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Chapter 1

Probability Distributions, Estimation,
and Testing

1.1 Introduction

Here we introduce probability distributions, and basic estimation/testing methods. Random variables are
outcomes of an experiment or data-generating process, where the outcome is not known in advance, although
the set of possible outcomes is. Random variables can be discrete or continuous. Discrete random variables
can take on only a finite or countably infinite set of possible outcomes. Continuous random variables can
take on values along a continuum. In many cases, variables of one type may be treated as or reported as the
other type. In the introduction, we will use upper-case letters (such as Y) to represent random variables,
and lower-case letters (such as y) to represent specific outcomes. Not all (particularly applied statistics)
books follow this convention.

1.1.1 Discrete Random Variables/Probability Distributions

In many applications, the result of the data-generating process is the count of a number of events of some
sort. In some cases, a certain number of trials are conducted, and the outcome of each trial is observed as a
“Success” or “Failure” (binary outcomes). In these cases, the number of trials ending in Success is observed.
Alternatively, a series of trials may be conducted until a pre-selected number of Successes are observed. In
other settings, the number of events of interest may be counted in a fixed amount of time or space, without
actually breaking the domain into a set of distinct trials.

For discrete random variables, we will use p(y) to represent the probability that the random variable Y

takes on the value y. We require that all such probabilities be bounded between 0 and 1 (inclusive), and
that they sum to 1:

P{Y =y} =p(y) 0<p(y) <1 > oy =1
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The cumulative distribution function is the probability that a random variable takes on a value less
than or equal to a specific value y*. It is an increasing function that begins at 0 and increases to 1, and
we will denote it as F (y*). For discrete random variables it is a step function, taking a step at each point
where p(y) > 0:

F(y')=P(Y <y )= ply)

y<y*

The mean or Expected Value (i) of a random variable is it’s long-run average if the experiment was
conducted repeatedly ad infinitum. The variance (02) is the average squared difference between the random
variable and its mean, measuring the dispersion within the distribution. The standard deviation (o) is
the positive square root of the variance, and is in the same units as the data.

=By =3 u() o =V =E{(V — i)} =3 (- ) plv) oy = +y/o%

Note that for any function of Y, the expected value and variance of the function is computed as follows:
2 2
E{g)} = gWp) = pgvy V{g(Y)}=E { (9(Y) = pgevy) } = (9) = 1er)) " p(v)
Yy Yy

For any constants a and b, we have the mean and variance of the linear function a + bY":

Efa+bY}=> ap(y)+ > byp(y) =ay_ p(y) +b>_ up(y) = a(1) +bE{Y} = a +bpy

V{a+bY}=> " ((a+by) — (a+buy))’ply) =6 (y — py)* ply) = b0

A very useful result in mathematical statistics is the following:
oy =V{Y}=FE {(Y - uy)Q} =E{Y?=2uyY +pa} = E{Y?} —2uy E{Y} + 13 = E{Y"} — i3,

Thus, E{Y?} = 0% + p?. Also, from this result we obtain: E{Y (Y — 1)} = 0% + u? — py. From this, we
can obtain 0% = E{Y(Y — 1)} — u$ + py, which is useful for some discrete probability distributions.

Next, we consider several families of discrete probability distributions: the Binomial, Poisson, and
Negative Binomial families.

Binomial Distribution

When an experiment consists of n independent trials, each of which can end in one of two outcomes: Success
or Failure with constant probability of success, we refer to this as a binomial experiment. The random
variable Y is the number of Successes in the n trials, and can take on the values y = 0,1, ...,n. Note that in
some settings, the “Success” can be a negative attribute. We denote the probability of success as 7, which
lies between 0 and 1. We use the notation: Y ~ B (n, ). The probability distribution, mean and variance
of Y depend on the sample size n and probability of success .

p<y>—(Z>”y<1—w>w E{Y}=py =nr  V{Y}=0% =nr(1-n)
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where (Z) = ﬁly), In practice, m will be unknown, and estimated from sample data. Note that to obtain
the mean and variance, we have:

E{Y}=py =) uply) = ZyLﬂy (1-m)""= ZyLﬂy (1-m)""=
= ! ! ! !

y=0

n—1
n— -1 * n—1-—y* * *
)_ )|7ry71(1—7r) Y=nr E (n . )wy (1—m)" 'y :mrg p(y*) =nm v =y—1
y)! =\ =

*mrn (n—1)!
R e

To obtain the variance, we use the result from above, 02 = E{Y(Y — 1)} — p3 + py:

n n n

B =1t =3 0l-1p() = 3 ply—1) = (1= )" ¥ = 3 yly—1) e (1 — )" Y =

= = yl(n —y)! = yl(n —y)!

=n(n—1)n? Z %wa (1—7)""Y = n(n—1)r i: (n - 2>7Ty** (1—m2v"

—_ | — sk
y—2)l(n—y)! S\ Y
nn—1)m2) py™)=nn—1a* y*=y-2
e

2

= oy =n(n— D —n?r? +nr = nr — nr?

=nn(l—mn)

Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect
of the Poisson family is that the mean and variance are the same. This is one aspect that does not work for
all applications. We use the notation: Y ~ Poi()A). The probability distribution, mean and variance of Y

are: e*)\)\y ,
p(y):T E{Y}=py=X V{Y}=0y=2A

Note that A > 0. The Poisson arises by dividing the time/space into n infinitely small areas, each having
either 0 or 1 Success, with Success probability m = A/n. Then Y is the number of areas having a success.

=g (3) (-3) s 0) (0-0) -

G ) () ()

The limit as n goes to oo is:

lim p(y) = 5(1)(1) (DAL = ply) =

n—oo

To obtain the mean of Y for the Poisson distribution, we have:

o0

> = e AN e AN e ANY
E{Y}=py=> wy) =Yy =D V=) i =
= =Y (y — 1)

!
y=0 y y=1
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Oo,)\(l) oo
AT A Y A=A -
y*=0

We use the same result as that for the binomial to obtain the variance for the Poisson distribution:

E{Y(Y -1)} = Zyyl Zyyl Zyyl QZ

= 02 =AT A7 F A=)

)\(y 2) e~ M\

2y
**l

y**=0

Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rt" success occurs. The random variable Y is the number of trials needed until the 7"
success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance are:

r T(l—w)'

R g L e R R

r—1 T

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as (see e.g. Agresti (2002) and Cameron
and Trivedi (2005)).

P = (a‘iiu)al () tw= [ et @-nre-y,

The mean and variance of this form of the Negative Binomial distribution are

E{Y}=p V{¥V}=pl+ap).

1.1.2 Continuous Random Variables/Probability Distributions

Random variables that can take on any value along a continuum are continuous. Here, we consider the
normal, gamma, ¢, and F families. Special cases of the gamma family include the exponential and chi-squared
distributions. Continuous distributions are density functions, as opposed to probability mass functions. Their
density is always non-negative, and integrates to 1. We will use the notation f(y) for density functions. The
mean and variance for continuous distributions are obtained in a similar manner as discrete distributions,
with integration replacing summation.

o0

E{Y}=py = /Oo yf (y)dy V{Y}=o0} = / (y — py)? f(y)dy

— 00

In general, for any function ¢g(Y'), we have:

o0

B = [ sy = V30 = B{ 60 =)} = [ (60) = ar)’ F)iy

— 00
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Normal Distribution

The normal distributions, also known as the Gaussian distributions, are a family of symmetric mound-
shaped distributions. The distribution has 2 parameters: the mean y and the variance o2, although often
it is indexed by its standard deviation o. We use the notation ¥ ~ N (,u, 02). The probability density
function, the mean and variance are:

f(@—ﬁexp(—%) E(Y}=py=p V{V}=ob =0

The mean p defines the center (median and mode) of the distribution, and the standard deviation o is a
measure of the spread (u — o and pu + o are the inflection points). Despite the differences in location and
spread of the different distributions in the normal family, probabilities with respect to standard deviations
from the mean are the same for all normal distributions. For —oo < 21 < 29 < 0o, we have:

Htzo0o 1 _ 2 z2 1
P(u+2z10<Y < p+20) = / exp (—u> dy = / e F P4y = D(z2) — P(z1)

utzio V2mwo? 202 1 V27

Where Z is standard normal, a normal distribution with mean 0, and variance (standard deviation) 1.
Here ®(z*) is the cumulative distribution function of the standard normal distribution, up to the point z*:

z* 1
D(z") = / \/%6722/2612

These probabilities and critical values can be obtained directly or indirectly from standard tables, statistical
software, or spreadsheets. Note that:

Y—u

Y ~ N (p,07) = Z=
g

~ N(0,1)

This makes it possible to use the standard normal table for any normal distribution. Plots of three normal
distributions are given in Figure 1.1.

Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale
parameters:

1
(@)

Here, I'(«) is the gamma function I'(a)) = fooo y*~te7¥dy and is built-in to virtually all statistical packages
and spreadsheets. It also has two simple properties:

y e VP 4 >0,a>0,>0 E{Y}=py =ap V{Y} =0} =aB?

ﬂwzr

a>1: D(a)=(a—1)T(a—1) r(1>_\/%.

2
Thus, if « is an integer, I'(a) = (o —1)!. The second version given here is in terms of shape and rate
parameters.
fly) = o y* e y>0,0>060>0 E{Y}:,uy:g V{Y}:UQ:g
F(O[) -7 ’ 2] Y 92
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Figure 1.1: Three Normal Densities

Note that different software packages use different parameterizations in generating samples and giving tail-
areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second.
Figure 1.2 displays three gamma densities of various shapes.

Two special cases are the exponential family, where o = 1 and the chi-squared family, with o = /2 and
[ = 2 for integer valued v. For the exponential family, based on the second parameterization:

fW) =0 B(Yy=m=y V{V}=oi=

Probabilities for the exponential distribution are trivial to obtain as F (y*) = 1 — e~ ¥ ?. Figure 1.3 gives
three exponential distributions.

For the chi-square family, based on the first parameterization:

1 v 1 _
) = syt B = sr Vivh=oi=2
2

Here, v is the degrees of freedom and we denote the distribution as: Y ~ x2. Upper and lower critical
values of the chi-square distribution are available in tabular form, and in statistical packages and spreadsheets.
Probabilities can be obtained with statistical packages and spreadsheets. Figure 1.4 gives three Chi-square
distributions.
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Figure 1.4: Three Chi-Square Densities

Beta Distribution

The Beta distribution can be used to model data that are proportions (or percentages divided by 100). The
traditional model for the Beta distribution is given below.

['(a+ ) a+ 1T (b+1)

1
_ r
fya,B)= -y’ 0<y<l; a>0,8>0 /w“(l—w)bdw: (
0

['(a)T(B)
Note that the Uniform distribution is a special case, with @« = # = 1. The mean and variance of the Beta
distribution are obtained as follows:

Bir}= / a+5 al(l—y)‘“dy—%/o v (1-y)"dy =
O‘+5) (a+1)F(6) T@+8) ol (@TB)  «a

I'(a+b+2)

CT(@T(B) T(a+p+1)  T@I@) (@+p)T(@+p) a+p

By extending this logic, we can obtain:

2 O‘"‘B a—1 (1 _ \B-1 5 _ a(a+1) _ of
BT = / rwr@’ TV YT arsiners Y T s D@

An alternative formulation of the distribution involves setting re-parameterizing as follows:

p=a+pB = a=pp B=1-pe.

o
a—+p

'LLZ

Figure 1.5 gives three Beta distributions.
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Figure 1.5: Three Beta Densities

1.2 Linear Functions of Multiple Random Variables

and the marginal distributions for the discrete case below.

Suppose we simultaneously observe two random variables: X and Y. Their joint probability distribution can
be discrete, continuous, or mixed (one discrete, the other continuous). We consider the joint distribution
p

function.

(@) =P{X=2Y=y} px@)=P{X=z}=) py pr)=P{¥Y=y}=> ply

For the continuous case, we have the following joint and marginal densities and cumulative distribution

Joint Density when X =z, Y =y : f(z,y) fx(x) = /7 flz,y)dy frly) = /7 f(z,y)dx

b a
Fah)=Pix<ay<tb= [ [ fayisay
Note the following.

Discrete: 33 p(e,y) = > pal@) = 3 py(y) =1

Continuous: /7 O:O /7 O:O f(z,y)dzdy = /7 O; fx(z)de = /7 O:O fy (y)dy = 1

15
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The conditional probability that X =z, given Y =y (or Y = y given X = z)is denoted as follows.

p(x,y)
Py (y)

assuming py (y) > 0 and px(z) > 0. This simply implies the probability that both occur divided by the
probability that ¥ = y or that X = 2. X and Y are said to be independent if p(x|y) = p(z) for all y, and
that p(y|z) = p(y) for all z. The conditional densities for continuous random variables are similarly defined
based on the joint and marginal densities.

fz,y) _

The conditional mean and variance are the mean and variance of the conditional distribution (density),
and are often functions of the conditioning variable.

p(zly) = P{X =z|Y =y} = plylz) =P (Y =y|X =z) =

f(x,y)

f(zly) =

Discrete: E{Y'|X =2} = py|, = Zyp(y|x) Continuous: E{Y|X =z} = py|, = / yf(y|z)dy
Yy o0

. 2
Discrete: V{Y|X =z} =0}, =Y (y—pyia) plylz)
Yy

o0

Continuous: VA{Y|X =z} = U§/|x = / (y - #Y|x)2 f(ylz)dy

— 00

Next we consider the variance of the conditional mean and the mean of the conditional variance
for the continuous case (with integration being replaced by summation for the discrete case).

VB = [ (uvia = )’ oo

B (Vv = [ o fxonts

Note that we can partition the variance of Y into the sum of the variance of the conditional mean and mean
of the conditional variance:
V{V}=Vx{E{Y|2}} + Ex {V{Y|z}}

The covariance oxy between X and Y is the average product of deviations from the mean for X and
Y. For the discrete case, we have the following.

oxy = E{(X —pux) (Y —py)} =YY (@ —pux) (g — ) pla,y) = DD (ay — apy — pxy + pxcpy ) pla, y) =

Y r Yy

=3 ayp(a,y) —py DY ap(xy) —px > > yp(@,y) + pxpy = E{XY} — pxpy
r oy Ty Ty
For the continuous case, replace summation with integration. If X and Y are independent, oxy = 0, but the
converse is not typically the case. Covariances can be either positive or negative, depending on the association
(if any) between X and Y. The covariance is unbounded, and depends on the scales of measurement for X
and Y. The correlation pxy is a measure that is unit-less, is not affected by linear transformations of X
and/or Y, and is bounded between -1 and 1.
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where ox and oy are the standard deviations of the marginal distributions of X and Y, respectively.

The mean and variance of any linear function of X and Y: W = aX + bY for fixed constants a and b
are for the discrete case:

E{W}=E{aX+bY} =) (az+by)p(z,y) = ay_apx(x) +bY ypy(y) = apx +bpy
VWY =V{aX +bY} =" [(az +by) — (ape + b)) pla,y) =

ZZ [ (@ — px)? + 07 (y — py)* + 2ab (v — px) (y — py) | p(x,y) = a’0% + b0} + 2aboxy.
For the continuous case, replace summation with integration.

In general, if Y7,...,Y,, are a sequence of random variables, and ay, ..., a, are a sequence of constants,
we have the following results.

E {i&m} = iaiE{Yi} = iaiﬂi
i—1 i—1 i—1

n n n—1 n
1% {Zain} = Za?af + 22 Z a;0;0;;
i=1 i=1

i=1 j=i+1

Here p; is the mean of Y;, 01-2 is the variance of Y3, and o;; is the covariance of ¥; and Y;.

If we have two linear functions of the same sequence of random variables, say W; = Z?Zl a;Y; and
Wy = Z?Zl b;Y;, we can obtain their covariance as follows.

COV{W,Ws} = ZZalb UU—Zalba +2Z Z abjoi;

=1 5=1 1=1 j=i+1

The last term drops out when Y7, ...,Y,, are independent.

1.3 Functions of Normal Random Variables

First, note that if Z ~ N(0,1), then Z? ~ x3. Many software packages present Z-tests as (Wald) y>-tests.
See the section on testing below.

Suppose Y1, ..., Y, are independent with Y; ~ N (,u, 02) for i = 1,...,n. Then the sample mean and
sample variance are computed as follow.

Y — Z?:l Y 82 _ Z?:l(}/i — 7)2
n

n—1
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In this case, we obtain the following sampling distributions for the mean and a function of the variance.

- 2 -1)$? LY -Y)? - —1)5?
Y ~N (,u, U—) (n 2) = iz 5 ) ~ X72171 Y, % are independent.
n o o o
Note that in general, if Y7, ..., Y, are normally distributed (and not necessarily with the same mean and/or

variance), any linear function of them will be normally distributed, with mean and variance given in the
previous section.

Two distributions associated with the normal and chi-squared distributions are Student’s ¢t and F.
Student’s ¢-distribution is similar to the standard normal (N (0, 1)), except that is indexed by its degrees of
freedom and that it has heavier tails than the standard normal. As its degrees of freedom approach infinity,
its distribution converges to the standard normal. Let Z ~ N (0,1) and W ~ x2, where Z and W are
independent. Then, we get:

Y —u Z
Y ~N 2 Z=""~ N(0,1 T= ~t,
(/Lag) = o ( ) \/W—/V

where the probability density, mean, and variance for Student’s ¢-distribution are:

v+l 2\ — 5 y
f(t)_rr(i)ii/z_w(ﬂrt;) E{T}=pur=0 V{T}:V_2 v>2

and we use the notation T' ~ t,,. Three ¢-distributions, along with the standard normal (z) distribution are
shown in Figure 1.6.

Now consider the sample mean and variance, and the fact they are independent.

— 2 Y — Y —
YNN(,LL,U—> = z=""TL o m=—L N1
n /a2 o
C(n=1)S% Y (Yi-Y)? (n—1)5% S
W= o? N o? Xo-1 = v O'QTL—l) o
= T z \/ﬁ?‘;# \/_Y_ﬂ t
= = = n ~ Ty
W/v = S

The F-distribution arises often in Regression and Analysis of Variance applications. If Wy ~ x2 > Wa ~ X?,z,
and W; and Wy are independent, then:

]
va
where the probability density, mean, and variance for the F-distribution are given below as a function of the
specific point F' = f.
fu1/271 ]

(i f + VQ)(U1+U2)/2

22 -2
E{F=pr=—2— wn>2 V{F}= VQ(V1+2V2 ) o
I/2—2 141 (V2—2) (V2—4)

(1)) vy 2
[ (11/2)T (v2/2)

o-|
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Figure 1.6: Three t-densities and z

F(v4,v2)

Figure 1.7: Three F-densities

19



20 CHAPTER 1. PROBABILITY DISTRIBUTIONS, ESTIMATION, AND TESTING

Three F-distributions are given in Figure 1.7.

Critical values for the ¢t and F-distributions are given in statistical textbooks. Probabilities can be
obtained from many statistical packages and spreadsheets. Technically, the ¢ and F' distributions described
here are central ¢t and central F' distributions.

Inferences Regarding ;. and o2

We can test hypotheses concerning i and obtain confidence intervals based on the sample mean and standard
deviation when the data are independent N (1, 02). Let ¢ (o/2,v) be the value such that if:

T~t, = P(T>tys,)=a/2
then we get the following probability statement that leads to a (1 — a)100% confidence interval for p.

Y - S = S
l-a=P (_ta/Q,nl < \/ﬁ S = < ta/2,n1> =P (_ta/2,nlﬁ <Y - n< ta/2,nlﬁ> =

— S - S
=P (Y - ta/2,nfl_ <p< Y +to¢/2,nfl

NG %)
Once a sample is observed with Y7 = 41, ..., Y, = y,, and the sample mean, 3§ and sample standard deviation,
s are obtained, the Confidence Interval for p is formed as follows.

_ _ s
YEtitaj2.n-15y = TE= ta/2,n71%

A 2-sided test of whether u = pg is set up as follows, where T'S is the test statistic, and RR is the
rejection region.

Hy: M= Ko Hy: W 7£ Ho TS :tops = \/ﬁ% RR: |t0bs| > ta/2,n71

with P-value = 2P (t,_1 > |tobs|)-

To make inferences regarding o2, we will make use of the following notational convention.
Wl = P(W2lp,)=a/2

Since the x? distribution is not symmetric around 0, as Student’s ¢ is, we will have to also obtain Xia /200
representing the lower tail of the distribution having area=«/2. Then, we can obtain a (1 — a))100% Confi-
dence interval for o2, based on the following probability statements.

_ 2 _ 2 _ 2
o= P (s B ) o (@ o< @)

< 3 2
g Xa/2,u lea/2,u

Based on the observed sample variance s?, the Confidence Intervals for o2 and o are formed as follow.
s [(n—1)s* (n—1)s (n—1)s2 (n—1)s?
o , o: ,
Xi/2,n71 Xffa/znfl Xi/2,n71 Xffa/znfl

To obtain a (1 — a)100% Confidence interval for o, take the positive square roots of the end points. To test
Hy: 0% = o versus Hy : 0% # o}, simply check whether o3 lies in the confidence interval for 2.
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1.4 Likelihood Functions and Maximum Likelihood Estimation

Suppose we take a random sample of n items from a probability mass (discrete) or probability density
(continuous) function. We can write the marginal probability density (mass) for the each observation (say
¥;) as a function of one or more parameters (6):

Discrete: p (y;|6) Continuous: f (y;|0) .

If the data are independent, then we get the joint density (mass) functions as the product of the individual
(marginal) functions:

n n

Discrete: p (y1,...,ynl0) = Hp (yi]0) Continuous: f (y1,...,ynld) = Hf (yi]0) .

=1 =1

Consider the following cases: Binomial, Poisson, Negative Binomial, Normal, Gamma, and Beta Distri-
butions. For the binomial case, suppose we consider n individual trials, where each trial can end in Success
(with probability 7) or Failure (with probability 1 — 7). Note that each y; will equal 1 (S) or 0 (F). This is
referred to as a Bernoulli distribution when each trial is considered individually.

n

)1fyi = pWi,...,yalm) = Hp(ylh) 7 (1— W)nfzyi

pyilm) =mv (1 -m

i=1
For the Poisson model, we have:
oA " S
PWilA) = —=— = pW,. oA =P WilN) = — 77—
() = < (ool = TTp i) =

For the Negative Binomial distribution, we have:

—1

F (i) = 0 F ) ( o ) (L)

Lo )T (yi +1) \a=t + 4 a~t+p

For the Normal distribution, we obtain:

_ o 1 _ (yi — ,U)Q
[ (yilp, o®) = s P 53 =

f(yla . -,yn|ﬂ, 02) = Hf (y1|,u, 0’2) = (27‘(0’2)7"/2pr l_wl .

=1

For the Gamma model, we have:
(6%

ila, 0) = a—le—yl
f(y |O[, ) F(O[)yl
For the Beta distribution, we have:
F(O[—i-ﬂ) a—1 B—1
ilo, B) = 74V 1—y
f (il B) )T ()" (1—ws)

An alternative formulation of the distribution involves setting re-parameterizing as follows:

o
a+p

= p=a+8 = a=pp B=(1-pe
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The re-parameterized model, and mean and variance are:

I'(¢) pp—1 (1— yi)(lﬂ‘)‘ﬁ*l O<pu<l ¢>0

S TN (eI

_ _p(d=p
E{Y}=p V{Y}—"jgif—

Note that in each of these cases (and for other distributions as well), once we have collected the data,
the joint distribution can be thought of as a function of unknown parameter(s). This is referred to as the
likelihood function. Our goal is to choose parameter value(s) that maximize the likelihood function.
These are referred to as maximum likelihood estimators (MLEs). For most distributions, it is easier
to maximize the log of the likelihood function, which is a monotonic function of the likelihood.

Likelihood: L (8ly1,---,9n) = f (Y1,---,Yn|0) Log-Likelihood: [ = In(L)

To obtain the MLE(s), we take the derivative of the log-likelihood with respect to the parameter(s) 6, set to
zero, and solve for 6. Under commonly met regularity conditions, the maximum likelihood estimator Onr
is asymptotically normal, with mean equal to the true parameter(s) 6, and variance (or variance-covariance
matrix when the number of parameters, p > 1) equal to:

v{éML} =— (E{ag—;ly}>l =11 (8)

where:
; T
1 821 891 8918917
0 = : — = :
' 0006’ '2 ' '2
b o, ol
80,00, 002

The estimated variance (or variance-covariance matrix) replaces the unknown parameter values 6 with their

ML estimates 6y;,. The standard error is the standard deviation of its sampling distribution, the square
root of the variance.

We can construct approximate large-sample Confidence Intervals for the parameter(s) 6, based on the
asymptotic normality of the MLEs:

~ A ~ @]
Omr £ za)2 V{9ML} P{Z>zap} = 3

Now, we consider the 6 distributions described above.

Bernoulli/Binomial Distribution

L(alyn, o) =720 (1= m)" 2% 5 I=n(L) = Y yidn(m) + (n— Y ys) (1 =)
Taking the derivative of [ with respect to 7, setting to 0, and solving for 7, we get:

O 24 n=3 Vi I

or s 1—7 n
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Pl Sy n-Yu E{@%}_ nr M__"(l 1)__7T(n

o2 72 (1— 7T)2

= V{erL}__(_W(” )) _mdl-m V{ﬁML}_fr(l—fr)

Example: WNBA Free Throw Shooting - Maya Moore

We would like to estimate WNBA star Maya Moore’s true probability of making a free throw, treating
her 2014 season attempts as a random sample from her underlying population of all possible (in game) free
throw attempts. We treat her individual attempts as independent Bernoulli trials with probability of success
7. Further, we would like to test whether her underlying proportion is 7 = mg = 0.80 (80%). Over the course
of the season, she attempted 181 free throws, and made 160 of them.

Y, Y 160 #(1—7)  0.884(0.116)

Fofslt o088t V(R) = i — 0005665
A 95% Confidence Interval for 7 is:
T+ 2095 V(fr) = 0.88441.96v0.0005665 = 0.884+0.047 = (0.837,0.931)

Poisson Distribution

efn)\ Z%
L()\|y1,...,yn)—ﬁ = l:ln(L):—n)\—i-Zyiln()\)—Zln(yi!)

o _ 2 Yi et S Y

7 N S G
&1 Sy . A\t A (e A
e V{AML}——(‘@ =5 = {f=7

Example: English Premier League Football Total Goals per Game - 2012/13 Season

We are interested in estimating the population mean combined goals per game among the 2012/13
English Premier League (EPL) teams, based on the sample of games played in the season (380 total games).
There are 20 teams, and each team plays each other team twice, one at Home, one Away. Assuming a
Poisson model (which may not be reasonable, as different teams play in different games), we will estimate
the underlying population mean . There were 380 games, with a total of 1063 goals, and sample mean and
variance of 2.797 and 3.144, respectively. The number of goals and frequencies are given in Table 1.1.
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10
2

Goals o 1 2 3 4 5 6 7 8
9 1

9
Games | 35 61 72 91 64 32 13 0

Table 1.1: Frequency Tabulation for EPL 2012/2013 Total Goals per Game

Goals | Observed | Expected(Poisson) | Expected(Neg Bin)
0 35 23.41 27.29
1 61 65.24 67.74
2 72 90.92 87.90
3 91 84.46 79.34
4 64 58.85 55.94
5 32 32.80 32.81
6 13 15.24 16.65
> 7 12 9.08 12.33

Table 1.2: Frequency Tabulation and Expected Counts for EPL 2012/2013 Total Goals per Game

< YV 1063 N A 2797
A = o =TTV ()\) = = S = 000736
A 95% Confidence Interval for \ is:
At 20254 |V ()\) = 2797+ 1.96/0.007361 = 2797+0.168 = (2.629,2.965)

Table 1.2 gives the categories (goals), observed and expected counts, for the Poisson and Negative
Binomial (next subsection) and the Chi-Square Goodness-of-fit tests for the two distributions. The goodness-
of-fit test statistics are computed as follows, where O; is the Observed count for the i*" category, E; is the
Expected count for the i*" category, and N is the total number of observations.

A3 6 6
ﬁi:P(Y:i)zeﬂ i=0...6 E=N-& i=0...,6 O;=N-Y 0; Er=N-YE;
' 1=0 1=0
7 2
(0i — Ey)
XémzzT
i=0 ¢

The degrees of freedom for the Chi-Square Goodness-of-Fit test is the number of categories minus the
number of estimated parameters. In the case of the EPL Total goals per game with a Poisson distribution,

we have 8 categories (0,1,...,77) and one estimated parameter (), for 8-1=7 degrees of freedom.
35 — 23.41)° 12 — 9.08)
X2 b = ( 5341 ) + ~+( 508 © 12.197  x*(0.05,7) = 14.067 P (x5 > 12.197) = .0943

We fail to reject the hypothesis that total goals per game follows a Poisson distribution. We compare the
Poisson model to the Negative Binomial model below.

\Y
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Negative Binomial Distribution

The probability distribution function for the Negative Binomial distribution can be written as (where Y is
the number of occurrences of an event):

o= i () ()

The mean and variance of this form of the Negative Binomial distribution are:

E{Y}=p V{¥V}=pl+ap).

Note that g and a~! must be strictly positive, we re-parameterize so that a* = Ina™!, pu* = Inpu. This

way o* and p* do not need to be positive in the estimation algorithm. The likelihood function for the

it" observation is given below, which will be used to obtain estimators of parameters and their estimated

variances. .
T (of1 +yi) a1 « 1 i
L'L' ) = iy 1y = .
ma)= s = sty () (H55)

Note that, due to the recursive pattern of the I' (-) function, we have:

e +y) _(@'+y-Y@'+y-2). (e )l() (a'+y-1)(@ ' +y-2)...(a7")

(e YT (i +1) T(a )T (yi +1) - )

Taking the logarithm of the likelihood for the i observation, and replacing o' with e* and p with e,
we get:

yi—1
I =InL; (p, ) = Z In(a™ ' 4+5) —In(y)+a Ina™ +ylnp— (of1 +yi) In (of1 +p) =
j=0

yi—1
Z In (eo‘* —i—j) —In(y) 4+ € Ine* +ylne — (eo‘* + yl) In (eo‘* + e‘“*) .
j=0

1

Taking the derivative of the log likelihood with respect to a* = Ina ™", we obtain the following result.

l; % 1 . . . o :
L :ea Zf—l-lnea —l—l—ln(ea +€#)—6,‘7—’_y1
oar* = e¥ +j e + et

The derivative of the log likelihood with respect to p* =1Inp is
811 o e,u* (ea* + yz)
o Y e

The second derivatives, used to obtain estimated variances are

921, . yi—1 1 . . . a* ) yi—1 a* a* o (o
= | e (e e ) - S i)
9 (a") et e e T g (e ) o T e )
0?l; e et (eo‘* + yl) 0?l; e el (yl — e“*)

8(/1/*)2 (60‘*—’-6“*)2 80[*8/1/* = (ea*_"_e#*)Q
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Once these have been computed (and note that they are functions of the unknown parameters), compute
the following quantities.

"9l ol;
Jor = — Jav* I = Z ou*
i=1 1=1
8% 92,
Ga* == G * —
; 2 (a*) g ; 2 (1)?

We define 6 as the vector containing elements p* and o* and create a vector of first partial derivatives gy, a
matrix of second partial derivatives Gjy.

9%,
. /L* | Gux _ G#* Z?:l Do~ op*
0= * go = Gog = n 2y,
« Jox Z 07, G
« i=1 da*ou* a*

The Newton-Raphson algorithm is used to obtain (iterated) estimates of p* and «*. Then a* is back-
transformed to a~! and p* to pu.

In the first step, set o = 0, which corresponds to a~! =1, and obtain an iterated estimate of u*. A
reasonable starting value for p* is In (Y)

) D 69;5*““*“
e (b =1)
m
Iterate to convergence. In the second step, use your estimate of u*, and obtain an iterated estimate of o*.

A reasonable starting value is In [exp ([L*)Q / (exp (*) + 55)} , where sz is the sample variance of y1, ..., yn.

Oz*(k) - Oz*(kfl) _ G (k=1
G-

In the final step, we use the estimates from steps 1 and 2 as starting values to get a combined estimate and

estimated variance for 6: )

o) =g — [G(-}(’C*U] 9gte-1

After iterating to convergence, we get:

v{o}=—[B{G}]"  aTt=e et

Example: English Premier League Football Total Goals per Game - 2012/13 Season

For this data, we obtain estimates of y and a~! as follows:
s~ | a* | | 1.02868 S Al -1\ _ | 0.001060 0.000000
0= [ a* ] - [ 3.09385 V{H} n E{[G(’] }_ 0.000000 0.453907

Ak A A A~k 2
i = el = eh02868 — 9 79737 V{p)d =V {i*} (e“ ) =0.001060 (2.79737)* = 0.00829 6, = /0.00829 = 0.0911
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N - N N L\ 2
Q™1 = et = 39939 — 99 0619 V{a ) =V{a"} (ea ) = 0.453907 (22.0619)% = 220.928

The goodness-of-fit test statistics are computed as follows, where O; is the Observed count for the "

category, E; is the Expected count for the i*" category, and N is the total number of observations:

LR (uia> (7lss) im0

6 6
E;=N-# i=0....,6 O;=N-)» 0; Er=N-) E;
1=0 1=0

The degrees of freedom for the Chi-Square Goodness-of-Fit test is the number of categories minus the
number of estimated parameters. In the case of the EPL Total goals per game with a Negative Binomial
distribution, we have 8 categories (0,1,...,7") and two estimated parameters (ofl, ,u), for 8-2=6 degrees
of freedom. The expected counts are given in Table 1.2.

e (35 — 27.29)° (12 — 12.33)°
Gornp = T orog T T T 953

=9435  x2(0.05,6)=12.592 P (x2 > 12.197) = .1506

Normal Distribution

L0y, yn) = (2#02)771/2 exp l—ml = Il=I(L)= —g [In(27) +In (0)] — 2 —p)

202 202
81 i — set ~ 7
U _ W=ty o o 2V
au o n
o _ o = p) o L)
A A

For the normal model, we have, where E{Y;} = p and E {(Yl — ,u)Q} =%

1=~ [in(2m) +1n (0%)] - i

202
o Y (yi—np
ou o2
o n Y-
Oo? 202 204
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2 2
ol n E{ﬂ}__i

2 o2 112 o2
0?1 7&_22(%—,@2 . g 0?1 7&_2n027_i
d(02)* 20 200 902 200 205 207
1 Y- 0%\ _
uda? ol - E { Oudo? } =0

= V{/ALML}:; = V{ﬂML}:;
. 204 N 264
= V{gdnl=" = v{ag‘“}:%.

Also note that the covariance of i and 62 is zero.

Gamma Distribution

The Gamma distribution can be used to model continuous random variables that take on positive values
and have long right tails (skewed). There are several parameterizations of the model, this version is based
on « being a shape parameter and [ being a rate parameter.

) _ BT a1 s . * e bw, . T(a+1)
f(y7a56)_r(a)y € v y>0, OZ,6>O ) w e dw—W

The mean and variance of Y can be obtained as follows:

T iy, O Tkl
A o A A i ik

E{Yz}:%/ yaﬂeﬁydy_rﬂ(z)rgi;z)_a(c;;m . V{y}_%_@ _ o

An alternative parameterization for the Gamma distribution is:

Li (s &39i) = f (yis (b):il (£>1/¢65_3 a=2 p=—
K3 I ) J (3 I ylr(%) l,[/¢ ¢ l,[/¢

= B{Y}=5=p V{¥l=5=4%

Since p and ¢, must be positive, we transform to p* and ¢*:

*

pr=—ln(p)  ¢=-In(p) = p=ct b=
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%™ ;
®

1 . «\ € *
Lk " ¢) —yiere
I (yis 1%, %) T (&) (yle e e

Li (0", 0% y:) =

The log Likelihood for the i observation is:
li =—1In(y;) — InT (e¢*) + e [In () + p* + ¢*] — yee" e?

The relevant derivatives to obtain maximum likelihood estimates and their estimated variance-covariance

matrix are given below, with the following definition:

dInT (w
v w) = 2T
w
al; . o
e yie e?
ou*
al; 67\ Lo . . . & s
e G e Y R R
Setting each derivative equal to 0 and summing over all observations gives:
D v

n n
dovi=ne (ew) =n+Y In(y)+np" +neg* — e
1=1 1=1 1=1

The second derivatives are:
821' * * * n 821 * * * *
K A LA = E ? —ne® —ne P et e =0
D Do yie” e {i_l o0 } ne ne e’ e
21 « % n 2l- * * * *
Ol 5 = —ye e = FE Z 78 ¢ 5 ¢ =—ne * et e? = —ne?
9 (n*) i 0 (n")
0%, s 6\ 2 o\ o* & . . & < o
=1 (e )(e ) —1/)(6 )e +e? [In(y) +p* 4+ ¢"] +2e —yet e

n 2] . N\ 2 » * * *
B{ ) = () () et = [1-ut () ]
i=1 0 ((b*)
The estimation process begins with choosing starting values for p* and ¢*.
7O = _1n (7)

E{Y}=p=e* =

2 ~ p—
= ¢ =2mY —Ins?

|

* 2 *
VI{Y}=0% = ¢ = (67” ) e = e? *0—2
I
The Newton-Raphson algorithm is obtained as follows:
* Ol;
2im1 ErE
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G~ = =1 9(u*)* i=1 Op*0¢*
o = n 921, n 9%
Dim1 o 0o 2io1 B(¢* )2
We then iterate to convergence:
-1

g = =1 _1Go 0] ggen

After iterating to convergence, we obtain the following variances for the ML estimates, and their back-

transformed values.
ne?” (1// (e‘%*) e — 1) 0 ]

0 ne®

. -1
—ne? 0

v{é*}_—[E{G@*}]l——[ 0 ne (1o (e e‘”)] )
By v} (%)

Note that there is an alternative means of estimating ¢, based on the Method of Moments, that
some software packages, such as R use. The method makes use of the following results. In this setting, all
observations have the same mean g, in regression models described later, they will have individual means,

based on one or more covariates.

E(V}=p = E{%}_l V{Vi}=ou? = V{%}_qﬁ
()
e

- 1 n }/1—,&2
¢‘n—1§( 7 )

The n — 1 represents that 1 mean parameter has been estimated (p).

N——

>

p=e ™ = V{ﬂ}—V{ﬂ*}(

=

Example: Running Speeds Among Females at a Marathon

The running speeds (miles per hour) among n = 1045 females who completed the Rock and Roll
Marathon in Washington are all positive and are seen to be skewed right. The histogram and corresponding
gamma distribution are shown in Figure 1.8. Here we are treating these times as a random sample of times
from a larger conceptual population.

The ML estimates and estimated variance-covariance matrix are given below. The mean and variance of
the speeds are 5.839839 and 0.6906284, respectively. This leads to starting values of —In (5.839839) = 1.7647
for p* and 21n (5.839839) — In (0.6906284) = 3.8996 for ¢™.

G _ [A°] _ [ -1764703
~ L] T | 3936980

>
Il

e [ 5.839838
= | 0.019507
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Females/Gamma

100
1

Frequency
40 60
1

20

f.mph
Figure 1.8: Histogram of female speeds and Gamma density - 2015 Rock and Roll marathon

- (71 _ [ 0.00001866702 0
v{o }_ [ 0 0.001901512

N Sa\ 2
V{i} = 0.00001866702 (—e*“ ) = (0.00001866702 (—5.839838)2 = (0.000636615

An approximate 95% Confidence Interval for u is

5.839838+1.96v0.000636615 = 5.839838+1.96 (0.025231) = 5.839838+0.049453 = (5.790385,5.889291).

The method of moments estimator for ¢ is computed below.

1045 2
~ 1 yi — 5.839838
= 0151 ; ( 5.839838 ) 00202508

Returning to the “original” form of the Gamma distribution with E{Y} = p = 5 and V {Y} =pu?p= 5

we obtain (based on the ML estimator for y and the moments estimator of ¢)

B 1

7 1 1
T 0.02025082

= = = 8.46
¢ 5.839838(0.02025082)

49.38 (=

&:

1
¢
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Beta Distribution

The Beta distribution can be used to model data that are proportions (or percentages divided by 100). The
traditional model for the Beta distribution is:

f(y;a,ﬂ)—%y“1(1—y)ﬁ1 O<y<l; a>0,>0
o« B af
V= V{Y}_(a+5)2(a+5+1)

The alternative formulation of the distribution involves setting re-parameterizing as follows:

o
a+p

= p=a+8 = a=pp B=(1-pe.

