38317 0.09474777 0.6333249
2 1.38317 0.52447888 0.6333250
279 279.61683 -0.03688791 -0.6333249

\

00 N O O W N -

By the results of Sec. 9.5, we get the same results for the association between
marijuana use and each of alcohol use and cigarette use if we treat the data as four
binomials (instead of eight Poissons) and model the logit for marijuana use in terms
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of additive effects for alcohol use and cigarette use.

> drugs2 <- read.table("drugs_binomial.dat", header=TRUE)
> drugs2

A C M_yes M_no n
1 yes yes 911 538 1449
2 yes no 44 456 500
3 no yes 3 43 46
4 no no 2 279 281
> attach(drugs2)
> alc <- factor(A); cig <- factor(C)
> fit.logistic <- glm(M_yes/n ~ alc + cig, weights=n,

family=binomial(link=logit))
> summary(fit.logistic)
Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -5.3090 0.4752 -11.172 < 2e-16
alcyes 2.9860 0.4647 6.426 1.31e-10
cigyes 2.8479 0.1638 17.382 < 2e-16

Null deviance: 843.82664 on 3 degrees of freedom

Residual deviance: 0.37399 on 1 degrees of freedom

The loglin function in the MASS library can fit loglinear models using iterative

proportional fitting, reporting parameter estimates using constraints whereby they
sum to zero (rather than a baseline equaling 0). The loglm function allows the models
to be specified and fitted in a manner similar to using glm.

Association models

Following is an example for the linear-by-linear association model and the row effects
and columns effects models (with scores 1, 2, 4, 5) fitted to Table 10.3 on premarital
sex and teenage birth control.

vV V.V V Vv VvV

sexdata <- read.table("sex.dat", header=TRUE)
attach(sexdata)

uv <- premar*birth

premar <- factor(premar); birth <- factor(birth)

LL.fit <- glm(count ~ premar + birth + uv, family=poisson)
summary (LL.fit)

Coefficients:

Estimate Std. Error z value Pr(>|zl)

(Intercept) 4.10684 0.08951 45.881 < 2e-16 *xx*

premar?2 -1.64596 0.13473 -12.216 < 2e-16 ***
premar3 -1.77002 0.16464 -10.751 < 2e-16 *x*x*
premar4 -1.75369 0.23432 -7.484 7.20e-14 =xx*
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birth2 -0.46411 0.11952 -3.883 0.000103 *x*x*

birth3 -0.72452 0.16201 -4.472 7.74e-06 ***
birth4 -1.87966 0.24910 -7.546 4.50e-14 x*x**
uv 0.28584 0.02824 10.122 < 2e-16 ***

Null deviance: 431.078 on 15 degrees of freedom
Residual deviance: 11.534 on 8 degrees of freedom
AIC: 118.21

Number of Fisher Scoring iterations: 4

>u <- c(1,1,1,1,2,2,2,2,4,4,4,4,5,5,5,5)

> v <- c(1,2,4,5,1,2,4,5,1,2,4,5,1,2,4,5)

> row.fit <- glm(count ~ premar + birth + u:birth, family=poisson)
> summary (row.fit)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.98722 0.14624 34.102 < 2e-16 *xx*
premar?2 -0.65772 0.13124 -5.011 5.40e-07 *x**
premar3 0.46664 0.16266  2.869 0.004120 *x*
premar4 1.50195 0.17952  8.366 < 2e-16 ***
birth2 -0.31939 0.19821 -1.611 0.107103
birth3 -0.72688 0.20016 -3.632 0.000282 ***
birth4 -1.49032 0.23745 -6.276 3.47e-10 *xx*
birthl:u -0.59533 0.06555 -9.082 < 2e-16 *xx*
birth2:u -0.40543 0.06068 -6.681 2.37e-11 ***
birth3:u -0.12975 0.05634 -2.303 0.021276 *
birth4:u NA NA NA NA

Null deviance: 431.078 on 15 degrees of freedom
Residual deviance: 8.263 on 6 degrees of freedom
AIC: 118.94

