Worksheet - Introduction to Matrix Computation in R - US City Temps

Mean Temperature (F)				
A	1970 s	1980 s	1990 s	2000s
LA	$\mathbf{6 2 . 9 5}$	$\mathbf{6 3 . 4 1}$	$\mathbf{6 3 . 6 3}$	$\mathbf{6 2 . 9 7}$
Miami	$\mathbf{7 6 . 0 1}$	$\mathbf{7 6 . 2 2}$	$\mathbf{7 7 . 3 5}$	$\mathbf{7 7 . 1 8}$
Orlando	$\mathbf{7 2 . 4 4}$	$\mathbf{7 2 . 5 0}$	$\mathbf{7 3 . 1 1}$	$\mathbf{7 2 . 7 4}$

All instructions assume matrices are conformable to the operations (R will let you know if not!)

1. To create a matrix in R, enter the elements (default is by columns) separated by commas in concatenated form, followed by the numbers or rows and columns (there are many shorthand ways to do this).

A <- matrix(c(a11,a21, a31,a12,a22, a32,a31,a32, a33,a41, a42, a43), 3, 4)
2. To create an nxn Identity matrix, use $\operatorname{diag}(\mathbf{n})$
3. To obtain the transpose of the matrix A, use $\mathbf{t}(\mathbf{A})$
4. To multiply the matrix A by the scalar k, use $\mathbf{k *} \mathbf{A}$
5. To add two matrices, use $\mathbf{A}+\mathbf{B}$
6. To subtract one matrix from another, use $\mathbf{A}-\mathbf{B}$
7. To multiply 2 matrices (columns $(\mathrm{A})=\operatorname{rows}(\mathrm{B})): \mathbf{A} \% * \boldsymbol{\%} \mathbf{B}$
8. To create an mxn J matrix, $\mathbf{J}<-\boldsymbol{m a t r i x}(\mathbf{r e p}(\mathbf{1}, \mathbf{m} * \mathbf{n}), \mathbf{m}, \mathbf{n})$
9. To obtain a submatrix of A, containing rows i_{1}, \ldots, i_{r} and columns j_{1}, \ldots, j_{c} use
$\mathbf{A s}<-\mathbf{A}\left[\mathbf{c}\left(\mathbf{i}_{1}, \ldots, \mathbf{i}_{\mathbf{r}}\right), \mathbf{c}\left(\mathbf{j}_{1}, \ldots, \mathbf{j}_{\mathbf{c}}\right)\right] \quad$ if consecutive rows and columns: $\mathbf{A s}<-\mathbf{A}\left[\mathbf{i}_{1}: \mathbf{i}_{\mathbf{r}}, \mathbf{j}_{1}: \mathbf{j}_{\mathbf{c}}\right]$
10. To obtain a submatrix containing a subset of rows: $\mathbf{A r}<-\mathbf{A}\left[\mathbf{c}\left(\mathbf{i}, \ldots, \mathbf{i}_{\mathbf{r}}\right)\right.$,]
11. To obtain a submatrix containing a subset of rows: $\mathbf{A c}<-\mathbf{A}[, \mathbf{c}(\mathbf{j} 1, \ldots, \mathbf{j} \mathbf{c})]$

Using these commands:

A. Create the matrix \mathbf{A}
B. Create a 3×1 vector of 1 's ($\mathbf{j} 3$), a 4×1 vector of 1 's ($\mathbf{j} 4$), a 3×3 identity matrix ($\mathbf{I 3}$), a 3×3 matrix of 1 's (J33), a $4 x 4$ identity matrix (I4), a 4×4 matrix of 1 's (J44)

Using only the matrices and vectors above:

C. Obtain the 3×1 column vector of city means
D. Obtain the 1 x 4 column vector of decade means
E. Create the matrix of mean temperatures in Celsius $C=(5 / 9)(F-32)$
F. Obtain the variance-covariance matrix of the decade temperatures $\mathbf{S} _\mathbf{c o l}=(1 /(3-1)) \mathbf{A}^{\prime}(\mathbf{I} 3-\mathbf{J 3 3}) \mathbf{A}$
G. Obtain the variance-covariance matrix of the city temperatures $\mathbf{S} _\mathbf{r o w}=(1 /(4-1)) \mathbf{A}(\mathbf{I} 4-\mathbf{J} 44) \mathbf{A}^{\prime}$
H. Obtain the submatrix containing only the Florida cities and only the decades 1970s and 2000s.
I. Generate the matrix A using equation (4.3) on page 21 of Harville using the following algorithm.

- Create an mxn matrix of 0 's where $m=3, n=4$ Anew <- matrix(rep($\mathbf{0}, \mathbf{m} * \mathbf{n}), \mathbf{m}, \mathbf{n}$)
- for (i1 in $1: m$) \{
for (i2 in 1:n) \{
e_i1 <- matrix(I33[, i1],ncol=1); u_i2 <- matrix(I44[i2 ,],ncol=4)
Anew <- Anew + A[i1,i2]* e_i1 \%*\% u_i2
\}
\}
- Show that $\mathbf{I 3 3}[\mathbf{2}] \% * \,% \mathbf{A} \% * \% \mathbf{I 4 4}[, \mathbf{3}]$ gives the temperature for the correct city/decade.