The re-parameterized model, and mean and variance are:

L) = F i ) = ot (1) <<t 520

_ _p(d=p
E{Y}=p V{Y}—ﬁ

To estimate the parameters by maximum likelihood, we make the following transformations, so that the
estimated parameters have no restrictions on being positive or bounded between 0 and 1.

e I «
= =In|— =¢e? =1
hEira T n<1_u> p=¢" = ¢ =In(9)
This leads to the log-likelihood function:

li=lnL;=Inl(¢) —Inl (ug) —InT (1 —p) ¢) + (u¢ — Iy, + (1 —p) ¢ —1)In (1 —y;) =

* Y * 1 * 67 * 1 *
— ¢\ SR ¢ ¢ _ _ ¢ _ —
_1nf(e ) 1nF(1+e’ye ) 1HF<1+€’Y€ >+(1+6’Y€ 1>1ny1+(1+efye 1)111(1 Yi) -

The relevant derivatives to obtain maximum likelihood estimates and their estimated variance-covariance
matrix are given below, with the following definitions.

dnT(w) , _ Yi . e 4 1 s
b (w) = —— yl-—1ny1—1n(1—yz)—1n(1_yl_> u—w(ueve AtEe=t

ol N e g\ e e 1 L e e 1,
i ¢) ¢ _ ¢ ¢ _ ¢ ¢ 9 Iny; 9 In (1 — 13
Op* 1/)(6 c 1/)(l—i-e’Ye >1+6’Ye 1/)(l—i-e’Ye >1+6’Ye +1+6’Y€ ny—i_l—i-e’Ye n(l =)

Setting the derivative equal to 0 and summing over all observations gives:

n

67 * " 1 *
@ _ ¢ _ ) =
(l—l-e’Ye );myl—i_(l-l-e’ye )Zln(l vi)

=1
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2 . 2 . 1 . 1 . . .
_m/)<1ie’ye¢> eee¢ —i—m/)( e¢> e? —n1/)(e¢)e¢.

0l; e’ *
(] o) * *
EA (1 +e’Y)2 (y; —u")

Setting the derivative equal to 0 and summing over all observations gives:

n
> yr =npt.
=1

02l ev . e «\ 2 1 « (67)2 A\ 2 e .
LA ¢ Y —— (e® / LA N P A (DA / ¢
e (1+e,y)2€ (y; 'u)+(1+e’Y)3 (e ) (0 (1+e’¥€ ) Do) (e ) P (1+€’Y6 )

o A
oOP*

e () () ) ()|

921, O . N\ 2 e\ e . el . e’ 0\ 2
G ¢\ b (0 o\ _ ¢ Y ¢ ¢
3(¢*)2 1/)(6 )e +y (e )(e ) 1/)(1—1-676 >1+6’Ye ¥ (1+6’Ye )(1—1—676 )

o) ey (e ) (Ee) 4 e gt e (-
l—i-e’Ye l—i-e’Ye l—i-e’Ye l—i-e’Ye l—i-e’Ye Ny l—i-e’Ye . Y

821 ’ * N\ 2 , ey M e . 2 , 1 . 1 . 2
s [ v () () v () ()

Pl eve? (1—e) , e . 1 . ev 1 A\
Z 22 N k) — @ 4 @ N
000 [ (12 ()] (1)

9%l , e . 1 . e’ 1 A2
~Z [ / [ N
e ”[w (Heve )W (Heve )] (1+eﬂ+eVe )

The estimation process begins with choosing starting values for ¢* and ~.
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e 1
R i Cer)
L—p)  p(l—p) < p(l—p)
Y: 2:'LL( = ¢:
V{Y} =0y o o T 1 = e -

The Newton-Raphson algorithm is obtained as follows:

=[] »]

n 9%
Zi:l ~2
Zn 8%y,
i=1 O~v0¢~

" 2

Go

We then iterate to convergence:
H(k) = 0(’“’1) — I:Gé(kfl):l

After iterating to convergence, we get:
oA -1
{6} =~ [B{c,)]

oi

)

L
By

v (=7 3

2

n

i=1 9p*

Zn 8%y,
i=1 §v9¢*

n

ol;
i=1 9
oL,

9%,

Lim1 55

-1
9Gk—1)

Example: NASCAR Proportion of Prize Money Won by Fords - 1995 Season Races

During the 1995 NASC_AR Winston Cup season, there were n=31 races. The average proportion of prize
money won by Fords was Y = 0.5060 with a standard deviation of sy = 0.0475. We treat this as a sample
from a conceptual population of races that could have been held that year. For starting values, we use:

v 0.5060
S—tn [ —— ) = n [ —22%9 ) _ 0240
7 n(1—Y> n<1—0.5060>
. Y (1-7) 0.5060 (1 — 0.5060)
3 _1n< ) 1) - n( e — 1) = In(109.7874) = 4.6985
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After 109 iterations, we obtain:
6— ol _ 0.02402206
4.72667962
o (A -1 0.001132761  0.00001364478
v {9} - [E {Gé}] a [ 0.00001364478  0.06394990 ]

Transforming back to obtain estimates for p and ¢ gives:

& 002402206 A &Y

| = ————5oe = 0. 22 — =
+ e = H 1 + 002402206 0.506005226 o (14 6&)2

N N o 2 0.02402206 2
V{p} =V {5} [8_7] |ly=+ = 0.001132761 1+ 60'02402206)2 = 0.00007077717

An approximate 95% Confidence Interval for p is:

A+1.960/V{i} = 0.506005226+ 1.96/0.00007077717 = 0.5060 4 0.0165 = (0.4895,0.5225)

§— ¥ = LTHOT02 _ 11999 | {¢} —V {(b} [eﬂ ’

4 = 0.06394990(112.92) = 815.4205

Thus, the estimated standard error of (;3 is v/815.4205 = 28.5556.

1.5 Likelihood Ratio, Wald, and Score (Lagrange Multiplier) Tests

When we wish to test hypotheses regarding value(s) of parameter(s) 6, there are 3 general classes of tests
that make use of the likelihood function and MLEs. These are referred to as Likelihood Ratio, Wald,
and Score (Lagrange Multiplier) tests. Asymptotically, they are equivalent. In small-samples, their
properties can differ. We consider first the case of a single parameter, then the case of multiple parameters.

The likelihood ratio test is based on the difference in the log-likelihood function I (#) = In L (8|y1, - - ., Yn)
at its maximum, evaluated at § = 6 and when it is evaluated at the null value 8 = 6.
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The Wald test is based on the difference between the maximized value 6 and the null value fp in terms
of the estimated standard error (square root of the variance) of 6.

The score (Lagrange Multiplier) test is based on a function of the derivative (slope) of the likelihood
function evaluated at the null value 6y. It does not depend on the MLE 6, so is often used in complex
estimation problems.

1.5.1 Single Parameter Models

For one parameter families (such as the Binomial (Bernoulli), Poisson, and Exponential), the procedures are
conducted as follows. Note that a Normal with known variance is also a case, but rare in actual practice.

We wish to test a point null hypothesis Hy : § = 0y versus an alternative H 4 : 0 # 6y. Note that if 8y is
at the edge of the parameter space, critical values will need to be adjusted.

The Likelihood Ratio Test is conducted as follows:

1. Identify the parameter space 2, such as Q@ = {6 :0 < 6 < 1} for Binomial or = {6 : 6 > 0} for the
Poisson.

2. Identify the parameter space under Hy : Qo = {60 : 6 = 6o}
3. Evaluate the maximum log-likelihood (terms not involving 6 can be ignored)

4. Evaluate the log-likelihood under Hy (terms not involving 6 can be ignored)
5. Compute X2, = —2 [l (60) — 1 (9)}

6. Under the null hypothesis, X2, is asymptotically distributed as x?(1), where the 1 degree of freedom
refers to the number of restrictions under Hy

7. Reject Hy for large values of X2, (X2 > x2.)-

LR —

The Wald Test makes use of the ML estimate, and its standard error, and asymptotic normality to
conduct the test. First, consider the variance of the ML estimator described above (using slightly different

notation):
v{é} — 1719 1(0) _—E{azo(f)}

where F { 8253 ) } is called the Fisher Information. Then we obtain the Wald statistic, which is the square

of a large-sample Z-statistic (note the use of the estimated variance):

XQ_M_I 0) (60— 0, ’
W f/{é} ()( )
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As with the Likelihood Ratio Test, under the null hypothesis, X2, is asymptotically x and we use the same

rejection region: (X2, > x2 ;)

The Score (Lagrange Multiplier) Test is based on the derivative of the log-likelihood, and actually
does not make use of the ML estimate 6, which can be an advantage in complex estimation problems.

First, compute the first derivative of the log-likelihood, evaluated at the null value 6y. Note that this

will only equal 0 if §y = # (the maximum likelihood estimate). This value is called the score:
_ ouo)

ol(o
0=00

Next, multiply the score squared by the variance of the ML estimate, evaluated at the null value 6y, to obtain
v {é}’ _ ; = X2 - M
0=0¢ 1(90) M 1(90)

the score statistic:
As with the Likelihood Ratio and Wald statistics, we reject the null if X7,, > x2 ;.

. . . . N n 1
In the case of the Exponential distribution, where 6§ = RS and py = 3
L(Olys,....y) = 0" "2% = 1(0) =nln(0) -0 v
ole) n 21(0) n n n
56— 9 Y 062 e 10 { 92} 02

For the Likelihood Ratio Test, we obtain:
r Zyl :nln(é) -n

z@):nm(®—9§}h:”m@)‘z%

[(60) =nln(6p) — 60 >y = nln(6p) — b (%)

So that the Likelihood Ratio statistic is:
> _ _1(6)] = oo (™)) = N _n)| = b\ _ (% _
X2 = 2[1(90) 1(9)] - 2[(77,111(90) 90(9)) nln((e) n)] - o [1n(é> ((; 1

For the Wald Test, we get the statistic:
. 2 . 2

0—96 N 0—6
v Eher@-ay- L5
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For the Score (Lagrange Multiplier) Test, we obtain the statistic:

n n—=6 Yi n
5(90,9):%_2%290702 1(90):9—2
0

) (n(’oZyi>2
0o, y) %o 03
= XLQM = S( L = =20

_ 7\ 2 2,2
() =B ) = n (- a7y’
0

Example: WNBA Free Throw Shooting - Maya Moore

Consider again WNBA star Maya Moore’s true probability of making a free throw, treating her 2014
season attempts as a random sample from her underlying population of all possible (in game) free throw
attempts. We treat her individual attempts as independent Bernoulli trials with probability of success .
We would like to test whether her underlying proportion is m# = m9 = 0.80 (80%). Over the course of the
season, she attempted 181 free throws, and made 160 of them.

po Zim ¥ 160 ooy piay = TAZR) _ 0.884(0.116)

n 181 n 181

I(m)=InL(mw) = (Z%) Inm + (n—Z%) In(1—m)

= I(7) =InL (%) =160 (In(0.884)) + (181 — 160) (In(1 — 0.884)) = —64.965
= I(m) =InL (mp) = 160 (In(0.80)) + (181 — 160) (In(1 — 0.80)) = —69.501
o Z?:l Y n— Z?:l Yi

or s 1—m
ol 160 181 — 160

= .0005665

= sy =5 =080 " 1080 "
8_21 _ _Z?:l Yi n— 3 Vi
on? 2 (1—7)?
9%l nmw n—nmw n n 181
ploit| _nm_ __ ~  I(m) = - = 1131.25
{8#2 } ™ (1—n) m(1—m) (o) mo (1 —m)  0.80(1 — 0.80)

We now compute the Likelihood Ratio, Wald and Score (Lagrange Multiplier) Test Statistics for testing
Hy : m = 0.80. The critical value for o = 0.05 level tests is x? (0.05,1) = 3.841.

X2 = —2[InL (m) — InL (7)] = —2[(—69.501) — (—64.965)] = 9.072

,  (F—m)®  (0.884—0.800)

X2 = = = 12.455
w V(%) 0.0005665
2 2
95
w2 _ o)’ .
LM I (7o) 1131.25 7978
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1.5.2 Multiple Parameter Models

For models with multiple parameters, all three tests can be extended to make tests among the parameters
(not necessarily all of them). For instance, in a Normal model, we may wish to test Hg : p = 100,02 = 400
against the alternative that either u # 100 and/or o2 # 400. Another possibility is that we may be
simultaneously modeling a Poisson model among 3 populations and wish to test Hy : A\; = A2 = A3 versus
the alternative that the Poisson parameters are not the same among the populations.

Suppose we have p parameters to be estimated. We have g < p linearly independent linear hypotheses
among the parameters. For instance, we cannot test Hg : u = 100, u = 120. Note, for an introduction to
matrix algebra, see the Regression notes. We can write the null hypothesis as follows:

0, Ri1 -+ Ry 1
Parameter Vector: 6 = : Hy:RO=r R = : : r= :
Op Rgi -+ Ryp Tg

where R and r are a matrix and vector of constants that define the restrictions from the null hypothesis.

For the Normal model example, we have (with g = 2 restrictions):
o |10 | 100
9_[02] R_[o1] T‘[zxoo

For the Poisson example, there are various ways we could test Hy : A\; = A2 = A3z, but keep in mind
there are only 2 linearly independent restrictions (we are not testing what value they are, just that they are
equal). One possibility is:

H015)\1:)\2,)\1:)\3 = A —X=0 )\1—)\3:0

Note that with these two statements, we imply that Ao = A3, and including that would cause a redundancy.
A second possibility is:

Hoz:)q:)\z,)\zz)\g = A —A=0 )\2—)\3:0
Again, this implies that A\; = As.
For these hypotheses, we have:

At

1 -1 0 1 -1 0 0
=2 Rl_[1 0—1] RQ_[O 1—1] “_T“’_[o]
A3
Defining [ (61, . ..,0p|y) = 1(0,y) as the log-likelihood, and n, as the overall sample size (summed across

group sizes if comparing several populations), we obtain the following quantities for the three tests:

6 = MLE over entire parameter space 6 = MLE over constraint Hy

s:(0,y) = a(;g?) I;;(0) = —-FE { gﬁll((?ii }
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with:
s1(0,9) I(0) - Lip(9)

s(0,y) = : 1) =

sp (0,y) I (9) : Lyp (9)

Each of the chi-squared statistics will be asymptotically Xg, under the null hypothesis, where g is the
number of restrictions (rows of R and 7). The statistics are obtained as follow.

Likelihood Ratio: X2 =2 [l (é, y) -1 (éa y)]

wait: xz= (i) (r(1(3)” R/)l (ri—+)

Score (LM): X2 =5 (é, y)/ (I (9))71 s (é, y)

Example: Goals per Game for 5 European Premier Football Leagues

Consider goals per game for the following 5 European Premier Football Leagues for the 2004 seasons.
In each league, all pairs of teams play each opponent twice, once Home and Away. Thus, if there are ¢;
teams in the in the i'" league, there will be n; = t¢; (t; — 1) total games. The 5 leagues are: England
(t1 = 20,n1 = 380), France (to = 20, ny = 380), Germany (t3 = 18, n3 = 306), Italy (t4 = 20, n4 = 380), and
Spain (t5 = 20,n5 = 380). All games are 90 minutes, with no overtime. We treat the observed games as a
sample from a conceptual of all games that could be played among the teams within the leagues. We model
the total goals per game as a Poisson random variable, with possibly different means among the leagues.
Further, we assume independence among all games within each league. We define the model of scores below.
Our goal is to test Hy: 0y =--- =65 = 0.

—0, nYii
e "0,

yij!

The ML estimates of the parameters are obtained below under the null (Hy) and alternative (H 4) hypotheses,
along with other quantities needed for the tests, where y;o and yee represent sums over one or both subscripts.

5 ni g Yij — ZF) ni6; 5 Yie 5 Ni 9y —mef
e "'0; € =t 1o 0 e "0V e et gy
LA:HH Yis! - H5 Yij LO:HH Yij! ~ ni o
i=1j=1 h i=111j=1 i=1j=1 7Y’ [Tz Hj:l Yij-
5 5 5 n; 5 nj
lAzlnLA:—ZniHi—i-Zyi.lnﬁi—ln HH%’! lo=InLy= —nel+ Yoo In —1n HH%!
i=1 i=1 i=1j=1 i=1j=1
81 ie N ie 81 o0 ~ o0
=t > hi=0t Gp = ety = 0=
0214 Yie 0214 o 0?1y Yoo
007 07 0.0, 0 71 002~ 02

821A nlt?l n; 8210 n.9 Te
E{E?}“og“@' E{aﬁ}——@?——7
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League (1) mn; Yie 91 —m@l + Yie In 91
England (1) | 380 | 975 2.5658 -56.2904
France (2) 380 | 826 2.1737 -184.6742
Germany (3) | 306 | 890 2.9805 60.1964
Ttaly (4) 380 | 960 2.5263 -70.3085
Spain (5) 380 | 980 2.5789 -51.5663
Overall 1826 | 4631 | 6 = 2.5361 | Nnel + Yoo In 0 = —321.1818

Table 1.3: Frequency Tabulation and Expected Counts for EPL 2012/2013 Total Goals per Game

The data and estimates are given in Table 1.3, followed with the test for equal means.

L1 0 0 o 0 2.5658
L0 -1 0 o 0 ) 2.1737
R— r= 0= | 2.9805
1 0 0 -1 0 0
1 0 0 0 -1 0 25263
2.5789
[ 525 0 0 0 0 1 [ 148.1026 0 0 0 0 ]
2.5658
A 0 2= 0 0 0 0 174.8184 0 0 0
1(d)=| o 0 S8 g 0 | = 0 0 105209 0 0
0 0 0 5= 0 0 0 0 150.4167 0
| 0 0 0 0 =251 | 0 0 0 0 147.3469 |
S0 0 0 0 [ 149.8337 0 0 0 0
2.5361
i 0 FB 0 0 0 0 149.8337 0 0 0
1(d)=| o 0 S g 0 |= 0 0 1206556 0 0
0 0 0 FB 0 0 0 0 149.8337 0
|0 0 0 0 B | o0 0 0 0 149.8337 |
{ 0.3921 ] { 132.7165 —22.3377 —36.2251 —38.4859 ]
s a | —0.3427 () | —22.3377  89.9603 —21.8010 —21.3561
RO =r=R0=1"0 0395 &l (9) B=1 _362251 —21.8010 119.2479 —30.5326
—0.0131 —35.4859 —21.3561 —30.5326 117.4374
—380 + 2252,261 4.4418
i =380+ 57967 —54.3088
s(B.y) = | =306+ s | = | 449264
—380 + 5497 —1.4727
—380 + 6.4133

2.5361

We now compute the 3 test statistics, keeping in mind there are g = 4 parameter restictions under the null
hypothesis, and that x? (4,0.05) = 9.488.

Likelihood Ratio: X2, = —2 [l (é, y) —1 (Gy)} =
~2[-321.1818 — (—56.2904 — 184.6742 + 60.1964 — 70.3085 — 51.5663)] = —2 [~321.1818 — (—302.6430)] = 37.078
. / AN 1 -t
Wald:  x2 = (RO-7) (R (1(9)) R’) (8 —r) =37.660

Score (LM): X2 =35 (é, y)/ (I (é))fl 5 (é, y) — 36.834
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1.6 Sampling Distributions and an Introduction to the Bootstrap

Previously we described the sampling distributions of various estimators derived from independent and nor-
mally distributed random variables. Also, we considered the large-sample properties of maximum likelihood
estimators, that inherently meant we know the underlying distribution of the data.

One useful tool for obtaining the exact distribution of linear functions of random variables (when it
even exists) is the moment-generating function or mgf. This function serves 2 primary purposes. First,
it can be used to obtain the non-central moments of a distribution: E{Y},E{Y2} E{Y®} ... The
moment-generating function (if it exists) for a distribution can be obtained as follows:

Discrete Distribution: My (t) = E {e™ } = ep(y)
Yy

o0
Continuous Distribution: My (t) = E {ety} = / e f(y)dy
— 00
Without going through the derivations, we obtain (most involve rules of sums or competing the square or
change of variables in integration):

n

Binomial: My (t) = Z ety#wy 1-7m)""Y= Z L' (re')? (1 —m)" Y = (re' + (1 — )"

) “A 0 Ay t\Y .
Poisson: My (t) = Zetye A = Z e (Ae) — AMe'-1)

y=0 vt y=0 vt

oo 1 PRV 1252
Normal: My (t) = / ely exp l—u] dy = exp [,ut + —U]

— 00 A/ 27'(0'2 20'2 2
e 1
Gamma: My (t :/ ey e Y/ By = (1 — Bt)
v =] Y y=( )
Note that for the other formulation of the Gamma, we would have My (t) = (1 — 5)70‘. Further, for the

Exponential, we would have My (t) = (1 — 5)71 and for the chi-square, we would have (1 — 2¢)~/2.

Y

The mgf can be used to obtain the non-central moments as follows, based on a series expansion ¢!
Zoo (tY)I
i=0 4!

dM (t)
dt

d*M (t)
dt>

= M'(0) = E{Y}
t=0

=M"(0)=E{Y?}
t=0

and so on such that M*)(0) = E {Yk}.

More importantly here, if we obtain a sum or linear function of independent random variables, we
can use the uniqueness of the mgf to obtain the distribution of the sum or linear function. Consider W =
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Y1 +---+Y,, asum of independent random variables:

My (t) = E{e} = B {!00 1Y)} — ﬁE [V} = f[Myi (t)

The independence of Y7, ...,Y, is why we can use this result.

Consider m Binomial random variables, each with success probability 7, but with possibly varying

sample sizes n;:
n;

Y; ~Bin(n;,m) i=1,...,m My, (t) = (we' + (1 —m))
Thus if we let W =Y; 4 --- 4+ Y,,, we have:

= ﬁ My, (t ﬁ (me' + (1 — w))n = (me' + (1 - w))zn = W ~ Binomial (Z nj, 7r)
i=1 i=1

Thus, the sum of independent Binomial random variables with common success probability is Binomial with
the same success probability, and a sample size equal to the sum of the individual sample sizes.

Similar results hold for independent Poisson random variables, where Y; ~ Poisson();). Let W =
}/1 + o o + Yn:

t) = ﬁMY(t) = f[e)‘i(et = exp [(Z)\ ) el — 1 } = W ~ Poisson (Z )\i)

For a sum of independent Gammas, with common ( or 6, that is ¥; ~ Gamma(«a;, 3). Let W =
}/1 + o o + Yn:

:ﬁMYi ﬁ (1-71) a":(l—ﬁt)fzo‘i = WNGamma(Zai,ﬁ)
i=1 i=1

Now consider any linear function U = a1Y7 + -+ - + a,Y,, for constants a4, ..., a,. This will not work
for many distributions in general.

MU(t) - B {etU} - B {et(a1Y1+~~~+anYn)} _ HE {etaiYi} _ HMYi (ait)
1=1 1=1

Now consider independent Normals, with Y; ~ N (,u“ ) Let U =a1Y1 + -+ anYn:

L W2t202 2 o
= H My, (a;t) H exp [,ulalt + t2a ] = exp (Z al,ul) (Zzal o; ) ]
i=1

= U~N (aiui,Za?a?)

So, in special circumstances, when we know the exact distribution of data, we can obtain the exact
distribution of some specific estimators. Due to the Central Limit Theorem, we can also state that
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sample means of independent observations have sampling distributions that asymptotically converge to the
Normal (assuming finite variance). Thus, in many cases:

Y - approx = approx 2
NG S“ RON(O0,1) = Y R N(;ﬁ’-)
n

However, in many settings, estimators either are very complex and no sampling distribution can be
derived, or samples are not large enough to rely on large-sample asymptotics. In these settings, the boot-
strap method is applied to a statistic to obtain a Confidence Interval for the underlying parameter. The
method assumes the sample is representative of the underlying population (e.g. no inherent bias). Also, if
the sampling plan has any specific patterns to it, such as clusters, the bootstrap should reflect that.

The algorithm works as follows.

1. Obtain a sample of size N from the population of interest.
2. Generate a method (function) to compute the statistic of interest.

3. Generate a random sample with replacement from the original sample, apply the function, and save
the result.

4. Repeat this process over many samples.

5. Obtain a (1 — @)100% Confidence Interval for the parameter of interest.

The last step can be conducted various ways, the most common way is to select the cut-off values of
the middle (1 — a)100% bootstrap sample results. Other ways, particularly bias-corrected methods are
implemented in standard statistical software packages, and make use of the mean and standard deviation
(standard error) of the bootstrap estimates. This version is referred to as the non-parametric bootstrap,
which makes no assumptions on the underlying distribution of the data.

Example: Modeling of Sheer Strength of Reinforced Concrete Beams

Colotti (2016) describes a model for predicting sheer strength of reinforced concrete beams. Predictions
are made of the breaking strength of n = 200 beams that have been measured in the academic literature,
and compared with the actual (experimental) breaking strength. One reported measure is the Coefficent
of Variation (CV) of the ratios of the experimental to model predicted breaking strength. The CV is

computed as 100 (57”), and measures the percentage of standard deviation relative to the mean. Note

that this is a complicated function to obtain the sampling distribution of, particularly if the data are not
normally distributed. The mean and standard deviation of the ratios are Y = 1.1011 and Sy = 0.2237,
yielding CVy = 100(0.2237/1.1011) = 20.3161. That is, the standard deviation is about 20% as large as the
mean. Note that in many measurement reliability studies, researchers need very small CVs. A histogram
of the ratios is given in Figure 1.9, demonstrating a symmetric distribution, possibly flatter than a Normal,
centered around 1.1.

To understand the uncertainty associated with the point estimate of C'Vy-, we apply the nonparametric
bootstrap. We obtain 100,000 samples of size 200 (with replacement) from the original sample, computing



1.6. SAMPLING DISTRIBUTIONS AND AN INTRODUCTION TO THE BOOTSTRAP 45
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Figure 1.9: Ratio of Experiment/Model Prediction of Reinforced Concrete Beam Sheer Strength

Mean | SD | Min | 2.5%-ile | 25%-ile | Median | 75%-ile | 97.5%-ile | Max
20.25 | 0.85 | 16.31 18.59 19.69 20.26 20.83 21.91 24.00

Table 1.4: Summary Statistics of C'Vy for 100000 Bootstrap Samples

CVy for each sample. Some of the summary statistics of the samples are given in Table 1.4. A histogram is
given in Figure 1.10.

Another possibility is when you are confident about the underlying distribution, but unsure of parameter
values. Then, the parameters can be estimated (based on methods such as ML in previous sections), and
then many samples can be generated using random number generators from the corresponding distribution.
The Confidence Interval and mean and standard error of the estimator can be obtained as well. This is
referred to as the parametric bootstrap.
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Figure 1.10: C'Vy for 100,000 Bootstrap Samples



Chapter 2

Simple Linear Regression

2.1 Introduction

Linear regression is used when we have a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s)
with random error terms assumed to be independent and normally distributed with constant variance. The
fitting of linear regression models is very flexible, allowing for fitting curvature and interactions between
factors.

When there is a single numeric predictor, we refer to the model as Simple Regression. The response
variable is denoted as Y and the predictor variable is denoted as X which is assumed to be a fixed constant.
The assumed model is given below.

Y =0 +4X+e € ~ N(0,0?) independent = Y ~ N(fBy + £ X, 0?) independent

Here (y is the intercept (mean of Y when X=0) and (; is the slope (the change in the mean of Y when
X increases by 1 unit). Of primary concern is whether 8; = 0, which implies the mean of Y is constant (5p),
and thus Y and X are not associated.

Note that this model assumes:
E{e} =0 V{e} = BE{*} = o? COV{ei, €5} = E{eic;} =0 i #j

In practice the variance may not be constant, and the errors may not be independent. These assumptions
will be checked after fitting the regression model.

47
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Estimation of Model Parameters

We obtain a sample of pairs (X;,Y;) ¢ = 1,...,n. Our goal is to choose estimators of Sy and (; that
minimize the error sum of squares: @ = Y., €. The resulting estimators are derived below by taking

derivatives of ) with respect to fy and (i, setting each to zero, and solving for the Ordinary Least
Squares (OLS) Estimators, 8y and (.

i=1 1=1
g_g) =2 YVi— (G +AX)T(-1) = -2|Y Yi-nb _512&-]
i=1 =1 =t
e =2) Y- (h+ AKX (X) = -2 lZ XYi=fo) X~ fh ZX?]
i=1 =1 =t =

Simultaneously setting both of these derivatives to zero, we solve for Bl and BO, making use of the so called
normal equations, which ironically have nothing to do with the normal distribution.

8@ n . . n
a5 =0 = ;n:nﬁoml;&

g—gl =0 = ZXiYi :BOZXH‘BlZXiQ
i=1 i=1 =1

Next, multiply the first equation by Z?Zl X, the second by n, and subtract the first from the second to

obtain the estimator Bl for (.

n n n n 2 n n n
DYDY Xi=nh Yy Xi+p (Z)@-) ny XiYi=nbh Y Xi+nh Y X =
1 1=1 1=1 1=1 1=1 1=1 1=1

1=

n n n n n 2
S A DI TR e (in) -
7=1 7=1 1=1 1=1 =1

n XYMy n -

Bl _ ”Z?:l XiY; — Z?:l Xi Z?:l Yi Do XiVi — 2 n21:1 _ 2o XY —nXY
- n n - n 2 - n —
n Zi:l Xi2 - (Z¢:1 Xi)Q Z?:l Xl? _ @ Zi:l Xi2 - ”X2

n

The last form can be simplified as follows.

Y (Xi-X)(V;-Y) = i)@g-?i Xi—an: Yi4nXY = zn: X, Y;—nXY —nXY +nXY = zn: X,Y;—nXY

=1 =1 =1 =1 =1 =1

fj(xi - X)? :z"jxg —anjxi _yz"jximy? :z"jxg —nX —nX +nX :z"jxg —nX
i=1 i=1

=1 =1 =1 =1
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_ From the first of the normal equations, we easily obtain the OLS estimator BO for §y as a function of
61, Y, and X.

=
>

i L& . Y -3 X —_
Z Y, = nﬁo + 51 Z X; = 60 _ Z’L—l 61 21_1 - v _
i=1 i=1 "

Here we summarize the OLS estimators for the simple linear regression model.

A _Zﬁ 1(X1_Y)(Y1_7) AOZY—Bly

zn:(xi—f)(n—Y): 3 (Xl—X)Yl—zn:(Xl—X)?:zn:(Xl—X)Yl—O:zn:(Xl—X)Yl
zn:(Xl—X)2:zn:(xl—x)xl—zn:(Xi—X)Y:zn:(xl—x)xl—ozzn:(xl—x)xl

Once we have the least squares estimates, we obtain fitted (predicted) values and residuals for each
observation. The error sum of squares (SSE) is obtained as the sum of the squared residuals.

n

Fitted Values: Yl = Bo + Ble- =Y + Bl (Xl- - Y) Residuals: e; = Y; — }A/l SSE = Z(K — }AQ)Q
i=1
L +51X1-)}2 -y [Yf + (6o + lei)Q ~ ¥ (o + lei)]
=1

=1 i

_z":;;u (T4 (x-%) 20 (T4 (X, - X))

=]

—zn:}/iQ‘i'zn:( 2+Bf (Xi—7)2+27612n:(Xi—7)> —2271:}/1-(74-31 (Xi_Y))

=1 =1

=1 =1
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DRI D e A L DU SE D e ok
=1 =1 =1

=1

The (unbiased) estimate of the error variance o? is s> = MSE = 222 where MSE is the Mean
Square Error. The subtraction of 2 can be thought of as the fact that we have estimated two parameters:

Bo and B;. The derivation of E {MSE} is given in the Analysis of Variance section.

Example: Cysteic Acid Content and Age of Carpets

Csapo, et al (1995) report results of a study relating age of carpet specimens (Y, in years) to cysteic
acid levels (X). There were n = 23 specimens used to fit the regression model, and 2 specimens with only
cysteic acid levels, but no age given. We will use the regression model to predict age of specimens 24 and
25. The data, and calculations for the least squares estimates are given in Table 2.1. A plot of the data and
estimated regression equation are given in Figure 2.1.

N 18550.7913 -
B = 39.6970 467.3096531 Bo = 1017.73913—467.3096531(2.89522) = 1017.73913—1352.96425 = —335.22512
Y, = —335.22512+467.30965X; = 1017.73913 + 467.30965 (X; — 2.89522)
64582.90
SSE = 8733546.43—(467.30965)%(39.6970) = 8733546.43—8668963.73 = 64582.90 MSE = 3_3 = 3075.38

A set of commands and output for the ” Brute-Force” computations in R are given below. The program,
based on the Im function for the full analysis is given at the end of the chapter.

### Commands

carpet <- read.csv("http://www.stat.ufl.edu/ winner/data/carpet_age.csv",
header=T)

attach(carpet) ; names(carpet)

### f ==> full data m==> missing age
age_f <- age[1:23]; age_m <- age[24:25]
cys_acid_f <- cys_acid[1:23]; cys_acid_m <- cys_acid[24:25]

(n <- length(age_f))

(ybar <- mean(age_f))

(xbar <- mean(cys_acid_f))

(SS_XX <- sum((cys_acid_f - xbar)"2))

(SS_XY <- sum((cys_acid_f - xbar) * (age_f - ybar)))
(SS_YY <- sum((age_f - ybar)~2))

(betal_hat <- SS_XY / SS_XX)
(betaO_hat <- ybar - betal_hat * xbar)
Y_hat <- betaO_hat + betal_hat * cys_acid_f

(SS_ERR <- sum((age_f - Y_hat)~2)); (df_ERR <- n-2); (MS_ERR <- SS_ERR/df_ERR)

### Output

> (n <- length(age_f))
[1] 23

> (ybar <- mean(age_f))
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Figure 2.1: Plot of Age (V') versus Cysteic Acid (X)

[1] 1017.739

> (xbar <- mean(cys_acid_f))

[1] 2.895217

> (SS_XX <- sum((cys_acid_f - xbar)~2))

[1] 39.69697

> (SS_XY <- sum((cys_acid_f - xbar) * (age_f - ybar)))
[1] 18550.79

> (SS_YY <- sum((age_f - ybar)~2))

[1] 8733546

>

> (betal_hat <- SS_XY / SS_XX)

[1] 467.31

> (betaO_hat <- ybar - betal_hat * xbar)

[1] -335.2248

> Y_hat <- betaO_hat + betal_hat * cys_acid_f

>

> (SS_ERR <- sum((age_f - Y_hat)~2)); (df_ERR <- n-2); (MS_ERR <- SS_ERR/df_ERR)
[1] 64576.89

[1] 21

[1] 3075.09

\Y

Making use of the normal equations, we obtain the following useful results regarding the residuals.

(vi-%i) =

1 i

- (o 3x)] =0

ZYi :nBO+Blin = Zei =
i—1 i—1 = 1

n
=1 i =
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specimen id | age (Y) | eysteicacid (X) | Y-V [ x-X | (v-7) | x-X)’ | (x-X) (v -Y)
1 1750 4.39 732.26 | 1.4948 | 536205.98 2.2344 1094.5708
2 1600 4.30 582.26 | 1.4048 | 339027.72 1.9734 817.9499
3 1600 4.27 582.26 | 1.3748 | 339027.72 1.8900 800.4821
4 1600 4.33 582.26 | 1.4348 | 339027.72 2.0586 835.4178
5 1600 4.01 582.26 | 1.1148 | 339027.72 1.2427 649.0943
6 1550 3.99 532.26 | 1.0948 | 283301.63 1.1985 582.7099
7 1550 3.97 532.26 | 1.0748 | 283301.63 1.1552 572.0647
8 1550 3.82 532.26 | 0.9248 | 283301.63 0.8552 492.2256
9 1500 3.93 482.26 | 1.0348 | 232575.55 1.0708 499.0352
10 1400 3.81 382.26 | 0.9148 | 146123.37 0.8368 349.6856
11 1400 3.54 382.26 | 0.6448 | 146123.37 0.4157 246.4752
12 1400 3.72 382.26 | 0.8248 | 146123.37 0.6803 315.2821
13 1400 3.65 382.26 | 0.7548 | 146123.37 0.5697 288.5239
14 1050 3.12 32.26 0.2248 1040.76 0.0505 7.2517
15 550 1.87 -467.74 | -1.0252 | 218779.89 1.0511 479.5343
16 400 1.49 -617.74 | -1.4052 | 381601.63 1.9746 868.0578
17 400 1.53 -617.74 | -1.3652 | 381601.63 1.8638 843.3482
18 300 1.32 -717.74 | -1.5752 | 515149.46 2.4813 1130.5952
19 250 1.21 -767.74 | -1.6852 | 589423.37 2.8400 1293.8073
20 170 1.19 -847.74 | -1.7052 | 718661.63 2.9078 1445.5795
21 140 1.22 -877.74 | -1.6752 | 770425.98 2.8064 1470.4039
22 128 1.03 -889.74 | -1.8652 | 791635.72 3.4790 1659.5569
23 120 0.88 -897.74 | -2.0152 | 805935.55 4.0611 1809.1395
24 N/A 1.92 N/A N/A N/A N/A N/A
25 N/A 1.44 N/A N/A N/A N/A N/A

Mean(1-23) | 1017.73913 2.89522 0.00 0.0000 | 379719.41 1.7260 806.5561

Sum(1-23) 23408 66.59 0.00 0.0000 | 8733546.43 | 39.6970 18550.7913

Table 2.1: Data and sums of squares and cross-products for Carpet Age / Cysteic Acid Study
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znjxm- _ goznjxi +h znjxg - znjxiei = (Xm- —Xl-fé-) zn: [X Y; — (BoXi +6}X3)} =0
1=1 1=1 1=1 ] ]

1=1 1=1 1=1
= > Yiei=PB Y et/ Xiei=0+0=
i=1 i=1 i=1
The estimators Bl and BO can be written as linear functions of Yi,...,Y,:
SR s X - X 1 X(X-X
ﬂlzzaiYi 502251'3/1' where ;= ————=3 bi:__—n( —)2
i=1 i=1 Zi:l(X’i - X) n Zi:l(X’i - X)

and thus using the following basic rules of mathematical statistics given in Chapter 1, we have the following
results.

E{zn:aY} :zn:aiE{Yi} v{zn:am} ZQQV{Y}+2Z Z a;a;COV{Y;, Y;}
1=1 1=1 1=1 1=1 j=i+1

The last term of the variance drops out when the data are independent.

1 R X By — -
=n—0py+ — Xi—=r———== X, — X)) ——————— X X
nnﬁo nﬁl ; Z,L-Zl(X'L _ X)Q ; ( ) Zl 1( 2 ;

=B+ /X —0- 53X =0
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oy &1 X(X%-X) X-X
cov {fn.fif =3 (5 B SNG A er (Z’Z X, _Y)2> 4

—UQiF Xi-X_ X&-X)  Xi-X ] X0
STLG =X DL (X=X (X - X2

Thus, the sampling distributions of Bl and BO, assuming independent, normal errors with constant
variance are:

. o2 . (1 X’
pr~N (51,—2?_1()(1__7)2) Bo ~ N (50,0’ 5—1-42?_1()(1__7)2])

The standard error is the square root of the variance, and the estimated standard error is the standard error
with the unknown o2 replaced by M SE.

SE{p} = S x %z SE{fo} = \l MSE

1 X ]
—t oy =
n R .

Making use of these derivations, we obtain the following useful results, which are simple to show in
matrix form.

o) 5 () (25 55r)

=1

CoV{Y;,¥i} = OV {¥;, ¥ + i (X;: - X) } = o? %Jr %1

A vyl o[t (K-X) 1, (x-%)° ]

cov{iiad = coviri-i} = o e ) 7 s -

YA n = 4 — 5 . 1 (X, - X)*
}/1:60+61X12Y+61(X1_X) = E{K}:BO‘i‘ﬂle V{K}:UQ lﬁ‘i‘m]

ei=Yi—Y, = FEfe}=0

G2 1 (X -X) 1 (X -X) _ 1 (6 -X)
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2.2 Inference Regarding (;

Primarily of interest is inferences regarding (3. Note that if §; = 0, Y and X are not associated. We
can test hypotheses and construct confidence intervals based on the estimate 3; and its estimated standard
error. The t-test is conducted as follows. Note that the null value 3¢ is almost always 0, and that software
packages that report these tests always are treating (19 as 0. Here, and in all other tests, T'S represents Test
Statistic, and RR represents Rejection Region.

Ho : B = Bho Hp:B1# B0 TS :tops = A= o RR : |tops| > tajon—o  P-value: 2P(t, 2 > [tops|)

SE{p1}

One-sided tests use the same test statistic, but the Rejection Region and P-value are changed to reflect
the alternative hypothesis.

H:{ : 81 > Pro RR :tops > tan—2 P-value : P(tp—2 > tops)

H,Z : 61 < 510 RR: tobs < _ta,n72 P-value : P(tn72 < tobs)

A (1 — a)100% confidence interval for 3; is obtained as:

Bl =+ ta/2,n72SF{Bl}

Note that the confidence interval represents the values of 31y that the two-sided test:

Hy : 81 = Bo Ha : B1 # Bio

fails to reject the null hypothesis.

Inferences regarding [y are rarely of interest, but can be conducted in analogous manner, using the
estimate (p and its estimated standard error SE{f}.

Example: Cysteic Acid Content and Age of Carpets

n

i =467.310 (o =—335.225 n =23 MSE=307538 X =2.8952 Y (X;—X)*=39.6970

1=1
NI 3075.38 NI 1 (2.8952)2
= SE{B}=\/55p070 = 8802 SE{fu} = \/3075.38 [% + W] =27.984
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467.310

Hoiﬁlzo HA2617£0 TS:tobs:m

P-value : 2P(ty3_5 > |53.091))~ 0  95%CIfor 3 : 467.310 % 2.080(8.802)

= 53.091 RR: |t0bs| Z t,02572371 = 2.080

= (449.002,485.618)

—335.225
HO . 60 = O HA . 60 75 O TS . tobs = = —11980 RR . |t0bs| Z t,025 23—1 — 2080
27.984 ’
P-value : 2P(ta3_2 > |—11.980|) < .0001  95%CI for o : —335.225+2.080(27.984) = (—393.432, —277.018)

The R commands and output are given below.