Number of Fisher Scoring iterations: 4

> column.fit <- glm(count
> summary(column.fit)

premar + birth + premar:v, family=poisson)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.40792 0.26947 5.225 1.74e-07 *xx*
premar2 -0.68466 0.29053 -2.357 0.018444 x

premar3 0.78235 0.22246  3.517 0.000437 *xx*
premar4 2.11167 0.18958 11.138 < 2e-16 *x*x*
birth2 0.54590 0.11723  4.656 3.22e-06 *xx*
birth3 1.59262 0.14787 10.770 < 2e-16 *xx*
birth4 1.51018 0.16420 9.197 < 2e-16 *x*x*
premarl:v 0.58454 0.05930 9.858 < 2e-16 ***
premar2:v 0.49554 0.07990  6.202 5.57e-10 *xx*
premar3:v 0.20315 0.06538 3.107 0.001890 *x*
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premar4:v NA NA NA NA
Null deviance: 431.0781 on 15 degrees of freedom
Residual deviance: 7.5861 on 6 degrees of freedom

AIC: 118.26

Number of Fisher Scoring iterations: 4

Joseph Lang’s mph.fit function can fit generalized loglinear models (Section 10.5.1)
and other much more general “multinomial-Poisson homogeneous” models such as
covered in Lang (2004, 2005):

www.stat.uiowa.edu/~jblang/mph.fitting/index.htm

Multiplicative models such as RC and stereotype

The gnm add-on package for R, developed by David Firth and Heather Turner at the
Univ. of Warwick, can fit multiplicative models such as Goodman’s RC association
model for two-way contingency tables and Anderson’s stereotype model for ordinal
multinomial responses:

www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software

Thomas Yee’s VGAM package mentioned for Chapter 8 above can also fit Goodman’s
RC association model and Anderson’s stereotype model, as well as bivariate logistic
and probit models for bivariate binary responses.

Greenacre and Nenadic have developed the ca package for simple, multiple, and
joint correspondence analysis:

www.statmethods.net/advstats/ca.html
cran.r-project.org/web/packages/ca/ca.pdf
The ACD package can fit loglinear models when data are missing. See

cran.r-project.org/web/packages/ACD/ACD.pdf

Chapter 11: Models for Matched Pairs
Confidence interval for difference of proportions with matched pairs

For the score CI due to Tango (1998) and the adjusted Wald CI proposed by Agresti
and Min (2005) that forms the ordinary Wald CI after adding 0.50 to each cell, see
www.stat.ufl.edu/~aa/cda/R/matched/R2_matched/index.html

The are also available in the PropCls package.

> library(PropCIs)

> scoreci.mp(54, 16, 433, 0.95); diffpropci.Wald.mp(54, 136, 433, 0.95)

95 percent confidence interval:

-0.12651019 -0.05148492 95Y, score CI for difference of marginal probabilities
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95 percent confidence interval:

0.1295873 0.2491655 95% Wald CI for difference of marginal probabilities

> diffpropci.mp(54, 136, 433, 0.95)

95 percent confidence interval:

0.1288091 0.2482024 95%, adjusted CI for difference of marginal probabilities

McNemar test

The function mcnemar.test can conduct McNemar’s test for matched pairs. For ex-
ample, for Table 11.1,

ratings <- matrix(c(175, 16, 54, 188), ncol=2, byrow=TRUE,

+ dimnames = 1list("2004 Election" = c("Democrat", "Republican"),

+ "2008 Election" = c("Democrat", "Republican")))
> mcnemar.test(ratings, correct=FALSE)

where a continuity correction is made unless “correct=FALSE” is specified.

