STA 6208 - Spring 2004 - Exam 1

Print Name:

UFID:

All questions are based on the following two regression models, where SIMPLE REGRESSION refers to the case where $p=1$, and X is of full column rank (no linear dependencies among the predictor variables)

$$
\text { Model 1: } \quad Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}+\varepsilon_{i} \quad i=1, \ldots, n \quad \varepsilon_{i} \sim N I D\left(0, \sigma^{2}\right)
$$

Model 2: $\quad \mathbf{Y}=\mathbf{X} \beta+\varepsilon \quad \mathbf{X} \equiv n \times p^{\prime} \quad \beta \equiv p^{\prime} \times 1 \quad \varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

Cochran's Theorem

Suppose \mathbf{Y} is distributed as follows with nonsingular matrix \mathbf{V} :

$$
\mathbf{Y} \sim N\left(\mu, \mathbf{V} \sigma^{2}\right) \quad r(\mathrm{~V})=n
$$

then:

1. $\mathbf{Y}^{\prime}\left(\frac{1}{\sigma^{2}} \mathbf{A}\right) \mathbf{Y}$ is distributed noncentral χ^{2} with:
(a) Degrees of freedom $=r(\mathbf{A})$
(b) Noncentrality parameter $=\Omega=\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$ if $\mathbf{A V}$ is idempotent
2. $\mathbf{Y}^{\prime} \mathbf{A Y}$ and $\mathbf{Y}^{\prime} \mathbf{B Y}$ are independent if $\mathbf{A V B}=\mathbf{0}$
3. $\mathbf{Y}^{\prime} \mathbf{A Y}$ and linear function $\mathbf{B Y}$ are independent if $\mathbf{B V A}=\mathbf{0}$
1) Based on Model 1, derive the normal equations for the simple linear regression model.
2) Show that $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)=0$. You may do this based on either Model 1 or Model 2.
3) A simple linear regression is fit, relating first weekend revenues (Y) to advertising expenditures (X) for $n=5$ randomly selected horror films:

Film	i	Sales	Ad Exp
Scarier Movie	1	25.0	8.0
I Know What You Did Last Winter	2	15.0	6.0
Rural Legend	3	12.0	4.0
Shout	4	30.0	10.0
Friday the 14th	5	18.0	7.0

Give the following matrices: $\mathbf{Y}, \mathbf{X}, \mathbf{X}^{\prime} \mathbf{X}, \mathbf{X}^{\prime} \mathbf{Y}$.
4) An engineer is interested in the relationship between steel thickness (X) and its breaking strengh (Y). She obtains the following matrices from a matrix computer package:

$$
\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{cc}
12 & 60 \\
60 & 360
\end{array}\right] \quad \mathbf{X}^{\prime} \mathbf{Y}=\left[\begin{array}{c}
120 \\
800
\end{array}\right] \quad \mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{Y}=20 \quad \mathbf{Y}^{\prime}\left(\mathbf{P}-\frac{\mathbf{1}}{\mathbf{n}} \mathbf{J}\right) \mathbf{Y}=250
$$

a) Give $\hat{\beta}$ and $s^{2}\{\hat{\beta}\}$
b) Give a 95% confidence interval for β_{1}.
c) Test $H_{0}: \beta_{1}=0$ vs $H_{A}: \beta_{1} \neq 0$ at the $\alpha=0.05$ significance level.
5) Write out $\frac{S S(\text { Model })}{\sigma^{2}}$ and $\frac{S S(\text { Residual })}{\sigma^{2}}$ for Model 2. Use Cochran's theorem to obtain the sampling distribution for each quantity (specifically defining all relevant terms), and show that the two quantities are independent.
6) Write \mathbf{e} for Model 2 as a linear function of \mathbf{Y}, and use that to derive the mean vector and covariance matrix of \mathbf{e}. Are the residuals uncorrelated?