### Commands

(betal_hat <- SS_XY / SS_XX)

(betaO_hat <- ybar - betal_hat * xbar)

(SS_ERR <- sum((age_f - Y_hat)~2)); (df_ERR <- n-2); (MS_ERR <- SS_ERR/df_ERR)
(SE_betal_hat <- sqrt(MS_ERR / SS_XX))

(SE_betaO_hat <- sqrt(MS_ERR * ((1/n) + xbar~2/SS_XX)))
(t_betal <- betal_hat / SE_betal_hat)

(t_betalO <- betaO_hat / SE_betaO_hat)

(t_crit <- qt(.975,n-2))

(P_betal <- 2*(1-pt(abs(t_betal),n-2)))

(P_betal <- 2*(1-pt(abs(t_betal),n-2)))

(CI95_betal <- betal_hat + qt(c(.025,.975),n-2) * SE_betal_hat)
(CI95_betald <- betaO_hat + qt(c(.025,.975),n-2) * SE_betaO_hat)

### Output

> (betal_hat <- SS_XY / SS_XX)

[1] 467.31

> (betaO_hat <- ybar - betal_hat * xbar)

[1] -335.2248

> (SE_betal_hat <- sqrt(MS_ERR / SS_XX))

[1] 8.801368

> (SE_betaO_hat <- sqrt(MS_ERR * ((1/n) + xbar~2/SS_XX)))
[1] 27.98259

> (t_betal <- betal_hat / SE_betal_hat)

[1] 53.09515

> (t_betal <- betaO_hat / SE_betaO_hat)

[1] -11.97976

> (t_crit <- qt(.975,n-2))

[1] 2.079614

> (P_betal <- 2x(1-pt(abs(t_betal),n-2)))

[1] o

> (P_betal <- 2x(1-pt(abs(t_betal),n-2)))

[1] 7.511813e-11

> (CI95_betal <- betal_hat + qt(c(.025,.975),n-2) * SE_betal_hat)
[1] 449.0065 485.6134

> (CI95_betal <- betalO_hat + qt(c(.025,.975),n-2) * SE_betaO_hat)
[1] -393.4178 -277.0318
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2.3 Estimating a Mean and Predicting a New Observation Q X =
X*

We may want to estimate the mean response at a specific level X*. The parameter of interest is pu* =
Bo + B1X*. The point estimate for the conditional mean of Y, given X = X*, its mean and variance are as
follow.

V* =B+ AX" E{Y*}:E{Bo-FBlX*}:ﬁo-FﬁlX*

Srw | A Aoyxl 2 l Y—Q * 2; " _L
AU LA URT S S PR s ERNRES e ER ( Z?_axi—y)?)]
Rl e et e R LR e
" Z?:l(Xi_Y)Q Z?:l(Xi_Y)Q Z?:l(Xi_Y)Q n Z?:l(Xi—Y)Q

The point estimate, standard error, and (1 — «)100% Confidence Interval are given below:

—\2
X*—X
1, )

=1\

] (1=0)100% CI : V" %ty 5.0 _»SE {Y}

To obtain a (1 — a)100% Confidence Interval for the entire regression line (not just a single point), we
can use the Working-Hotelling method.

Y* 4 \/2Fn 20 2SE {Y}

If we are interested in predicting a new observation when X = X*, we have uncertainty with respect
to estimating the mean (as seen by the Confidence Interval above), and the random error for the new case
(with standard deviation o). The point prediction is the same as for the mean, Y*. The prediction error,
the difference between the actual value YNy, and its prediction f’*, and its variance are as follow. Note
that the new observation will be independent of its prediction, as it was not used in the calibration of the
regression model.

Prediction Error: YNy — Y™

1 (x=X)°

=37} v+ () e T

The prediction, estimated standard error of prediction, and (1 — «)100% Prediction Interval are given
below.
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e e 1
V'=Bo+ X" SE Wy} = | MSE |14+~ +

(x-%)’ ]

Z?:l (Xi - Y)Q

(1—a)100% PI : YV* +t4/9, 2SE {Yﬁlew}

Note that the Prediction Interval will tend to be much wider than the Confidence Interval for the mean
when M SFE is not very small.

Example: Cysteic Acid Content and Age of Carpets

The Confidence Interval for the Mean and Prediction Interval for a single observation are based on the
following quantities as a function of X*.

1
I for Mean: (—335.225+ 467.310X*) + 2. 38 | =
95% CI for Mean: (—335.225 + 467.310X") +2.080, | 3075.38 | o+~

(X* — 2.8952)2]

95% PI for Individual Specimen: (—335.225+ 467.310X™) 4 2.080, | 3075.38

N 2.8952)°
23 39.6970

In particular, specimens 24 and 25 had Xo4 = 1.92 and Xo5 = 1.44, respectively, with no age reported.
We construct 95% Prediction Intervals for their ages.

) 1 (1.92 - 2.8952)° ]
Vau = —335.225 + 467.310(1.92) = 562.01 2.01+ 2. 38 (14 o 4 e T 2008
24 = —335.225 4 467.310(1.92) = 562.01  562.01 % 2.080, | 307538 |1+ oo +

= 562.02+119.17 = (442.85,681.19)

) [ 1 (1.44 - 2.8952)? ]
Vau = —335.225 + 467.310(1.44) = 337. 70+ 2. 38 (14 o 4 o T =0
24 = —335.225 + 467.310(1.44) = 337.70  837.70 % 2.080, | 307538 |1+ oo+

= 337.70£120.80 = (216.90,458.50)

The data, fitted equation, and pointwise (not simultaneous) Confidence and Prediction Intervals are
given in Figure 2.2. Note that for the Working-Hotelling simultaneous confidence intervals, we would replace
t.025,21 = 2.080 with \/2F,0572721 = \/2(3.467) = 2.633. The R commands and output are given below.

### Commands
X_s <- seq(0,5,0.01)
yhat_h <- betaO_hat + betal_hat * X_s
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age_f
500 1000 1500 2000 2500
L L L L L

0
I

-500
I

cys_acid_tf

99

Figure 2.2: Plot of Age (Y') versus Cysteic Acid (X), Fitted Equation, Confidence Interval for Mean, and

Prediction Interval for Individual

CI_LO <- yhat_h + qt(.025,n-2) * sqrt(MS_ERR*((1/n)+(X_s-xbar) "2/SS_XX))
CI_HI <- yhat_h + qt(.975,n-2) * sqrt(MS_ERR*((1/n)+(X_s-xbar) "2/SS_XX))
PI_LO <- yhat_h + qt(.025,n-2) * sqrt(MS_ERR*(1 + (1/n)+(X_s-xbar) 2/SS_XX))
PI_HI <- yhat_h + qt(.975,n-2) * sqrt(MS_ERR*(1 + (1/n)+(X_s-xbar) 2/SS_XX))

plot(cys_acid_f,age_f,x1lim=c(0,5),ylim=c(-500,2500))
lines(X_s,yhat_h,lty=1)

lines(X_h,CI_LO,1ty=2)

lines(X_h,CI_HI,1ty=2)

lines(X_h,PI_L0,1ty=5)

lines(X_h,PI_HI,lty=5)

(yhat_miss <- betaO_hat + betal_hat * cys_acid_m)

(PE_miss <- sqrt(MS_ERR * (1 + (1/n) + (cys_acid_m - xbar)~2/SS_XX)))
(PI_age_24 <- yhat_miss[1] + qt(c(.025,.975),n-2) * PE_miss[1])
(PI_age_25 <- yhat_miss[2] + qt(c(.025,.975),n-2) * PE_miss[2])

### Output

> (yhat_miss <- betaO_hat + betal_hat * cys_acid_m)

[1] 562.0103 337.7015

> (PE_miss <- sqrt(MS_ERR * (1 + (1/n) + (cys_acid_m - xbar)~2/SS_XX)))
[1] 57.29277 58.07609

> (PI_age_24 <- yhat_miss[1] + qt(c(.025,.975),n-2) * PE_miss[1])

[1] 442.8635 681.1572

> (PI_age_25 <- yhat_miss[2] + qt(c(.025,.975),n-2) * PE_miss[2])

[1] 216.9257 458.4774

2.4 Analysis of Variance

When there is no association between Y and X (3; = 0), the best predictor of each observation is Y = Bo (in
terms of minimizing sum of squares of prediction errors). In this case, the total variation can be denoted as
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TSS =31, (Y; — Y)?, the Total (Corrected) Sum of Squares. Note that some software packages also
print the Total (Uncorrected) Sum of Squares, USS = >/ | Y;2. Unless specifically stated, in these
notes, whenever referring to the Total Sum of Squares, we mean the corrected version.

When there is an association between Y and X (81 # 0), the best predictor of each observation is
Yi=0o+5Xi =Y +051 (Xl- - Y) (in terms of minimizing sum of squares of prediction errors). In this case,
the error variation can be denoted as SSE = 7" | (Y; — Y;)?, the Error (Residual) Sum of Squares.

The difference between T'SS and SSE is the variation ”explained” by the regression of Y on X (as
opposed to having ignored X ). It represents the difference between the fitted values and the mean: SSR =
S (Y; —Y)?, the Regression Sum of Squares.

vi-V=(Y-¥)+(5-F) = -7 = (V%) + (5-7) 2 (vi-v) (% -7)

SV =Y (- n) (V) 2 e (VA (%) -7 =
i=1 i=1 i=1 i=1
n N2 n 2
Y=Y + Y;-Y) +0
-7+ 5 (5-7)
The last portion is 0 as Y | Do Xie; =0
= TSS=SSE+SSR zn:(y Y)QZXH:(K—&)QJFXH:(}%—?)Q
=1 i=1 i=1

These sums of squares can be expanded as follow.

zn:(n Y2 :zn: [Yf+?2 —211-?} - zn:Yern?Q — oY’ :zn:}gQ—nYQ
1=1

i=1 =1 =1

i(}/i ~Y)? = i [Yf + (Bo + BlXi)Q —-2Y; (Bo + Ble‘)]

=1 =1

Il
WE
+
e

:ZYf—l—n?Q—l-B%Z(Xi X)? zn:X X) -2y’ —2512)( - X)(Y; =)

1=1
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iX SRS (_Xi_mﬁ_?)i(&—fxn—ﬁ

- V¥ - (Z?_lz(;i(_j)_(;; D) g5 i g(xi - X)?

SOV =Y [T h (%) -F] =B Y - X

n n n
=1 =1 =1

From these expansions we can derive the expected sums of squares for error and regression.

E{Y?} =0+ (Bo + 5 Xu)? E{ZYf} =no? +n + 6> X2 +2600 Y X;

=1 =1 =1

E {72} = % +(B+mXx)"  E {77,72} =02+ 0B +nBX + MmBoBX
R o o . n o
E{ﬁ%}:m‘i'ﬂ% E{ﬁ%;(Xi—X)Q}—024‘5%;()(1'—)()2

EATSS} = (noQ +ndy+ 5 Y X7 420081 Xz-> — (o + 08 +nBX + 2mBX)
i=1 =

(n—la—l—ﬁZX X)?
E{SSE}_E{SSE}_<(n—1a+6 ZX X>_<a + 32 ZX X) (n—2)o2

E{SSR} =0’ + 5} Y (Xi — X)?

=1

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTgta] = m — 1. The Error Degrees of Freedom are dff..o; = 7 — 2 (for simple regression). The
Regression Degrees of Freedom are deegression =1 (for simple regression).
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Source df SS MS Fops P-value
Regression (Model) 1 SSR=3 (Yi-Y)* MSR=531 Fu, =32t P(Fiu—2> Fobs)
Error (Residual) n—2 SSE=3",Y;-Y;)? MSE=35E
Total (Corrected) n—1 TSS=>., Y )?

Table 2.2: Analysis of Variance Table for Simple Linear Regression

Y;
Y

dftotal = WError + deegression n—1=n-2+1

The Error and Regression sums of squares each have a Mean Square, which is the sum of squares
divided by its corresponding degrees of freedom: MSE = SSE/(n —2) and MSR = SSR/1. These mean
squares have the following Expected Values, average values in repeated sampling at the same observed X
levels.

E{MSE} = ¢* E{MSR} =0+ 8 Y (X; — X)?

=1

Note that when 1 = 0, then E{M SR} = E{MSE}, otherwise E{M SR} > E{MSE}. A second way
of testing whether 8; = 0 is by the F-test:

MSR

H():ﬂl:() HA5617£0 TS:FObS:M—SE

RR: Fobs Z Fa,l,n72 P-value : P(Fl,n72 Z Fobs)

The Analysis of Variance is typically set up in a table as in Table 2.2.

Another sum of squares that is often computed by software packages is the sum of squares for the
intercept, SSu, which is computed as follows, with the following relationships with the 2 versions of the
total sum of squares. The degrees of freedom for the intercept is 1.

SSu=nY" ~ TSS=Y Y?-nY =USS-SSu

=1

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y ”explained” by X, divided by the total variation in Y.

2

D>
>

o TA\2
" Y, —v) TSS 7SS

28
T LT

The interpretation of r2 is the proportion of variation in Y that is“explained” by X, and is often reported
as a percentage (1007?).
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Example: Cysteic Acid Content and Age of Carpets

Table 2.3 gives the observed data, fitted values, residuals, and the computations to obtain the sums of
squares and the Analysis of Variance. The ANOVA table is in Table 2.4.

) _ 86689697

TSS = 8733546.4 SSE = 64576.9 SSR = 8668969.7 = S733546.4 —

The R commands and output are given below.

### Commands

(SS_YY <- sum((age_f - ybar)~2))

(SS_ERR <- sum((age_f - Y_hat)~2)); (df_ERR <- n-2); (MS_ERR <- SS_ERR/df_ERR)
(SS_REG <- sum((Y_hat - ybar)~2)); (df_REG <- 1); (MS_REG <- SS_REG/df_REG)
(F_obs <- MS_REG / MS_ERR)

(F_crit <- qf(.95,1,n-2))

(P_F <- 1 - pf(F_obs,1,n-2))

(r_square <- SS_REG / SS_YY)

### Output

> (SS_YY <- sum((age_f - ybar)~2))

[1] 8733546

> (SS_ERR <- sum((age_f - Y_hat)~2)); (df_ERR <- n-2); (MS_ERR <- SS_ERR/df_ERR)
[1] 64576.89

[1] 21

[1] 3075.09

> (SS_REG <- sum((Y_hat - ybar)~2)); (df_REG <- 1); (MS_REG <- SS_REG/df_REG)
[1] 8668970

[1] 1

[1] 8668970

> (F_obs <- MS_REG / MS_ERR)

[1] 2819.095

> (F_crit <- qf(.95,1,n-2))

[1] 4.324794

> (P_F <- 1 - pf(F_obs,1,n-2))

[11 0

> (r_square <- SS_REG / SS_YY)

[1] 0.9926059

2.5 Correlation

The regression coefficient 3; depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson
Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and/or X,
and does not distinguish which is the dependent and which is the independent variable. This makes it
a widely reported measure when researchers are interested in how 2 random variables vary together in a
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id age (Y) | cys acid (X) Y e=Y-Y | (Y-Y) e? (Y -Y)?
1 1750 4.39 1716.266 | 33.73407 536206 | 1137.987 | 487939.7
2 1600 4.3 1674.208 | -74.208 339027.7 | 5506.833 | 430951.4
3 1600 4.27 1660.189 | -60.1887 | 339027.7 | 3622.684 | 412741.5
4 1600 4.33 1688.227 | -88.2273 339027.7 | 7784.063 | 449554.4
5 1600 4.01 1538.688 | 61.31185 | 339027.7 | 3759.143 | 271387.9
6 1550 3.99 1529.342 | 20.65805 | 283301.6 | 426.7551 | 261737.4
7 1550 3.97 1519.996 | 30.00425 | 283301.6 | 900.2551 | 252261.7
8 1550 3.82 1449.899 | 100.1007 | 283301.6 | 10020.16 | 186762.4
9 1500 3.93 1501.303 | -1.30335 232575.5 | 1.698722 | 233834.4
10 1400 3.81 1445.226 | -45.2262 146123.4 | 2045.405 | 182745.2
11 1400 3.54 1319.052 | 80.94753 | 146123.4 | 6552.503 | 90789.73
12 1400 3.72 1403.168 | -3.16826 146123.4 | 10.03786 | 148555.6
13 1400 3.65 1370.457 | 29.54344 | 146123.4 | 872.8148 | 124409.6
14 1050 3.12 1122.782 | -72.7823 1040.764 | 5297.261 | 11034.06
15 550 1.87 538.6448 | 11.35517 | 218779.9 | 128.9398 | 229531.3
16 400 1.49 361.067 | 38.93295 | 381601.6 | 1515.775 | 431218.2
17 400 1.53 379.7594 | 20.24055 | 381601.6 | 409.68 | 407018.1
18 300 1.32 281.6244 | 18.37565 | 515149.5 | 337.6644 | 541865
19 250 1.21 230.2203 | 19.77974 | 589423.4 | 391.2382 | 620186
20 170 1.19 220.8741 | -50.8741 718661.6 | 2588.17 | 634993.9
21 140 1.22 234.8934 | -94.8934 770426 | 9004.749 | 612847.5
22 128 1.03 146.1045 | -18.1045 791635.7 | 327.7717 | 759747
23 120 0.88 76.00797 | 43.99203 | 805935.5 | 1935.299 | 886857.6
24 N/A 1.92 N/A NA NA NA NA
25 N/A 1.44 N/A NA NA NA NA
Mean(1-23) | 1017.739 2.895217 1017.739 .0000 379719.4 | 2807.691 | 376911.7
Sum(1-23) 23408 66.59 23408 .0000 8733546.4 | 64576.9 | 8668969.7
Table 2.3: Data and ANOVA computations for Carpet Age / Cysteic Acid Study

Source df SS MS Fops Fgo5  P-value

Regression (Model) 1 8668969.7 SEUSI0LT — 8668969.7 SSEOT — 2819.1  4.325  .0000

Error (Residual) 23—2=21 64576.9 % = 3075.1

Total (Corrected) 23 —-1=22 8733546.4

Table 2.4: Analysis of Variance Table for Carpet Aging Study
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population. The population correlation coefficient is labeled p, and the sample correlation is labeled 7, and

is computed as: B B
D > e e o1t (e o N <SX>A
"= = B

Vo (X - TR Y, (v - V)2

where Sy and Sy are the standard deviations of X and Y, respectively. While Bl can take on any value,
r lies between —1 and +1, taking on the extreme values if all of the points fall on a straight line. The test
of whether p = 0 is mathematically equivalent to the t-test for testing whether 5; = 0. The 2-sided test is
given below.

Sy

Ho:p=0 Hi:p£0 TS:tops = % RR: tops| > tajom—a P —value: 2P(ty o > |tops|)

To construct a large-sample confidence interval, we use Fisher’s z transform to make r approximately
normal. We then construct a confidence interval on the transformed correlation, then ”back transform” the
end points.

1 147 1 14+p 1
Z/ = 5111( ) (1 —O[)IOO% CI for 5111 (m) : Z/ﬂ:Za/Q n—_3

Labeling the endpoints of the Confidence Interval as (a, b), we obtain:

(1 — @)100% Confidence Interval fo ik it
-« nfidence Interval for p : T T e——
’ p 211" e+ 1

Example: Cysteic Acid Content and Age of Carpets

For the Carpet Aging analysis, we obtain the following calculations.

18550.7913 18550.7913
r= = =.9963
\/(39.6970)(8733546.4)  18619.7635
9963
HO P = 0 HA P 75 0 TS: tobS = 72 =53.10 RR: |t0bs| Z t,02572372 = 2.080
1-.9963
23-2

Clearly, the P-value is 0. Next, we compute a 95% Confidence Interval for p based on Fisher’s z transform
and back-transforming.

1. /1 1
) =3.1454  95% Clfor ;1n (#) : 3.1454+1.96y/—— = (2.6957,3.5951)

—-p 22 -3

, 1. [1+.9963
Z==-In| ——
2 \1—.9963
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95% Confidence Interval for p :

2(2.6957) _ | ,2(3.5951 _ |
(6 ¢ ) = (.9909,.9985)

2(2.6957 17 02(3.5951 4 |
The R commands and output are given below.

### Commands

### Correlation Test/CI

(r <- SS_XY / sqrt(SS_XX * SS_YY))

(t_r <- sqrt(n-2) * (r / sqrt(1l - r~2)))
(t_r_crit <- qt(.975,n-2))

(P_r <- 2%(1 - pt(abs(t_r),n-2)))

(z_r <= 0.5 * log((1+r) / (1-r)))
(CI_z_rho <- z_r + gnorm(c(.025,.975),0,1) * sqrt(1 / (n-3)))
(CI_rho <- (exp(2#CI_z_rho) - 1) / (exp(2*CI_z_rho) + 1))

### Output

> (r <- SS_XY / sqrt(SS_XX * SS_YY))

[1] 0.9962961

> (t_r <- sqrt(n-2) * (r / sqrt(l - r°2)))
[1] 53.09515

> (t_r_crit <- qt(.975,n-2))

[1] 2.079614

> (P_r <- 2*%(1 - pt(abs(t_r),n-2)))

[11 0

> (z_r <- 0.5 * log((1+r) / (1-r)))

[1] 3.144829

> (CI_z_rho <- z_r + gnorm(c(.025,.975),0,1) * sqrt(1 / (n-3)))
[1] 2.706567 3.583090

> (CI_rho <- (exp(2*CI_z_rho) - 1) / (exp(2*CI_z_rho) + 1))

[1] 0.9911243 0.9984567

2.6 Regression Through the Origin

In some applications, it is believed that E {Y} is proportional to X. That is, E{Y|X = 0} = 0. Note that
some people interpret this as ¥ = 0 when X = 0. However, that would imply that V {Y|X = 0} = 0, which
is not consistent with the model. We consider regression through the origin here, as it is useful in specific
applications and is also used in many diagnostic tests for model adequacy.

Y=0X+e¢ € ~ N(0,0?) independent = Y ~ N(3:X,0?) independent

The least squares estimator is derived below.

€ = Z Y; — B Xi) =

1 =1

Q=

n
1=
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b

1=

%9 _ 22": Y= X7 (X)) = =2 zn:XiYi — b zn:Xf
: i=1 i=1

n o . n X,Y;
= Y XYi=p) XP = ﬁl—%
= i=1 =1

The mean and variance of Bl are obtained below, along with its sampling distribution.

p{i}= s ) XX - b ST 1; 2

1=1 1 i=1
o 1 - o2 o o2
V{ﬁl}zi XEUQZni BlNN(615n7>
>r, Xf)2 ; D i X7 i XF

A second, also unbiased, estimator of 31 is given below.

1 " 2

V{ﬁl} = m;ﬁ = m

Note that the least squares estimator has a smaller variance than the second estimator. This can be
seen as considering the difference between their reciprocals.

>0
o2

1 1~ _ % li X2 (Z?_;Xzf] _ S (X - X)?

For this model, the error sum of squares, with n — 1 degrees of freedom, and its Expected Mean Square
are given below.

n

SSE:Z(}Q—&X) ZY2+612X3—2312X1-Y1:
=1 =1

=1
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S+ (SR Soa oM s - S
ey i=1 % i=1

E{SSE} = no*+ 3? ZXQ ZXQ( 5f>_(n—1)a2 = E{MSE}= E{S‘iE}_az‘

A
Zl I‘XV2 1

MSE

- s ee

The t-test and Confidence Interval for 3; are obtained as follow.

B — Buo

20

Ho:01=p10 Ha:B1# Bo TS:tops = RR : |tops| > tajan—1

(1 — ) 100% Confidence Interval for (3 : Bl + ta/Qyn,lSAE {Bl}

Be wary of the Analysis of Variance and coefficient of determination reported by statistical software
packages. Since the regression line does not necessarily go through the point (X , Y), the Total Sum of
Squares, Regression Sum of Squares, and coefficient of determination are computed as follow.

- ~y e s Y (i-Y)
TSS=> Y7 SSR =) Y? r? = Z;—l oA =EL
; ; Z’i:l }/’L'2 Zi: Y

Example: In-vivo and in-vitro Assessments of Sunscreen Product SPF

Miksa, Lutz, and Guy (2013) reported a study of 3 in-vitro methods of assessing n = 32 suntan products’
SPF. There were 3 in-vitro methods that were compared with in-vivo. The in-vitro methods were:

e MPP = Molded polymethyl methacylate (PMMA) plates
e MSSP = Molded skin-mimicking PMMA plates
e SPP = sand-blasted PMMA plates

The researchers fit regressions through the origin where Y was the in-vitro method (1-at-a-time) and X
was the in-vivo measurement. The data (means for each method for each product) are given in Table 2.5,
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and a plot of MPP in-vitro versus in-vivo assessments along with the fitted regression through the origin.
Calculations for the estimated slope for in-vitro MPP (Y1) are shown here, based on results from the
spreadsheet generated Table 2.5.

7477534

= 75513.74 = 0.990222 Y; = 0.99022X;

N OXiY;=T417534 Y XP=T5513.74 3

=1 =1

- . 16167.06 (A 521.52
SSE = § (Y; - Y;)? = 16167.06 s> = MSE 1 521.52 SE {51} \/ SRR 0.0831

=1
95% CI for f3 : 0.9902 4 2.040(0.0831) = 0.9902+0.1695 = (0.8207,1.1597)
74044.16
= 74044.1 TSS = 90211.22 2= T — 82
SSR = 74044.16 SS =90 502119 8208

The Analysis of Variance is given in Table 2.6. Direct calculations for all three methods in R are obtained
below.

### Commands

spf <- read.csv("http://www.stat.ufl.edu/ winner/data/spf_substrate.csv",
header=T)

attach(spf); names(spf)

### Scalar form Analysis

n <- length(SPF1)
X <- SPF1; Y1 <- SPF2; Y2 <- SPF3; Y3 <- SPF4

(S_XX <- sum(X"2))

(S_XY1 <- sum(X*Y1))
(S_XY2 <- sum(X*Y2))
(S_XY3 <- sum(X*Y3))

(betal_hat <- S_XY1 / S_XX)
(beta2_hat <- S_XY2 / S_XX)
(beta3_hat <- S_XY3 / S_XX)

Y1_hat <- X * betal_hat
Y2_hat <- X * beta2_hat
Y3_hat <- X * beta3_hat

(SS_ERR1 <- sum((Y1 - Y1_hat)~2))
(SS_ERR2 <- sum((Y2 - Y2_hat)~2))
(SS_ERR3 <- sum((Y3 - Y3_hat)~2))

(s2_1 <- SS_ERR1 / (n-1))
(s2_2 <- SS_ERR2 / (n-1))
(s2_3 <- SS_ERR3 / (n-1))

(SE_betal_hat <- sqrt(s2_1 / S_XX))
(SE_beta2_hat <- sqrt(s2_2 / S_XX))
(SE_beta3_hat <- sqrt(s2_3 / S_XX))

(CI_betal <- betal_hat + qt(c(.025,.975),n-1) * SE_betal_hat)
(CI_beta2 <- beta2_hat + qt(c(.025,.975),n-1) * SE_beta2_hat)
(CI_beta3 <- beta3_hat + qt(c(.025,.975),n-1) * SE_beta3_hat)
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(SS_REG1 <- sum(Y1_hat~2))
(SS_REG2 <- sum(Y2_hat~2))
(SS_REG3 <- sum(Y3_hat~2))

(r_squarel <- SS_REG1 / sum(Y1°2))
(r_square2 <- SS_REG2 / sum(Y2"2))
(r_square3 <- SS_REG3 / sum(Y3"2))

### Output

> (S_XX <- sum(X~2))

[1] 75513.74

> (S_XY1 <- sum(X*Y1))

[1] 74775.34

> (S_XY2 <- sum(X*Y2))

[1] 116792.4

> (S_XY3 <- sum(X*Y3))

[1] 130454.6

>

> (betal_hat <- S_XY1 / S_XX)
[1] 0.9902216

> (beta2_hat <- S_XY2 / S_XX)
[1] 1.546638

> (beta3_hat <- S_XY3 / S_XX)
[1] 1.727561

Y1_hat <- X * betal_hat
Y2_hat <- X * beta2_hat
Y3_hat <- X * beta3_hat

> (SS_ERR1 <- sum((Y1 - Yi_hat)"2))
[1] 16167.06

> (SS_ERR2 <- sum((Y2 - Y2_hat)"2))
[1] 86836.99

> (SS_ERR3 <- sum((Y3 - Y3_hat)"2))
[1] 35947.7

> (s2_1 <- SS_ERR1 / (n-1))

[1] 521.5181

> (s2_2 <- SS_ERR2 / (n-1))

[1] 2801.193

> (s2_3 <- SS_ERR3 / (n-1))

[1] 1159.603

> (SE_betal_hat <- sqrt(s2_1 / S_XX))
[1] 0.08310395

> (SE_beta2_hat <- sqrt(s2_2 / S_XX))
[1] 0.192601

> (SE_beta3_hat <- sqrt(s2_3 / S_XX))
[1] 0.1239201

> (CI_betal <- betal_hat + qt(c(.025,.975),n-1) * SE_betal_hat)
[1] 0.820730 1.159713

> (CI_beta2 <- beta2_hat + qt(c(.025,.975),n-1) * SE_beta2_hat)
[1] 1.153826 1.939451

> (CI_beta3 <- beta3_hat + qt(c(.025,.975),n-1) * SE_beta3_hat)
[1] 1.474824 1.980297

> (SS_REG1 <- sum(Y1_hat~2))

[1] 74044.16

> (SS_REG2 <- sum(Y2_hat~2))

[1] 180635.7

> (SS_REG3 <- sum(Y3_hat~2))

[1] 225368.2

> (r_squarel <- SS_REG1 / sum(Y1"2))
[1] 0.8207866

> (r_square2 <- SS_REG2 / sum(Y2"2))
[1] 0.6753425
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In-vitro MPP vs in-vivo

100
|

in-vitro MPP

20 40 60 80

in-vivo

Figure 2.3: Plot of in-vitro MPP vs in-vivo with Regression through the Origin

> (r_square3 <- SS_REG3 / sum(Y3"2))
[1] 0.8624358

2.7 Case of Random Independent Variable

So far, X has been considered to be a fixed constant, which typically occurs in controlled experiments. When
X is a random variable, but it is independent of the random error term ¢, everything derived previously
holds, but the inference is conditional of the observed X levels in the sample. In the first model considered,
Y and X are jointly distributed as bivariate normal random variables. In the second model, X is assumed
to be random and Y is related to X, with the error term being independent of X.

2.7.1 Bivariate Normal Y and X

In the “classical simple regression model,” ¥ and X are jointly distributed as bivariate normal as defined
below.

E{X}=pux V{X}=0% E{Y}=py V{¥}=0} CORR{X,Y}=)p
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Product | in-vivo (X) | MPP(Y'1) | MSSP(Y2) | SPP(Y3) X2 XY1 V1 el
P1 9 93 14.7 16.5 81 83.7 8.91 0.39
P2 20.4 12.8 27.3 29.3 416.16 | 261.12 | 20.20 -7.40
P3 32.2 16.4 27.6 48.1 1036.84 | 528.08 | 31.89 | -15.49
P4 40.8 34 58.3 64.6 1664.64 | 1387.2 | 40.40 -6.40
P5 32.8 15.3 23.1 44 1075.84 | 501.84 | 3248 | -17.18
P6 28.2 34.3 31.4 120 795.24 | 967.26 | 27.92 6.38
P7 83.3 21.5 42.7 69.4 6938.89 | 1790.95 | 8249 | -60.99
P8 79.9 113.1 201.1 96.1 6384.01 | 9036.69 | 79.12 33.98
P9 79.6 104.9 308.1 173.3 | 6336.16 | 8350.04 | 78.82 26.08
P10 69.6 92.8 128.4 153.9 | 4844.16 | 6458.88 | 68.92 23.88
P11 68.7 68.2 32.7 88.4 4719.69 | 4685.34 | 68.03 0.17
P12 67.5 72.3 56.1 172.4 | 4556.25 | 4880.25 | 66.84 5.46
P13 59.4 46.6 36.8 80.1 3528.36 | 2768.04 | 58.82 | -12.22
P14 59.2 78.5 154.3 113.7 | 3504.64 | 4647.2 | 58.62 19.88
P15 58.6 37.4 69.2 140.5 | 3433.96 | 2191.64 | 5803 | -20.63
P16 58.4 109.1 186.1 80.8 3410.56 | 6371.44 | 57.83 51.27
P17 55.5 18.3 37.5 81.9 3080.25 | 1015.65 | 54.96 | -36.66
P18 53.1 48.9 90.9 64.5 2819.61 | 2596.59 | 52.58 -3.68
P19 51.4 30.3 28 100.4 | 2641.96 | 1557.42 | 50.90 | -20.60
P20 45.3 79.6 84 98.1 2052.09 | 3605.88 | 44.86 34.74
P21 37.8 65.2 61.7 95.5 1428.84 | 2464.56 | 37.43 27.77
P22 37.7 31.2 53.8 39.1 1421.29 | 1176.24 | 37.33 -6.13
P23 36.8 18.2 30.4 63.2 1354.24 | 669.76 | 36.44 | -18.24
P24 34.5 12.9 9.6 46.2 1190.25 | 445.05 | 34.16 | -21.26
P25 34.3 43.1 78 62.2 1176.49 | 1478.33 | 33.96 9.14
P26 34.1 48.1 25 51.6 1162.81 | 1640.21 | 33.77 14.33
P27 34 27.8 38.2 38.4 1156 945.2 33.67 -5.87
P28 29.9 30.6 26.9 151.5 894.01 | 914.94 | 29.61 0.99
P29 28.5 6.7 45 34.3 812.25 | 190.95 | 2822 | -21.52
P30 28 9.3 17.8 53 784 260.4 27.73 | -18.43
P31 22.2 27.6 60.7 56.2 492.84 | 612.72 | 21.98 5.62
P32 17.9 16.3 14.6 31.5 32041 | 291.77 | 17.72 -1.42
Sum 1428.6 1380.6 2059.5 2558.7 | 75513.74 | 74775.34 | 1414.63 | -34.03
SumSq | 75513.74 | 90211.22 | 267472.65 | 261315.85 74044.16 | 16167.06

Table 2.5: in-vivo and 3 in-vitro assessments of SPF for 32 suntan products

Source df SS MS Fops Fg5  P-value
Regression 1 7404416  TOHEIC — 7404416 T20MLI6 — 74198 4.160 0000
Error 32—1=31 16167.06 16167.06 _ 597 52

Total (Uncorrected) 32 90211.22

Table 2.6: Analysis of Variance Table for Suntan Product SPF Study



2.7. CASE OF RANDOM INDEPENDENT VARIABLE 73

2 + 2
Ox OxXO0y Oy

f(x’y):(zﬂ)i (UXUY (1_ ))1/2€Xp{_2(11 )[(x—ux) —2p(x_“x)(y—uy) (y — py) ]}

—00 <,y <00, =00 < fix, py < 00,0x,0y >0,-1<p<1

To obtain the marginal distribution of X, integrate Y out of the joint density. Note that the final
marginal distribution for X is normal with mean px and variance 0% . This makes use of “completing the
square” and forming a new normal density.

- / Fap)dy = @m)~ (%ol (1 p2)) /%

< 1 (z — px)? 0y —2p(z — px) (y — py) oxoy + (y — py)* ok
/mexp{—z(l_pz)[ 2 2 :|}dy

Ix0y

= (2m) " (okod (1-07)) " x

/: exp {—m [(x—px)? 0y —2p(x — px) (y — pv) oxoy + (y — py)* ok + (& — px)? 03p° — (z — px)? 0¥ p°] } dy
= @m) 7 (okod (1-07)) %

/: exp {—m (&= px)? 0% p® = 2p (x — px) (y — py) oxoy + (y — py)* 0% + (@ — px)? 0¥ (1 - p?)] } dy =

2m) ™ (ot (1 07)) " x

exp{_(x;ng UYUXUY }/ exp{ 5 1—p1)g§(c7§/ [(x_”X)UYp_(y—HY)Ux]Z}dy—

(2m)~ ! (03(03/ (1 pz)) V2

{ (x—ﬂX UY
exp { — exp

2(1-p?) oo [(y py) — P(m—ﬂx)a—yr}dy—

21—l

(2
1/2
(2m)~ (O'Xo'y (1 —p ))

exp{_(xg(ulx—)paizg(zia—%/))}/Zexp{—iz(l _1,)2)03, [Z/— [Hy+p(x_“x)z—;”2}dy

In the integral, Y is normal with mean pry +p (z — px) 2= and variance (1 — p?) 0%, so that the integral

is equal to the reciprocal of the usual normalizing constant: /2w (1 — p?) o%.. This implies that fx(z) can
be written as follows.

Fx(@) = @m) " (%o} (1- %) % x

exp{_(x—,ux) oy (1—P2)} 27 (1 — p?) o2 =

2(1—p?) o302
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1 - 2
Xp{—w} —oo<r <o

e
\/ 27TU§( 203(

The conditional distribution of Y given X = z, is the ratio of the joint density divided by the
marginal density of X (each evaluated at X = x).

Fol) = 180 - Prox
fx(@)  2m\/0%0% (1 —p?)

1 (x—px)® 2p(@—px)@y—py) | y—py)
exp{_z(l_p2) [ o'g( N ox0y + 0’%/

T

1($—ux)2}

Multiplying the last term in the exponent by (1 — p?) /(1 — p?) yields the following.

1
—X
2r0 (1 — p?)

exp{—2(11_p2) l(x—éix) (1_(1_p2))_2p(x—ux)(y—HY)+(y—agy) ]}_

fylz) =

O’X OxXO0y

1 exnd L y—ny (@—px)p]*| _
2ro (1 — p?) p{ 2(1—/’2)[ oy ox }}
v v o @px)poy ]t
210 (1 — p?) p{ 205 (1 - p?) [(y ) ox }}
I SRRy SR SRR @—px)poy 11 _
23 (1 — p?) p{ 205 (1 - p?) [y ['LLY+ ox H} s

Given X = z, Y is normally distributed with conditional mean py + (z — px) poy /ox and conditional
variance o3 (1 — p2). Notice that in terms of the linear regression model, the following results are obtained.

COV(X,Y
B =) = (- 2] a2 COVERT)
ox ox OX0y

poy COV(X,Y) poy
—— = =5 By — px—— =py — Bipx = Bo
ox Ox ox

The conditional variance of Y, given X = x is the unconditional variance of Y (%) times 1 — p?, and

does not depend on X.



2.8. R PROGRAMS AND OUTPUT BASED ON LM FUNCTION 75

2.8 R Programs and Output Based on lm Function

For both of the datasets used in this chapter, the R programs based on use of the built-in lm function are
given below.

2.8.1 Carpet Aging Analysis

R Program

carpet <- read.csv("http://www.stat.ufl.edu/ winner/data/carpet_age.csv",
header=T)
attach(carpet); names(carpet)

### f ==> full data m==> missing age
age_f <- age[1:23]; age_m <- age[24:25]
cys_acid_f <- cys_acid[1:23]; cys_acid_m <- cys_acid[24:25]

########## 1m function

carpet.modl <- 1lm(age_f ~ cys_acid_f)

summary (carpet .mod1)

anova(carpet.modl)

confint (carpet.modl)
predict(carpet.modi,list(cys_acid_f=cys_acid_m),int="p")

plot(cys_acid_f, age_f)
abline(carpet.modl)

cor.test(cys_acid_f, age_f)

R Output

> carpet.modl <- Ilm(age_f ~ cys_acid_f)
> summary (carpet.mod1l)

Call:
Im(formula = age_f ~ cys_acid_f)

Residuals:
Min 1Q Median 3Q Max
-94.89 -48.05 18.38 31.87 100.10

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -335.225 27.983 -11.98 7.51e-11 ***
cys_acid_f 467.310 8.801 53.09 < 2e-16 ***

Residual standard error: 55.45 on 21 degrees of freedom
Multiple R-squared: 0.9926, Adjusted R-squared: 0.9923
F-statistic: 2819 on 1 and 21 DF, p-value: < 2.2e-16

> anova(carpet.modl)
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Analysis of Variance Table

Response: age_f

Df Sum Sq Mean Sq F value Pr(>F)
cys_acid_f 1 8668970 8668970 2819.1 < 2.2e-16 **x*
Residuals 21 64577 3075

> confint (carpet.modl)
2.5 % 97.5 %
(Intercept) -393.4178 -277.0318
cys_acid_f 449.0065 485.6134
> predict(carpet.modl,list(cys_acid_f=cys_acid_m),int="p")
fit lwr upr
1 562.0103 442.8635 681.1572
2 337.7015 216.9257 458.4774
>
>
> cor.test(cys_acid_f, age_f)
Pearson’s product-moment correlation

data: cys_acid_f and age_f
t = 53.0951, df = 21, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9911243 0.9984567
sample estimates:
cor
0.9962961

2.8.2 Suntan Product SPF Assessments
R Program

spf <- read.csv("http://www.stat.ufl.edu/ winner/data/spf_substrate.csv",
header=T)
attach(spf); names(spf)

spf.mod2 <- 1m(SPF2 ~ SPF1 - 1)
summary (spf .mod2)

anova(spf .mod2)

confint (spf.mod2)

plot(SPF1, SPF2,main="In-vitro MPP vs in-vivo",xlab="in-vivo",

ylab="in-vitro MPP")
abline(spf.mod2)

R Output

> spf.mod2 <- 1m(SPF2 ~ SPF1 - 1)
> summary (spf.mod2)

Call:
1m(formula = SPF2 ~ SPF1 - 1)
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Residuals:
Min 1Q Median 3Q Max
-60.985 -17.444 -2.5563 10.435 51.271

Coefficients:
Estimate Std. Error t value Pr(>|t])
SPF1 0.9902 0.0831 11.91 4.17e-13 ***

Signif. codes: O **% 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 22.84 on 31 degrees of freedom
Multiple R-squared: 0.8208, Adjusted R-squared: 0.815
F-statistic: 142 on 1 and 31 DF, p-value: 4.169e-13

> anova(spf.mod2)
Analysis of Variance Table

Response: SPF2
Df Sum Sq Mean Sq F value Pr(>F)

SPF1 1 74044 74044 141.98 4.169e-13 **x*
Residuals 31 16167 522
Signif. codes: O **% 0.001 ** 0.01 * 0.05 . 0.1 1
> confint (spf.mod2)

2.5% 97.5%
SPF1 0.82073 1.159713

7
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Chapter 3

Matrix Form of Simple Linear
Regression

We can write out the regression model in a more concise form using the matrix form. This is particularly
helpful when we have multiple predictors. We first ”string out” the dependent variable (Y), and the predictor
variable (X) into arrays. In fact, we augment the X*® with a column of 1° for the intercept:

Y; 1 Xy €1

Ys 1 X5 €2
: 61

Y, 1 X, €n

We can make use of some basic matrix rules to simplify the algebra of regression models. Note that
matrices with one row or column are referred to as vectors. Matrices with the same number of rows and
columns are referred to as square matrices. When referring to elements of matrices, the row represents
the first subscript, and the column is the second subscript. Vector elements have one subscript.