Bradley—Terry models

The Bradley—Terry model can be fitted using the glm function by treating it as a
generalized linear model. It can also be fitted using specialized functions, such as with
the brat function in Thomas Yee’s VGAM library mentioned above:

rss.acs.unt.edu/Rdoc/library/VGAM/html/brat.html
or by Prof. David Firth as described at

www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/sdftware/
bradleyterry

www.jstatsoft.org/v12/i01

Chapter 12: Clustered Categorical Responses: Marginal
Models

GEE methods

Laura Thompson’s manual at
https://home.comcast.net/~1thompson221/Splusdiscrete2.pdf.

describes several packages for doing GEE analyses. For instance, in the following
code we use the gee function in the gee library to analyze the opinions about abortion
data analyzed in Sec. 13.3.2 with both marginal models and random effects models.

> abortion
gender response question case

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
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4 1 1 1 2
5 1 1 2 2
6 1 1 3 2
7 1 1 1 3
8 1 1 2 3
9 1 1 3 3
5545 0 0 1 1849
5546 0 0 2 1849
5547 0 0 3 1849
5548 0 0 1 1850
5549 0 0 2 1850
5550 0 0 3 1850

> z1 <- ifelse(abortion$question==1,1,0)
> z2 <- ifelse(abortion$question==2,1,0)
> z3 <- ifelse(abortion$question==3,1,0)

> library(gee)

> fit.gee <- gee(response ~ gender + zl + z2, id=case, family=binomial,
+ corstr="exchangeable", data=abortion)

> summary(fit.gee)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Exchangeable
Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.125325730 0.06782579 -1.84775925 0.06758212 -1.85442135
gender 0.003437873 0.08790630 0.03910838 0.08784072 0.03913758
zl 0.149347107 0.02814374 5.30658404 0.02973865 5.02198729
z2 0.052017986 0.02815145 1.84779075 0.02704703 1.92324179

Working Correlation

[,1] [,2] [,3]
[1,]1 1.0000000 0.8173308 0.8173308
[2,] 0.8173308 1.0000000 0.8173308
[3,] 0.8173308 0.8173308 1.0000000

> fit.gee2 <- gee(response ~ gender + zl + z2, id=case, family=binomial,
+ corstr="independence", data=abortion)

> summary(fit.gee2)
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Link: Logit
Variance to Mean Relation: Binomial

Correlation Structure: Independent
Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.125407576 0.05562131 -2.25466795 0.06758236 -1.85562596
gender 0.003582051 0.05415761 0.06614123 0.08784012 0.04077921
z1 0.149347113 0.06584875 2.26803253 0.02973865 5.02198759
z2 0.052017989 0.06586692 0.78974374 0.02704704 1.92324166

Working Correlation

[,11 [,21 [,3]
[1,] 1 0 0
[2,1 0 1 0
[3,] 0 0 1

From the geepack library, the function geeglm performs fitting of clustered data
using the GEE method. See

www.jstatsoft.org/v15/i02/paper

for details, including an example for a binary response. Possible working correla-
tion structures include independence, exchangeable, autoregressive (arl), and unstruc-
tured. In addition to the sandwich covariance matrix (which is the default), when the
number of clusters is small one can find a jackknife estimator. Fitting statements have
the form:

> geeglm(y ~ x1 + x2, family=binomial, id=subject, corst=’’exchangeable’’)

The library repolr has a function repolr for GEE methods with ordinal responses:
cran.r-project.org/web/packages/repolr/repolr.pdf

Here is an example for the insomnia data of Table 12.3, using the independence
working correlation structure (Thanks to Anestis Touloumis).

> insomnia<-read.table("insomnia.dat",header=TRUE)
> insomnia<-as.data.frame(insomnia)
> insomnia

case treat occasion outcome

1 1 0 1
1 1 1 1
2 1 0 1
2 1 1 1
3 1 0 1
3 1 1 1
4 1 0 1
4 1 1 1
5 1 0 1
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239 0 0 4
239 0 1 4

> library(repolr)
> fit <- repolr(formula = outcome

treat + occasion + treat * occasion,
+ subjects="case", data=insomnia, times=c(1,2), categories=4,
corstr = "independence")

> summary (fit$gee)

Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z
factor(cuts)l -2.26708899 0.2027367 -11.1824294 0.2187606 -10.3633343

factor(cuts)2 -0.95146176 0.1784822 -5.3308499 0.1809172 -5.2591017
factor(cuts)3 0.35173977 0.1726860 2.0368745 0.1784232 1.9713794
treat 0.03361002 0.2368973 0.1418759 0.2384374  0.1409595
occasion 1.03807641 0.2375992 4.3690229 0.1675855 6.1943093
treat:occasion 0.70775891 0.3341759 2.1179234 0.2435197 2.9063728

ML for marginal models

Joseph Lang at the Univ. of lowa has R and S-Plus functions such as mph.fit for
ML fitting of marginal models (when the explanatory variables are categorical and
not numerous) through the generalized loglinear model (10.10). This uses the con-
straint approach with Lagrange multipliers. The function hmmm at CRAN developed
by R. Colombi, S. Giordano, M. Cazzaro, and J. Lang can fit hierarchical multino-
mial marginal models (Bergsma and Rudas 2002). The models can impose inequality
constraints on the parameters. For details, see

cran.r-project.org/web/packages/hmmm/index.html

Chapters 13—14: Clustered Categorical Responses: Ran-
dom Effects Models

Generalized linear mixed models

The function Imer (linear mixed effects in R) in the R package Matriz can be used to
fit generalized linear mixed models. See the Gelman and Hill (2007) text, such as Sec.
12.4. See also the Imej package, described in
http://cran.r-project.org/web/packages/lmed/vignettes/Theory.pdf

These use adaptive Gauss—Hermite quadrature.

The function glmm in the repeated library can fit generalized linear mixed models
using Gauss—Hermite quadrature methods, for families including the binomial and
Poisson:

rss.acs.unt.edu/Rdoc/library/repeated/html/glmm.html

The package glmmAK can also fit them, with a Bayesian approach with priors for the
fixed effects parameters:

cran.r-project.org/web/packages/glmmAK/glmmAK . pdf
The function glmmML in the glmmML package can fit GLMMs with random intercepts
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by adaptive Gauss—Hermite quadrature. For instance, in the following code we use
it to analyze the opinions about abortion data analyzed in Sec. 13.3.2 with random
effects models, employing Gauss-Hermite quadrature with 75 quadrature points and a
starting value of 9 for the estimate of o.

> abortion <- read.table("abortion.dat",header=TRUE)
> abortion
gender response question case

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
4 1 1 1 2
5 1 1 2 2
6 1 1 3 2
5548 0 0 1 1850
5549 0 0 2 1850
5550 0 0 3 1850
> z1 <- ifelse(abortion$question==1,1,0)
> z2 <- ifelse(abortion$question==2,1,0)
> 23 <- ifelse(abortion$question==3,1,0)
> library(glmmML)
> fit.glmm <- glmmML(response ~ gender + zl + z2,
+ cluster=abortion$case, family=binomial, data=abortion,
+ method = "ghq", n.points=70, start.sigma=9)
> summary(fit.glmm)

coef se(coef) z Pr(>lzl)
(Intercept) -0.61874 0.3777 -1.63839 1.01e-01
gender 0.01259 0.4888 0.02575 9.79e-01
z1 0.83470 0.1601 5.21347 1.85e-07
z2 0.29240 0.1567 1.86622 6.20e-02

Scale parameter in mixing distribution: 8.736 gaussian
Std. Error: 0.5421
LR p-value for H_O: sigma = 0: O

The function glmmPQL in the MASS library can fit GLMMs using penalized quasi-
likelihood. The R package MCMCglmm can fit them with Markov Chain Monte Carlo
methods:

cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes. pdf

For a text on GLMMs using R, see Multivariate Generalized Linear Mized Models
by D. M. Berridge and R. Crouchley, published 2011 by CRC Press. The emphasis is
on multivariate models, using the Sabre software package in R.

