STA 6208 – Spring 2004 – Exam 1

Print Name:

UFID:

All questions are based on the following two regression models, where SIMPLE REGRESSION refers to the case where p = 1, and X is of full column rank (no linear dependencies among the predictor variables)

Model 1:
$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i \quad i = 1, \dots, n \quad \varepsilon_i \sim NID(0, \sigma^2)$$

Model 2:
$$\mathbf{Y} = \mathbf{X}\beta + \varepsilon$$
 $\mathbf{X} \equiv n \times p'$ $\beta \equiv p' \times 1$ $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

Cochran's Theorem

Suppose \mathbf{Y} is distributed as follows with nonsingular matrix \mathbf{V} :

$$\mathbf{Y} \sim N(\mu, \mathbf{V}\sigma^2)$$
 $r(\mathbf{V}) = n$

then:

- 1. $\mathbf{Y}'\left(\frac{1}{\tau^2}\mathbf{A}\right)\mathbf{Y}$ is distributed noncentral χ^2 with:
 - (a) Degrees of freedom $= r(\mathbf{A})$
 - (b) Noncentrality parameter = $\Omega = \frac{1}{2\sigma^2} \mu' \mathbf{A} \mu$ if **AV** is idempotent
- 2. $\mathbf{Y}'\mathbf{A}\mathbf{Y}$ and $\mathbf{Y}'\mathbf{B}\mathbf{Y}$ are independent if $\mathbf{A}\mathbf{V}\mathbf{B} = \mathbf{0}$
- 3. $\mathbf{Y}'\mathbf{A}\mathbf{Y}$ and linear function $\mathbf{B}\mathbf{Y}$ are independent if $\mathbf{B}\mathbf{V}\mathbf{A} = \mathbf{0}$

1) Based on **Model 1**, derive the normal equations for the simple linear regression model.

2) Show that $\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y}) = 0$. You may do this based on either Model 1 or Model 2.

3) A simple linear regression is fit, relating first weekend revenues (Y) to advertising expenditures (X) for n = 5 randomly selected horror films:

Film	i	Sales	Ad Exp
Scarier Movie	1	25.0	8.0
I Know What You Did Last Winter	2	15.0	6.0
Rural Legend	3	12.0	4.0
Shout	4	30.0	10.0
Friday the 14th	5	18.0	7.0

Give the following matrices: \mathbf{Y} , \mathbf{X} , $\mathbf{X'X}$, $\mathbf{X'Y}$.

4) An engineer is interested in the relationship between steel thickness (X) and its breaking strengh (Y). She obtains the following matrices from a matrix computer package:

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 12 & 60\\ 60 & 360 \end{bmatrix} \quad \mathbf{X}'\mathbf{Y} = \begin{bmatrix} 120\\ 800 \end{bmatrix} \quad \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y} = 20 \quad \mathbf{Y}'(\mathbf{P} - \frac{1}{\mathbf{n}}\mathbf{J})\mathbf{Y} = 250$$

- a) Give $\hat{\beta}$ and $s^2\{\hat{\beta}\}$
- b) Give a 95% confidence interval for β_1 .
- c) Test $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$ at the $\alpha = 0.05$ significance level.

5) Write out $\frac{SS(Model)}{\sigma^2}$ and $\frac{SS(Residual)}{\sigma^2}$ for **Model 2**. Use Cochran's theorem to obtain the sampling distribution for each quantity (specifically defining all relevant terms), and show that the two quantities are independent.

6) Write **e** for **Model 2** as a linear function of **Y**, and use that to **derive** the mean vector and covariance matrix of **e**. Are the residuals uncorrelated?