The transpose of a matrix or vector, is the matrix or vector obtained by interchanging its rows and
columns (turning it on its side, counterclockwise, and flipping it upside down). It is typically written with
a “prime” or “T” as a superscript.

V=[] X=| gy g | #=lh o a] dela e el

Matrix Addition/Subtraction: If two matrices are of the same dimension (numbers of rows and
columns), then the matrix formed by adding/subtracting each of the elements within the given rows and
columns is the addition/subtraction of the two matrices.

79
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4
.

443 8+17] [ 7
248 —4+46 ] |10

S
RSB iy B

Matrix Multiplication: Unlike Addition/Subtraction, Multiplication takes sums of products of matrix
elements. The number of columns of the left-hand matrix must be equal to the number of rows of
the right-hand matrix. The resulting matrix has the same number of rows of the left-hand matrix and
the number of columns as the right-hand matrix. Note that multiplication of square matrices of common
dimensions will result in a square matrix of the same dimension. The elements of a matrix created by
multiplication are the sums of products of elements in the rows of the left-hand matrix with the elements of
the columns of the right-hand matrix.

4 8]1[3 1 76 52
AB_[2—4H8 6] B [—26 —22]

Note the computation of elements of AB.

A+B=

\ClNe)

ABj; =4(3)+8(8)=124+64 =76  ABiy =4(1)+8(6) =4+ 48 =52

ABy; =2(3)+ (—4)(8) =6 —32=—-26 AByy =2(1)+ (—4)(6) =2 —24 = —22
CA=TB
In General: AB;; = Z a;ixbr; i=1,...,ra; j=1,...,cB
k=1

Important matrix multiplications for the simple linear regression model are:

1 Xy 1(Bo) + X1 (B1) Bo + X1
X Bo B 1(Bo) + X2 (B1) 7 Bo + 1 X2
Xf = S [ b ] B : B :

The statistical model in matrix form (which easily generalizes to multiple predictor variables) is written as:

Xl/
yi:xi’ﬁz[l Xi][ﬁo]—l-ei = Y =XB+¢e where X = :
o 3
Xn
Other matrices used in model estimation are:
1 X; ]
wx_| 1 1 1 L X B (D) 4411 LX)+ + 1(Xn)
Tl XX X : Tl x4+ Xn(1) X4+ X7
1 X, |
e Y; ~
= X’X—[ o 2= X X’Y—[ il ] Y'Y =[S v2
Zi:l Xi Zi:l Xi2 21:1 XiY; ;
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Identity and Unit Matrices: The identity (or I) matrix is a square matrix with 1° on the main
diagonal, and 0° elsewhere. When the identity matrix is multiplied by any multiplication-compatible matrix,
it reproduces the multiplied matrix. Thus, it acts like 1 in scalar arithmetic. The unit (or J) matrix is a
matrix of 1° in all cells. When the unit matrix is multiplied by a multiplication-compatible matrix, it sums
the elements of each column (and reproduces the sums for each row).

we (3202 5] - (A0 ns] - (2] - a
w-[11][4 2] - (g ] - 2]

Matrix Inversion: If a matrix is square and of full rank (no linear functions of a set of columns/rows
are equal to another column/row), then an inverse exists. Note that in simple regression, this simply means
that the X levels are not all the same among observations. When we have more than one predictor variable,
it means that none of the predictors is a linear function of the other predictors. When a square, full rank
matrix is multiplied by its inverse, we obtain the identity matrix. This is analogous to the scalar operation:
a(l/a) = 1, assuming a # 0. For a 2 x 2 matrix, the inverse is simple to compute. For larger matrices, we
will use computers to obtain them.

D11 Dio -1 1 D> —Dso
|: D21 D22 :| D11D22 — D12D21 _D21 Dll

Note that if D is not full rank (its columns/rows) are multiples of each other, D11 Doy — D19Ds; = 0,
and its inverse does not exist.

Sl =001
|

el NI

—_

A I e A I A

Confirm that AA™' = A~'A = 1. Serious rounding errors can occur when the division of the determi-
nant m is rounded down to too few decimal places.

Some useful results are as follow, assuming matrices are compatible for the operations, which always
holds when each is square and of the same dimension. The second result also assumes that each is full rank,
meaning their inverses exist.

(AB) =B'A’ (AB) '=B7'A"!  trace(AB) = trace(BA)

The last result involves the trace of the matrix, which constitutes the sum of the diagonal elements of a
square matrix. Each of the results extends to 3 or more matrices in a similar manner.

(ABC)Y =C'B’A’ (ABC) '=C 'B'A™'  trace(ABC) = trace(CBA)

An important application in regression is as follows. The normal equations that are obtained from ordinary
least squares are: X'X@3 = X'Y. This is a result from calculus as we try and minimize the error sum of
squares.
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E=ce=(Y-XB)(Y-XB) =YY -YXB8- XY +8X'X3=Y'Y —2Y'X3 +BX'X3
1

Q=

Making use of the following calculus results for column vectors a and w, and symmetric matrix A:

8§’w o 8w(;A’w — oAw
W W

we obtain, the derivative for () with respect to 3, set it to 0, and solve for B First, we demonstrate the
results for a simple case where wis 2 x 1, ais 2 x 1, and A is 2 x 2.

’ o] matd
aw:[al CLQ] = a1wi + asws = _— = = a
w2 9 w1 a2
o]

A A w

wAwW = [ wy  Wwa ] [ Ai; A;z ] [ w; ] = Ajjw? 4 2410w w3 + Agow}
8W/AW . 2A11w1 + 2A12’LUQ o
= (?T N [ 2A10wy + 2A%ws | 2Aw

w2

%%:—ﬂﬂﬂﬁXKﬁgo = XXB8=XY = pB=XX) XY

From this result, we can obtain the vectors of fitted values and residuals, and the sums of squares for
the ANOVA from the data matrices and vectors:

; oo
. Y; Bo + B X . _
v=| | = CTETE L xg = x(xX'X)'X'Y
Yn BO"‘Ban
€1 3/1—3:/1
€2 YQ_YQ A -1
e=| - , - Y-Y = (I-XXX) X)Y
en Y, — Ya
Y Y1 Yi
_ Y IR
Y= | _ 1 2 ! - 2JY
: n : n
Y Y Yi
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The matrix X(X’X)le’ is very important in regression analysis. It is symmetric and idempotent.
That is, it is equal to its transpose, and when you multiply it by itself (square it), you obtain it again. It
is called the hat or projection matrix, and is often denotes as H or P. Here, we will use P to denote the
projection matrix.

The sums of squares can be written in terms of quadratic forms of the data vector Y. First however
note the following results involving matrices used in their construction:

PX =X(X'X) 'X'X=XI=X PP=XXX) 'XXXX) X =XI(XX)"'X =XXX)"'X' =P

Note that if the model has an intercept (fp), then the first column of X, is a column of 1°. Then, since
PX = X, that implies PJ = J, since J is a n X n matrix of 1°.

PI=J = PlJ:lJ JJ=nJ = lJlJ:lJ

n n n n n

Now, we re-introduce the sums of squares, and write them in matrix form. The Total (corrected) sum of
squares is:

TSS = zn:(m “Y)?=(Y-V)(Y-Y) = Y(@- %J)’(I - %J)Y = Y(I- %J)Y

This is partitioned into the error (SSE) and regression (SSR) sums of squares:

n

SSE =Y (Y- V))* = (Y - Y)/ (Y - Y) - YI-PYAI-P)Y = Y(I-P)Y
SSR = zn:(fq —Y)2= (Y —?)/ (Y —?) = Y'(P- %J)’(P - %J)Y - Y'(@®- %J)Y

Some useful matrix simplifications are helpful in making computations from spreadsheet calculations
that avoid working directly with n x n matrices “inside” the sums of squares.

n n 2

YIY = Yv? ylyy - &ZimY)
i=1 n n
YPY = YXXX)'XY = XY

Example: Cysteic Acid Content and Age of Carpets

For the Carpet Aging analysis, Table 3.1 contains the computations used to obtain the elements of the
matrices X’X, XY, and Y’Y. We use these to obtain the matrix form of the least squares estimate (based
on specimens 1-23), and the sums of squares for the Analysis of Variance.

XX = 66?.359 2362§458995 Y'Y = [32556784]

~ | 23408
XY= [ 86322.04 ]
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X'X) " = 1 232.4895 —66.59 B 1 232.4895 —66.59
T 23(232.4895) — (66.59)2 | —66.59 23 ©913.0304 | —66.59 23
N G- 1 232.4895 —66.59 23408
"~ 913.0304 | —66.59 23 86322.04
1 232.4895(23408) + (—66.59)(86322.04) 7 1 —306070.43
"~ 913.0304 (—66.59)(23408) + 23(86322.04) T 913.0304 | 426668.2
B —335.225
- 467.310
2
YIY = 32556784 Y'1JY = % = 23823237.57
n
Y'PY = —335.225(23408)+ 467.310(86322.04) = 32492205.71

= T'SS = 32556784 — 23823237.57 = 8733546.43

= SSE = 32556784 — 32492205.71 = 64578.29

= SSR =32492205.71 — 23823237.57 = 8668968.14

R Program for Matrix Computations

carpet <- read.csv("http://www.stat.ufl.edu/ winner/data/carpet_age.csv",
header=T)
attach(carpet) ; names(carpet)

### f ==> full data m==> missing age
age_f <- age[1:23]; age_m <- age[24:25]
cys_acid_f <- cys_acid[1:23]; cys_acid_m <- cys_acid[24:25]

#ESH SRR HE#E Matrix form  (.m represents matrix form)
(n <- length(age_f))



specimen (i) | age(Y) | cys acid(X) Y? X2 XY
1 1750 4.39 3062500 | 19.2721 7682.5
2 1600 4.3 2560000 18.49 6880
3 1600 4.27 2560000 | 18.2329 6832
4 1600 4.33 2560000 | 18.7489 6928
5 1600 4.01 2560000 | 16.0801 6416
6 1550 3.99 2402500 | 15.9201 6184.5
7 1550 3.97 2402500 | 15.7609 6153.5
8 1550 3.82 2402500 | 14.5924 5921
9 1500 3.93 2250000 | 15.4449 5895
10 1400 3.81 1960000 | 14.5161 5334
11 1400 3.54 1960000 | 12.5316 4956
12 1400 3.72 1960000 | 13.8384 5208
13 1400 3.65 1960000 | 13.3225 5110
14 1050 3.12 1102500 9.7344 3276
15 550 1.87 302500 3.4969 1028.5
16 400 1.49 160000 2.2201 596
17 400 1.53 160000 2.3409 612
18 300 1.32 90000 1.7424 396
19 250 1.21 62500 1.4641 302.5
20 170 1.19 28900 1.4161 202.3
21 140 1.22 19600 1.4884 170.8
22 128 1.03 16384 1.0609 131.84
23 120 0.88 14400 0.7744 105.6
24 N/A 1.92 N/A N/A N/A
25 N/A 1.44 N/A N/A N/A
Sum(1-23) 23408 66.59 32556784 | 232.4895 | 86322.04

Table 3.1: Data and computations for matrix form of Carpet Age / Cysteic Acid Study
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Y <- age_f

X <- cbind(rep(1,n), cys_acid_f)
(XPXI <- solve(t(X) %*% X))
ybar <- mean(Y)

ybar.m <- rep(ybar,n)

(beta_hat.m <- XPXI %*% t(X) %% Y)
Y_hat.m <- X %%’ beta_hat.m
e.m <- Y - Y_hat.m

(SS_ERR.m <- t(Y - Y_hat.m) %*% (Y - Y_hat.m))

(df _ERR <- n - ncol(X))

(MS_ERR.m <- SS_ERR.m / df_ERR)

(SS_REG.m <- t(Y_hat.m - ybar.m) %*} (Y_hat.m - ybar.m))
(df_REG <- ncol(X) - 1)

(MS_REG.m <- SS_REG.m / df_REG)

R Output

> (n <- length(age_£))

[1] 23

> Y <- age_f

> X <- cbind(rep(1,n), cys_acid_f)

> (XPXI <- solve(t(X) %*% X))

cys_acid_f

0.25463500 -0.07293295

cys_acid_f -0.07293295 0.02519084

> ybar <- mean(Y)

> ybar.m <- rep(ybar,n)

> (beta_hat.m <- XPXI %*% t(X) %*% Y)
-335.2248

cys_acid_f 467.3100

> (SS_ERR.m <- t(Y - Y_hat.m) %x*% (Y - Y_hat.m))

[1,] 64576.89

> (df_ERR <- n - ncol(X))

[11 21

> (MS_ERR.m <- SS_ERR.m / df_ERR)

[1,] 3075.09

> (SS_REG.m <- t(Y_hat.m - ybar.m) %*% (Y_hat.m - ybar.m))

[1,] 8668970

> (df _REG <- ncol(X) - 1)

[11 1

> (MS_REG.m <- SS_REG.m / df_REG)

[1,] 8668970



Chapter 4

Distributional Results

The model for the observed data (data generating process) can be thought of as Y; being a random variable
with a mean (systematic component) of By + $1X; and a random error term of ¢; that reflects all possible
sources of variation beyond the predictor X. We assume that the error terms have mean 0, and variance
o2. In general, the error terms may or may not be independent (uncorrelated). The expectation and

1
variance-covariance matrix of the vector of error terms € are:

[ Ee ] 0]

Ll L]~

Viey=E{(e-BEle})(e—E{e})} = E{(e-0)(e-0)} = E{ee'}=

E {e%} E{e1e2} -+ E{eren} o2 o012 - O
E{e1e2} E {e%} <o E{esen} _ o12 03 -+ O
E{e'len} E{e'gen} E {e%} U;n U’Qn 0721
The expectation and variance-covariance matrix of the data vector Y are:
E{Y1} Bo + B X1
B{Y} = E{YQ} _ Bo + :51X2 _x3
E{Yn} 60 + 'ﬁan
Sy =V{Y}=E{(Y -E{Y) (Y -E{Y})} = E{(Y-XB)(Y-XB)}=
B{vi - E{m}’} B{Vi - E{M}) (- E{¥2})} - E{(i—E{"}) (Y- E{Ya})}
E{(Y: - E{V1}) (Y2 — E{¥2})} E{(v: - E{¥2})’} o E{(Ys - B{V2}) (Y, — E{¥,})}
E{(Yi - EM)) (Yo~ E{Y,})} E{(V2-E{V2})(Ya - E{V.})} - E{(V, - E{¥.})}
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2
01 012 *** Oln
2
012 03 R )
2
O1n O2n (o

where o0;; is the covariance between the it" and j'" measurements. When the data are independent, but
not necessarily of equal variance (heteroskedastic), we have:

o2 0 0

0 o2 0
V{Y} = .

0 0 o2

When the data are independent with constant variance (homoskedastic), we have V{Y} = o?1. This is the
common assumption underlying the model, which needs to be checked in practice.

For a random matrix W, and a matrix of fixed constants A of compatible dimensions for multiplication,
where the number of columns of A is equal to the number of rows of W, we write the following.

ay
/
a
2
A= . W:[Wl W2 - WCW] E{W}:[NW1 Hwz - :u’WCw]
/
g,
/ / /
a;wi a;wa cee Ay Wew
/ / /
a, W A, W a, W
2W1 2 W2 2 Wew
AW =
a/ a/ .o a/
I‘Awl I‘AW2 I‘AWCW
/ / /
A fwy A fwa A1 Hwey
/ / /
a ﬂ a ﬂ ... a ﬂ
2Hw1 2HwW2 2 MW ew
E{AW} = , , , , = AE{W}
/ / /
arAluwl arA/LWZ arA/Lch

V{AW} = F {(AW — E{AW}) (AW — F {AW})/} =F {A (W —-E{W}) (W - E{W}) A’} =
AE{(W-E{W}) (W -E{W})'} A’ = AV{W}A’
When applied to the least squares estimate B, we obtain:

E {5} = E{(X'X)"1X'Y} = (X'X) X' B{Y} = (X'X)"1X'X83 = 3

1% {5} = V{(X'X)'X'Y} = (X'X) X V{YIX(X'X) " = (X'X) X/ Dy X(X'X) !
When the data are independent, with constant variance, ¥y = oI then the variance of B simplifies to:

~ SSE
T pn—2

1% {B} = o?(X'X)"!  with estimated variance V' {B} =s*(X'X)"! s*=MSE
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Further, if Y is (multivariate) normal, then so is B, and when based on large samples, ,é is approximately
normal, even when Y is not, based on Central Limit Theorem arguments. We also obtain the following results

regarding the the vectors of fitted values (?) and residuals (e), and the estimated mean when X = X* and
the predicted value of Y when X = X*.

Y=X3=PY = E{Y}:X@ V{Y}:PUQIP’:UQP

e=Y-Y=(I-P)Y = E{e=1I-P)XB=0 V{e}=(1-P)o’ II-P) =0*1-P)

YNew = X*/B 4 {YNGW - Y*} =V {YNew} +V {Y*} =0’ [1 +X7 (X/X)il X*]

Example: Cysteic Acid Content and Age of Carpets

Here we present R code and output for the matrix form of the Carpet Aging data. We first compute
the estimated variance-covariance matrix of B, and test Hy : B1 = 0, then obtain Prediction Intervals for
the ages of specimens 24 and 25. For specimens 24 and 25, the cysteic acid contents were X3, = 1.92 and
X35 = 1.44, respectively.

#ESH Y Matrix form  (.m represents matrix form)
### Commands

carpet <- read.csv("http://www.stat.ufl.edu/ winner/data/carpet_age.csv",
header=T)
attach(carpet) ; names(carpet)

### f ==> full data m==> missing age
age_f <- age[1:23]; age_m <- age[24:25]
cys_acid_f <- cys_acid[1:23]; cys_acid_m <- cys_acid[24:25]

(n <- length(age_f))

Y <- age_f

X <- cbind(rep(1,n), cys_acid_f)
(XPXI <- solve(t(X) %*% X))
ybar <- mean(Y)

ybar.m <- rep(ybar,n)

(beta_hat.m <- XPXI %*% t(X) %% Y)
Y_hat.m <- X %%’ beta_hat.m
e.m <- Y - Y_hat.m

(SS_ERR.m <- t(Y - Y_hat.m) %*% (Y - Y_hat.m))
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(df_ERR <- n - ncol(X))

(MS_ERR.m <- SS_ERR.m / df_ERR)

(SS_REG.m <- t(Y_hat.m - ybar.m) %%} (Y_hat.m - ybar.m))

(df_REG <- ncol(X) - 1)

(MS_REG.m <- SS_REG.m / df_REG)

(V_beta_hat.m <- MS_ERR.m[1,1] * XPXI)

(t_beta.m <- beta_hat.m / sqrt(diag(V_beta_hat.m)))

(P_t_beta.m <- 2%(1 - pt(abs(t_beta.m),n-2)))

X_miss24 <- matrix(c(l, cys_acid_m[1]),ncol=1)

X_miss25 <- matrix(c(l, cys_acid_m[2]),ncol=1)

(yhat24 <- t(X_miss24) %#J, beta_hat.m)

(yhat25 <- t(X_miss25) %#J, beta_hat.m)

(PE_yhat24 <- sqrt(MS_ERR.m * (1 + t(X_miss24) %x*} XPXI %*, X_miss24)))
(PE_yhat25 <- sqrt(MS_ERR.m * (1 + t(X_miss25) %*} XPXI %*} X_miss25)))
(PI_miss24 <- yhat24 + qt(c(.025,.975),n-2) * PE_yhat24)

(PI_miss25 <- yhat25 + qt(c(.025,.975),n-2) * PE_yhat25)

### Output

> (V_beta_hat.m <- MS_ERR.m[1,1] * XPXI)
783.0255 -224.27537

cys_acid_f -224.2754  77.46409

>

> (t_beta.m <- beta_hat.m / sqrt(diag(V_beta_hat.m)))
-11.97976

cys_acid_f 53.09515

> (P_t_beta.m <- 2*(1 - pt(abs(t_beta.m),n-2)))
7.511813e-11

cys_acid_f 0.000000e+00

> X_miss24 <- matrix(c(1l, cys_acid_m[1]),ncol=1)

> X_miss25 <- matrix(c(1l, cys_acid_m[2]),ncol=1)

>

> (yhat24 <- t(X_miss24) %#J, beta_hat.m)

[1,] 562.0103

> (yhat25 <- t(X_miss25) %#J, beta_hat.m)

[1,] 337.7015

>

> (PE_yhat24 <- sqrt(MS_ERR.m * (1 + t(X_miss24) %%}, XPXI %*}, X_miss24)))

[1,] 57.29277

> (PE_yhat25 <- sqrt(MS_ERR.m * (1 + t(X_miss25) %%} XPXI %*, X_miss25)))

[1,] 58.07609

> (PI_miss24 <- yhat24 + qt(c(.025,.975),n-2) * PE_yhat24)

[1] 442.8635 681.1572

> (PI_miss25 <- yhat25 + qt(c(.025,.975),n-2) * PE_yhat25)

[1] 216.9257 458.4774

For Quadratic forms, where we have a random column vector, w, and a symmetric matrix of constants
A we have the random scalar w/Aw. If w has mean uw and variance-covariance matrix Xw, then:

E{w' Aw} = trace(AZw) + iy Apw.

Reconsider the simple case, with w being 2 x 1 and A being 2 x 2 considered previously.

Apn A H1 o % 012
= 2 =

[ Ara Aso Hw 2 w 012 03

Al Ar ] [ w1

= A w? + 2410w ws + Agow?
Aro Aoy wg] 11W7 12W1 W2 22W5
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E {W/AW} = AllE{wf} +2A12E{’(U1’LUQ} +A22E{w§} = All (0’% =+ ,UJ?) +2A12 (0’12 =+ /LLLLQ) +A22 (0’% =+ ,ug)
Now, evaluating the right-hand side of the equation.

[ Aol + Aizo12 Anioi + Ar203 B ) ,
(AEW) B A12U% + A220’12 A120'12 + AQQU% = trace(AZ}w) - Allal + 214120'12 + A220'2

A A
pwApw = [ g1 pe | [ AH A12 ] [ K ] = p3 Ay + 21 p0 Avs + 115 Aso
12 22 H2

This clearly generalizes to w of any n x 1 and symmetric A of n x n.

Consider the three primary quantities that make up the Analysis of Variance: Y'IY =Y'Y, Y'PY,
Y’ (%) JY. Here, we have yy = X3 and Xvy. Here, we consider the basic case (independent and constant
variance, with 3y = 02I). Further, recall that (when AB and BA are square) trace(AB) = trace(BA).

E{Y'TY} = trace(IZy) + p Iy = o?trace(II) + p4 Iuy = no? + /X' X3

Recalling that P = X(X'X)"1X’, we can obtain the trace of P as trace of X'X(X'X)~! = I, which is
2. Further, recall that PX = X(X'X)"1X'X = X, so that 3 X'PX8 — 8'X'X3.

E{Y'PY} = trace(PZy) + py Puy = o*trace(PI) + py Puy = 20° + /X'Xp3

When we multiply X'JX, we get:

n
n n? ny iy X

Zi:l Xi Zi:l Xi e Zi:l Xi ny i Xio (Qoim Xi)

1 1 1 1 1 1
E {Y’ (—) JY} = trace (—J2y> + 1y (—) Juy = otrace (—J) + py (—) Juy = 0® + X' =JX3
n n n n n n
Now, we write the total, error and regression sums of squares.

TSS—Y’(I—1J>Y SSE=Y' (I1-P)Y SSR_Y’(P—1J>Y
n n

Consider X’X and X’ (%) JX:

X — n > i1 Xi (1 _ n Ziﬂ:l i
x-| o S ] 2G| g S
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= X’X—X’(%)JX—[S S ()?1-—7)2}

=1

This leads to the following Expected Sums of Squares.
E{TS5S} = [no® + B'X'X3] — [02 + B’X’EJXB] =(n—1)0*+ 32 Z(Xl- -X)?
n
i=1
E{SSE} = [n02 + ,B/X/X,B] — [202 + ,B/X/X,B] = (n—2)0?

E{SSR} = [20% + B'X'XB] - [02 + B’X’%JXB} =+ 4 ) (Xi-X)?

=1

Further, if w is normally distributed, and if AXw AXYw = AXw then we have the following results
that are related to Cochran’s Theorem, (see e.g. Result 5.15, p. 112, Monahan (2008)).

/
A
WAW ~ 2 (dfa,Q4)  dfa = rank(A) Q= w

where dfs and 24 are the degrees of freedom and non-centrality parameter, respectively. If Q4 = 0,
then it is the standard (central) chi-square distribution. Two other important results are as follow.

w’'Aw and w'Bw are independent if AXwB =0

w'Aw and Bw are independent if BEwA =0

Note that with respect to the model with normal, independent errors of constant variance, we have:

o2

1 1 1
EY:UQI AE:—Q(I—P) AR:— (P——J)
o n

ApSyApSy = ! (I— P)UQILQ(I —P)I=1-P)I(I-P)I=(1-P)I=ApSy
(o

o2
1 1 oy 1 1 ) 1

A32yAREY == |P--J)ol= |P——-J)ocI=(P—-J)1I= AREY
o2 2 n n

n g

n

1 1 1
A32yAE = (P——J) 0’21—2(1 - P) =0
o o
This leads to the following important results:

SSE
2

~ X2(7’L - 25 O)

o 202

SSR o, By (Xi—X)?
oz b |

Further, SSE and SSR are independent. Also B and SSFE are independent, since:

B=XX)"'XY SSE=Y'(I-P)Y

1
5 (X'X) X'y S (I-P)= (X'X)IX — (X'X)'X' =0 since X'P = X'.
g

The ratio of two independent chi-square random variables, each divided by its degrees of freedom, follows
the F-distribution. If the numerator chi-square is non-central, and the denominator is a standard (central)
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chi-square, it follows a non-central distribution, with the non-centrality parameter of the numerator chi-
square. If both are central, the ratio follows a standard F-distribution. Thus, since SSE and SSR are
independent:

SSR 2 5% Z?:1(Xi — 7)2 SSE 2
7 X (1, 952 2 X (n—2,0)
SSR 1 M 2 n X’L _ Y 2
= F= Gl = SRNFlnfzsz 926121:1( ) :
25 /(n—2) MSE ns 202

When the null hypothesis Hy : 81 = 0 is true, the F-statistic follows the standard (central) F-distribution.

The Power of the F-test

We typically wish to test Hy : 81 = 0, based on the ANOVA F-test. When the null hypothesis is true, the
F-statistic Fops = %gg is distributed as F ,,—2, and we reject Hg if Fops > Fyy 1, p—2. If the null hypothesis is
false (81 # 0), the F-statistic follows the non-central F-distribution. The power of the test can be obtained
as the probability the F-statistic falls above the the critical F-value. That is, the power can be computed

as a function of the “true” value of f3;.

0= 5% Z?:l(Xi - Y)2

Power = P(F* Z Fa)17n72|F* ~ F17n727g) 202

Note that SAS and R both have functions that compute densities, quantiles, and probabilities for central
and non-central F-distributions. They parameterize the non-centrality parameter as 2€2.
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Chapter 5

Model Diagnostics and Influence
Measures

The inferences regarding the simple linear regression model (tests and confidence intervals) are based on the
following assumptions:

e Relation between Y and X is linear.

Errors are normally distributed.

Errors have constant variance.

e Errors are independent.

These assumptions can be checked graphically, as well as by statistical tests.

5.1 Checking Linearity

A plot of the residuals versus X should be a random cloud of points centered at 0 (they sum to 0). A
“U-shaped” or “inverted U-shaped” pattern is inconsistent with linearity.

A test for linearity can be conducted when there are repeat observations at certain X-levels (methods
have also been developed to “group” X values). Suppose we have ¢ distinct X-levels, with n; observations
at the j** level. The data can be re-labeled as Y;; where j represents the X group, and ¢ represents the

individual case within the group (i = 1,...,n;). We compute the following quantities.
— Y . A s
Y;= 721; = Y; = Bo + 51X

95
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We then decompose the Error Sum of Squares into Pure Error and Lack of Fit.

) £ )
ii(nj—Yj)2+inj (Yj—f/j)Q_H)

This decomposition can be written as follows, where Pure Error represents variation in responses within
the same X-levels, and Lack of Fit represents the difference between the fitted values for the linear regression
model, and the cell means model.

n c MNnj c

S =Y (Y -Y) + Y ny (?j—Yj)Q SSE = SSPE + SSLF

i=1 j=1i=1 j=1

We then partition the error degrees of freedom (n — 2) into Pure Error (n — ¢) and Lack of Fit (¢ — 2).
This leads to an F-test for testing Hp: Relation is Linear versus H4: Relation is not Linear.

Ho: E{Yij} = 0o+ /X;  Ha:E{Yi}=p;# 0o+ X,

[SSLF/(c—2)] MSLF
[SSPE/(n—c)] MSPE

TS : Fobs = RR: Fobs Z Fa,c72,nfc P-Value : P (F672,nfc > Fobs)

If the relationship is not linear, we can add polynomial terms to allow for “bends” in the relationship
between Y and X using multiple regression, or fit a nonlinear regression model with a particular functional
form.

The matrix form is helpful in understanding the distributional aspects of the test. Assume that the data
are ordered by their specific X-levels, with n; observations at X;.

Hy: E{Y}=Xp Hy:E{Y}=u#Xp3

]-nl Xl ]-nl Yl

1712 X21n2 Y2 A —1 —1
X=1 . . Y= . B=XX)'X'Y P=XXX)'X

1, Xcl,, Y.
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1n1 X11n1
P = 1n2 X21n2 (X/X)il l/nl 1/n2 T l/nc =
: Xll/nl Xgl/nz cee Xc]-/nc
1, X.1,.
Pll']nlxnl P12Jn1 XMNo e Plc']nlxnc
P21Jn2><n1 P22Jn2 Xng e PQCJHQXHC 1 1
. . , , Py=[1 X;|(X'X) [X}
. . . . J
Pcl']ncxnl PCQJHCXHQ e Pcc']ncxnc
71]_"1 nflJnl XMn1 0n1 X N2 te Onlxnc Yl
?g = Y2'1n2 = niJgY = 0"2'><"1 nglan X2 L %2
g .
YC]_nC Onanl OHCXHQ o nglJnCch YC

SSE = zn:(n -Y)?=Y(I1-P)Y

=1

SSPE=3"3"(v;-Y;)’ =Y (1_i3g> Y

i=1 j=1 Ng
SSLF = ZZ (v, - Yj)Q —Y (iJg - P) Y
j=11i=1 g

Due to the structures of P and nLJg, we can easily see that Pni.]g = P due to the 0° in ni.]g. This is
g g g

different from the linear regression model where P%J = J. We still have that PP = P. The main results
are given below.

P—J, =P PP =P LR NN N

Ng Ng MNg Ng
1 1 1 1 1 1
e () () (Bae) (Baee) = (La)
Ng Ng Ng Ng Ng Ng

This leads to the following distributional results for SSPE and SSLF for the standard regression model
(normal, independent, and homoskedastic errors).

1 1
SSPE =Y’ (I—n—ng> Y ~ XflpryQPE SSLF =Y’ (—Jg — P) Y ~ XflfLFVQLF

Ng
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The degrees of freedom and non-centrality parameters, as well their independence are given below.

C

1 1 1
df pp = trace (I—n—ng> =n— Z —nj=n-—c df L r = trace (n—ng - P) =c—2

j=1""

p1lp,
1 1 1 1 pal 1
Qpp = sgp' (I-—Jg = 55 [ mln, poluy - pelln, | (I-—3 " = (W= ) =0
PE = 55k ( o g>u 505 [l p2l'n, pel'n, ]( o g> 5oz (Wn—w'n)
teln,

1 1
Qrr =51 | —Jg—P|p>20Qp=0 <= pu=XBorpu=0
202 Ng

(I—iJg> (iJg - P) ~ Ly, p Ly, iP=0 = SSPELSSLF
n n

g Ng g

SSLF
[ o2 } _ MSLF

= ~Fe on ¢
[SSPE} MSPE 2n—eflr

= Frrp =

Under Hy : pp = X8, Fir ~ Fe_2 n—c,0,-- Note that when there are p predictor variables and the model has
p’ = p + 1 parameters, we have the following degrees of freedom.

derr:n_p/ dfpe =n—c dfrrp=c—7p'

Example: Breaking Strength of Fibers

A study was conducted, relating breaking strength of fibers (in the machine direction) to water pressure
level (Ndaro, Jin, Chen, and Wu (2007)). There were n = 30 measurements, with n; = 5 replicates at each
of ¢ = 6 water pressure levels (X=60, 80, 100, 120, 150, 200). The data are given in Table 5.1, along with
computations needed to carry out the F-test for Lack of Fit. A plot of the data, fitted equation and grup
means is given in Figure 5.1.

c ny c Ny

Y) = 220.005240.4640X; SSPE=33 (Y, -Y;)’ =33 (n; -1)8?  SSLF = inj (Vi - Yj)Q
j=1

j=11i=1 j=11i=1

SSPE = (5—1)[1586.495 + 312.086 + 1371.031 + 1058.175 + 1920.886 + 2075.293] = 4(8323.966) = 33295.864
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SSLF = 5 [(245.260 — 256.8449) + - - - + (321.962 — 321.8043)%] = 5(345.8341) = 1729.1705

dfpg =n—c=30—6=24 dfip=c—2=6-2=4
1729.1705/4  432.2926
33295.864/24  1387.3277
RR: Frp > Fosu04 = 2.776 P =P (Fy4 >0.3116) = .8674

H():/szﬁo-i-ﬁlXj HA3/Lj7é60+61Xj TS : Frp = =0.3116

The R program and output are given below. Note that the lm function, used with pressure as a factor
(nominal) variable fits the cell means model which produces the Pure Error Sum of Squares.

R Program

fiberl <- read.table("http://www.stat.ufl.edu/ winner/data/fiber_strength.dat",
header=F,col.names=c("pressure","strength"))
attach(fiber1)

pressure.f <- factor(pressure)

fiber.modl <- 1lm(strength ~ pressure)
summary (fiber.mod1)
anova(fiber.mod1)

fiber.mod2 <- 1lm(strength ~ pressure.f)
anova(fiber.mod2)

anova(fiber.mod1l, fiber.mod2)

(y.mean <- aggregate(strength,list(pressure),mean))
colnames(y.mean) <- c("pressure","str.mean")

plot(pressure,strength, main="Strength vs Pressure for Fibre Experiment")
abline(fiber.mod1)
points(y.mean,pch=16)

### Matrix form

n <- length(strength)
Y <- strength

X0 <- rep(1,n)

X <- cbind(X0,pressure)

J1 <- matrix(rep(1,25),ncol=5); JO <- matrix(rep(0,25),ncol=5)

J.grp <- rbind(cbind(J1,J0,J0,J0,J0,J0),cbind(J0,J1,J0,J0,J0,J0),
cbind (J0,JO,J1,J0,J0,J0),cbind(J0,JO, JO,J1,J0,J0),cbind(J0,J0,J0,J0,J1,J0),
cbind (J0,J0, J0,J0,J0,J1))

J.grp <- (1/5) * J.grp

P.X <= X %x% solve(t(X) %*% X) %*% t(X)
I.n <- diag(n)

(SSE <- t(Y) %% (I.n - P.X) %*% Y)
(dfE <- n-ncol(X))
(MSE <- SSE/dfE)

(SSPE <- t(Y) %% (I.n - J.grp) %*% Y)
(dfPE <- n-length(unique(pressure)))
(MSPE <- SSPE/dfPE)

(SSLF <- t(Y) %*% (J.grp - P.X) %*% Y)
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(dfLF <- length(unique (pressure))-ncol(X))
(MSLF <- SSLF/dfLF)

(F.LOF <- MSLF/MSPE)
(p.F.LOF <- 1 - pf(F.LOF,dfLF,dfPE))

R Output

> summary (fiber.mod1)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 229.0052 17.7091 12.93 2.5e-13 **x*
pressure 0.4640 0.1394 3.33 0.00245 *x*

Residual standard error: 35.37 on 28 degrees of freedom
Multiple R-squared: 0.2836, Adjusted R-squared: 0.2581
F-statistic: 11.09 on 1 and 28 DF, p-value: 0.002447

> anova(fiber.mod1)
Analysis of Variance Table
Response: strength

Df Sum Sq Mean Sq F value Pr(>F)
pressure 1 13868 13868.4 11.087 0.002447 *x*
Residuals 28 35025 1250.9

> anova(fiber.mod2)
Analysis of Variance Table
Response: strength

Df Sum Sq Mean Sq F value Pr(>F)
pressure.f 5 15598 3119.5 2.2486 0.08215 .
Residuals 24 33296 1387.3

> anova(fiber.modl, fiber.mod2)
Analysis of Variance Table
Model 1: strength ~ pressure
Model 2: strength ~ pressure.f

Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 35025
2 24 33296 4 1729.2 0.3116 0.8674

>

### Matrix Form

> (8SE <- t(Y) %x% (I.n - P.X) %*/% Y)
[1,] 35025.04

> (dfE <- n-ncol(X))

[1] 28

> (MSE <- SSE/dfE)

[1,] 1250.894

> (SSPE <- t(Y) %*% (I.n - J.grp) %x*% Y)
[1,] 33295.87

> (dfPE <- n-length(unique(pressure)))
[1] 24

> (MSPE <- SSPE/dfPE)

[1,] 1387.328

> (SSLF <- t(Y) %*% (J.grp - P.X) %x*% Y)
[1,] 1729.171

> (dfLF <- length(unique(pressure))-ncol(X))
[1] 4

> (MSLF <- SSLF/dfLF)

[1,] 432.2927

>
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X; | Y Ya; Y3 Yy Ys; Y, S? Y;

60 | 225.60 189.25 245.86 284.25 281.34 | 245.260 1586.495 256.8449
80 | 294.22 250.71 272.36 287.13 262.89 | 273.462 312.086  266.1248
100 | 318.21 249.14 238.34 298.36 312.46 | 283.302 1371.031 275.4047
120 | 234.05 293.08 299.33 319.85 300.79 | 289.420 1058.175 284.6847
150 | 265.53 262.88 367.48 280.29 274.13 | 290.062 1920.886 298.6045
200 | 278.55 360.15 323.82 373.39 273.90 | 321.962 2075.293 321.8043

S T W N .

Table 5.1: Data and computations for the Lack of Fit test - Fiber strength data

> (F.LOF <- MSLF/MSPE)

[1,] 0.3116009

> (p.F.LOF <- 1 - pf(F.LOF,dfLF,dfPE))
[1,] 0.8673657

5.2 Checking Normality

A normal probability plot of the ordered residuals versus their predicted values should fall approximately
on a straight line. A histogram should be mound-shaped. Neither of these methods work well with small
samples (even data generated from a normal distribution will not necessarily look like it is normal).

Various tests are computed directly by statistical computing packages. The Shapiro-Wilk and Kolmogorov-
Smirnov tests are commonly reported, with P-values for testing Hy: Errors are normally distributed.

When data are not normally distributed, the Box-Cox transformation is often applied to the data.
This involves fitting regression models for various power transformations of ¥ on X, where:

Y1
D T L

Y In(Y;) A=0

Here Y is the geometric mean of Y7, ..., Y, where all data are strictly positive (a constant can be added
to all observations to assure this).

i (ﬁn>l/n - e Sian00)

Values of A between -2 and 2 by 0.1 are typically run, and the value of A that has the smallest Error
Sum of Squares (equivalently Maximum Likelihood) is identified. Standard statistical software packages will
present an estimate and confidence interval for .
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Strength vs Pressure for Fibre Experiment
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Figure 5.1: Plot of Fiber Strength versus Water Pressure, Fitted Equation, and Group Means (bold dots)

Example: Bearing Capacity of Paddy Fields

A study was conducted measuring the depth of soft layer (X) and bearing capacity at 10 cm depth
measured by a penetrometer (V') for n = 51 samples in paddy fields in Sputh China (Chanying and Junzheng
(1998)). After fitting a simple linear regression, residuals are obtained and ranked. Then quantiles are
assigned to the ranks, and Z values corresponding to the quantiles are obtained based on the standard
normal distribution, which represent the expected values of the residuals under normality when multiplied
by the residual standard deviation. The correlation between the residuals and their expected values is .9953.
The data, residuals, ranks, quantiles and expected values are given in Table 5.2. The fitted equation, SSF,
MSE, and s are given below. A plot of the data and regression line and residuals versus predicted values
are given in Figure 5.2.