Item response models

Dimitris Rizopoulos from Leuven, Belgium has prepared a package ltm for Item Re-
sponse Theory analyses. This package can fit the Rasch model, the two-parameter
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logistic model, Birnbaum’s three-parameter model, the latent trait model with up to
two latent variables, and Samejima’s graded response model:

med.kuleuven.be/biostat/software/software.htm#LatentIRT

Latent class models

Steve Buyske at Rutgers has prepared a library for fitting latent class models with the
EM algorithm:

www.stat.rutgers.edu/home/buyske/software.html

Beta-binomial and quasi-likelihood analyses

The following shows the beta-binomial and quasi-likelihood analyses of the teratology
data presented in Sec. 14.3.4, continuing with the analyses shown above at the end of
the R discussion for Chapter 4. Beta-binomial modeling is an option with the vglm
function in the VGAM library (using Fisher scoring) and the betabin function in the
aod library. It seems that vglm in VGAM uses Fisher scoring and hence reports SE
values based on the expected information matrix, whereas betabin in aod uses the
observed information matrix. Quasi-likelihood with the beta-binomial type variance
is available with the guasibin function in the aod library. (In the following example,
the random part of the statement specifies the same overdispersion for each group).
For details about the aod package, see

cran.r-project.org/web/packages/aod/aod.pdf

Again, we borrow heavily from Laura Thompson’s excellent manual.

> group <- rats$group
> library(VGAM) # We use Thomas Yee’s VGAM library
> fit.bb <- vglm(cbind(y,n-y) ~ group, betabinomial (zero=2,irho=.2),
data=rats)
# two parameters, mu and rho, and zero=2 specifies 0 covariates for 2nd
# parameter (rho); irho is the initial guess for rho in beta-bin variance.
> summary(fit.bb) # fit of beta-binomial model

Coefficients:
Value Std. Error t value

(Intercept):1 1.3458 0.24412 5.5130
(Intercept):2 -1.1458 0.32408 -3.5355 # This is logit(rho)
group?2 -3.1144 0.51818 -6.0103
group3 -3.8681 0.86285 -4.4830
group4 -3.9225 0.68351 -5.7387

Names of linear predictors: logit(mu), logit(rho)
Log-likelihood: -93.45675 on 111 degrees of freedom

> logit(-1.1458, inverse=T) # This is a function in VGAM
[1] 0.2412571 # The estimate of rho in beta-bin variance
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> install.packages("aod") # another way to fit beta-binomial models
> library(aod)

> betabin(cbind(y,n-y) ~ group, random="1,data=rats)

Beta-binomial model

betabin(formula = cbind(y, n - y) ~ group, random = ~1, data = rats)

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z])
(Intercept) 1.346e+00 2.481e-01 5.425e+00 5.799e-08
group?2 -3.115e+00 5.020e-01 -6.205e+00 5.485e-10
group3 -3.869e+00 8.088e-01 -4.784e+00 1.722e-06
group4 -3.924e+00 6.682e-01 -5.872e+00 4.293e-09

Overdispersion coefficients:
Estimate Std. Error =z value Pr(> z)
phi. (Intercept) 2.412e-01 6.036e-02 3.996e+00 3.222e-05

> quasibin(cbind(y,n-y) ~ group, data=rats) # QL with beta-bin variance
Quasi-likelihood generalized linear model

quasibin(formula = cbind(y, n - y) ~ group, data = rats)

Fixed-effect coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) 1.2124 0.2233 5.4294 < le-4
group2 -3.3696 0.5626 -5.9893 < le-4
group3 -4.5853 1.3028 -3.5197 4e-04
group4 -4.2502 0.8484 -5.0097 < le-4

Overdispersion parameter:
phi
0.1923

Pearson’s chi-squared goodness-of-fit statistic = 54.0007

Negative binomial and other count models

As shown above in the Chapter 4 description for R, the glm.nb function in the MASS
library is a modification of the glm function to handle negative binomial regression
models:

stat.ethz.ch/R-manual/R-patched/library/MASS/html/glm.nb.html

The negbin function in the aod package can also handle negative binomial regres-
sion:

cran.r-project.org/web/packages/aod/aod.pdf

Thomas Yee’'s VGAM package can also fit zero-inflated Poisson models and nega-
tive binomial models.
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Chapter 15: Non-Model-Based Classification and Cluster-
ing

