Simple Linear Regression - Bollywood Movie Revenues and Budgets

Data: Sample of $\mathrm{n}=190$ Bollywood films released between 2013-2017
Goal: Observe the relationship between Revenues and Budgets. After looking at several plots (see plots from program), let $\mathbf{Y}=\boldsymbol{\operatorname { l o g }}$ (Revenues) and $\mathbf{X}=\boldsymbol{\operatorname { l o g } (B u d g e t) , ~ w h i c h ~ s h o w s ~ a ~ l i n e a r ~ r e l a t i o n ~ a n d ~ c o n s t a n t ~ v a r i a n c e . ~}$
Q.1. Give the simple linear regression model: \qquad
Q.2. Give the 3 (unknown) parameters and their interpretations:

Parameter 1: \qquad Parameter 2: \qquad Parameter 3: \qquad
Q.3. After fitting the regression model, give point estimates of the 3 parameters and the fitted equation.
\qquad
$a=$

$$
b=
$$ $\sigma=$ $y=$

Q.4. "Race 2" had Budget $=65 \quad(\log ($ Budget $)=x=4.17)$ and a Revenue $=96.34(\log (\operatorname{Rev})=y=4.57)$, give its predicted y, its residual and its predicted Revenue (exponentiate predicted y).
\qquad $e=y-\hat{y}=$ \qquad $\exp (\hat{y})=$ \qquad
Q.5. Give the correlation between:
i) Budget,Revenue \qquad Q.6. Give the sums of squares:
ii) Y, X \qquad iii) Spearman r \qquad

Total: $T S S=$ \qquad Regression: $S S R=$ \qquad Error (Residual): $S S E=$ \qquad
Q.7. Give the coefficient of determination r^{2} and its interpretation:
$r^{2}=$ \qquad Interpretation: \qquad
Q.8. Test whether there is an association between Y and $\mathrm{X}(\mathrm{t}$-test $): b=$ \qquad $s e\{b\}=$ \qquad
H_{0} : \qquad H_{A} : \qquad Test Stat: \qquad Rej Reg. \qquad $P=$ \qquad Q.9.Give the 95% Confidence Interval for β :

Estimate $\pm t^{*}$ se $=$ \qquad $95 \% \mathrm{CI}$: \qquad
Q.10. Complete the following Analysis of Variance table:

Source	df	Sum Sq	Mean Sq	F	$F(.05)$	P-value
Regression						
Error (Residual)				$\# N / A$	$\# N / A$	$\# N / A$
Total			$\# N / A$			