51
- 300506.8
Y = 290.2839-7.7359.X SSE = e? = 300506.8 s* = MSE = S1_2 - 6132.79 § =v6132.79 = 78.31
i=1

An R Program that fits the model, conducts the Shapiro-Wilk test for normality of errors, obtains a
normal probability plot for the residuals, and obtains the Box-Cox transformation and its output are given
below. Although there is absolutely no evidence of non-normality of errors, the Box-Cox regression suggests
a square root transformation on Y, which is not pursued here. The normal probability plot is given in
Figure 5.3 and the Box-Cox transformation is given in Figure 5.4.

R Program
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paddy <- read.table("http://www.stat.ufl.edu/ winner/data/paddyfields_slr.dat",
header=F,col.names=c("depth.pf", "bearcap.pf"))
attach(paddy)

paddy.modl <- 1lm(bearcap.pf ~ depth.pf)
summary (paddy.mod1)

paddy.e <- resid(paddy.modl)
paddy.yhat <- predict(paddy.modl)

par (mfrow=c(2,1))
plot(depth.pf,bearcap.pf)
abline(paddy.modl)
plot(paddy.yhat, paddy.e)
abline (h=0)

par (mfrow=c(1,1))

shapiro.test(paddy.e)
qgnorm(paddy.e); qqline(paddy.e)

library (MASS)

bc.modl <- boxcox(paddy.modl,plotit=T)

print (cbind(bc.mod1$x,bc.mod1$y)) # Print out results (lambda,log-like)

print (bc.mod1$x [which.max(bc.mod1$y)]) # Print out "best" lambda

ci.bc <- max(bc.mod1$y)-0.5%qchisq(0.95,1) # Obtain cut-off for 95% CI (in log-like)
print (bc.mod1$x [bc.mod1$y>= ci.bc]) # Print Values of lambda in 95% CI

R Output

> summary (paddy.mod1)

Call:
Im(formula = bearcap.pf ~ depth.pf)

Residuals:
Min 1Q Median 3Q Max
-162.604 -54.972 -4.284 50.783 199.320

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 290.284 28.393 10.224 9.60e-14 ***
depth.pf -7.736 1.715 -4.511 4.04e-05 **x*

Signif. codes: O **% 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 78.31 on 49 degrees of freedom
Multiple R-squared: 0.2935, Adjusted R-squared: 0.279
F-statistic: 20.35 on 1 and 49 DF, p-value: 4.039e-05

> shapiro.test(paddy.e)
Shapiro-Wilk normality test

data: paddy.e
W = 0.99008, p-value = 0.9446

> print(cbind(bc.mod1$x,bc.mod1$y)) # Print out results (lambda,log-like)
[,1] [,2]
[1,] -2.00000000 -130.41873
[2,] -1.95959596 -128.66654
[3,] -1.91919192 -126.92862
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Figure 5.2: Plot of data and Regression Line (Top Panel) and Residuals versus Predicted Values (Lower
Panel) - Paddy Field Bearing Capacity Analysis

[98,] 1.91919192 -84.91787

[99,]
[100,]

1.95959596
2.00000000

-85.97515
-87.05299

# Print out

"pest"

lambda

> print(bc.mod1$x [which.max(bc.mod1$y)])
[1] 0.5454545
> ci.bc <- max(bc.mod1$y)-0.5%qchisq(0.95,1) # Obtain cut-off for 95% CI (in log-like)
> print (bc.mod1$x [bc.mod1$y>= ci.bcl) # Print Values of lambda in 95% CI

[1] 0.1818182 0.2222222 0.2626263 0.3030303 0.3434343 0.3838384 0.4242424

[8] 0.4646465 0.5050505 0.5454545 0.5858586 0.6262626 0.6666667 0.7070707

[15] 0.7474747 0.7878788 0.8282828 0.8686869 0.9090909 0.9494949

5.3 Checking Equal Variance

A plot of the residuals versus the fitted values should be a random cloud of points centered at 0. When the
variances are unequal, the variance tends to increase with the mean, and we observe a funnel-type shape.
Two tests for equal variance are the Brown-Forsyth test and the Breusch-Pagan (aka Cook-Weisberg) test.
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it Depth (X) BearCap(Y) Y e rank(e) quantile z(qgntl) E{e}

1 10.6 204 208.28 -4.28 26 0.5000 0.0000 0.0000

2 13.1 155 188.94  -33.94 18 0.3439  -0.4018 -31.4686
3 11.4 206 202.09 3.91 28 0.5390 0.0980 7.6727

4 11.2 363 203.64  159.36 50 0.9683 1.8563  145.3687
5 9.8 235 214.47  20.53 30 0.5780 0.1969 15.4200
6 12.8 269 191.26 77.74 45 0.8707 1.1299  88.4815
7 12.4 67 194.36  -127.36 2 0.0317  -1.8563  -145.368
8 12.0 144 197.45  -53.45 15 0.2854  -0.5670 -44.4010
9 10.3 48 210.60 -162.60 1 0.0122  -2.2509 -176.274
10 13.1 247 188.94 58.06 41 0.7927 0.8158  63.8844
11 20.8 190 129.38 60.62 42 0.8122 0.8860  69.3857
12 13.5 228 185.85 42.15 35 0.6756 0.4555 35.6678
13 24.3 63 102.30  -39.30 17 0.3244  -0.4555 -35.6678
14 30.0 87 58.21 28.79 32 0.6171 0.2978  23.3216
15 32.0 114 42.74 71.26 44 0.8512 1.0417 81.5760
16 18.2 176 149.49 26.51 31 0.5976 0.2470 19.3462
17 16.4 107 163.42  -56.42 12 0.2268  -0.7493 -58.6816
18 19.7 190 137.89 52.11 39 0.7537 0.6860  53.7259
19 17.1 136 158.00  -22.00 21 0.4024  -0.2470 -19.3462
20 16.9 106 159.55  -53.55 14 0.2659  -0.6254  -48.9766
21 19.9 258 136.34  121.66 48 0.9293 1.4704  115.1473
22 11.0 224 205.19 18.81 29 0.5585 0.1473 11.5322
23 7.8 324 229.94 94.06 46 0.8902 1.2278  96.1537
24 6.8 437 237.68  199.32 51 0.9878 2.2509  176.2748
25 6.8 221 237.68  -16.68 23 0.4415  -0.1473  -11.5322
26 13.6 327 185.08  141.92 49 0.9488 1.6331  127.8949
27 11.0 235 205.19 29.81 34 0.6561 0.4018  31.4686
28 14.5 51 178.11 -127.11 3 0.0512  -1.6331 -127.894
29 8.0 172 228.40  -56.40 13 0.2463  -0.6860 -53.7259
30 10.8 132 206.74  -74.74 9 0.1683  -0.9609 -75.2528
31 5.7 341 246.19 94.81 47 0.9098 1.3393  104.8799
32 9.8 206 214.47 -8.47 25 0.4805  -0.0489  -3.8318
33 10.0 200 212.93  -12.93 24 0.4610  -0.0980  -7.6727
34 14.5 130 178.11  -48.11 16 0.3049  -0.5104 -39.9722
35 8.5 267 224.53  42.47 36 0.6951 0.5104  39.9722
36 8.8 121 222.21 -101.21 6 0.1098  -1.2278  -96.1537
37 15.9 75 167.28  -92.28 7 0.1293  -1.1299 -88.4815
38 12.5 176 193.59  -17.59 22 0.4220  -0.1969 -15.4200
39 27.5 127 77.55 49.45 38 0.7341 0.6254  48.9766
40 30.0 88 58.21 29.79 33 0.6366 0.3493  27.3581
41 17.0 216 158.77  57.23 40 0.7732 0.7493  58.6816
42 13.1 186 188.94 -2.94 27 0.5195 0.0489 3.8318

43 10.5 186 209.06 -23.06 20 0.3829  -0.2978  -23.3216
44 25.6 157 92.25 64.75 43 0.8317 0.9609  75.2528
45 22,7 39 114.68  -75.68 8 0.1488  -1.0417 -81.5760
46 18.0 39 151.04 -112.04 5 0.0902  -1.3393 -104.879
47 25.0 39 96.89 -57.89 11 0.2073  -0.8158 -63.8844
48 11.5 245 201.32 43.68 37 0.7146 0.5670 44.4010
49 17.5 39 154.91 -115.91 4 0.0707  -1.4704 -115.147
50 19.0 78 143.30  -65.30 10 0.1878  -0.8860 -69.3857
51 20.0 108 135.57  -27.57 19 0.3634  -0.3493 -27.3581

105

Table 5.2: Data and computations for Residuals and their Expected Values - Paddy Field Bearing Capacity

Analysis
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Normal Q-Q Plot
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Figure 5.3: Normal Probability Plot of Residuals - Paddy Field Bearing Capacity Analysis

95%

o
e
i
o
8
T
8

9 |

o

<3

<

2 g

T 7

Lo

o
o
2
=
I
o
S
a
I
o
@ _|
i

Figure 5.4: Box-Cox Transformation - Paddy Field Bearing Capacity Analysis
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Brown-Forsyth Test - Splits data into two groups of approximately equal sample sizes based on

their fitted values (any cases with the same fitted values should be in the same group). Then labeling the
residuals ejq, ..., e1n, and eaq,.

., €2n,, Obtain the median residual for each group: €; and éz, respectively.
Then compute the following:

o dig i (dij —d; —1)s3 —1)s3
deJ — |€1J_él| Z — 1, 2;] — 1, o dl — Z’L:l J S12 — Z’L_ ( J 1 ) S; . (nl )Sl + (n2 )52
n; n; —

7’L1+7’L2—2

Then, a 2-sample t-test is conducted to test Hy: Equal Variances in the 2 groups:

TS: tobs = dl — d2

RR : |tops| > taja,n—2 P-value = P (tp—2 > |tobs|)

Breusch-Pagan Test(aka Cook-Weisberg Test) - Fits a regression of the squared residuals on X
and tests whether the variance is related to X (this can be extended to multiple predictor variables).
Hy:V{e} = o*h(y) Ha:Viey=0%h(y+m1X;)
When the regression of the squared residuals is fit, we obtain SSR.z, the regression sum of squares. The
test is conducted as follows, where SSFE is the Error Sum of Squares for the original regression of Y on X.

7o, x2 _ (SSRe/2)

obs (SSE/ )2 RR: ngs > Xi,l P-value: P (X% > X2 )
n

obs

When the variance is not constant, we can transform Y (often the Box-Cox transformation will also to
obtain approximately constant variance).

We can also use Estimated Weighted Least Squares by relating the standard deviation (or variance)
of the errors to the mean. This is an iterative process, where the weights are re-weighted each iteration. The

weights are the reciprocal of the estimated variance (as a function of the mean). Iteration continues until
the regression coefficient estimates stabilize. This is described in detail in Chapter 6.

Another, simple to compute, method is to obtain robust standard errors of the OLS estimators based
on the residuals from the linear regression (using the squared residuals as estimates of the variances for the

individual cases). This method was originally proposed by White (1980). The estimated variance-covariance
matrix (with resulting robust to heteroskedasticity standard errors for 3 is):

2 0 - 0
NErEA - . 0 € -+ 0
1% {5} = (X'X)IXEX(XX) T Ba=|

0 O e2

When the variance is a power of the mean, Barlett’s method can be used to obtain an approximate
variance stabilizing transformation for Y. If the distribution of Y is a from a known family (e.g. Binomial,
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Poisson, Gamma), we can fit a Generalized Linear Model, or fit a “direct” regression model based on
the specific distribution.

Example: Bearing Capacity of Paddy Fields

Applications of the Brown-Forsyth and Breusch-Pagan tests to the Paddy Field Bearing Capacity are
given here. For the Brown-Forsyth test, the observations are broken into groups with X < 13.1 and X > 13.5,
with n; = 26 and ny = 25. Note that these calculations were made using EXCEL, R code and output are
given below.

di = 58.94 s1 = 55.11 ny = 26 ds = 64.70 s2 = 39.09 ng = 25
26 — 1)(55.11)2 + (25 — 1)(39.09)2  112593.2
2 (26 — 1)(55.11)2 + (25 — 1)(39.09) _ 112593 9997 8
P 26+ 25— 2 49
58.94 — 64.70 —5.76
TS : tops = SEEVEEE —0.429  RR: |tops| > t.o2s.a0 =2.010 2P (ts9 > | —0.429]) = .6698
V220782 (% + &) 1348

For the Breusch-Pagan test, regress the squared residuals on X, and obtain the chi-square statistic as
follows.

: 132124
SSE = 300506.5 n =51 % =5892.28  SSR,> = 132124650 w = 66062325
66062325
TS: X} = oo =1.903  RR: X}, > X051 =23841  P(xi>1.903) =.1677

(5892.28)2 obs

The R program and output are given here.

R Program

paddy <- read.table("http://www.stat.ufl.edu/ winner/data/paddyfields_slr.dat",
header=F,col.names=c("depth.pf", "bearcap.pf"))
attach(paddy)

paddy.modl <- 1lm(bearcap.pf ~ depth.pf)
summary (paddy.mod1)
paddy.e <- resid(paddy.modl)

# Conduct Brown-Forsythe Test of Homogeneity of Variance
Y <- bearcap.pf

X <- depth.pf

Residuals <- paddy.e

group <- numeric(length(Y))

for (i in 1:length(Y)) {

if (X[i] <= 13.3) groupl[il=1
else group[i]=2

}
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dl <- abs(Residuals[group==1] - median(Residuals[group==1]))
d2 <- abs(Residuals[group==2] - median(Residuals[group==2]))

n_dl <- length(dl); n_d2 <- length(d2)
mean_dl <- mean(dl); mean_d2 <- mean(d2)
var_dl <- var(dil); var_d2 <- var(d2)

s_BF <- sqrt(((n_di-1)*var_dl + (n_d2-1)*var_d2)/(n_dil+n_d2-2))
(t_BF <- (mean_dl - mean_d2)/(s_BF*sqrt((1/n_d1)+(1/n_d2))))
(t_crit <- qt(.975,n_d1+n_d2-2))

(p_BF <- 2x(1-pt(abs(t_BF),n_dl+n_d2-2)))

# Conduct Breusch-Pagan Test of Homogeneity of Variance
# Brute Force Approach

E2 <- paddy.e~”2 # Compute e”2 for each observation
(SSE2E2 <- (length(E2)-1)*var(E2)) # Compute SSTO for e~2 values
paddy.mod2 <- 1m(E2 ~ X) # Fit regression of e”2 on X
anova(paddy.mod2)

(SSE_E2 <- deviance(paddy.mod2)) # Obtain SSE from regression of e”2 on X
(SSR_E2 <- SSE2E2 - SSE_E2) # Compute SSR*

(X2_BP <- (SSR_E2/2)/(sum(E2)/length(E2))"2) # Compute Breusch-Pagan test statistic
(X2_crit <- qchisq(.95,1)) # Obtain critical value
(p_BP <- 1-pchisq(X2_BP,1)) # Compute P-value

### Breusch-Pagan Test using lmtest package
install.packages("lmtest")

library(lmtest)

bptest (bearcap.pf ~ depth.pf,studentize=FALSE)

R Output

> (t_BF <- (mean_dl - mean_d2)/(s_BF*sqrt((1/n_d1)+(1/n_d2))))
[1] -0.4291169

> (t_crit <- qt(.975,n_d1+n_d2-2))

[1] 2.009575

> (p_BF <- 2*(1-pt(abs(t_BF),n_d1+n_d2-2)))

[1] 0.669719

>

> # Conduct Breusch-Pagan Test of Homogeneity of Variance

> # Brute Force Approach

>

> E2 <- paddy.e~”2 # Compute e”2 for each observation
> (SSE2E2 <- (length(E2)-1)*var(E2)) # Compute SSTO for e”2 values

[1] 3257558096

> anova(paddy.mod2)
Analysis of Variance Table
Response: E2

Df Sum Sq Mean Sq F value Pr(>F)
X 1 132110903 132110903 2.0712 0.1565
Residuals 49 3125447193 63784637
> (SSE_E2 <- deviance(paddy.mod2)) # Obtain SSE from regression of €72 on X
[1] 3125447193
> (SSR_E2 <- SSE2E2 - SSE_E2) # Compute SSR*

[1] 132110903

> (X2_BP <- (SSR_E2/2)/(sum(E2)/length(E2))"2) # Compute Breusch-Pagan test statistic
[1] 1.902568

> (X2_crit <- qchisq(.95,1)) # Obtain critical value

109
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[1] 3.841459
> (p_BP <- 1-pchisq(X2_BP,1)) # Compute P-value
[1] 0.1677911
> bptest(bearcap.pf ~ depth.pf,studentize=FALSE)
Breusch-Pagan test
data: bearcap.pf ~ depth.pf
BP = 1.9026, df = 1, p-value = 0.1678

5.4 Checking Independence

When the data are a time (or spatial) series, the errors can be correlated over time (or space), referred to as
being autocorrelated. A plot of residuals versus time should be random, not displaying a trending pattern
(linear or cyclical). If it does show these patterns, autocorrelation may be present.

The Durbin-Watson test is used to test for serial autocorrelation in the errors, where the null hypothesis
is that the errors are uncorrelated. Unfortunately, the formal test can end in one of 3 possible outcomes:
reject Hy, accept Hp, or inconclusive. Statistical software packages can report an approximate P-value,
based on re-sampling of the regression residuals. The test is obtained as follows:

n 2
T8 pw — 2ot=2 (¢ = 6;*1)
Zt:l €t

Decision Rule: DW <dr, =  Reject Hy DW >dy =  Accept Hy Otherwise Inconclusive

where tables of dy, and dy are in standard regression texts and posted on the internet. These values are
indexed by the number of predictor variables (1, in the case of simple regression) and the sample size (n).

Expanding the numerator helps understand the test. Recall that if the errors are independent (uncorre-
lated), then E{ees_1} =0.

E (er —er_1)? = E el + E el —2 E erer—1 =2 E e? if errors are uncorrelated

Thus, we expect that the Durbin-Watson statistic should be around 2. If it is much smaller, that is evidence
of positive autocorrelation; if it is much larger, evidence is for negative autocorrelation.

When errors are not independent (positively correlated), estimated standard errors of estimated re-
gression coefficients tend to be too small, making the t-statistics artificially large and confidence intervals
artificially narrow.

The Cochrane-Orcutt method transforms the Y and X variables, and fits the model based on the
transformed responses. Another approach is to use Estimated Generalized Least Squares (EGLS). This
uses the estimated covariance structure of the observations to obtain estimates of the regression coeflicients
and their estimated standard errors. EGLS is described in detail in Chapter 6.

Example: Silver from the New World to Spain 1720-1770

A historical study reported the amount of silver situados minted in the New World (X, in millions)
and payments made to Spain (Y in millions) over the years 1720-1800 (Marichol and Mantecon (1994)). As
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the American Revolution and its aftermath occurred during the final quarter of the century, we will only
consider the years 1720-1770. The data are given in Table 5.3 and plots of the data and fitted and residuals
versus predicted values are given in Figure 5.5. The fitted regression equation, error sum of squares, sum of
squared differences among adjacent residuals and Durbin-Watson test are given below. There is no evidence
of autocorrelation among the error terms for the model, as the Durnin-Watson statistic exceed dy and is

close to 2. There does appear to be non-constant error variance, however.

51
Y: = —1.3839+0.2808X; D ¢} = 36.0545
t=1

75.5092

TS :DW = ———
5w 36.0545

The R program and output are given below.

R Program

51
> (er —er—1)? = 75.5092

t=2

=20943  dy(p=1,n=51)~150 dy(p=1,n=51)~ 1.59

treas <- read.table("http://www.stat.ufl.edu/ winner/data/treas1700.dat",

header=F,col.names=c("year","situados", "minted", "amerrev"))
attach(treas)

situados <- situados/1000000

minted <- minted/1000000

year.1770 <- subset(year, year <= 1770)
situados.1770 <- subset(situados, year <= 1770)
minted.1770 <- subset(minted, year <= 1770)

treas.modl <- lm(situados.1770 ~ minted.1770)
summary (treas.mod1)

anova(treas.modl)

e.modl <- resid(treas.modl)

yhat.modl <- predict(treas.modl)

(SSE.mod1 <- sum(e.mod172))

treas.n <- length(situados.1770)

DW1.modl <- O

for (t in 2:treas.n) {

DW1.modl <- DWl.modl + (e.mod1[t] - e.mod1[t-1])"2
}

DW1.mod1

(DW.mod1 <- DWi.modl / SSE.mod1)

#install.packages("car")
library(car)
durbinWatsonTest (treas.mod1)

plot(e.modl, type="1")

par (mfrow=c(2,1))
plot(minted.1770, situados.1770)
abline(treas.modl)
plot(yhat.modl, e.modl)

abline (h=0)

par (mfrow=c(1,1))

R Output
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year paidSpn(Y) Minted (X) | year paidSpn(Y) Minted (X) | year paidSpn(Y) Minted (X)
1720 1.226215 7.874315 1737 1.103957 8.122133 1754 1.775134 11.594
1721 1.04644 9.46073 1738 1.083357 9.49025 1755 2.06452 12.4865
1722 0.376311 8.823927 1739 0.524605 8.550686 1756 0.311502 12.2995
1723 0.921332 8.107343 1740 1.32067 9.55604 1757 3.687895 12.529
1724 0.928764 7.872819 1741 1.948375 8.644177 1758 2.313552 12.757591
1725 0.698335 7.369815 1742 0.672024 8.177 1759 1.910268 13.022
1726 0.69036 8.236645 1743 1.6223 8.619 1760 0.295113 11.9765
1727 0.702108 8.133081 1744 1.349189 10.285 1761 5.332595 11.781
1728 0.353345 9.228544 1745 1.493178 10.3275 1762 1.305525 10.11449
1729 0.640906 8.814968 1746 1.457684 11.509 1763 3.090352 11.775033
1730 0.714051 9.745871 1747 1.468279 12.002 1764 2.466581 9.792536
1731 0.961858 8.439871 1748 2.402106 11.628 1765 2.053284 11.604838
1732 1.063585 8.726466 1749 2.138665 11.8235 1766 2.620072 11.210047
1733 1.148936 10.009796 1750 1.61492 13.209 1767 2.340972 10.41511
1734 0.308749 8.506554 1751 0.848271 12.631 1768 2.573292 12.278956
1735 1.063897 7.922009 1752 0.91896 13.6255 1769 2.8277T7 11.938794
1736 0.880634 11.016 1753 2.227312 11.594 1770 3.222307 13.926324

Table 5.3: Silver Minted in the New World and Payments to Spain 1720-1770

> summary (treas.modl)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -1.38386 0.69661 -1.987 0.0526 .
minted.1770 0.28076 0.06608 4.249 9.58e-05 **x

Residual standard error: 0.8578 on 49 degrees of freedom
Multiple R-squared: 0.2692, Adjusted R-squared: 0.2543
F-statistic: 18.05 on 1 and 49 DF, p-value: 9.583e-05

> anova(treas.modl)
Analysis of Variance Table
Response: situados.1770

Df Sum Sq Mean Sq F value Pr(>F)
minted.1770 1 13.283 13.2831 18.052 9.583e-05 **x*
Residuals 49 36.055 0.7358

> (SSE.mod1l <- sum(e.mod1°2))

[1] 36.05453

> DW1.mod1

75.5092

> (DW.mod1 <- DW1.modl / SSE.mod1)
2.094306

> durbinWatsonTest (treas.modl)

lag Autocorrelation D-W Statistic p-value
1 -0.05608488 2.094306 0.812

Alternative hypothesis: rho != 0
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Figure 5.5: Data and Fitted Equation (Top Panel) and Residuals versus Fitted Values (Bottom Panel) -
Spanish Treasure 1720-1770
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Figure 5.6: Residuals versus Time dﬂg&X_ Spanish Treasure 1720-1770
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5.5 Detecting Outliers and Influential Observations

These measures are widely used in multiple regression, as well, when there are p predictors, and p’ = p+ 1
parameters (including the intercept, By). Many of the “rules of thumb” are based on p’, which is 1+1=2
for simple regression. Most of these methods involve matrix algebra, but can be obtained from statistical
software packages. Note that we will use v;; to denote the i*" row j** column element of P = X (X'X) ' X
In particular, v;; is the it” diagonal element of P.

Also, several of these methods make use of the estimated variance when the i'" case was removed (to
remove its effect if it is an outlier).

SSE(i) SSE — —17’;}_‘ . . ,
MSE ;) = 1 - 1” for simple regression p’ = 2
n—p — n—p —

Standardized Residuals - Residuals divided by their estimated standard errors. They make use of
the usual estimate of o: VMSFE. These are like t-statistics. Note that if an observation is an outlier, it will
tend to inflate M SE, thus decreasing the Standardized Residual.

V{ei}:‘72 (1 —vi;) SAE{Q‘}: MSE (1 —vy)
€; €;

T SE{e}  /MSE(L—un)

T

Studentized Residuals - Residuals divided by their estimated standard error, with their contribution
to SSE having been removed (see above). Since residuals have mean 0, the studentized residuals are like
t-statistics. Since we are simultaneously checking whether n of these are outliers, we conclude any cases are
outliers if the absolute value of their studentized residuals exceed t /2 n—p—1, Where p is the number of
independent variables plus one (for simple regression, p’'=2).

* €;

T /MSE;, (0= )

Studentized Deleted Residuals - Residuals that are obtained by subtracting off the fitted value based
on the regression fit on the remaining n — 1 observations and divided by their corresponding standard errors.
For linear regression models, the individual regressions do not need to be re-fit. Outliers are detected in the
same manner as Studentized Residuals. These are returned as rstudent in R.

*ok n_p/_l 1z
r

i T SSE(l —’U“') —62

K2

Leverage Values (Hat Values) - These measure each case’s potential to influence the regression due
to its X levels. Cases with high leverage values (often denoted wv;; or h;;) have X levels “away” from the
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center of the distribution. The leverage values sum to p’ (2 for simple regression), and cases with leverage
values greater than 2p’/n (twice the average) are considered to be potentially influential due to their X-levels.

n—1 n n
Y=PY = Yl = Z v;; Y + v Y + Z v3;Y; subject to Zvij =1
j=1 j=it1 j=1

DFFITS - These measure how much an individual case’s fitted value shifts when it is included in the
regression fit (Yi), and when it is excluded(Yi(i)). The shift is divided by its standard error, so we are
measuring how many standard errors a fitted value shifts, due to its being included in the regression model.
Cases with the DFFITS values greater than 24/p’/n in absolute value are considered influential on their own
fitted values.

Vi — Y —p -1 1/2 ii 1/2 ii 1/2
DFFITS; = O _, [ n-p ] ( v ) I ( v )
— €

A /MSE(i)’U“- SSE (1 - ’U“') 1-— Vis 1— Vi

DFBETAS - One of these is computed for each case, for each regression coefficient (including the
intercept). DFBETAS measures how much the estimated regression coefficient shifts when that case is

included (BJ) and excluded (Bj(i)) from the model, in units of standard errors. Cases with DFBETAS values

larger than 2/4/n in absolute value are considered to be influential on the estimated regression coefficient.

Bi = Biw
VMSE@ycji1,5+1

1

DFBETAS;i) = where ¢j 1141 is the (j +1)"" diagonal element of (X'X)~

Cook’s D - A single measure that represents each case’s aggregate influence on all regression coefficients,
and all cases’ fitted values. Cases with Cook’s D larger than F 59, n—p are considered influential, although
various textbooks and software packages have varying criteria.

L (o) (VX)) (B-Be) X (5-B) 2 ]
e p'MSE n p'MSE |1 — vy

COVRATIO - This measures each case’s influence on the estimated standard errors of the regression
coefficients (inflating or deflating them). It represents the ratio of the determinants of the variance-covariance
matrix of 8 without and with the i*" observation. Cases with COVRATIO outside of 1+3p’ /n are considered
influential. The matrix X(;) is the X matrix with the i*" row removed.

’M SEq) (XEnX(i)) -

COVRATIO, =
’MSE (X’X)’ll
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Note that R uses different criteria for “flagging” cases. For instance, for it uses the following rules (others
are the same).

/
Leverage/Hat Values: v;; > 3 prprTs: IDFFITS;| >3\/%  DFBETAS:  |DFBETAS;y| > 1
n n

Example: Total Phenolic Content and DPPH Radical Scavenging Activity in Lager Beers

Zhao, Li, Sun, Yang, and Zhao (2013) report the results of a study relating antioxidant activity to
phenolic content in n = 40 lager beers. The response is DPPH Radical Scavenging Activity (Y), and the
predictor is Total Phenolic Content (X). The data are given in Table 5.4 and plotted in Figure 5.7 along with
the OLS simple linear regression line. The “cut-off values” for the various diagnostic measures are computed
below, with p’=1+1=2. The R program and output are given below the “cut-off values” computations.

Studentized Deleted Residuals: 751 > ta/(2n)n—p'—1 = t.05/(2(40)),40—2—1 = t.000625,37 = 3.495
Leverage/Hat Values: Vi > 27})’ = 2(2) =0.10
DFFITS: |DFFITS;| > 2\/7 = 2\/7 = 0.4472
DFBETAS:  |[DFBETAS; ;)| > — 0.3162

f \/_

Cook’s D: D; > F.50,p/,nfp/ = Fv5072740,2 = F.50,2,38 = 0.7059

' 2 2
COVRATIO: COVRATIOi<1—3i_1—&_085 or >1-% 1 3@ s
n 40 n 40

R Program

lager <- read.csv("http://www.stat.ufl.edu/ winner/data/lager_antioxidant_reg.csv",
header=T)

attach(lager); names(lager)

lager.modl <- lm(dsa ~

summary (lager.mod1)

anova(lager.modl)

rstudent (lager.mod1)

influence.measures(lager.mod1)

e.modl <- resid(lager.modl)

yhat.modl <- predict(lager.modl)

tpc)

par (mfrow=c(2,1))
plot(tpc,dsa)
abline(lager.modl)
plot(yhat.modl,e.mod1)
abline (h=0)

par (mfrow=c(1,1))

R Output
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> summary (lager.mod1)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.0343018 0.0639781 0.536 0.595
tpc 0.0034132 0.0003694 9.240 2.93e-11 *x**

Residual standard error: 0.09629 on 38 degrees of freedom
Multiple R-squared: 0.692, Adjusted R-squared: 0.6839
F-statistic: 85.38 on 1 and 38 DF, p-value: 2.926e-11

> anova(lager.modl)
Analysis of Variance Table
Response: dsa
Df Sum Sq Mean Sq F value Pr (>F)
tpc 1 0.79175 0.79175 85.385 2.926e-11 **x
Residuals 38 0.35236 0.00927

> rstudent (lager .mod1)
1 2 3 4 5 6
1.27362241 0.50306312 0.04206598 1.67326277 1.13669877 -0.30507059
7 8 9 10 11 12
-0.32569557 0.31113199 0.13536449 1.76837157 -0.86879480 -1.00698654
13 14 15 16 17 18
-1.10301595 -0.33802210 0.12742060 0.20092759 -0.39670755 -1.31488291
19 20 21 22 23 24
-0.48375729 -0.07785662 -0.20536135 -0.32680824 -0.87171742 -0.08034019
25 26 27 28 29 30
-1.419060563 -1.20990613 0.18547066 -0.89654216 -0.92331109 1.35037405
31 32 33 34 35 36
-0.11708938 0.98369936 -0.19073790 4.93877695 -0.32025202 0.20370294
37 38 39 40
-0.11876585 0.42727476 -0.94183250 -0.41188552
> influence.measures(lager.modl)
Influence measures of
Im(formula = dsa ~ tpc)
dfb.1_ dfb.tpc dffit cov.r cook.d hat inf

1 0.14508 -0.099246 0.22737 0.999 2.54e-02 0.0309
2 0.03408 -0.015345 0.08204 1.068 3.43e-03 0.0259
3 0.00126 0.000357 0.00675 1.082 2.34e-05 0.0251
4 -0.19384 0.266053 0.37999 0.959 6.89e-02 0.0490
5 0.13904 -0.098390 0.20751 1.018 2.14e-02 0.0323
6 0.00215 -0.014192 -0.05092 1.079 1.33e-03 0.0271
7 -0.01139 -0.001052 -0.05216 1.076 1.39e-03 0.0250
8 0.07091 -0.060569 0.07902 1.117 3.20e-03 0.0606
9 0.00988 -0.004861 0.02223 1.082 2.54e-04 0.0263
10 0.16902 -0.104522 0.30230 0.923 4.33e-02 0.0284
11 -0.02891 -0.004326 -0.13919 1.039 9.75e-03 0.0250
12 -0.26217 0.229408 -0.28280 1.078 4.00e-02 0.0731
13 -0.14562 0.106452 -0.20693 1.023 2.13e-02 0.0340
14 0.01104 -0.024663 -0.05961 1.081 1.82e-03 0.0302
15 0.03399 -0.029858 0.03648 1.140 6.83e-04 0.0757
16 -0.02430 0.033003 0.04639 1.109 1.10e-03 0.0506
17 -0.14147 0.129280 -0.14552 1.187 1.08e-02 0.1186  *
18 0.26542 -0.326426 -0.39194 1.048 7.54e-02 0.0816
19 -0.04639 0.028744 -0.08275 1.072 3.49e-03 0.0284
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Lager ID X Y Lager ID X Y Lager ID X Y Lager 1D X Y
1 148.23  0.66 11 169.51  0.53 21 159.81  0.56 31 177.83 0.63
2 160.38  0.63 12 111.05 0.32 22 163.23  0.56 32 150.11 0.64
3 170.41  0.62 13 143.50  0.42 23 169.59  0.53 33 135.92 0.48
4 208.65 0.90 14 186.96 0.64 24 135.76  0.49 34 162.99  0.96
5 146.03  0.64 15 109.50  0.42 25 198.62  0.58 35 183.54 0.63
6 180.19  0.62 16 209.95 0.77 26 221.94 0.68 36 236.37  0.86
7 169.06  0.58 17 88.47  0.30 27 148.80  0.56 37 163.23  0.58
8 119.04 0.47 18 230.25 0.70 28 120.02 0.36 38 212.48 0.80
9 158.99  0.59 19 152.96 0.51 29 84.64 0.24 39 235.06 0.75
10 153.04 0.72 20 14742 0.53 30 238.33 097 40 267.27 0.91
Table 5.4: Total Phenolic Content (X) and DPPH Radical Scavenging Activity (Y') for 40 lager beers

20 -0.00911 0.006314 -0.01401 1.089 1.01e-04 0.0314

21 -0.01436 0.006720 -0.03358 1.081 5.78e-04 0.0260

22 -0.01862 0.006347 -0.05272 1.076 1.42e-03 0.0254

23 -0.02874 -0.004612 -0.13966 1.039 9.82e-03 0.0250

24 -0.01301 0.010215 -0.01651 1.099 1.40e-04 0.0405

256 0.10942 -0.168722 -0.28431 0.987 3.94e-02 0.0386

26 0.20358 -0.258140 -0.32539 1.047 5.23e-02 0.0675

27 0.02072 -0.014038 0.03293 1.086 5.56e-04 0.0306

28 -0.20080 0.170928 -0.22489 1.074 2.54e-02 0.0592

29 -0.34509 0.316998 -0.35345 1.155 6.27e-02 0.1278

30 -0.31773 0.382193 0.44337 1.061 9.62e-02 0.0973

31 -0.00022 -0.004371 -0.01926 1.083 1.91e-04 0.0264

32 0.10500 -0.069410 0.17249 1.033 1.49e-02 0.0298

33 -0.03076 0.024130 -0.03912 1.097 7.85e-04 0.0404

34 0.28588 -0.100522 0.79736 0.393 1.97e-01 0.0254 *

35 0.00631 -0.019083 -0.05480 1.080 1.54e-03 0.0284

36 -0.04626 0.055918 0.06535 1.161 2.19e-03 0.0933 *

37 -0.00677 0.002307 -0.01916 1.081 1.88e-04 0.0254

38 -0.05589 0.074562 0.10190 1.104 5.31e-03 0.0538

39 0.20877 -0.253208 -0.29749 1.106 4.44e-02 0.0907

40 0.14975 -0.171693 -0.18597 1.258 1.77e-02 0.1693 *
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DPPH versus TPC
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Figure 5.7: Plot of DPPH Radical Scavenging Activity versus Total Phenolic Content for 40 lager beers



Chapter 6

Multiple Linear Regression

When there are more than one predictor variables, the model generalizes to multiple linear regression. The
calculations become more complex, but conceptually, the ideas remain the same. We will use the notation
of p as the number of predictors, and p’ = p 4+ 1 as the number of parameters in the model (including the
intercept). The model can be written as follows.

Y=0+6Xi+ - +8,X,+e € ~ N(0,0?) independent
1 Xq X1p Bo
, 1 Xop - Xy, B
Y=XB+e e~N(0,0%) X=1. . . . B=1 .
1 an o an BP
We then obtain least squares (and maximum likelihood) estimators ﬁo, 31, ey Bp that minimize the error
sum of squares.
b
5 B _ -~ ., .
8= _1 = (X'X) X'y Y =X3=PY e=Y-Y=(I-P)Y
By
Yi = B0+ hXi+-BpXip e =Y - Y, SSE=) el=€ee=Y (I-P)Y
i=1

The degrees of freedom for error are now n —p’ = n — (p + 1), as we have now estimated p’ = p + 1
parameters. This results from the following fact.

trace (I — P) = trace (I - X(X’X)le’) = n — trace (X’X(X’X)fl) =n—yp

121
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In the multiple linear regression model, (3; represents the change in E{Y} when X, increases by 1 unit,
with all other predictor variables being held constant. It is thus often referred to as the partial regression
coefficient.

6.1 Testing and Estimation for Partial Regression Coefficients

Once we fit the model, obtaining the estimated regression coefficients, we also obtain standard errors for
each coefficient (actually, we obtain an estimated variance-covariance matrix for the vector of coefficients).

1% {5} =2 (X'X)"! 1% {5} = MSE (X'X)™" MSE =

n—yp

If we wish to test whether Y is associated with X, after controlling for the remaining p — 1 predictors, we
are testing whether 3; = 0. This is equivalent to the ¢-test from simple regression (in general, we can test

whether a regression coefficient is any specific number, although software packages are testing whether it is
0).

HO . ﬂj = 6]’0 HA . ﬂj 7§ 6]’0 TS . tobs = M RR . |t0bs| Z ta/2,nfp/ P—Value . 2P(tn,p/ Z |t0bs|)
SE{p;}

One-sided tests make the same adjustments as in simple linear regression.

H:{ 1 B; > Bjo RR : tops > ta,n—p P-value : P(tn,p/ > tobs)

H : 55 < Bjo RR : tops < —ta,n—p P-value : P(tn,p/ < tobs)

A (1 — @)100% Confidence Interval for 3; is obtained as:

Bj + ta/Q,nfp/SAE’{Bj}

Note that the Confidence Interval represents the values of (3;9 that the two-sided test: Hy : 3; =
Bijo Ha : B; # Bjo fails to reject the null hypothesis.

6.2 Analysis of Variance

When there is no association between Y and Xi,...,X, (81 = --- = 8, = 0), the best predictor of each
observation is Y = [y (in terms of minimizing the sum of squares of prediction errors). In this case, the
total variation can be denoted as T'SS = Y7 | (Y; — Y)?, the Total Sum of Squares, just as with simple
regression.
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When there is an association between Y and at least one of X1, ..., X}, (not all 5; = 0), the best predictor
of each observation is Y; = o+ A Xi1 + - - -+ BpXip (in terms of minimizing the sum of squares of prediction
errors). In this case, the error variation can be denoted as SSE = Y  (V; — Y;)?, the Error Sum of
Squares.

The difference between T'SS and SSE is the variation ”explained” by the regression of ¥ on X,..., X,
(as opposed to having ignored Xi,...,X,). It represents the difference between the fitted values and the
mean: SSR = Zle(fﬁ —Y)? the Regression Sum of Squares.

n n n

TSS = SSE + SSR S-v2=Y -1+ Y (- Y)?
i=1 i=1 i=1
/ 1 / , 1
Y (I--J)]Y = Y(I-P)Y + Y (P--J]Y
n n

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTgta] =7 — 1. The Error Degrees of Freedom is dffp.qp = n — p’. The Regression Degrees of
Freedom is deegression = p. Note that when we have p = 1 predictor, this generalizes to simple regression.

1 1

1 — _
dfTotal = trace (I—;J) =n-1 trace (P) = trace(X) (X'X) X' = trace(X'X) (X'X) =1, =p’

= dfgrror =1 — 7' deegression = —-1=p

dfTotal = UError + deegression n—l=n—p+p
The Error and Regression sums of squares have Mlean Squares, which are the sums of squares divided by
its corresponding degrees of freedom: MSE = SSE/(n —p') and MSR = SSR/p. It can be shown (as was
done for simple regression) that these mean squares have the following Expected Values, average values
in repeated sampling at the same observed X levels.