Discriminant analysis

In the MASS library there is a Ida function for linear discriminant analysis and a gda
function for quadratic discriminant analysis:

stat.ethz.ch/R-manual/R-patched/library/MASS/html/1lda.html
stat.ethz.ch/R-manual/R-patched/library/MASS/html/qda.html

For example, for the horseshoe crab example in the text, you can use the code

> lda(y ~ width + color, data=Crabs)

Classification trees

In the tree library,
cran.r-project.org/web/packages/tree/tree.pdf

there is a tree function for binary recursive partitioning, and a prune.tree function
for pruning them.

See also the rpart package and its rpart function for recursive partitioning to
construct classification trees and prune function for pruning them:

cran.r-project.org/web/packages/rpart/index.html

For example, for the horseshoe crab data with width and quantitative color as
predictors,

library(tree)

attach(crabs)

fit <- rpart(y ~ color + width, method="class")
plot (fit)

text (fit)

printcp(fit)

V V. V V Vv VvV

Classification tree:
rpart(formula = y ~ color + width, method = "class")

Variables actually used in tree construction:
[1] color width

Root node error: 62/173 = 0.35838

n= 173

CP nsplit rel error xerror xstd
1 0.161290 0 1.00000 1.00000 0.101728
2 0.080645 1 0.83871 1.03226 0.102421
3 0.064516 2 0.75806 0.96774 0.100972
4 0.048387 3 0.69355 0.93548 0.100149
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5 0.016129 4 0.64516 0.85484 0.097794
6 0.010000 6 0.61290 0.82258 0.096728
> plotcp(fit)

> summary (fit)

> plot(fit, uniform=TRUE,

main="Classification Tree for Crabs")

pfit2 <- prune(fit, cp= 0.02)

plot(pfit2, uniform=TRUE,

main="Pruned Classification Tree for Crabs")
plot(pfit2, uniform=TRUE,

+ main="Pruned Classification Tree for Crabs")
> text(pfit2, use.n=TRUE, all=TRUE, cex=.8)

> post(pfit2, file = "ptree2.ps",

vV Vv

title = "Pruned Classification Tree for Crabs")
post(pfit2, file = "ptree2.ps",
+ title = "Pruned Classification Tree for Crabs")

Cluster analysis

The dist function in R computes distances to be used in a cluster analysis:

stat.ethz.ch/R-manual/R-patched/library/stats/html/dist.html

The method= “binary” option invokes the Jaccard-type dissimilarity distance discussed
in the text. The method= “manhattan” option invokes Ll-norm distance, which for
binary data is the total number of variables that do not match. The hclust function

can perform basic hierarchical cluster analysis, using inputted distances:

stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

For example, for the text example on election clustering using only the states in Table
15.5, with the manhattan distance and the average linkage method for summarizing

dissimilarities between clusters,

> x <- read.table("election.dat", header=F)
> x
Vi V2 V3 v4 V5 V6 V7 V8 V9
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> distances <- dist(x,method="manhattan")
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> states <- c("AZ", "CA", "CO", "FL", "IL", "MA", "MN",
"MO", "NM", "NY", "OH", "TX", "VA", "WY")

democlust <- hclust(distances,"average")

postscript(file="dendrogram-election.ps")

plot(democlust, labels=states)

graphics.off ()

vV V V V

Chapter 16: Large- and Small-Sample Theory for Multino-
mial Models

See the discussion for Chapters 1-3 above for information about special R functions
for small-sample confidence intervals for association measures in contingency tables.

Alessandra Brazzale has prepared the hoa package for higher-order asymptotic
analyses, including approximate conditional analysis for logistic and loglinear models:

cran.r-project.org/web/packages/cond/vignettes/Rnews-paper.pdf

www.isib.cnr.it/~brazzale/lib.html
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