1
E{MSE} = o* E{MSR} =o* + 3'X’ (I— (—) J) X3

n

where 3 and X are vector/matrix extensions of the simple linear regression model (see below). Note that

when 01 = ---f, = 0, then E{M SR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way of testing

whether 3; = --- 3, = 0 is by the F-test:

H0:61:~~~6p:0 HA:NOtaHﬂj:O
M
TS : Fobs = SE RR: Fobs Z Fa,p,nfp/ P-value : P(prn,p/ Z Fobs)

MSE
The Analysis of Variance is typically set up as in Table 6.1.
A measure often reported from a regression analysis is the Coefficient of Determination or R2. This

represents the variation in Y “explained” by Xi, ..., X}, divided by the total variation in Y.

- -1 === <R’<1
TSS TSS 0s R <

o Do
= S

1=

7 —Y)2  SSR SSE
V)2
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Source df SS MS Fops P-value
Regression (Model) p SSR=3_,(Yi-Y)* MSR=23 " F, =32t P(Fyn_p > Fobs)
Error (Residual) n—p SSE=31,(Yi-Y)? MSE=35E

Total (Corrected) n—1 TSS=%. (Yi-Y)?

Table 6.1: Analysis of Variance Table for Multiple Linear Regression

The interpretation of R? is the proportion of variation in Y that is "explained” by Xi,..., X, and is
often reported as a percentage (100R?).

6.3 Testing a Subset of 3° =0

The F-test from the Analysis of Variance and the ¢-tests represent extremes as far as model testing (all
variables simultaneously versus one-at-a-time). Often we wish to test whether a group of predictors do not
improve prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, we wish to test whether the remaining p — g predictors
are associated with Y. That is, we wish to test:

Holﬁngl:"'ﬁp:O HASNOt&HOfﬁngl,...,ﬂp:O

Note that, the t-tests control for all other predictors, while here, we want to control for only Xy, ..., X,.
To do this, we fit two models: the Complete or Full Model with all p predictors, and the Reduced
Model with only the g “control” variables. For each model, we obtain the Regression and Error sums of
squares, as well as R2. This leads to the following test statistic and rejection region.

[SSE(R)fSSE(F) } [SSR(F)fSSR(R) } [R%—Ri }

. | (n=g)=(n—p) | p—g | pg

TS : Fops = [SSE(F)} - [SSE(F)] - [1—%}
n—p’ n—p’ n—p’

RR: Fobs Z Fa,pfg,nfp/ P-value : P(Fp,gyn,p/ Z Fobs)

6.4 Tests Based on the Matrix Form of Multiple Regression Model

The matrix form is virtually identical (at least symbolically) for multiple regression as simple regression. The
primary difference is the dimension of the various matrices and vectors. Now, X still has n rows, but it has
p+1 columns (one for the intercept, and one each for the p predictors). The vectors 3 and 8= (X'X)"1X'Y
each have p’ = p + 1 rows.
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We still have that the estimated variance of 3 = s2 (X'X)~! which is how the estimated standard errors
for the partial regression coefficients used in t-tests and confidence intervals are obtained, in the case of the

model with normal, independent errors with constant variance.

The general linear test can be used to test any set of up to p + 1 linear hypotheses among the (3°,
that are linearly independent. The tests described above are special cases. Here we wish to test:

Hy:K'B=m = Kp@-m=0

where K’ is a ¢ X (p+ 1) matrix of constants defining the the hypotheses among the 8 elements and m is the
q x 1 vector of hypothesized values for the ¢ linear functions. Some special cases are given below, assuming
p = 3 (three predictor variables):

0
Hyp:pr=P=0=0 Kj=|0
0

01 -1 0 0
Huoy:pr=02=0 Ky= 01 0 _1] mz—[o]

100 O 100
H03 : 50 = 100,61 = 10,62 = 53 Ké = 0 1 0 0 ms = 10
0 01 -1 0

The estimator K’3 — m has an estimated variance-covariance matrix of s?K/(X'X)71K which is ¢ xq. Then,
we can form the F-statistic (based on assuming normal and independent errors with constant variance).

o (xB- m)/ [K'(X'X) K] (K'3-m)
gMSE ~ g5

Fobs =

which under the null hypothesis is distributed Fy ,—,. This holds from the following results.

1 1

;=0 (X'X)" = T, =K XX) K
. / .11 . 1 .11
0= (K’B - m) [K’ (X'X) K} (K’B - m) Agrim == [K’ (X'X) 'K
A > Lk xx) K] o2k (X)) K = 1
K'B—m<=K'—m — ? |: ( ) :| o ( ) -

= AK/ﬁfmzK/ﬁfmAK/ﬁfmzK/ﬁfm = AK/ﬁfmzK/fifm rank (AK/ﬁfm) =q

(KB -m) A, (KB-m) KB-m)[KxX)"K KB-m)
lg = 2 - 202
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That is, Q/sigma? is distributed Xg,szQ- Now, to see that Q and SSE =Y’ (I — P)Y are independent,
consider @) in terms of Y.

1 1

K3 =K (X'X) XY (K’B)/ —Y'X (X'X) 'K

= Q=Y'A;Y -2A,Y + A3 where:

—1
Y'ALY = Y'X (X'X) 'K [K’ (X'X)"! K} K (X'X) ' X'Y

-1
K m

1 1 1

1
A2Y = [K’ (X'X)~ K} K (XX)'X'Y As=m' [K’ (X'X)~

Clearly SSE and Ag are independent since Az is a scalar constant. Recall that Xy = 02I. Then we
just need to show that A; (I-P)=A(I-P)=0.

1 —

1
A (I-P)=X(X'X)™" [K’ (X'X)~ K} K (XX) 'X'I-P)=0  since X'P=X'

1 —

A;(I-P)=m’ [K’ (X'X)~ K} 'K (X'X)IX (I-P) = 0

Thus, Q/0? and SSE/o? are both distributed chi-square and are independent.

(K8~ m) [K (x'X)"'K] (K3~ m)

202

Q/q

=  F.= ~
b~ MSE

Foyn—p 04 Qg =

Under the null hypothesis Hp : K'3 = m, the noncentrality parameter 2o = 0, and the F-statistic is
distributed Fy ,—,. We reject the null hypothesis if Fops > Fo g n—p'-

Note that even if the data are not normally distributed, the quantity ¢Feps is asymptotically distributed
as Xg, so the test can be conducted in this manner in large samples. Note that in this large-sample case, the
X2 g

pt

tests are identical as Fiy .00 =

6.4.1 Equivalence of Complete/Reduced Model and Matrix Based Test

When the restriction K’3 = m is applied, Lagrange Multipliers can be used to obtain the constrained least
squares estimator. A brief description of the process is given here to demonstrate that @ = SSE(R) —
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SSE(F), and the equivalence of the two forms of the F-test. Here K’ is ¢ x p’, with linearly independent
rows (¢ < p')), and X is ¢ x 1.

Y=XB+¢ subject to KB=m = KB-m=0

Minimize with respect to 8% and A: Q* = (Y — XB8*) (Y — XB*) + 2\ (K'8* — m)

Y'Y-2Y'X3* + B X'XB*+2VK'B* —2\'m

g% = XY +X'XB +KA = XXB +Kx=XY
oQ* . e
T 2(K'p*—m) = K3 =m
XX K[43 [ XY
K 0 A B m

Now, make use of the following matrix result for partitioned, square full rank matrices. To confirm that
its an inverse, show that AA~! =1.

A— All A12 . Ail _ A;ll (I —+ A12 —+ F2A12AI11) —A;11A12F2
Az Ay ~FyAy ALl F,

_ _ —1
where: F2 = (A221 — A21A111A12)

R [ X K ]1 . (X'X)"" (I—K [K’ (X/X)*KTIK/ (X’X)1> (X'X)"'K [K’ (X/X)*KT1

K 0 - -1 1
[K’ (X'X)"" K} K (X'X)""

- [K’ (X'X)"" K}

Note that: Fy = (0 ~K (X'X)" K) == [K/ x'x)" K} B

(X'X)"" (I K [K’ (X'X)"! K} Tk (X’X)1> (X'X) 'K [K’ (X'X)"* K} o

X'Y
[K’ (X'X) ™" K} TR xx)! - [K’ (X'X) ™" K} - [ m }

= B =xx" (I K [K x'x)"" K} K (X’X>1> XY+ (XX) 'K [K (x'x)™ K} m-
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(X'X) XY - (X'X) 'K [K’ (X'X)"! K} o (K’ (X'X) XY - m) -
B (X'X)'K [K’ (X'X)"! K} o (K’ (X'X) XY - m)
The Error Sum of Squares for the constrained regression model are given below, leading to the equivalence
of Q and SSE(R) — SSE(F).
¢ =Y-X3 =Y-X3-X(8 -p)=e-X(3"-5)
where: e=Y —-XB8 and SSE(F)=¢'e
< ssmtn et (e-x (5 -8)) (e-x(5 ) -
o5 8) e (3-8 %X (5 -5) -
oot (B - B)/X’X (8-8)  sine Xe=0
3 -p=-(XX)'K [K’ (X'X)"" K} - (K’ (X'X) XY - m) =~  SSE(R) — SSE(F) =
(K’B - m)/ [K’ (X'X)"! K} TROXX) XX (XX) R K [K’ (X'X)"! K} o (K’B - m) -

(x'8- m)/ K xX) K| KXX) K [K(XX) K] B (K'8-m) =

(x'8- m)/ K (X'X) K] B (K8-m)=0Q

Example: Cobb-Douglas Production Function

Cobb and Douglas (1928) proposed a multiplicative production function, where the dependent variable
is the output: Quantity Produced (Y), and the independent variables are the inputs: Capital (X;) and
Labor (X32). The function is nonlinear, but can be linearized by logarithmic transformation.

Y =3 X0"XPe E{fet=1 = W)=l +/hX +06InX,+Ine

= Y =0+ 06X +5X;+€ E{e}=0

When we ignore the multiplicative error term in the original model, we obtain the following elasticities
of Quantity produced with Capital and Labor.

_OB{Y}/E{Y} [OE{Y} X1\ Bi-lyf_ X1
G = X, X, ( 59X, ) (E{Y}) =GB X7t X, ﬂonngz =p
_OB{Y}/E{Y} [OE{Y} X2 \_ g xbig ype-1__ X2 _
G = Xy Xs ( 9X, ) (E{Y}) = [oX|' B2 X, BOX{thz = P2
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Year | Quantity (Y) | Capital (X1) | Labor (X2)
1899 100 100 100
1900 101 107 105
1901 112 114 110
1902 122 122 118
1903 124 131 123
1904 122 138 116
1905 143 149 125
1906 152 163 133
1907 151 176 138
1908 126 185 121
1909 155 198 140
1910 159 208 144
1911 153 216 145
1912 177 226 152
1913 184 236 154
1914 169 244 149
1915 189 266 154
1916 225 298 182
1917 227 335 196
1918 223 366 200
1919 218 387 193
1920 231 407 193
1921 179 417 147
1922 240 431 161

Table 6.2: U.S. Production Data: 1899-1922

In this economic model, the elasticity of scale is defined as the sum of the two elasticities, ( = (1 + (2 =
B1 + Bo. If the elasticity of scales is 1, which implies that a 1% increase in all inputs leads to a 1% increase
in output. This is referred to as “Constant Returns to Scale.”

In their seminal paper, Cobb and Douglas applied this model to the U.S. economy with annual numbers
for years 1899-1922. The data were indexed, so that the 1899 values were set at 100. The data are given in
Table 6.2. The hypothesis we wish to test is Hy : ( = 81 4+ #2 = 1. This involves a single restriction, so that
g = 1. In matrix form, based on the transformed (linear) model, we the following. Recall that the regression
makes use of Y* =InY, Xi =1InX;, and X3 =1n Xo.

6*
Hy:K'B=m pB= 52 K=[01 1] m = [1]
B2

Ordinary Least Squares estimates, and the Error Sum of Squares for the unconstrained (Full) model
are obtained as follow (rounded to 4 decimal places except when necessary, all computations were done in
EXCEL with more decimal places).

24.0000 128.5556 119.1054 121.8561
X'X = | 128.5556 693.4555 639.9174 X'Y = | 655.4095 Y'Y = 620.3713
119.1054 639.9174 592.0168 605.9387
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55.8006  5.9123 —-17.6170 . —0.1773
(X’X)f1 = 5.9123 1.1941  —2.4802 8= 0.2331
—17.6170 —2.4802  6.2268 0.8073

Y'PY = B/X’Y = —0.1773(121.8561) + 0.2331(655.4095) + 0.8073(605.9387) = 620.3003

SSE(F)=Y' (I-P)Y = Y'Y - XY = 620.3713 — 620.3003 = 0.0710

K'3—m= (04 0.2331 4 0.8073) — 1 = 0.0403

1 -1

[K’ (X'X)7"K| = (11941 - 2.4802 — 2.4802 + 6.2268) ' = - = 0.4064
5.9123 — 17.6170 —11.7047
(X'X)"'K=| 1.1941-24802 | = | —1.2861
—2.4802 4 6.2268 3.7467
. —0.1773 —11.7047 —0.1773 —0.1919 0.0145
B =1 02331 | —| —1.2861 | (0.4064)(0.0403)= | 0.2331 | — | —0.0211 | = | 0.2541
0.8073 3.7467 0.8073 0.0614 0.7459

B'X'Y = 0.0145(121.8561) + 0.2541(655.4095) + 0.7459(605.9387) = 620.2833 B X'XB" = 620.2669
~x\/ K
SSE(R) = (Y X3 ) (Y X3 ) — 620.3713 — 2(620.2833) + 620.2669 = 0.0716

Q = SSE(R) — SSE(F) =0.0716 — 0.0710 = 0.000661  showing more decimal places

~0.0710

s* = MSE(F) 5 = 0.00338
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Q 0.000661
Fosz—ziz Nl F —4.32 PF Z 1 — 662
b= 452~ 1(0.00338) 100 051,21 = 4.325 (Fos,1,21 > 0.1956) = .6628

This was a single hypothesis, and could also have been conducted as a t-test as follows.

K'B—m=(0+0.2331 + 0.8073) — 1 = 0.0403  V {K’B - m} = 02(2.6405)

SE {K’B - m} = 1/0.00338(2.6405) = 0.0912

0.0403
obs = = 0.4422 t = 2. P (t. > 10.4422]) = .662
b 0.0912 0 025,21 0796 (t.o2s,21> 10 |) = .6628
95% CTfor K'B: 1.0403+2.0796(0.0912) = 1.0403+0.1897 = (0.8506,1.2300)

The confidence interval contains 1. Based on all evidence, there is no reason to reject the hypothesis of
Constant Returns to Scale. An R program and its output are given below.

R Program

cobbdoug <- read.table("http://www.stat.ufl.edu/ winner/data/cobbdougl.dat",header=F,
col.names=c("year","Q.indx","K.indx","L.indx"))
attach(cobbdoug)

log.Q <- log(Q.indx); log.K <- log(K.indx); log.L <- log(L.indx)
log.K_L <- log.K - log.L

cobbdoug.modl <- 1m(log.Q ~ log.K + log.L)
summary (cobbdoug.mod1)
anova(cobbdoug.mod1)

### Reduced Model:

## E(log.Q) = b0 + bl*log.K + (1-bl)*log.L = b0 + bil*(log.K - log.L) + log.L
cobbdoug.mod2 <- 1m(log.Q ~ log.K_L, offset=log.L)

summary (cobbdoug.mod2)

anova(cobbdoug.mod2)

anova(cobbdoug.mod2, cobbdoug.mod1)

#### Matrix Form

n <- length(log.Q)

Y <- log.Q

X0 <- rep(1,n)

X <- cbind(X0,log.K,log.L)
Kp <- matrix(c(0,1,1),ncol=3)
m <- 1
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XPXI <- solve(t(X) %*% X)

beta.ols <- XPXI %% t(X) %*% Y

Yhat.ols <- X %*% beta.ols

e.ols <- Y - Yhat.ols

(SSE.ols <- sum(e.o0ls"2))

beta.diff <- XPXI %x% t(Kp) %*% solve(Kp %*% XPXI %x% t(Kp)) %*% (Kp %*% beta.ols - m)
beta.const <- beta.ols - beta.diff

Yhat.const <- X %*J beta.const

e.const <- Y - Yhat.const

(SSE.const <- sum(e.const”~2))

(Q.1 <- SSE.const - SSE.ols)

(Q.2 <= t(Kp %*% beta.ols - m) %*% solve(Kp %*% XPXI %x% t(Kp)) %*% (Kp %*% beta.ols - m))
(s2 <- SSE.ols / (n-ncol(X)))

(F_obs <- Q.1/(1*s2))

(p.F_obs <- 1 - pf(F_obs,1,n-ncol(X)))

R Output

> summary (cobbdoug.mod1)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.17731 0.43429 -0.408 0.68721
log.K 0.23305 0.06353 3.668 0.00143 *x*
log.L 0.80728 0.14508 5.565 1.6e-05 *xx*

Residual standard error: 0.05814 on 21 degrees of freedom
Multiple R-squared: 0.9574, Adjusted R-squared: 0.9534
F-statistic: 236.1 on 2 and 21 DF, p-value: 4.038e-15

> anova(cobbdoug.mod1)
Analysis of Variance Table
Response: log.Q

Df Sum Sq Mean Sq F value Pr(>F)
log.K 1 1.49156 1.49156 441.280 1.402e-15 *x**
log.L 1 0.10466 0.10466 30.964 1.601e-05 *x*x
Residuals 21 0.07098 0.00338

> summary (cobbdoug.mod2)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.01454 0.01998 0.728 0.474
log.K_L 0.25413 0.04122 6.165 3.32e-06 **x

Residual standard error: 0.05707 on 22 degrees of freedom
Multiple R-squared: 0.9562, Adjusted R-squared: 0.9542
F-statistic: 479.9 on 1 and 22 DF, p-value: < 2.2e-16

> anova(cobbdoug.mod2)
Analysis of Variance Table
Response: log.Q

Df Sum Sq Mean Sq F value Pr(>F)
log.K_L 1 0.123761 0.123761 38.005 3.324e-06 **x
Residuals 22 0.071643 0.003256

> anova(cobbdoug.mod2, cobbdoug.mod1)
Analysis of Variance Table

Model 1: log.Q ~ log.K_L
Model 2: log.Q ™ log.K + log.L
Res.Df RSS Df Sum of Sq F Pr(>F)
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1 22 0.071643
2 21 0.070982 1 0.00066109 0.1956 0.6628

> #### Matrix Form

> (SSE.const <- sum(e.const~2))

[1] 0.07164273

> (Q.1 <- SSE.const - SSE.ols)

[1] 0.0006610878

> (Q.2 <- t(Kp %*% beta.ols - m) %*% solve(Kp %*% XPXI %% t(Kp)) %*% (Kp %*% beta.ols - m))
[1,] 0.0006610878

> (s2 <- SSE.ols / (n-ncol(X)))

[1] 0.003380078

> (F_obs <- Q.1/(1%s2))

[1] 0.1955836

> (p.F_obs <- 1 - pf(F_obs,1,n-ncol(X)))
[1] 0.6628307

6.4.2 R-Notation for Sums of Squares

R notation is helpful in labeling the Regression Sums of Squares for various models, depending on which
predictors are included. The Model Sum of Squares for the full set of p predictors is labeled R (5o, 51, - - -, Bp)-

Note that R (8o, 51, .., 0p) = Y'PY. It includes SSu = nY". The Regression Sum of Squares for the full
set of predictors is R (B, ..., Bp|fo). This is computed as follows.

R(Bl;"'aﬁp|ﬁo) = R(BOaﬂla"'aﬁp) _R(BO)

where: R (60, 51, ceey ﬂp) = Y/P()lmpY R (60) = Y/PoY

In these cases, P depends on which predictors and/or the intercept are included in a model. Consider

R (Bo):

1 _ 1
Xo=| . XXo=n (X¢Xo) '= ~ Py =X (X0'Xo) 'x, = ~J.

3

n 2
R(Go) = Y'PoY = 2= Y™ 52 gq,

n

Note that @ for many linear hypotheses (that some set of 8; = 0) can be constructed from the difference
between two R values. Two important sets that are computed by some statistical software packages are the
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Sequential and the Partial Sums of Squares. In SAS, these are labeled Type I and Type III, respectively.
The Sequential Sums of Squares represent the impact of each variable being added sequentially on the
Regression Sum of Squares.

R(B1|60) =Y'PuY —Y'PyY R (82150, 61) = Y'Pp12Y = Y'Py Y

R (6p|605 sy 6;071) = Y/POI...pY - Y/POI...ple =Y’ (POL..p - POl...pfl) Y

The Partial Sums of Squares give the impact of each variable above and beyond the p—1 other predictors
on the Regression Sum of Squares. The F-test based on the Partial Sums of Squares are comparable to the
t-tests used for the individual predictors.

R (B1B0,- s Bj—1,Bj41s-- -+ Bp) = Y/P01..,pY - Y/P01...j71,j+1,...pY =Y’ (Po1..p —Por..j—1,j+1,.p) Y

Example: Association Between Climate Factors and Phenolic Measurements in Bordeaux Wines

A study over n = 16 years looked at the relation between p = 4 climate variables and sugar content
in Cabernet Sauvignon wine (Jones and Storchmann (2001)). The predictors were various functional forms
of precipitation levels during stages of the growing season, and the number of days of one stage over 25C
degrees. The response variable for this model is Sugar content of Cabernet Sauvignon (Y, in grams/liter).
The predictor variables that are in the authors’ final model are given below. The dataset is given in Table 6.3.

Reciprocal of the Precipitation During Bud break stage (BPREC): X; = 1/BPREC

Precipitation During Floraison stage (FPREC): Xo = FPREC

Reciprocal of the number of days over 25°C in the Floraison stage (FTEMP25): X5 = 1/FTEMP25

Logarithm of the Precipitation During Veraison stage (VPREC): X, = In(VPREC)

The Sequential and Partial Sums of Squares are computed by using the R-notation below.

wpb <- read.csv("http://www.stat.ufl.edu/"winner/data/wineprice_bordeaux.csv",
header=T)
attach(wpb) ; names (wpb)

y <- CABSUG

x1 <- 1/BPREC
x2 <- FPREC

x3 <- 1/FTEMP25
x4 <- log(VPREC)
x0 <- rep(1,16)

X0 <- x0
X01 <- cbind(x0,x1)
X012 <- cbind(X01,x2)
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YEAR | BPREC X1 X2 | FTEMP25 X3 VPREC X4 Y=CABSUG
1980 216 0.00463 | 120 30 0.0333 128 4.852 179
1981 204 0.00490 | 81 27 0.0370 116 4.754 186
1982 129 0.00775 | 159 33 0.0303 55 4.007 200
1983 220 0.00455 | 114 45 0.0222 92 4.522 195
1984 195 0.00513 | 75 38 0.0263 261 5.565 185
1985 230 0.00435 | 123 26 0.0385 14 2.639 200
1986 103 0.00971 | 31 41 0.0244 146 4.984 199
1987 111 0.00901 | 117 24 0.0417 153 5.030 176
1988 237 0.00422 | 118 34 0.0294 53 3.970 191
1989 198 0.00505 | 79 49 0.0204 60 4.094 205
1990 128 0.00781 | 98 36 0.0278 74 4.304 199
1991 222 0.00450 | 115 41 0.0244 179 5.187 183
1992 258 0.00388 | 324 34 0.0294 167 5.118 168
1993 218 0.00459 | 170 36 0.0278 242 5.489 175
1994 312 0.00321 | 111 43 0.0233 166 5.112 193
1995 276 0.00362 | 80 48 0.0208 117 4.762 194

Table 6.3: Phenolic and Climate Data for Bordeaux Wines 1980-1995

X0123 <- cbind(X012,x3)
X0124 <- cbind(X012,x4)
X0134 <- cbind(X01,x3,x4)
X0234 <- cbind(x0,x2,x3,x4)
X01234 <- cbind(X0123,x4)

P01234 <- X01234 %*% solve(t(X01234) %*Y% X01234) %*% t(X01234)
P0234 <- X0234 %% solve(t(X0234) %% X0234) %*% t(X0234)
P0134 <- X0134 %% solve(t(X0134) %% X0134) %x% t(X0134)
P0124 <- X0124 %x% solve(t(X0124) %*% X0124) %*% t(X0124)
P0123 <- X0123 %% solve(t(X0123) %*% X0123) %*% t(X0123)
P0O12 <- X012 %*% solve(t(X012) %*% X012) %*% t(X012)

P01 <- X01 %*Y% solve(t(X01) %*% X01) %x% t(X01)

PO <- X0 %*% solve(t(X0) %*% X0) %*% t(X0)

> ### Total Corrected Sum of Squares

> (TSS <- t(y) %*) (diag(16) - PO) %*% y)
[1,]1 1745

> ### Regression Sum of Squares

> (8SR <- t(y) %*J (PO1234 - PO) %*% y)

[1,] 1625.105

> ### Error Sum of Squares

> (SSE <- t(y) %*) (diag(16) - P01234) %xJ y)
[1,]1 119.8947

> ### Sequential Sums of Squares

> (R1_0 <- t(y) %*% (PO1 - PO) %*% y)

[1,]1 66.82349

> (R2_01 <- t(y) %*% (PO12 - PO1) %x*% y)

[1,]1 562.973

> (R3_012 <= t(y) %*% (P0123 - P012) %xJ y)
[1,]1 129.6306

> (R4_0123 <- t(y) %x% (P01234
[1,]1 865.6782

> ### Partial Sums of Squares
> (R1.0234 <- t(y) %x% (P01234
[1,]1 74.31272

> (R2_0134 <- t(y) %*% (P01234 - P0134) %*% y)
[1,] 203.6555

> (R3_.0124 <- t(y) %x% (P01234

P0123) %*% y)

P0234) %*% y)

P0124) %*% y)
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[1,] 401.1116
> (R4_0123 <- t(y) %*% (P01234 - P0123) %*% y)
[1,] 865.6782

6.4.3 Coeflicients of Partial Determination

The Coefficient of Determination, R?, represents the Regression Sum of Squares, SSR, as a proportion of the
Total Sum of Squares, T'SS. It represents the proportion of the variation in Y that is “explained” by the set of
predictors X1, ..., X,. It is often useful to consider how much of the variation “not explained” by previously
entered predictors that is “explained” by subsequently entered predictor(s). These are Coefficients of
Partial Determination.

Suppose a given response variable has a (corrected) Total Sum of Squares of T'SS = >, (V; — V)2
The first predictor, X; is used to predict Y, and we obtain SSR (X1) = R(51]60). Then the Coefficient of
Determination for using X; to predict Y and the remaining “unexplained” variation are

SSR(X,) R
R (X,) = TS(SI): (Tﬁ;,f") SSE (X1) =TSS — SSR (X1) = TSS — R (B1|5) -

Now, variable X5 is added to the model, and we obtain

SSR (X1, X2) = R(B1|po) + R (52|60, 1) -

Then the proportion of variation “explained” by X5, that was not “explained” by X is

SSR (X1,X2) =SSR (X1)  R(B2|Bo, b1)
TSS — SSR (X1) - TSS—R(Bi]6o)

R* (X,|Xy) =

This continues for all predictors entered in the model. In general, we have:

2 . . _ R(6j|605615"'56j71)
B ) = o R B, By 10)

Example: Association Between Climate Factors and Phenolic Measurements in Bordeaux Wines

For this dataset, we obtained the following Sequential Sums of Squares previously, and make use of them
to compute the Coefficients of Partial Determination.

TSS =1745  R($i|fo) =668 = R>(Xy)= % =0.0382
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563.0
_ 2 _ _
R (B0 1) = 563.0 = R*(Xa|Xy) = o o2 = 03355
R (51, B2]00) = 66.8 + 563.0 = 629.8
R(B3|Bo, B1, B2) = 129.6 = R*(X3|X1,X2) = 1296 169
T ’ 1745 — 629.8
R (1, B, B3]f0) = 629.8 +129.6 = 759.4
R (Balfo, Br, o, Bs) = 865.7 = R2(Xa| X1, Xo, Xg) = ——0T () 4783
e I 1745 — 759.4
2 1625.1
R (1, B2, B3, B4l Bo) = 759.4+ 865.7 = 1625.1 = R?(X1, X0, X3, Xy) = T = 0.9313

6.5 Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If we have a categorical variable with m
levels, we will need to create m — 1 dummy or indicator variables. The variable will take on 1 if the i*?
observation corresponds to that level of the variable, 0 otherwise. Note that one level of the variable will
have 0° for all m — 1 dummy variables, making it the reference group or category. The (3° for the other
groups (levels of the qualitative variable) reflect the difference in the mean for that group with the reference
group, controlling for all other predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and we can test
for differences in the effects of the 2 levels with a t-test, controlling for all other predictors. If there are
m — 1 > 2 dummy variables, we can use the F-test to test whether all m — 1 3° are 0, meaning there are no
differences in group means, controlling for all other predictors.

Example: Relationship Between Weight and Height Among NBA, NHL, and EPL Athletes

Samples of male athletes from the National Basketball Association, National Hockey League, and English
Premier (Football) League are obtained, and the relationship between players’” Weight (Y') and Height (X7)
is measured. There are m = 3 sports, so we create m — 1 = 2 dummy variables. Let X5 = 1 if the player is
from the NBA (0 otherwise) and X3 = 1 if the player is from the NHL (0 otherwise). This makes the EPL
the “reference” category. The data will be based on random samples of 12 athletes per league. The model
is given below. The data are in Table 6.4.

Y = Bo + 51 Xi1 + BoXio + B3Xi3 + € t=1,...,36

NBA:  E{Y;} = [0 + /1 X1 + B2(1) + B3(0) = (Bo + B2) + 1 X
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Player Height | Weight | NBA | NHL
Juwan Howard 81 250 1 0
Luc Mbah a Moute 80 230 1 0
Jeff Withey 84 235 1 0
Brook Lopez 84 265 1 0
Cory Joseph 75 185 1 0
Quincy Acy 79 233 1 0
Giannis Antetokou 81 205 1 0
Chase Budinger 79 218 1 0
Darren Collison 72 160 1 0
Carlos Boozer 81 266 1 0
Pero Antic 82 260 1 0
Jamaal Tinsley 75 185 1 0
Matt Niskanen 72 209 0 1
Andrew Ference 71 184 0 1
Brooks Orpik 74 219 0 1
Elias Lindholm 73 192 0 1
Martin Brodeur 74 220 0 1
Sam Bennett 73 178 0 1
Rob Klinkhammer 75 214 0 1
Nick Bonino 73 196 0 1
B.J. Crombeen 74 209 0 1
Michael Raffl 72 195 0 1
John-Michael Lile 70 185 0 1
Jonathan Ericsson 76 220 0 1
Kieran Trippier 70 157 0 0
Moussa Dembele 73 181 0 0
Marouane Chamakh 73 154 0 0
Martin Kelly 75 170 0 0
Jesse Lingard 69 128 0 0
Darren Randolph 74 216 0 0
James Ward-Prowse 68 146 0 0
Mame Diouf 73 168 0 0
Nemanja Matic 76 185 0 0
Danny Rose 68 159 0 0
Mathieu Flamini 70 148 0 0
Tkechi Anya 65 159 0 0

Table 6.4: Heights and Weights of Samples of 12 NBA, NHL, EPL Athletes
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NHL:  E{Y:} = fo + 51 Xi1 + B2(0) + B3(1) = (Bo + B3) + 1 X1
EPL:  E{Yi} = Bo + S1Xi1 + B2(0) + B3(0) = Bo + S1 X

Two models are fit, the first with the Height and the 2 League dummy variables, the second with only
Height, with the following results.

Model 1: Y = —290.2045 + 6.3858 X + 7.4007 X5 4 25.2606 X3

SSE; =8925.0 dfi =36—4=232 R(B, 0, 35]0) = 34481.2 R2 = 0.7944

Model 2: Y = —277.8713 + 6.3664.X;

SSE, =12972 dfy =36 —2=34 R(3|F) =30434.1 R2=0.7011

The R program and output are given below.

R Program

set.seed(1357)

nba <- read.csv("http://stat.ufl.edu/"winner/data/nba_ht_wt.csv",header=T)
attach(nba); names(nba)

nba.samp <- sample(l:length(Height),12,replace=F)

nba.sample <- nbal[nba.samp,c(1,3,4)]

nba.sample

detach(nba)

nhl <- read.csv("http://stat.ufl.edu/"winner/data/nhl_ht_wt.csv",header=T)
attach(nhl); names(nhl)

nhl.samp <- sample(l:length(Height),12,replace=F)

nhl.sample <- nhl[nhl.samp,c(2,4,5)]

nhl.sample

detach(nhl)

epl <- read.csv("http://stat.ufl.edu/ winner/data/epl_2015_ht_wt.csv",header=T)
attach(epl); names(epl)

epl.samp <- sample(l:length(Height),12,replace=F)

epl.sample <- epl[epl.samp,c(2,6,7)]

epl.sample

detach(epl)

all.sample <- rbind(nba.sample,nhl.sample,epl.sample)
all.sample
plot (Height,Weight)

NBA <- c(rep(1,12),rep(0,24))

NHL <- c(rep(0,12),rep(1,12),rep(0,12))
League <- c(rep(1,12),rep(2,12),rep(3,12))
League <- factor(League)

all.samplel <- data.frame(all.sample,NBA,NHL,League)

wtht.1 <- 1m(Weight ~ Height + NBA + NHL, data=all.samplel)
summary (wtht.1)



140 CHAPTER 6. MULTIPLE LINEAR REGRESSION

anova(wtht.1)
dropl(wtht.1, test="F")

wtht.2 <- 1m(Weight ~ Height, data=all.samplel)
summary (wtht.2)
anova(wtht.2)

anova(wtht.2,wtht.1)

ht.x <- seq(62,82,0.1)

yhat.nba <- coef (wtht.1)[1] + ht.x*coef (wtht.1)[2] + coef(wtht.1) [3]
yhat.nhl <- coef (wtht.1)[1] + ht.x*coef (wtht.1)[2] + coef (wtht.1) [4]
yhat.epl <- coef (wtht.1)[1] + ht.x*coef (wtht.1) [2]

plot (Height,Weight,pch=as.numeric(League),ylim=c(120,240))
lines(ht.x,yhat.nba,lty=1)

lines(ht.x,yhat.nhl,1lty=2)

lines(ht.x,yhat.epl,lty=5)
legend(65,240,c("NBA", "NHL","EPL") ,pch=c(1,2,3),1ty=c(1,2,5))

wtht.3 <- 1m(Weight ~ Height + NBA + NHL + I(Height*NBA) + I(Height=*NHL),
data=all.samplel)

summary (wtht.3)

anova(wtht.3)

dropl(wtht.3,test="F")

anova(wtht.1,wtht.3)

ht.x <- seq(62,82,0.1)

yhat.nba3 <- coef (wtht.3) [1] + ht.x*coef(wtht.3) [2] + coef (wtht.3)[3] +
ht.x*coef (wtht.3) [5]

yhat.nhl3 <- coef (wtht.3) [1] + ht.x*coef(wtht.3) [2] + coef (wtht.3)[4] +
ht.x*coef (wtht.3) [6]

yhat.epl3 <- coef (wtht.3) [1] + ht.x*coef (wtht.3) [2]

plot (Height,Weight,pch=as.numeric(League),ylim=c(120,240))
lines(ht.x,yhat.nba3,1ty=1)

lines(ht.x,yhat.nhl3,1ty=2)

lines(ht.x,yhat.epl3,1ty=5)
legend(65,240,c("NBA", "NHL", "EPL") ,pch=c(1,2,3),1ty=c(1,2,5))

wtht.4 <- 1m(Weight [League==3] ~ Height [League==3] ,data=all.samplel)
anova(wtht.4)

R Output

Model 1:
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -290.2045 68.3924 -4.243 0.000176 **x

Height 6.3858 0.9586 6.661 1.62e-07 ***
NBA 7.4007 10.4418 0.709 0.483609
NHL 25.2606 7.0612 3.577 0.001129 **

Residual standard error: 16.7 on 32 degrees of freedom
Multiple R-squared: 0.7944, Adjusted R-squared: 0.7751
F-statistic: 41.21 on 3 and 32 DF, p-value: 4.233e-11

Sequential Sums of Squares:
Analysis of Variance Table
Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)
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Height 1 30434.1 30434.1 109.1196 7.712e-12 ***
NBA 1 477.7  477.7  1.7129 0.199933
NHL 1 3569.4 3569.4 12.7977 0.001129 **

Residuals 32 8925.0 278.9
Partial Sums of Squares:

> dropl(wtht.1,test="F")
Single term deletions

Model:
Weight ~ Height + NBA + NHL

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 8925.0 206.47
Height 1 12376.2 21301.2 235.79 44.3739 1.623e-07 *xx*
NBA 1 140.1 9065.1 205.03 0.5023 0.483609
NHL 1 3569.4 12494.4 216.58 12.7977 0.001129 *x
Model 2:
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -277.8713 53.2440 -5.219 8.93e-06 **x
Height 6.3664 0.7128 8.931 1.94e-10 *xx

Analysis of Variance Table
Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)
Height 1 30434 30434.1 79.768 1.94e-10 **x*
Residuals 34 12972 381.5

141

To test whether there are league effects, after controlling for Height, we test Hg : 2 = (83 = 0. This can
be constructed in many ways, In matrix form, we are testing Hy : K'3 = m where we have 2 restrictions

(rows) in K'.

fo
b
fa
fs

, foo 10
K‘[ooo1] p=

|

')

Compute Q as either SSE(R) — SSE(F) = SSEs; — SSE; or R (2, 85|00, 51)-

Q = 12972 — 8925 = 34481 — 30434 = 4047  s*> = MSE(F)
4047
Fpps = ——— =7255 Fy =3295 P (Yas >
b 2(2789) 0.05,2,32 ( 2,32

8925
= —— = 278.
D) 78.9
7.255) = .0025

There is evidence of league differences in Weight, controlling for Height. A plot of the data and regression

lines are shown in Figure 6.1.
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6.6 Models With Interaction Terms \

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way we can model interaction(s) is to create a new variable that is the product
of the 2 predictors. Suppose we have Y, and 2 numeric predictors: X; and Xs. We create a new predictor
X3 = X1 X5. Now, consider the model:

E{Y} = 0o+ 01 X1 + o Xo + (3 X3 = G0+ 51 X1 + o Xo + B3 X1 X0 = fo + S2Xo + (51 + 03 X2) X1

Thus, the slope with respect to X; depends on the level of X5, unless §3 = 0, which we can test with a
t-test. This logic extends to qualitative variables as well. We create cross-product terms between numeric (or
other categorical) predictors with the m — 1 dummy variables representing the qualitative predictor. Then
a t-test (m —1=1) or a F-test (m — 1 > 2) can be conducted to test for interactions among predictors.

Example: Relationship Between Weight and Height Among NBA, NHL, and EPL Athletes

Continuing the Athletes’ Weight and Height regression model, we can include 2 interaction terms, one for
the NBA, one for the NHL. These allow for the slopes to differ among the leagues, as well as the intercepts.
We extend the model below.
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Yi = Bo + f1Xi1 + BoXio + B3 Xiz|BaXi1 Xiz + B Xi1 Xiz + €

NBA:  E{Yi} = fo + f1Xi1 + B2(1) + £3(0) + 54 X1 (1) + 85 Xi5(0) = (Bo + B2) + (b1 + Ba) X

E{Y;} = B0+ 51 Xi1 + B2(0) + B3(1) = +54Xi1(0) + 85 Xi5(1) (Bo + Bs) + (51 + F5) X
EPL:  E{Yi} = 8o + 51Xi1 + £2(0) + 33(0) 4+ 82 X31(0) + 5 Xi5(0) = Bo + f1 X1

NHL:

Model 3:

SSE; =7822.8 dfs =36—6=230 R (B, Bs B, Bsl00) = 35583.4 R2 =0.8198

Estimate Std. Error t value Pr(>|t])

Coefficients:

(Intercept) -128.508 104.291
Height 4.114 1.464
NBA -294.595 147.634
NHL -159.656 236.532
I(Height * NBA) 4.039 1.968
I(Height * NHL) 2.590 3.252

-1

2.

-1

-0.
2.
0.

.232 0.22744
810 0.00864 *x
.995 0.05515 .
675 0.50485
053 0.04891 *
796 0.43212

Residual standard error: 16.15 on 30 degrees of freedom

Multiple R-squared: 0.8198,

F-statistic: 27.29 on 5 and 30 DF,

Sequential Sums of Squares:

Analysis of Variance Tabl

Response: Weight

Df Sum S
Height 1 30434.
NBA 1 477 .
NHL 1 3569.
I(Height * NBA) 1 936
I(Height * NHL) 1  165.
Residuals 30 7822.

Partial Sums of Squares:
> dropl(wtht.3, test="F")
Single term deletions
Model:

1
7
4
.9
3
8

e

q

Mean Sq F value

P~V

30434.1 116.

477.7
3569.
936.
165.
260.

0 W O

1.
13.

3.
0

Weight ~ Height + NBA + NHL + I(Height
Df Sum of Sq RSS

<none>

Height 1
NBA 1
NHL 1
I(Height * NBA) 1
I(Height * NHL) 1

7822.

8
2058.91 9881.7
1038.29 8861.1
118.80 7941.6
1098.74 8921.5
165.35 7988.1

205.
212.
208.
204.
208.
204.

Adjusted R-squared: 0.7897

alue: 2.565e-10

Pr(>F)
7134 7.341e-12 ***
8321 0.1859924
6883 0.0008651 **x*
5928 0.0677003 .

.6341 0.4321155

* NBA) + I(Height * NHL)
AIC F value Pr(>F)

73

14 7.8958 0.00864 **
21 3.9818 0.05515 .

27 0.4556 0.50485

46 4.2136 0.04891 *
48 0.6341 0.43212

1=1

g ..

., 36

Y = —128.508 + 4.114X; — 294.595 X5 — 159.656 X3 + 4.039X X5 + 2.590X, X3
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To test whether there are league by Height interactions, we test Hy : 84 = (5 = 0. This can be
constructed in many ways, In matrix form, we are testing Hy : K'3 = m where we have 2 restrictions (rows)

in K’.
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Compute Q as either SSE(R) — SSE(F) = SSE; — SSE5 or R (84, 85150, 1, B2, 53)-

Q) = 8925 — 7823 = 35583 — 34481 = 1102

Fobs =

1102

2(260.8)

=2.113

7823

2= MSE(F)=—= =260.8
s (F) 30

Fo.05230=3.316 P (Y230 >2.113) = .1385

While the test is not significant, we include a plot of the fitted equations in Figure 6.2.
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Test for Equal Variances

A general test for common variances across groups is Bartlett’s Test. It can be used in many settings,
such as in a 1-Way ANOVA model comparing several groups. In the case of “grouped” regression models,
we may want to test whether the error variance when Y is regressed on X separately for the m groups. This
could be extended to include several numeric predictors as well.

We then fit the individual regressions for each group separately, and obtain 53 =MSE; j=1,..,m.
When there is a single numeric predictor, M .SE; has v; = n; —2 degrees of freedom. This clearly generalizes
to n; — p’ when there are p predictor in each regression.

m M v.s?
V:ZVj SQZMSE:M

j=1

v

~1
27'71:1’/'71_’/71 “
X% = 1+W VlnsQ—;lenS?

Conclude that the error variances among the regressions differ if X% > x2a,m — 1.

Example: Relationship Between Weight and Height Among NBA, NHL, and EPL Athletes

When we fit the m = 3 regression models individually by league, we get the same regression coeflicients
as we did in the single interaction model with all of the players. Fitting the individual models gives the
following variance estimates. Each league had 12 players in the sample.

v =vy=v3=12-2=10 = v=10410+10= 30

10(315.8) + 10(116.3) + 10(350.3
s} =315.8 s5=116.3 s3=3503 = s°= ( )+ (30 ) +10( ) _ 960.8 = MSE

1

3007 = GO 30 11(260.8) — 10 (1n(315.8) + In(116.3) + In(350.3))] =

33-1)

X% =1+

166.9126 — (57.5511 + 47.5609 + 58.5879)  3.2128

3(.10)—.0333 -
14 2100533 1.0444

=3.0760  x%52=05991  P(x3>3.0760) = .2148

There is no evidence of unequal error variance among the 3 Leagues.
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6.7 Models With Curvature

When a plot of Y versus one or more of the predictors displays curvature, we can include polynomial terms
to “bend” the regression line. Often, to avoid multicollinearity, we work with centered predictor(s), by
subtracting off their mean(s). If the data show k bends, we will include k + 1 polynomial terms. Suppose
we have a single predictor variable, with 2 “bends” appearing in a scatterplot. Then, we will include terms
up to the a third order term. Note that even if lower order terms are not significant, when a higher order
term is significant, we keep the lower order terms (unless there is some physical reason not to). We can now
fit the model:

E{Y} =+ X + (X?+ B X°.

If we wish to test whether the fit is linear, as opposed to “not linear,” we could test Hy : B2 = 83 = 0.
In many instances it is preferable to center the data (subtract off the mean) or to center and scale the data
(divide centered values by a scale constant) for ease of interpretation and to reduce collinearity among the
predictors. Extrapolating outside the observed X-levels can lead to highly erroneous predictions. Consider
the un-centered and centered models for a quadratic model.

Un-centered: E{Y} =00+ X + (X?
Centered:  E{Y} =750 +7 (X = X) +%2 (X = X)* =90 + X = nX +70X? = 292XX + X

— —92 —
= bBo=7%—-—nX+7rX fr=m — 272X B2 =1

The fitted values are the same for the 2 models, but the parameters (except the coefficient of the highest
order polynomial) are different. For plotting purposes, fit the model in the original units.

Example: Relationship Between Container Ship Speed and Fuel Consumption

Wang and Meng (2012) studied the relationship between Container Ship speed (X, in knots) and fuel
consumption (Y, in tons/day). They studied 5 Ship Type/Voyage Leg combinations. This data is from the
third combination: 5000 TEU Hong Kong/Singapore (TEU = 20-foot Equivalent unit). A plot of the data
is given in Figure 6.3. There appear to be 2 bends in the data, so try a cubic regression model. We fit both
a centered and an un-centered model. The data are given in Table 6.5.

Centered: V' = 58.7020 + 13.3245 (X — X) 4 0.7779 (X — X)” — 1.1479 (X — X)°

Centered: Y = 6328.5818 — 1081.3793X + 61.4035X2 — 1.1479X°

The R program and output are given below.

R Program



6.7. MODELS WITH CURVATURE

speed | fuel | centered speed

16.1 45 -1.505
16.4 46 -1.205
16.5 46 -1.105
16.8 48 -0.805
16.9 49 -0.705

17 51 -0.605

17 51 -0.605

17 52 -0.605
17.1 52 -0.505
17.1 53 -0.505
17.4 56 -0.205
17.6 59 -0.005
17.9 64 0.295
18.2 67 0.595
18.4 69 0.795
18.5 70 0.895
18.5 71 0.895
18.9 74 1.295

19 75 1.395
19.8 80 2.195

Table 6.5: Speed and Fuel Consumption for

Fuel Consumption (tons/day)

Figure 6.3:

Hong Kong/Singapore 5000 TEU Fuel vs Speed

5000 TEU Hong Kong/Singapore Container Ship
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Fuel Consumption vs Speed Hong Kong/Singapore 5000 TEU Container Ship
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spdfuel <- read.csv("http://www.stat.ufl.edu/ winner/data/ship_speed_fuel.csv")
attach(spdfuel); names(spdfuel)

speed_leg3 <- speed[ship_leg==3]
fuel_leg3 <- fuel[ship_leg==3]

plot(speed_leg3,fuel_leg3,xlab="Speed (knots)",ylab="Fuel Consumption (tons/day)",
main = "Hong Kong/Singapore 5000 TEU Fuel vs Speed")

speed_leg3c <- speed_leg3 - mean(speed_leg3)

spdfuel.1 <- 1m(fuel_leg3 ~ speed_leg3c + I(speed_leg3c~2) + I(speed_leg3c~3))
summary (spdfuel.1)

anova(spdfuel.1)

dropl(spdfuel.1,test="F")

spdfuel.2 <- 1m(fuel_leg3 ~ speed_leg3c)
summary (spdfuel.2)
anova(spdfuel.?2)

spdfuel.3 <- 1m(fuel_leg3 ~ speed_leg3 + I(speed_leg3~2) + I(speed_leg3~3))

summary (spdfuel.3)

xs <- seq(16,20,.01)

plot(speed_leg3,fuel_leg3,xlab="Speed (knots)",xlim=c(16,20),ylab="Fuel Consumption (tons/day)",
main = "Hong Kong/Singapore 5000 TEU Fuel vs Speed")
lines(xs,predict(spdfuel.3,list(speed_leg3=xs)),lty=1)

R Output

> summary (spdfuel.1)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 58.7020 2324 252.566 < 2e-16 ***
speed_leg3c 13.3245 2993 44.518 < 2e-16 *xx

2162 3.616 0.00232 *x*
1384 -8.294 3.46e-07 ***

0.

0.
I(speed_leg3c”2) 0.7779 0.
I(speed_leg3c~3) -1.1479 0.
Residual standard error: 0.7171 on 16 degrees of freedom
Multiple R-squared: 0.9966, Adjusted R-squared: 0.9959
F-statistic: 1551 on 3 and 16 DF, p-value: < 2.2e-16

> anova(spdfuel.1)
Analysis of Variance Table
Response: fuel_leg3

Df Sum Sq Mean Sq F value Pr(>F)
speed_leg3c 1 2355.43 2355.43 4580.2738 < 2.2e-16 **xx
I(speed_leg3c™2) 1 2.77 2.77 5.3784 0.03394 =*
I(speed_leg3c”3) 1 35.37 35.37 68.7881 3.462e-07 **x
Residuals 16 8.23 0.51

> dropl(spdfuel.1l,test="F")
Single term deletions

Model:
fuel_leg3 ~ speed_leg3c + I(speed_leg3c”2) + I(speed_leg3c~3)

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 8.23 -9.764
speed_leg3c 1 1019.18 1027.41 84.781 1981.860 < 2.2e-16 **x
I(speed_leg3c™2) 1 6.72 14.95 0.181 13.073 0.002321 *x*

I(speed_leg3c™3) 1 35.37 43.60 21.588 68.788 3.462e-07 *xx
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Figure 6.4: Data and Fitted Cubic Regression Equation - Container Ship Data

> summary (spdfuel.3)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6328.5818 795.9240 7.951 6.00e-07 *x**
speed_leg3 -1081.3793  133.4939 -8.101 4.71e-07 **x*
I(speed_leg3°2) 61.4035 7.4511  8.241 3.77e-07 **x*
I(speed_leg3°3) -1.1479 0.1384 -8.294 3.46e-07 **x*

Residual standard error: 0.7171 on 16 degrees of freedom
Multiple R-squared: 0.9966, Adjusted R-squared: 0.9959
F-statistic: 1551 on 3 and 16 DF, p-value: < 2.2e-16

Clearly the model fits very well. A plot of the data and the fitted equation are given in Figure 6.4.

\Y

6.8 Response Surfaces

Response surfaces are often fit when we have 2 or more predictors, and include “linear effects”, “quadratic
effects”, and “interaction effects.” In the case of 3 predictors, a full model would be of the form:
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E{Y} = B0+ 51 X1 + B Xo + B3X3 + B11XT + Baa X3 + B33 X3 + B12aX1 Xz + 13 X1 X3 + F23 X2 X3,

This is a “second-order” model, in some (apparently rare) circumstances, experimenters fit “third-order”
models which include cubic terms, and interactions between main effects and quadratic terms. We typically
wish to simplify the model, to make it more parsimonious, when possible. Response surfaces are typically
used to optimize a process in terms of choosing the input X values that maximize or minimize the process.
Consider the second model with k input (predictor) variables.

Xy 5:1 ﬁn 513/2 5:1k/2
. )52 8, — 5:2 8, - 512:/2 5:22 : 521j/2
X bhy, Blk/2 sz/Q o Bk

k k—1 k k
Y=Po+) B X;+> . > BipX;Xy Y BiX; = fo+x By +xBax
i=1 i=1j=j+1

j=1

Taking the derivative of Y with respect to x and setting equal to 0 leads to the optimal settings of x to
maximize or minimize the response surface (assuming it is at an interior point).

3Y ~ ~ A& a N 1 ~A—14
8_x:'61+2'62x = 20x"'=-0;, = x :—552 B

Most practitioners work with coded values (centered at 0) when fitting the model, then “convert back” to
original units for plots and interpretations. The rsm package in R uses the original scale for the predictors.

Example: Factors Affecting Mango Wine

Kumar, Praksam, and Reddy (2009) reported results from a 3-factor study relating Ethanol percentage
(Y) to 3 fermenting factors: Temperature (X;, Celsius), pH (X2), and Inoculum Size (X3, percent) in
Mango Wine production. They fit a second-order response surface, as described above. The data are given
in Table 6.6. The data are coded in the following manner such that the center points (coded values = 0) for
Temperature, pH, and Inoculum are 24, 3.8, and 10, respectively. The coded inner lower (-1) values are 18,
3.4, and 5 respectively. The coded inner upper (+1) values are 30, 4.2, and 15, respectively. The extreme, or
axial, (+/-1.682) values are (13.908, 34.902) for temperature, (3.1272, 4.4728) for pH, and (1.59, 18.41) for
inoculum. Note that there are 6 runs where each factor is at its center value. This permits a goodness-of-fit
test.

We begin by fitting the second-order model using a regression package, then we fit it with a specialized
package (R package rsm). In the original units, we get the following fitted equation (rounded to 3 decimal
places).
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Run | CodedTemp | Coded pH | Coded Inoculum | Ethanol | Temp pH Inoculum
1 0 0 -1.682 4.8 24 3.8 1.59
2 0 0 0 9.6 24 3.8 10
3 0 0 0 10.2 24 3.8 10
4 0 0 1.682 8.5 24 3.8 18.41
5 0 -1.682 0 7.3 24 3.1272 10
6 1 1 -1 4.8 30 4.2 5
7 -1 -1 1 7.9 18 3.4 15
8 1 -1 -1 6.7 30 3.4 5
9 0 0 0 9.8 24 3.8 10
10 0 0 0 10.2 24 3.8 10
11 0 0 0 9.8 24 3.8 10
12 0 0 0 10.2 24 3.8 10
13 -1 1 1 8.2 18 4.2 15
14 -1 -1 -1 7.1 18 3.4 5
15 -1.682 0 0 8.2 13.908 3.8 10
16 -1 1 -1 5.6 18 4.2 5
17 1 1 1 7.5 30 4.2 15
18 0 1.682 0 6.7 24 4.4728 10
19 1 -1 1 5.5 30 3.4 15
20 1.682 0 0 6.5 34.092 3.8 10

Table 6.6: Ethanol Percentage, Temperature, pH, Inoculum Content in Mango Wine Experiment

Y = —88.088+1.012.X,+45.822X5—0.036 X3540.067X1 X5 —0.008.X1 X5+0.356. X2 X35—0.027 X 2—6.763 X2 —0.048 X2

X, 1.012243 ~0.02662  0.067708/2 —0.00792/2
x=| X, B, = | 458220 B,= | 0.067708/2 —6.76258  0.35625/2
X ~0.03629 —0.00792/2  0.35625/2  —0.04823
. 92.09
= x'=-2p,'8,=| 381
2 11.89

The R program and output are given below.

R Program

mango <- read.table("http://www.stat.ufl.edu/ winner/data/mangowine.dat",header=F,
col.names=c("runnum","c_temp","c_pH","c_inoc","ethanol","glycerol","acidity",
"one","temperature","pH","inoculum"))

attach(mango)

mango.1l <- lm(ethanol ~ temperature + pH + inoculum + I(temperature*pH) +
I(temperature*inoculum) + I(pH*inoculum) + I(temperature~2) + I(pH"2) + I(inoculum~2))

summary (mango. 1)

anova(mango.1)
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library(rsm)

mango.2 <- rsm(ethanol ~ SO(temperature,pH,inoculum))
summary (mango . 2)

par (mfrow=c(1,3))
contour (mango.2, ~ temperature + pH + inoculum, at=summary(mango.2)$canonical$xs)

}

{\bf R Output - 1lm Function}

{\footnotesize
\begin{verbatim}
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -88.088035 12.223256 -7.207 2.90e-05 **x
temperature 1.012243 0.283907 3.565 0.005135 *x*
pH 45.821999 5.543945 8.265 8.84e-06 *x*x
inoculum -0.036288 0.320992 -0.113 0.912228
I(temperature * pH) 0.067708 0.062167 1.089 0.301644
I(temperature * inoculum) -0.007917 0.004973 -1.592 0.142510
I(pH * inoculum) 0.356250 0.074600 4.775 0.000751 *x**
I(temperature~2) -0.026619 0.003087 -8.622 6.07e-06 ***
I(pH"~2) -6.762575 0.694648 -9.735 2.03e-06 ***
I(inoculum~2) -0.048229 0.004446 -10.848 7.50e-07 ***

Residual standard error: 0.422 on 10 degrees of freedom
Multiple R-squared: 0.9714, Adjusted R-squared: 0.9457
F-statistic: 37.8 on 9 and 10 DF, p-value: 1.491e-06

Analysis of Variance Table
Response: ethanol

Df Sum Sq Mean Sq F value Pr (>F)
temperature 1 3.7528 3.7528 21.0730 0.0009944 *x*x*
pH 1 0.3257 0.3257 1.8290 0.2060372
inoculum 1 9.0590 9.0590 50.8684 3.171e-05 *x*x*
I(temperature * pH) 1 0.2113 0.2113 1.1862 0.3016437
I(temperature * inoculum) 1 0.4513 0.4513 2.5339 0.1425104
I(pH * inoculum) 1 4.0613 4.0613 22.8049 0.0007509 *x*x*
I(temperature~2) 1 8.2896 8.2896 46.5483 4.611e-05 *x*x*
I(pH"2) 1 13.4792 13.4792 75.6892 5.607e-06 *x*x*
I(inoculum~2) 1 20.9585 20.9585 117.6868 7.500e-07 *x*x*
Residuals 10 1.7809 0.1781

Note that the sum of squares for the interaction terms given the main effects is obtained by adding the
3 interaction sequential sums of squares. Further, the sum of squares for the quadratic terms given main
effects and interactions can also be obtained this way.

R (512, $13, B23|060, b1, B2, B3) = 0.2113 4+ 0.4513 + 4.0613 = 4.7239

R (11, Ba2, B3] 5o, B1, B2, B3, P12, Bi3, F23) = 8.2896 4 13.4792 4 20.9585 = 42.7273
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Y X1 X X3 ?Grp Y Y — ?Grp ?Grp -Y
4.8 24 3.8 1.59 4.8 5.190776 0 -0.39078
9.6 24 3.8 10 9.966667 9.971758 -0.36667 -0.00509
10.2 24 3.8 10 9.966667 9.971758 0.233333 -0.00509
8.5 24 3.8 18.41 8.5 7.930448 0 0.569552
7.3 24 3.1272 10 7.3 7.170358 0 0.129642
4.8 30 4.2 5 4.8 4.920205 0 -0.12021
7.9 18 3.4 15 7.9 7.90624 0 -0.00624
6.7 30 3.4 5 6.7 6.329059 0 0.370941
9.8 24 3.8 10 9.966667 9.971758 -0.16667 -0.00509
10.2 24 3.8 10 9.966667 9.971758 0.233333 -0.00509
9.8 24 3.8 10 9.966667 9.971758 -0.16667 -0.00509
10.2 24 3.8 10 9.966667 9.971758 0.233333 -0.00509
8.2 18 4.2 15 8.2 8.697386 0 -0.49739
7.1 18 3.4 5 7.1 7.227422 0 -0.12742
8.2 | 13.908 3.8 10 8.2 8.142285 0 0.057715
5.6 18 4.2 5 5.6 5.168568 0 0.431432
7.5 30 4.2 15 7.5 7.499023 0 0.000977
6.7 24 4.4728 10 6.7 6.650866 0 0.049134
5.5 30 3.4 15 5.5 6.057877 0 -0.55788
6.5 | 34.092 3.8 10 6.5 6.378939 0 0.121061

Sum of Squares 0.353333 1.427535

Table 6.7: Mango Wine Experiment - Lack-of-Fit Test Calculations

The Goodness-of-Fit test can be computed as follows. The error degrees of freedom is n—p’ =20—10 =
10. There are ¢ = 15 distinct groupings (6 at the center point, 14 individual combinations of factor levels).
That leaves n — ¢ = 20 — 15 = 5 degrees of freedom for Pure Error, and ¢ — p’ = 15 — 10 = 5 degrees of
freedom for Lack of Fit. The “group means” for the 14 individual points is the observation itself, the group
mean at the center value is the average of those 6 cases. Computations are given in Table 6.7.

po o _ MSLF _ 1.427535/5
LOF = A7SPE ~ 0.353333/5

—4.040  Fos55=>5050 P (F55> 4.040) = .0758

We fail to conclude that the model does not fit the data.

The output from the R package rsm are given below. Figure 6.5 gives the contours of the response
surface for all three pairs of factors.

R Output - rsm package

Call:
rsm(formula = ethanol ~ SO(temperature, pH, inoculum))
Estimate Std. Error t value Pr(>|tl)

(Intercept) -88.0880353 12.2232556 -7.2066 2.903e-05 *x**
temperature 1.0122431 0.2839067 3.5654 0.0051348 *x*
pH 45.8219993 5.5439454 8.2652 8.839e-06 **x*
inoculum -0.0362881 0.3209922 -0.1130 0.9122284
temperature:pH 0.0677083 0.0621670 1.0891 0.3016437
temperature:inoculum -0.0079167 0.0049734 -1.5918 0.1425104



154 CHAPTER 6. MULTIPLE LINEAR REGRESSION

/

4.4

15
1
15
1

4.0

pH
3.8
|
inoculum
10
!
inoculum
10
!

34

\
I /"l//

3.2

\1 //t/;/éé

15 20 25 30 15 20 25 30 32 34 3.6 38 40 42 44
temperature temperature pH
llum = 11.89, temperature = 22.0930636668486, pH = 3.81, temperature = 22.0930636668486, inoculum = ferature = 22.09, pH = 3.8116424990638, inoculum = 1
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pH:inoculum 0.3562500 0.0746003 4.7754 0.0007509 *x**
temperature~2 -0.0266194 0.0030873 -8.6222 6.075e-06 **x*
pH"2 -6.7625745 0.6946475 -9.7353 2.032e-06 **x*
inoculum”2 -0.0482290 0.0044457 -10.8484 7.500e-07 **x*
Multiple R-squared: 0.9714, Adjusted R-squared: 0.9457
F-statistic: 37.8 on 9 and 10 DF, p-value: 1.491e-06
Analysis of Variance Table
Response: ethanol

Df Sum Sq Mean Sq F value Pr(>F)
FO(temperature, pH, inoculum) 3 13.138 4.3792 24.5901 6.227e-05

TWI(temperature, pH, inoculum) 3 4.724 1.5746 8.8417 0.003657

PQ(temperature, pH, inoculum) 3 42.727 14.2424 79.9748 2.730e-07
Residuals 10 1.781 0.1781
Lack of fit 5 1.428 0.2855 4.0402 0.075809
Pure error 5 0.353 0.0707

Stationary point of response surface:
temperature pH
22.093064 3.811642

inoculum
11.888138
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6.9 Trigonometric Models

Many biological, economic, and meteorological time series of measurements display cyclic patterns, along
with possibly trend. Use of regression models with sine and cosine components, along with a trend term,
can be used to model the process. If there are an even number of £ measurements per period, we can include
up to k/2 cosine and (k/2) — 1 sine terms before they start repeating themselves. For monthly (k = 12), we
have the following model, with centered time.

5 . .
2wt . (27t _
LV — C s C _
Monthly-Yt—ﬁoJrE [@- COS( 12)—1—6]- sm( 12 )}4—66 cos () + B7 (t — 1) + & t=1,...,n

j=1

Example: Minneapolis/St.Paul Mean Monthly Temperature - 1/1900-12/2014

This model is fit to monthl mean temperature for Minneapolis/St. Paul, Minnesota over the n = 1380
months from 1/1900-12/2014. After fitting the full model, we see that we can drop the two highest order
cosine and the highest order sine term. We then include a plot of the data and the fitted curve for 1/1900-
12/1904 in Figure 6.6. A plot pf the full series is so long that you cannot see the pattern. The R program
and (partial) output are given below.

### Program
msw <- read.csv("E:\\coursenotes\\minn_stp_weather.csv", header=T)
attach(msw) ; names (msw)

X1 <- cos(2*pi*1*MonthS/12); X2 <- sin(2*pix*1*MonthS/12)
X3 <- cos(2*pi*2*MonthS/12); X4 <- sin(2*pi*2*MonthS/12)
X5 <- cos(2*pi*3*MonthS/12); X6 <- sin(2*pi*3*MonthS/12)
X7 <- cos(2*pi*4*MonthS/12); X8 <- sin(2*pix*4*MonthS/12)
X9 <- cos(2*pi*5*MonthS/12); X10 <- sin(2*pi*5*MonthS/12)
X11 <- cos(2*pix*6*MonthS/12)

X12 <- MonthS - mean(MonthS)

msw.modl <- lm(meanTemp~X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12)
summary (msw.mod1)
anova(msw.mod1)

msw.mod2 <- lm(meanTemp~X1+X2+X3+X4+X5+X6+X7+X12)
summary (msw.mod2)

anova(msw.mod2)

plot (msw.mod2)

anova(msw.mod2,msw.mod1)

plot (MonthS[1:60] ,meanTemp[1:60] ,pch=16,ylim=c(0,80),
main="Minneapolis-St.Paul Mean Temp1/1900-12/1904")
lines(1:60,predict (msw.mod2) [1:60])

### Output
> summary (msw.mod1)
Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 45.269467 0.118994 380.436 < 2e-16 *x**
X1 -24.507707 0.168283 -145.634 < 2e-16 ***
X2 -16.183906 0.168283 -96.171 < 2e-16 ***
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X3 -1.272425 0.168343 -7.559 7.41e-14 **x
X4 -1.715098 0.168221 -10.195 < 2e-16 **x*
X5 0.162471 0.168283 0.965 0.3345

X6 -0.675480 0.168283 -4.014 6.29e-05 **x*
X7 -0.278256 0.168343 -1.653 0.0986 .
X8 0.338942 0.168222 2.015 0.0441 *
X9 -0.008014 0.168282 -0.048 0.9620
X10 0.115859 0.168282 0.688 0.4913
X11 0.078679 0.118994 0.661 0.5086
X12 0.001248 0.000297 4.202 2.81e-05 *x*x*

Residual standard error: 4.433 on 1375 degrees of freedom
Multiple R-squared: 0.9571, Adjusted R-squared: 0.9568
F-statistic: 2558 on 12 and 1375 DF, p-value: < 2.2e-16

> summary (msw.mod2)
Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 4.527e+01 1.190e-01 380.304 < 2e-16 **x*
X1 -2.451e+01 1.683e-01 -145.583 < 2e-16 ***

X2 -1.618e+01 1.683e-01 -96.137 < 2e-16 *x**
X3 -1.272e+00 1.684e-01 -7.554 7.63e-14 *x*x*
X4 -1.715e+00 1.683e-01 -10.192 < 2e-16 ***
X5 1.630e-01 1.683e-01 0.969 0.333

X6 -6.758e-01 1.683e-01 -4.015 6.28e-05 *x**
X7 -2.780e-01 1.684e-01 -1.651 0.099 .
X12 1.248e-03 2.971e-04 4.200 2.84e-05 *x*x*

Residual standard error: 4.435 on 1379 degrees of freedom
Multiple R-squared: 0.957, Adjusted R-squared: 0.9567
F-statistic: 3834 on 8 and 1379 DF, p-value: < 2.2e-16

> anova(msw.mod2,msw.mod1)
Analysis of Variance Table

Model 1: meanTemp ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X12
Model 2: meanTemp ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 +

X11 + X12
Res.Df RSS Df Sum of Sq F Pr(>F)
1 1379 27120
2 1375 27023 4 97.52 1.2405 0.2918

The trend coefficient is significant (3 = .001248, P < .0001). Above and beyond the cyclic behavior
of the series, temperature has increased by (1380-1)(.001248)=1.72 degrees Fahrenheit on average over the
period.

6.10 Model Building

When we have many predictors, we may wish to use an algorithm to determine which variables to include
in the model. These variables can be main effects, interactions, and polynomial terms. Note that there are
two common approaches. One method involves testing variables based on t-tests, or equivalently F'-tests
for partial regression coefficients. An alternative method involves comparing models based on model based
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Figure 6.6: Minneapolis/St. Paul Temperatures and Fitted values 1/1900-12/1904

measures, such as Akaike Information Criterion (AIC), or Schwartz Bayesian Information criterion (BIC
or SBC). These measures can be written as follows (note that different software packages print different
versions, as some parts are constant for all potential models). The goal is to minimize the measures.

AIC(Model) = nln(SSE(Model))+2p’—n In(n) BIC(Model) = nln(SSE(Model))+[In(n)]p’—nIn(n)

Note that SSE(Model) depends on the variables included in the current model. The measures put a
penalty on excess predictor variables, with BIC placing a higher penalty when In(n) > 2. Note that p’ is
the number of parameters in the model (including the intercept), and n is the sample size. Be aware that
different computer packages can use different formulations of AIC' and BIC, unless clearly stated, the goal
is still to minimize the values.

Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

Spurgeon (1978) reports results from experiments of animals being exposed to n = 71 burning aircraft
materials. The outcome measured was the time-to-incapacitation. Due to theoretical reasons the response
Y is the reciprocal of time-to-incapacitation, multiplied by 1000. For each burned material, levels of p = 7
gases were measured: CO, HCN, H2S, HCL, HBr, NO2, and SO2. These were the potential predictors of
Y. The R program and output for the full model, containing all predictors main effects (no interactions or
quadratic terms are included) are given below.
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R Program

toxic <- read.table("http://www.stat.ufl.edu/"winner/data/air_int_incap.dat",
header=F,col.names=c("matcat","matid","timeinc","Y","CO","HCN","H2S",

|lHCLll "HBI" |IND2|I |ISDQII) )
attach(toxic)

library(car)

toxic.1 <- 1m(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02)
summary (toxic.1)

anova(toxic.1)

dropl(toxic.1,test="F")

vif(toxic.1)

######### Perform Backward Elimination, Forward Selection, and Stepwise Regression
#it##t##### Based on Model AIC (not individual regression coefficients)

######### £itl and £fit2 represent "extreme" models

library (MASS)

fitl <- 1m(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02)

fit2 <- 1m(Y ~ 1)

stepAIC(fitl,direction="backward")

stepAIC(fit2,direction="forward",scope=list (upper=fitl,lower=£fit2))
stepAIC(fit2,direction="both",scope=1list (upper=fitil,lower=£fit2))

#it##t###### Perform all possible regressions (aka all subset regressions)
########## Prints out best 4 models of each # of predictors
install.packages("leaps")

library(leaps)

alltoxic <- regsubsets(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02,

nbest=4,data=toxic)

aprout <- summary(alltoxic)

n <- length(toxic$Y)

pprime <- apply(aprout$which, 1, sum)

aprout$aic <- aprout$bic - log(n) * pprime + 2 * pprime
with(aprout,round(cbind(which,rsq,adjr2,cp,bic,aic),3)) ## Prints "readable" results
plot(alltoxic,scale="bic")

plot(alltoxic,scale="adjr2")

R Output - Full Model

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 75.44679 15.16710 4.974 5.34e-06 *xx

co 0.64036 0.09717 6.590 1.03e-08 *x*x*
HCN 11.77871 0.90006 13.087 < 2e-16 **x*
H2S -10.90998 2.99044 -3.648 0.000537 ***
HCL -0.10200 0.07284 -1.400 0.166337
HBr -0.67569 0.88126 -0.767 0.446105
NO2 44.81628 21.06666 2.127 0.037312 *
S02 6.61409 2.72454  2.428 0.018069 *

Residual standard error: 55.75 on 63 degrees of freedom
Multiple R-squared: 0.8345, Adjusted R-squared: 0.8161
F-statistic: 45.38 on 7 and 63 DF, p-value: < 2.2e-16

> anova(toxic.1)
Analysis of Variance Table (Sequential SS)
Response: Y
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Df Sum Sq Mean Sq F value Pr(>F)

co 1 81119 81119 26.0966 3.243e-06 *x**
HCN 1 787782 787782 253.4359 < 2.2e-16 *x**
H2S 1 68561 68561 22.0567 1.478e-05 *x*x*
HCL 1 5208 5208 1.6755 0.200254
HBr 1 2298 2298 0.7392 0.393174
NO2 1 24125 24125 7.7611 0.007044 *x*
S02 1 18319 18319 5.8932 0.018069 *
Residuals 63 195830 3108

> dropl(toxic.1,test="F")
Single term deletions
Model:
Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 195830 578.48

co 1 135010 330840 613.72 43.4338 1.028e-08 *x**
HCN 1 532345 728174 669.73 171.2595 < 2.2e-16 *xx
H2S 1 41373 237203 590.09 13.3100 0.0005374 *x**
HCL 1 6095 201925 578.66 1.9608 0.1663369
HBr 1 1827 197657 577.14  0.5879 0.4461054
NO2 1 14068 209897 581.41 4.5256 0.0373116 *
S02 1 18319 214148 582.83 5.8932 0.0180690 *

Full Model: SSE =195830 p'=7+1=38 Null Model: TSS =1183241 p'=0+1=1

Full Model: AIC = 711n(195830) + 2(8) — 711n(71) = 865.135 + 16 — 302.650 = 578.485

Full Model: BIC = 711n(195830) + [In(71)] (8) — 711n(71) = 865.135 + 34.101 — 302.650 = 596.586
Null Model: AIC = 711n(1183241) + 2(1) — 711n(71) = 992.848 + 2 — 302.650 = 692.198

Null Model: BIC = 711n(1183241) + [In(71)] (1) — 711n(71) = 992.848 + 4.263 — 302.650 = 694.461

)<_
)<_

6.10.1 Backward Elimination

This is a “top-down” method, which begins with a “Complete” Model, with all potential predictors. The
analyst then chooses a significance level to stay in the model (SLS). The model is fit, and the predictor
with the lowest t-statistic in absolute value (largest P-value) is identified. If the P-value is larger than SLS,
the variable is dropped from the model. Then the model is re-fit with all other predictors (this will change
all regression coefficients, standard errors, and P-values). The process continues until all variables have
P-values below SLS.

The model based approach fits the full model, with all predictors and computes AIC' (or BIC). Then,
each variable is dropped one-at-a-time, and AIC (or BIC) is obtained for each model. If none of the models
with one dropped variable has AIC (or BIC) below that for the full model, the full model is kept, otherwise
the model with the lowest AIC (or BIC) is kept as the new full model. The process continues until no
variables should be dropped (none of the ”drop one variable models” has a lower AIC (or BIC) than the
“full model.”
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Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

We make use of the stepAIC command in the R package MASS to use AIC to obtain the Backward
Elimination model selection. Note that in the output, RSS is the Residual (Error) Sum of Squares.

R Output - Backward Elimination

> library(MASS)
> fitl <- 1m(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02)
> £fit2 <- Im(Y ~ 1)
> stepAIC(fitl,direction="backward")
Start: AIC=578.48
Y © CO + HCN + H2S + HCL + HBr + NO2 + S02
Df Sum of Sq RSS AIC

- HBr 1 1827 197657 577.14
<none> 195830 578.48
- HCL 1 6095 201925 578.66
- NO2 1 14068 209897 581.41
- S02 1 18319 214148 582.83
- H28 1 41373 237203 590.09
- Co 1 135010 330840 613.72
- HCN 1 532345 728174 669.73

Step: AIC=577.14
Y ~ CO + HCN + H2S + HCL + N0O2 + S02
Df Sum of Sq RSS AIC

- HCL 1 5281 202938 577.02
<none> 197657 577.14
- NO2 15112 212769 580.38

1
-s02 1 17751 215408 581.25
- H28 1 42033 239690 588.83
- Co 1 154961 352618 616.24
- HCN 1 531912 729569 667.86

Step: AIC=577.02
Y © CO + HCN + H2S + NO2 + S02

Df Sum of Sq RSS AIC
<none> 202938 577.02
- S02 1 13934 216872 579.73
- NO2 1 21378 224316 582.13
- H2S 1 38630 241568 587.39
- C0 1 166472 369410 617.55
- HCN 1 529032 731971 666.10

Call: lm(formula =Y ~ CO + HCN + H2S + NO2 + S02)

Coefficients:
(Intercept) co HCN H2S NO2 S02
68.4756 0.6211 11.7355 -10.4239 53.2167 5.5480

In the first step, if HBr is removed, SSE = 197657, p’ = 6+ 1 = 7 and AIC drops to 577.14. When the
model drops each of the remaining 6 predictors, one-at-a-time, AIC increases. In the second step, we begin
with the 6 predictor model, and drop each variable, one-at-a-time. The model has AIC = 577.14. When
HCL is dropped from the model, SSE = 202938, p' =5+1 = 6 and AIC drops to 577.02. In the third step,
we begin with the 5 predictor model, and drop each variable, one-at-a-time. In each case AIC decreases,
and we select the 5 predictor model: CO, HCN, H2S, NO2, SO2.

\Y
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6.10.2 Forward Selection

This is a “bottom-up” method, which begins with all “Simple” Models, each with one predictor. The analyst
then chooses a significance level to enter into the model (SLE). Each model is fit, and the predictor with
the highest ¢-statistic in absolute value (smallest P-value) is identified. If the P-value is smaller than SLE,
the variable is entered into the model. Then all two variable models including the best predictor in the first
round, with each of the other predictors. The best second variable is identified, and its P-value is compared
with SLE. If its P-value is below SLE, the variable is added to the model. The process continues until no
potential added variables have P-values below SLE.

The model based approach fits each simple model, with one predictor and computes AIC (or BIC).
The best variable is identified (assuming its AIC (or BIC) is smaller than that for the null model, with no
predictors). Then, each potential variable is added one-at-a-time, and AIC (or BIC) is obtained for each
model. If none of the models with one added variable has AIC' (or BIC) below that for the best simple
model, the simple model is kept, otherwise the model with the lowest AIC (or BIC) is kept as the new full
model. The process continues until no variables should be added (none of the ”add one variable models” has
a lower AIC (or BIC) than the “reduced model.”

Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

We make use of the stepAIC command in the R package MASS to use AIC' to obtain the Forward
Selection model choice. Note that in the output, RSS is the Residual (Error) Sum of Squares for that model.

R Output - Forward Selection

> library(MASS)

> fitl <- 1m(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02)

> fit2 <= 1Im(Y ~ 1)

> stepAIC(fit2,direction="forward",scope=list (upper=fitl,lower=£fit2))
Start: AIC=692.2

Y"1

Df Sum of Sq RSS AIC
+ HCN 1 677833 505408 633.80
+ NO2 1 212831 970410 680.12
+ H2S 1 102071 1081170 687.79
+ CO 1 81119 1102122 689.15
+ HCL 1 51156 1132086 691.06
<none> 1183241 692.20
+ HBr 1 14339 1168902 693.33
+ 502 1 13344 1169897 693.39

Step: AIC=633.8
Y © HCN
Df Sum of Sq RSS AIC

+ CO 1 191068 314340 602.08
+ NO2 1 109591 395817 618.45
+ H2S 1 73868 431541 624.58
+ HCL 1 28118 477291 631.74
+ HBr 1 25890 479518 632.07
<none> 505408 633.80
+ 502 1 803 504606 635.69

Step: AIC=602.08
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Y ~ HCN + CO

Df Sum of Sq RSS AIC
+ H2S 1 68561 245779 586.62
+ NO2 1 65161 249179 587.59
+ 502 1 14129 300211 600.82
<none> 314340 602.08
+ HCL 1 4387 309953 603.09
+ HBr 1 3701 310639 603.24

Step: AIC=586.62
Y ~ HCN + CO + H2S

Df Sum of Sq RSS AIC
+ NO2 1 28906.7 216872 579.73
+ 502 1 21462.7 224316 582.13
<none> 245779 586.62
+ HCL 1 5208.0 240571 587.09
+ HBr 1 1509.8 244269 588.18

Step: AIC=579.73
Y © HCN + CO + H2S + NO2

Df Sum of Sq RSS AIC
+ 502 1 13933.9 202938 577.02

<none> 216872 579.73
+ HCL 1 1463.9 215408 581.25
+ HBr 1 901.2 215971 581.44

Step: AIC=577.02
Y © HCN + CO + H2S + NO2 + S02

Df Sum of Sq RSS AIC
<none> 202938 577.02
+ HCL 1 5280.9 197657 577.14
+ HBr 1 1013.4 201925 578.66

Call: lm(formula = Y ~ HCN + CO + H2S + NO2 + S02)

Coefficients:
(Intercept) HCN co H2S NO2 S02
68.4756 11.7355 0.6211 -10.4239 53.2167 5.5480

In the first stage, each one variable model is compared to the null model. The best single variable is
HCN, with AIC = 633.80, compared to the null model with AIC = 692.20. In the second stage, each two
variable model containing HCN is fit, and CO drops AIC to 602.02. The best three variable model containing
HCN and CO adds H2S, with AIC = 586.62. In the fourth stage, NO2 is added, with AIC = 579.93, in the
fifth stage, SO2 is added with AIC = 577.02. When either HCL or HBr is added, AIC increases.

6.10.3 Stepwise Regression

This approach is a hybrid of forward selection and backward elimination. It begins like forward selection,
but then applies backward elimination at each step. In forward selection, once a variable is entered, it stays
in the model. In stepwise regression, once a new variable is entered, all previously entered variables are
tested, to confirm they should stay in the model, after controlling for the new entrant, as well as the other
previous entrant.
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Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

The Stepwise Regression leads to the same model as Backward Elimination and Forward selection for
this data. The output is virtually the same as Forward selection, with the exception that it tries to remove
previously entered predictors at each step.

6.10.4 All Possible Regressions

We can fit all possible regression models, and use model based measures to choose the “best” model. Com-
monly used measures are: Adjusted-R? (equivalently MSE), Mallow’s C), statistic, AIC, and BIC. The
formulas, and decision criteria are given below (where p’ is the number of parameters in the ” current” model
being fit:

Adjusted-R? - 1 — (::;,) % - Goal is to maximize

Model .
Mallow’s C), - C), = % +2p’ —n - Goal is to have Cp, < p/

Akaike Information Criterion - AIC(Model) = nln(SSE(Model)) + 2p’ — nln(n) - Goal is to minimize

Bayesian Information Criterion - BIC(Model) = nln(SSE(Model)) + [In(n)]p’ — nln(n) - Goal is to
minimize

Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

The R package leaps will perform all possible regressions. It does not include AIC, however i can be
computed from BIC. The following output gives the best four p = 1, 2, 3, 4, 5, and 6 variable models, as
well as the 7 variable model.

> alltoxic <- regsubsets(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02,

+ nbest=4,data=toxic)

> aprout <- summary(alltoxic)

> n <- length(toxic$Y)

> pprime <- apply(aprout$which, 1, sum)

> aprout$aic <- aprout$bic - log(n) * pprime + 2 * pprime

> with(aprout,round(cbind(which,rsq,adjr2,cp,bic,aic),3)) ## Prints "readable" results
(Intercept) CO HCN H2S HCL HBr NO2 S02 rsq adjr2 cp bic aic

1 1 0 1 0 0 0 0 0 0.573 0.567 95.594 -51.871 -56.396

1 1 0 0 0 0 0 1 0 0.180 0.168 245.189 -5.554 -10.079

1 1 0 0 1 0 0 0 0 0.086 0.073 280.821 2.120 -2.405

1 11 0 0 0 0 0 0 0.069 0.055 287.562  3.483 -1.042

2 11 1 0 0 0 0 0 0.734 0.727 36.126 -81.325 -88.113

2 1 0 1 0 0 0 1 0 0.665 0.656 62.338 -64.961 -71.749

2 1 0 1 1 0 0 0 0 0.635 0.625 73.830 -58.826 -65.614

2 1 0 1 0 1 0 0 0 0.597 0.585 88.548 -51.672 -58.460
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3 11 1 1 0 0O 0 00.7920.783 16.069 -94.532 -103.582
3 11 1 0 0 O 1 00.7890.780 17.163 -93.556 -102.607
3 11 1 o 0 o0 o0 1 0.746 0.735 33.580 -80.328 -89.378
3 11 1 o 1 0O O 00.738 0.726 36.714 -78.060 -87.111
4 11 1 1 0 0 1 00.817 0.806 8.769 -99.153 -110.466
4 11 1 i1 0 0 O 1 0.810 0.799 11.164 -96.757 -108.070
4 11 1 1 1 0 O 00.797 0.784 16.394 -91.790 -103.103
4 11 1 o o0 o 1 1 0.796 0.783 16.714 -91.496 -102.809
5 11 1 i1 0 0 1 1 0.828 0.815 6.287 -99.605 -113.181
5 11 1 1 1 0 o0 1 0.820 0.806 9.450 -96.246 -109.822
5 11 1 1 1 0 1 00.818 0.804 10.298 -95.371 -108.947
5 11 1 1 0 1 1 00.817 0.803 10.480 -95.186 -108.762
6 11 1 1 1 o 1 1 0.833 0.817 6.588 -97.214 -113.053
6 11 1 1 0 1 1 1 0.829 0.813 7.961 -95.698 -111.536
6 11 1 1 1 1 0 1 0.823 0.806 10.526 -92.948 -108.787
6 11 1 1 1 1 1 00.819 0.802 11.893 -91.525 -107.363
7 11 1 1 1 1 1 1 0.834 0.816 8.000 -93.611 -111.712

6.11 Issues of Collinearity

When the predictor variables are highly correlated among themselves, the regression coefficients become

unstable, with increased standard errors. This leads to smaller ¢-statistics for tests regarding the partial

regression coefficients and wider confidence intervals. At its most extreme case, the sign of a regression

coefficient can change when a new predictor variable is included. One widely reported measure of collinearity

is the Variance Inflation Factor (VIF). This is computed for each predictor variable, by regressing it

on the remaining p — 1 predictors. Then VIF; = 1+R2 where R? is the coefficent of determination of the
J

regression of X; on the remaining predictors. Values of VIF; greater than 10 are considered problematic.
Collinearity is not problematic when the primary goal of the model is for prediction.

Various remedies exist. One is determining which variable(s) make the most sense theoretically for
the model, and removing other variables, which are correlated with the other more meaningful predictors.
A second method involves generating uncorrelated predictor variables from the original set of predictors.
While this method based on principal components removes the collinearity problem, the new variables
may lose their meaning, thus making it harder to describe the process. A third method, ridge regression,
introduces a bias factor into the regression that reduces the inflated variance due to collinearity, and through
that reduces the Mean Square Error of the regression coefficients. Unfortunately, there is no simple rule on
choosing the bias factor.

Example: Time-to-Incapacitation for Animals Exposed to Burning Aircraft Materials

The R package car has a vif function that computes the Variance Inflation Factors for each predictor.
We apply it to the regression fit on all p = 7 predictors, and find that the gases in their functional forms are
not highly correlated among themselves.

R Output - Variance Inflation Factors
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library(car)
toxic.1 <- 1m(Y ~ CO + HCN + H2S + HCL + HBr + NO2 + S02)
vif (toxic.1)

> vif(toxic.1)
Cco HCN H2S HCL HBr NO2 S02
1.483027 2.043812 2.072767 1.223480 1.359955 1.374012 1.189694

6.11.1 Principal Components Regression

For principal components regression, if we have p predictors: Xi,..., X, we can generate p linearly in-
dependent predictors that are linear functions of X1, ..., X;,. When the new variables with small eigenvalues
are removed, the estimate of 3 obtained from the new regression is biased. The amount of bias depends on
the relative size of the eigenvalues of the removed principal components, however the collinearity problem
will be removed and the variance of the estimator will have been reduced. The process is conducted as
follows (see e.g. Rawlings, Pantula, and Dickey (1998), Section 13.2.2).

1. Create Zi,...Z, from the original variables X1,..., X, by subtracting the mean and dividing by a
multiple of the standard deviation.

— — 2
X, - X, — "X " (X - X
Zij="FH—" i=1..nj=1..p X;= iz Xy sj = \/Zl—l (X, = X))
vn —1s; n n—1
2. Obtain the eigenvalues Aq, ..., A, (and place in a diagonal matrix L) and eigenvectors (as columns in
matrix V) of the p X p matrix Rxx = Z'Z, where Rx x is the correlation matrix among the predictor
variables X1,..., X,. These can be obtained in any matrix computer package (Z does not contain a

column for an intercept).

1 T2 - Tip
/r‘l2 1 ... /r'2 p
R=27Z=| . . Z'Z=VLV' =Y X\ (viv})
: . i : i=1
Tip T2p 1

Xij - Xj Y _ Z?:l Xi' 52 _ Z?:l (Xl —Yj)
Vn —1s; ’ n J n—1

where: Z;; =

J
moderate to large depencies among the predictors. Values over 100 are signs of serious collinearity

problems.

3. The Condition Index for the j** principal component is >\n)\1ax' Values between 30 and 100 imply

4. Create the matrix of principal components W = ZV and augment it with a column of 1° for the
intercept: W* = [1|W].
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5. Fit the regression Y = Wy and obtain SSR (§;), the partial sum of squares for each generated
predictor variable (principal component):

6’ — (W*/W*)flw*/Y V{ﬁ/} _ 52(W*/W*)71

6. For each generated predictor, test Hy : 7; = 0, based on the t-test or F-test. Eliminate any principal
components with high VIF and do not have significant coefficients.

7. Let 44 be the vector of retained coefficients from previous part. Then SSRpc = > SSR (¥;), with
g degrees of freedom (the number of retained principal components (generated predictors)).

8. Scaling back to the original variables (in their standardized (mean=0, standard deviation=1) format),

~PC
we get: B, = V(y9where V(g is the p x g portion of the eigenvector matrix (columns) corre-
sponding to the retained principal components. This ignores the intercept in

. . . . 5PC .
9. The estimated variance-covariance matrix of 8,  is:

MO 0
0 A 0
~ ( ~PC B 2
V{8, } = VL Vi L) = ;
0 0 A,

10. The fitted regression equation can be written with respect to the original (standardized) variables, or
the principal components:

Yo =W

Note that the bias in the estimation comes when we reduce the principal components regression from
p to g components. If the model reflects no need to remove any principal components, the estimator is
unbiased. The bias comes from the fact that we have:

53PC 4 ~PC
B, =VViy8 = E{8,"}=VyV({,8 Note Vi,V(, =L

Example: Standing Heights of Female Police Applicants

In a paper describing Principal Components Regression, Lafi and Kaneene (1992) report data from
n = 33 female police applicants, data are in cms, with possibly the exception of Foot Length. The response
if Standing Height (Y'), and the p = 9 predictors are: Sitting Height (X;), Upper Arm Length, (X3),
Forearm Length (X3), Hand Length (X4), Upper Leg Length (X5), Lower Leg Length (Xg), Foot Length
(X7), BRACH (X5 = 100X3/X3), and TIBIO (Xg = 100Xs/X5). The data are given in Table 6.8. A typo
in the original paper’s table has been corrected, so results differ from authors’.

The correlation matrix among the predictor variables, and its inverse are given below. The diagonal
elements of the inverse are the Variance Inflation Factors.
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ID Y X1 X2 X3 X4 X5 X6 | X7 | X8 X9

1 | 165.8 | 88.7 | 31.8 | 28.1 | 18.7 | 40.3 | 389 | 6.7 | 88.4 | 96.5
2 | 169.8 | 90.0 | 32.4 | 29.1 | 18.3 | 43.3 | 42.7 | 6.4 | 89.8 | 98.6
3 | 170.7 | 87.7 | 33.6 | 29.5 | 20.7 | 43.7 | 41.1 | 7.2 | 87.8 | 94.1
4 11709 | 87.1 | 31.0 | 28.2 | 18.6 | 43.7 | 40.6 | 6.7 | 91.0 | 92.9
5 | 157.5 | 81.3 | 32.1 | 27.3 | 17.5 | 38.1 | 39.6 | 6.6 | 85.0 | 103.9
6 | 165.9 | 88.2 | 31.8 | 29.0 | 18.6 | 42.0 | 40.6 | 6.5 | 91.2 | 96.7
7 | 158.7 | 86.1 | 30.6 | 27.8 | 18.4 | 40.0 | 37.0 | 5.9 | 90.8 | 92.5
8 | 166.0 | 88.7 | 30.2 | 26.9 | 17.5 | 41.6 | 39.0 | 5.9 | 89.1 | 93.8
9 | 158.7 | 83.7 | 31.1 | 27.1 | 18.1 | 38.9 | 37.5 | 6.1 | 87.1 | 96.4
10 | 161.5 | 81.2 | 32.3 | 27.8 | 19.1 | 42.8 | 40.1 | 6.2 | 86.1 | 93.7
11 | 167.3 | 88.6 | 34.8 | 27.3 | 183 | 43.1 | 41.8 | 7.3 | 78.4 97

12 | 1674 | 83.2 | 34.3 | 30.1 | 19.2 | 43.4 | 42.2 | 6.8 | 87.8 | 97.2
13 | 159.2 | 81.5 | 31.0 | 27.3 | 17.5 | 39.8 | 39.6 | 4.9 | 83.1 | 99.5
14 | 170.0 | 87.9 | 34.2 | 30.9 | 19.4 | 43.1 | 43.7 | 6.3 | 90.4 | 101.4
15 | 166.3 | 88.3 | 30.6 | 28.8 | 18.3 | 41.8 | 41.0 | 5.9 | 94.1 | 98.1
16 | 169.0 | 85.6 | 32.6 | 28.8 | 19.1 | 42.7 | 42.0 | 6.0 | 88.3 | 98.4
17 | 156.2 | 81.6 | 31.0 | 25.6 | 17.0 | 44.2 | 39.0 | 5.1 | 82.6 | 88.2
18 | 159.6 | 86.6 | 32.7 | 25.4 | 17.7 | 42 | 37.5 | 5.0 | 77.7 | 89.3
19 | 155.0 | 82.0 | 30.3 | 26.6 | 17.3 | 37.9 | 36.1 | 5.2 | 87.8 | 95.3
20 | 161.1 | 84.1 | 29.5 | 26.6 | 17.8 | 38.6 | 38.2 | 5.9 | 90.2 99

21 | 170.3 | 88.1 | 34.0 | 29.3 | 182 | 43.2 | 41.4 | 5.9 | 86.2 | 95.8
22 | 167.8 | 83.9 | 325 | 28.6 | 20.2 | 43.3 | 429 | 7.2 | 88.0 | 99.1
23 | 163.1 | 88.1 | 31.7 | 26.9 | 18.1 | 40.1 | 39.0 | 5.9 | 84.9 | 97.3
24 | 165.8 | 87.0 | 33.2 | 26.3 | 19.5 | 43.2 | 40.7 | 5.9 | 79.2 | 94.2
25 | 175.4 | 89.6 | 35.2 | 30.1 | 19.1 | 45.1 | 44.5 | 6.3 | 85.5 | 98.7
26 | 159.8 | 85.6 | 31.5 | 27.1 | 19.2 | 42.3 | 39.0 | 5.7 | 86.0 | 92.2
27 | 166.0 | 84.9 | 30.5 | 28.1 | 17.8 | 41.2 | 43.0 | 6.1 | 92.1 | 104.4
28 | 161.2 | 84.1 | 32.8 | 29.2 | 18.4 | 42.6 | 41.1 | 5.9 | 89.0 | 96.5
29 | 160.4 | 84.3 | 30.5 | 27.8 | 16.8 | 41.0 | 39.8 | 6.0 | 91.1 | 97.1
30 | 164.3 | 85.0 | 35.0 | 27.8 | 19.0 | 47.2 | 424 | 5.0 | 79.4 | 89.8
31 | 165.5 | 82.6 | 36.2 | 28.6 | 20.2 | 45.0 | 42.3 | 5.6 | 79.0 | 94.0
32 | 167.2 | 85.0 | 33.6 | 27.1 | 19.8 | 46.0 | 41.6 | 5.6 | 80.7 | 90.4
33 | 167.2 | 83.4 | 33.5 | 29.7 | 19.4 | 45.2 | 44.0 | 5.2 | 88.7 | 97.3

Table 6.8: Female Police Applicant Stature Data
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0.2101 —-0.0596  0.0102  0.0242 —-0.1584 —0.1437  0.1868  0.0688  0.0215
0.2973  0.0035  0.1443 -0.0502  0.0774  0.1769  0.1035  0.1258  0.1196
0.1431  0.1298  0.1980  0.3963  0.1089  0.0419  0.3257  0.0443 —0.0906
0.1028 —-0.1439  0.0236  0.0056  0.1089 —0.0003  0.1868  0.1747 —0.1466
—-0.2861 —0.0281 —-0.0972 -0.1990 -0.3314 —-0.0846  0.1591 -0.0698  0.3670
0.1766 —0.0596  0.1309  0.0056 —0.0248 -0.0003  0.1313  0.1828  0.0308
0.0358 —0.1860 —0.0301 -0.0316 —0.1820 -0.3040 -0.0353  0.1665 —0.1653
0.2101 -0.2281 —-0.1508 —0.1990 -0.0562 —0.1353 —0.0353  0.0973 —0.1046
—-0.1252 —-0.1333 —-0.1240 -0.0874 -0.2685 —0.2618  0.0202  0.0158  0.0168
—0.2928 —0.0070 —0.0301 0.0987  0.0381 —0.0424  0.0480 —-0.0249 —0.1092
0.2034  0.2561 —-0.0972 -0.0502  0.0617  0.1010  0.3535 —0.3386  0.0449
—0.1587  0.2035  0.2785  0.1173  0.0853  0.1348  0.2146  0.0443  0.0542
—-0.2727 -0.1439 —-0.0972 -0.1990 -0.1977 —-0.0846 —0.3131  0.0565  0.1616
0.1565  0.1930  0.3858  0.1545  0.0617  0.2613  0.0757  0.1502  0.2503
0.1833 —-0.1860  0.1041 -0.0502 —-0.0405  0.0335 -0.0353  0.3010  0.0962
0.0022  0.0246  0.1041  0.0987  0.0303  0.1179 -0.0076  0.0647  0.1102
—-0.2660 —0.1439 —-0.3252 -0.2920 0.1482 —-0.1353 —-0.2575 —0.1675 —0.3660
0.0693  0.0351 —-0.3521 -0.1618 —0.0248 —0.2618 —0.2853 —0.3671 —0.3147
-0.2392 -0.2175 -0.1911 -0.2362 -0.3471 —0.3800 —0.2297  0.0443 —0.0345
—-0.0984 -0.3017 —-0.1911 -0.1432 -0.2920 -0.2028 -0.0353  0.1421  0.1382
0.1699  0.1719  0.1712 -0.0688  0.0696  0.0672 —0.0353 —0.0209 —0.0112
—-0.1118  0.0140  0.0772  0.3033  0.0774  0.1938  0.3257  0.0525  0.1429
0.1699 —-0.0702 —-0.1508 -0.0874 —-0.1741 -0.1353 -0.0353 —0.0738  0.0589
0.0961  0.0877 —-0.2313  0.1731  0.0696  0.0082 —0.0353 —0.3060 —0.0859

The V matrix containing the eigenvectors of Rxx = Z’'Z is obtained using the eigen function in R.

[ —0.1854 —0.1530  0.8020 —0.2796  0.3690  0.2330 —0.1741 —0.0003  0.0094
—-0.4414  0.2347 —-0.0974  0.2322  0.2543  0.3188  0.3976  0.5776 —0.1693
—-0.3933 -0.3338 —-0.1661 —0.2331 -0.1218  0.3164  0.4962 -0.5132  0.1657
—0.4183  0.0807  0.0275  0.2041 —-0.5771 0.3718 —0.5521 0.0000  0.0034

V=| -04127 0.2997 -0.0129 -0.3507 —0.0544 -0.4663 —0.0272  0.1786  0.6031
—0.4645 -0.1012 -0.2522 -0.1634  0.2718 —-0.3795 —-0.2793 -0.1831 —0.5952
—0.2140 -0.3578  0.3798  0.5839 —0.2177 —-0.4819  0.2477  0.0018 —0.0025

0.0851 —0.5461 —0.0531 —0.4556 —0.3661 —0.0366  0.0417  0.5659 —0.1634
| —0.0462 —0.5265 —0.3288  0.2714  0.4393  0.1038 —0.3447  0.1315  0.4461

The vector of eigenvalues of Rxx = Z'Z is also obtained using the eigen function in R. The eigenvalues
A and the condition indices are given below.

Eigenvalues: [3.6299 2.4432 1.0129 0.7666 0.6111 0.3025 0.2326 0.0008 0.0004]

Conditionlndices[ 1.000 1.219 1.893 2.176 2.437 3.464 3.951 67.174 92.266]

Clearly the eighth and ninth components have very high condition indices.
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The matrix of principal components is obtained as W = ZV. When fitting the principal component
regression, we will use W* = [1|W].

0.0702 -0.1962  0.2718  0.0926 -0.0397  0.0803  0.0175  0.0004  0.0017
—-0.2235 —-0.2603  0.1604 —0.1467  0.1498 —-0.0479 -0.0129 -0.0036 —0.0002
—0.4536 —0.0902  0.2193  0.1253 —0.2885  0.0501  0.0052 —0.0012  0.0058
—-0.0303 —-0.1093  0.2012 -0.1149 -0.1798 —-0.1746  0.0347  0.0042  0.0007

0.3060 —0.2493 —-0.2470  0.4098  0.1611 —-0.0297  0.0430 -0.0009  0.0106
—-0.0639 —0.2547  0.1562 —-0.0821 —-0.0499  0.0105  0.0376  0.0017  0.0022

0.3462 —-0.0567  0.1620 -0.0805 -—0.2108  0.1218  0.0673  0.0036 —0.0029

0.3110 —-0.0400  0.2609 -0.1687  0.0452 —0.0653 —0.0216  0.0016 —0.0009

0.3960 —-0.0565  0.0016  0.1612 —-0.0739  0.0726  0.0358 —0.0022 —0.0006

0.0246  0.1308 —-0.1608  0.1107 -0.2260 —-0.0785  0.0381 —0.0023 —0.0027
—-0.2705  0.1006  0.2642  0.3497  0.2718 —-0.1407  0.0740  0.0051 —0.0062
-0.3614 -0.1290 -0.1639  0.1186 —0.1156 —0.0307  0.1784 -0.0022 —0.0018

0.4207 —-0.0303 —0.3452 -0.0567  0.0957  0.0757 —0.0499 -0.0003 —0.0002
—0.4923 —-0.3438 -0.0813 -0.0780  0.0768  0.1335  0.0197 -0.0053  0.0018

0.0581 —-0.3284  0.0775 -0.2519 -0.0123  0.0199 -0.0641  0.0087 —0.0003
—0.1587 —0.1149 -0.0878 —0.0329 —-0.0058  0.0319 -0.0644 —0.0043  0.0001
W = 0.4223  0.5264 —0.0897 —0.1461 —-0.0148 —-0.2449  0.0781 -0.0083  0.0016

0.3540  0.5894  0.1871  0.0046  0.1592  0.0849  0.0128 —0.0052 —0.0029
0.6885  0.0409 —-0.1233  0.0328 —0.0498  0.1382  0.0632  0.0002 —0.0031
0.5144 —-0.2083 —0.0332  0.0604 -—0.0299  0.0065 —0.1045 0.0073  0.0011
—-0.1995 -0.0043  0.0627 -0.1111  0.1502  0.0817  0.1352 -0.0018  0.0010
—-0.3365 —0.1978 -0.0714  0.2246 —-0.2010 —0.1380 —0.1267 —0.0041 —0.0039
0.2286 —0.0157  0.1732  0.0657  0.1469  0.0953 —0.0737 —0.0036  0.0021
—0.0850  0.3421  0.1398  0.1525  0.0665  0.0253 —0.1883 —0.0043 —0.0028
—-0.6018 —0.0896  0.0491 -0.0812  0.2184  0.0342  0.0313 -0.0033 —0.0019
0.1281  0.1852  0.0946 —0.0350 —0.1600  0.0539 —0.0871 —0.0046  0.0001
0.0895 —0.4336 —0.2046 —-0.0493  0.1614 —-0.1362 -0.1607  0.0042 —0.0010
—-0.0649 -0.0766 —0.1467 -0.0771 -0.0325  0.0193  0.1064 —0.0027  0.0004
0.3407 —-0.1948 -0.0633 -0.1072  0.0575 -—-0.1382  0.1137  0.0036 —0.0027

—-0.3167  0.6053 —0.0902 -0.1710 0.0774 —-0.0187  0.0223  0.0090  0.0087

—0.4490  0.4368 —0.2392  0.1438 —0.0288  0.1256  0.0106  0.0144 —0.0052

—0.2391  0.4893  0.0133 —0.0281 -0.0911 —-0.0498 —-0.1099  0.0015  0.0054
| —0.3521  0.0336 —0.3474 -0.2340 —0.0280  0.0321 —0.0610 —0.0052 —0.0041

The principal component regression coefficients, standard errors, and t-statistics are given in Table 6.10.
The estimate of the error variance is s = MSE = 3.5737.

As the standard errors are very large, and the t-statistics are very small for W8 and W9, remove
them, and keep the first ¢ = 7 principal components. We create WZ‘7) = [1|W(7)] and compute () =

(WZ‘;)WE@))*WZ‘”Y, and its variance-covariance matrix s? (WZ‘;)W%)*.

The principal component regression coefficients, standard errors, and t-statistics are given in Table 6.11.
The estimate of the error variance is s = MSE = 3.2969.

The Principal Component estimates have much smaller standard errors than the OLS estimates. The
predicted values (not shown here) are very similar for the two methods. The primary difference is the
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Parameter | Estimate | Std. Error | t-statistic
Intercept 164.5636 0.3275 502.4518
W1 -12.1261 0.9875 -12.2792
W2 -4.5428 1.2037 -3.7740
W3 7.6001 1.8695 4.0654
W4 -4.9758 2.1488 -2.3156
W5 3.5712 2.4069 1.4837
W6 -3.2902 3.4210 -0.9618
W7 -6.8250 3.9014 -1.7494
W8 22.6248 66.3364 0.3411
W9 -37.2527 91.1147 -0.4089

Table 6.9: Female Police Applicant Stature Principal Components Regression - Full Model

Parameter | Estimate | Std. Error | t-statistic

Intercept 164.5636 0.3161 520.6434
W1 -12.1261 0.9530 -12.7238
W2 -4.5428 1.1616 -3.9107
W3 7.6001 1.8041 4.2126
W4 -4.9758 2.0737 -2.3994
W5 3.5712 2.3228 1.5375
W6 -3.2902 3.3015 -0.9966
W7 -6.8250 3.7651 -1.8127

Table 6.10: Female Police Applicant Stature Principal Components Regression - Reduced Model

Principal Components Ordinary Least Squares
Parameter | Estimate Std. Error t-statistic | Estimate Std. Error t-statistic
Intercept N/A N/A N/A 164.5636 0.3275 502.452
71 12.1690 2.0612 5.9038 11.8120 2.3013 5.133
72 -0.4643 2.0524 -0.2262 18.9116 41.3585 0.457
73 1.3199 2.2969 0.5746 -16.4646 37.3195 -0.441
74 4.3827 2.8237 1.5521 4.2577 2.9421 1.447
75 6.8153 1.7893 3.8089 -11.6107 56.2438 -0.206
76 9.1153 1.8988 4.7995 27.1454 55.6130 0.488
77 3.3191 2.4096 1.3774 3.4503 2.5096 1.375
78 1.8407 1.4398 1.2784 20.7340 40.4162 0.513
79 2.6830 1.9716 1.3608 -10.9605 41.6235 -0.263

Table 6.11: Female Police Applicant Stature Principal Components Regression - Back-Transformed to Z-
scale, and OLS on Z-scale
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ID Y  Yhat(W) Yhat(Z) |ID Y  Yhat(W) Yhat(Z) | ID Y  Yhat(W) Yhat(%)
1 1658  165.7 165.7 | 12 167.4  166.2 166.2 | 23 1631  163.6 163.6
2 1698 1712 171.2 | 13 159.2  157.7 157.7 | 24 1658  165.8 165.8
3 170.7  170.3 170.3 | 14 1700 1716 171.6 | 25 1754 1735 173.5
4 1709  167.2 1672 | 15 166.3 1675 167.5 | 26 159.8  162.9 162.9
5 1575 1584 158.4 | 16 169.0  166.8 166.8 | 27 166.0  166.3 166.3
6 1659  167.6 167.6 | 17 156.2  157.3 157.3 | 28 161.2  164.1 164.1
7 1587  160.6 160.6 | 18 159.6  159.2 159.2 | 29 1604 1613 161.3
8 166.0  164.3 164.3 | 19 1550  153.9 153.9 | 30 1643  166.0 166.0
9 1587 1585 1585 | 20 161.1  159.3 159.3 | 31 1655  164.9 164.9
10 1615  161.1 161.1 | 21 1703 1674 167.4 | 32 167.2  166.1 166.1
11 167.3  168.6 168.6 | 22 1678 1685 1685 | 33 1672  167.4 167.4

Table 6.12: Female Police Applicant Stature Principal Components Regression - Observed and Fitted Values

stability of the regression coeflicients.

The observed standing heights, and predicted heights from both of the fitted equations (based on W r)
and Z are given in Table 6.12.

6.11.2 Ridge Regression

In Ridge Regression, a biased estimator is directly induced that reduces its variance and mean square
error (variance 4 squared bias). Unfortunately, the bias-inducing constant varies among applications, so it
must be selected comparing results over various possible levels. We begin with a standardized regression
model with no bias, based on the p X p correlation matrix among the predictors Rxx and the p x 1 vector
of correlations R xy between the predictors and response variable.

1 rig o0 1 Ty1
rig 1 e Ty Ty?2

Rxx = ) . ) Rxy =
T Top o 1 TYp

The estimated standardized regression coeflicients are obtained as:
Ak Ak
RxxB =Rxy = B =RyxRxy

The standardized regression coefficients B* measure the change in Y in standard deviation units as each
predictor increases by 1 standard deviation, thus removing the effects of scaling each predictor. It can also
be obtained by transforming each X and Y by the following transformations.

X, - X, e %=

P e Bt | izt
I vn —1s; ¢ vn —1sy
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In matrix form, we have:

X Xy - XG, Yy

X5 X e X3 Yy sk ' -1 /
X* — '21 '22 '220 Y — 2 g = (X* X*) X* Yy

Xon Xpo oo Xp Y,

Note that Rxx = X* X* and Rxy = X*Y*. The standardized ridge estimator is obtained as follows (see
e.g. Kutner, Nachtsheim, Neter, and Li (2005), Section 11.2).

Ak _ ’ -1 ’
Bors = Ryx) 'Ryy = (X* X*) X+ y*

1% {B*OLS} — o2 (X*/X*)A
Brr = Rxx +cD) 'Ryy = (X*/X* + cI)il X*Y*

V{8 =0 (XX + cI)il (xx) (xx" + cI)il

Making use of the following matrix identity, we can write the Ridge Estimator as a linear function of the
Ordinary Least Squares Estimator.

(A" +B ) '=A(A+B) 'B=B(A+B) 'A

-1

- (X*/X* n cI)il — %1 [(X*/X*)l n %1] - (X*/X*)A - [c (X*/X*)il n 1] (X*/X*)A

-1

= Brr = [C (X*/X*)il + I] Bows

A ridge trace plot of the regression coefficients (vertical axis) versus ¢ (horizontal axis) leads to a
choice of ¢, where the coefficients stabilize or “flatten out.” A second graphical measure involves plotting
each of the Variance Inflation Factors versus ¢, and determining when they all get below 10.

The fitted regression equation in transformed scale is:

N ~RR ~ ~ ~
Y =X8 = V=G e+ X,

Yz‘:BO‘FBlXu-F""FBpXip

In terms of the originally scaled response, we have:

= ()5 b=V -ATi- -4,

J

, -1
VIF = Diagonal Elements of R™! = (X* X*)
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-1

’ -1 ’ ’
VIF(c) = Diagonal Elements of (X* X* + cI) (X* X*) (X* X* + cI)

There are also several numerical based approaches (see e.g. Myers (1990), Section 8.4) including Generalized
Cross-Validation (GCV), the “PRESS” Statistic, and the C. Statistic.

Example: Population and Carbon Emissions in China

Zhu and Peng (2012) fit a model relating China Carbon Emissions (V" in millions of tons) to p = 5
predictors: Population (Xl, in 107), Urbanization Rate (X2, in percent), Percent of Population of Working
Age (X3), Average Household Size (X4), Per Capita Expenditures (X5, adjusted to Year=2000), for n = 31
years (1978-2008). The theoretical model was multiplicative, and fit as a linear regression after taking
logarithms. The data in its original units is given in Table 6.13.

InY; =06+ In Xy1 + Goln Xyo + B3 In Xy3 + B4 In Xyy + S5 In Xy5 + €4 t=1...,31

The correlation matrix of the logs of the predictors, Rxx, and the vector of correlations of the logs of
the predictors and the log of the carbon emissions, Rxy, are given in Table 6.14. The table also includes
R;(lx, where the Variance Inflation Factors for the predictors are on the main diagonal. Each predictor
is highly correlated with emissions, and all of the predictors are highly correlated among themselves. The
Variance Inflation Factors are all well over 10, with the largest, V IF5 = 213.60. This implies the regression
standard errors will be very large, and the estimates very unstable.

A plot of the Ridge Trace is given in Figure 6.7 and a plot of the VIF is given in Figure 6.8. The VIF*
get below 10 for a very low value of ¢, around 0.02. The Ridge Trace shows it takes higher values of ¢, around
0.15 or so. The authors used ¢ = 0.20, based on the Ridge Trace. These plots are obtained by “brute force”
computing the Ridge Regression coefficients over a grid of ¢ values. The values were ¢ = 0 to 0.5 by 0.0001.
All regression coefficients and VIF*® were saved and plotted versus c.

Based on using ¢ = 0.20, we get the following estimated standardized regression coefficients, standard
errors, and t-statistics based on Ridge and OLS in Table 6.15.

6.12 Models with Unequal Variances (Heteroskedasticity)

When the data are independent, but with unequal variances, we can use (estimated) Weighted Least
Squares. In rare occasions, the variances are known, and they will be used directly. One setting where this
occurs in practice is when the “data” are averages among a group of units with common X levels. If each
individual unit is independent with constant variance o2, the average of the m; units (Y; in this setting) has
variance V {Y;} = 02/m;. In this case, we would use the reciprocal of the variance as the weight for each



174

CHAPTER 6. MULTIPLE LINEAR REGRESSION

Year Y X X X3 X4 X5

1978 40.77 96.26 17.92 59.5 4.66 740
1979 41.65 97.54 18.96 60 4.65 791

1980 40.7 98.71 19.39 60.5 4.61 862
1981 40.29 100.07 | 20.16 61 4.54 934
1982 43.12 101.65 | 21.13 61.5 4.51 997
1983 45.47 103.01 | 21.62 | 62.37 | 4.46 | 1079
1984 49.43 104.36 | 23.01 | 63.24 | 4.41 | 1207
1985 53.59 105.85 | 23.71 | 64.12 | 4.33 | 1370
1986 56.35 107.51 | 24.52 | 64.99 | 4.24 | 1435
1987 60.12 109.3 25.32 | 65.86 | 4.15 | 1520
1988 64.45 111.03 | 25.81 | 66.15 | 4.05 | 1638
1989 65.47 112.7 26.21 | 66.45 | 3.97 | 1635
1990 65.86 114.33 | 26.41 | 66.74 | 3.93 | 1695
1991 69.15 115.82 | 26.94 66.3 3.89 | 1842
1992 72.14 117.17 | 27.46 66.2 3.85 | 2086
1993 77.02 118.52 | 27.99 66.7 | 3.81 | 2262
1994 81.81 119.85 | 28.51 66.6 3.78 | 2367
1995 88.47 121.12 | 29.04 67.2 3.74 | 2553
1996 92.6 122.39 | 30.48 67.2 3.72 | 2793
1997 91.49 123.63 | 31.91 67.5 3.64 | 2919
1998 86.61 124.76 | 33.35 67.6 3.63 | 3091
1999 90.5 125.79 | 34.78 67.7 | 3.58 | 3346
2000 92.89 126.74 | 36.22 | 70.15 | 3.44 | 3632
2001 95.14 127.63 | 37.66 70.4 3.42 | 3855
2002 | 100.96 | 128.45 | 39.09 70.3 3.39 | 4125
2003 | 118.72 | 129.23 | 40.53 70.4 3.38 | 4415
2004 | 139.07 | 129.99 | 41.76 | 70.92 | 3.31 | 4773
2005 | 153.42 | 130.76 | 42.99 | 72.04 | 3.24 | 5142
2006 | 166.46 | 131.45 43.9 72.32 | 3.17 | 5636
2007 | 180.17 | 132.13 | 44.94 | 72.53 | 3.17 | 6239
2008 | 192.27 132.8 45.68 72.8 3.16 | 6782

Table 6.13: China Carbon Emissions and Population Characteristics 1978-2008

RXX RXY R;(IX

1.0000
0.9753
0.9712
-0.9873
0.9847

0.9753  0.9712  -0.9873  0.9847 | 0.9525 | 50.62 36.87 -9.85 32.98  -44.13
1.0000  0.9801 -0.9907 0.9952 | 0.9748 | 36.87  147.72 -27.81 21.50 -134.78
0.9801  1.0000 -0.9802 0.9773 | 0.9601 | -9.85 -27.81 31.40 13.30 19.91
-0.9907 -0.9802  1.0000 -0.9942 | -0.9786 | 32.98 21.50 13.30  122.38  54.80
0.9952  0.9773 -0.9942 1.0000 | 0.9826 | -44.13 -134.78 19.91 54.80  213.60

Table 6.14: China Carbon Emissions and Population Characteristics - Correlations and Variance Inflation

Factors
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Figure 6.7: Ridge Trace for China Carbon Data
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Figure 6.8: VIF versus ¢ for China Carbon Data
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Ridge Regression Ordinary Least Squares
Parameter | Estimate Std. Error t-statistic | Estimate Std. Error t-statistic
(In X1)* 0.1245 0.0163 7.6496 -0.9311 0.1799 -5.1766
(In X5)* 0.2028 0.0126 16.0901 -1.0452 0.3073 -3.4016
(In X3)* 0.1678 0.0175 9.5773 0.2074 0.1417 1.4643
(In X4)* -0.2149 0.0105 -20.5254 -0.7746 0.2797 -2.7698
(In X5)* 0.2337 0.0104 22.4318 1.9668 0.3695 5.3232

Table 6.15: Standardized Regression Coeflicients - China Carbon Emissions

case (observations based on larger sample sizes have smaller variances and larger weights).

1

w0 0 mog g

0 L - 0 0 om0 " B
w=xsyt=| =T 3" = (X'WX) ' X'WY

0 0 - 2 0 0 ... M

The variance of the least squares estimator is obtained as follows:

1 1

1% {BW} = (X'WX) ' X'WEy WX (X'WX) ! = (X'WX)~

In the case with V {Y;} = 0?/m;, we can estimate o2 based on weighted mean square error:

A\ 2
Siymi (Y- Vi)

n—yp

MSEw = ﬁ:BgV‘FBlWXu-F'“‘FBXVX@-

In this case (where data are averages):

W - X 0 0
1% {5 } - (X’WX) W = , ,
0 0 - R

Note that weighted least squares can be conducted as ordinary least squares on transformed X and Y, which
makes it possible to conduct using EXCEL, and non-statistical computing packages.

~ ’ -1 ’

where W1/2 is the (diagonal) matrix with elements equal to the square roots of the elements of W.

Example: Dose-Response Study of Rosuvastin

Saito, et al (2003) give results of a Japanese Dose-Response study for Rosuvastin in patients with high
cholesterol. There were six doses: 1,2.5,5,10,20,40. The response was percentage change in LDL cholesterol
at week 12. The data reported were group means per dose, Yj, with varying sample sizes among doses, m;.
Assuming equal variances among individual patients, V' {Yj} = 0?/m;. The data are given in Table 6.16.
Figure 6.9 plots the percentage LDL change (Y) versus Dose (X) and In(X). As is often seen with this type
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of data, the relationship is curvilinear when Y is plotted versus X, and more linear when it is plotted versus
In(X). This analysis will fit the following model.

— 2
Yj=00+p11InX;+¢; ejNN(o,;—> j=1,...,6

—35.8 1 0.0000 5 0 0 0 0 0
—45.0 1 0.9163 0 17 0 0 0 0
—52.7 1 1.6094 1o 0 12 0 0 0

Y=1 _497 X=11 2302 W‘? 0 0 0 14 0 0
—58.2 1 2.9957 0 0 0 0 18 0
—66.0 1 3.6889 0O 0 0 0 0 13

AW _
Note that for the Weighted Least Squares estimator, 3 = (X'WX) 'X’WY, the unknown constant o2
“cancels out;/ and does not need to be known. It does need to be estimated to obtain the variance-covariance
matrix of 3 .

—36.9588 1.1588
—43.7168 ~1.2832
AW 1o, | —36.9588 LW AW | —48.8289 W v oW | —38711
A =XWX) XWY = [ —7.3753 ] Y'=X0 =1 530411 e =YY = o
~59.0533 0.8533
—64.1654 —1.8346
) ) ) 536.635
SSEw = 15(1.1588)% + - - - + 13(—1.8346)? = 536.635 sty = MSEw = ===2- = 134.159

P {" )= (o) = | A o |

SE A} = V5.0861 = 2.2441 SE{Bl} = V0.9756 = 0.9892

The t-tests and Confidence Intervals for By and (3, are given below.

—36.9588
Bo:  tops = —— " = —16.4691 tgp5.4 = 2.776 2P (t; > |— 16.4691|) = .0001
2.2441 ’
95% CI for By: — 36.9588 + 2.776(2.2441) = —36.9588+6.2296 = (—43.1884,—30.7292)
—7.3753
61 . tobs = m = —74556 t,02574 = 2776 2P (t4 Z | — 74556|) = 0017
95% CI for B1: — 7.3753+2.776(0.9892) = —7.375634+2.7460 = (—10.1213,—-4.6293)

A plot of the data and fitted equation is given in Figure 6.10. It also includes the Ordinary Least Squares
(OLS) regression line, the two are very similar. The R program using the lm function and weights option
is given below.
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Dose Group (j) | Change in LDL (Y;) | Dose (X;) | In(Dose) (In(X;)) | Group Size (m;)
1 -35.8 1 0.0000 15
2 -45.0 2.5 0.9163 17
3 -52.7 5 1.6094 12
4 -49.7 10 2.3026 14
5 -58.2 20 2.9957 18
6 -66.0 40 3.6889 13

Table 6.16: Rovustatin Data

The calculations of the Mean, and the Total, Error, and Regression Sums of Squares are obtained below.

Si_imiY;  15(—35.8)+ -+ 13(—66.0)  —4535.8

Y = = =
>y 154---+13 89

= —50.9640

TSSw =Y my (Y; - Y)? = [15(—35.8 — —50.9640) + - - - + 13(—66.0 — —50.9640)%] = 7993.945

j=1
n N2

SSEw =Y _m; (Yj - Yj) = [15(—35.8 — —36.9588)* + - - - + 13(—66.0 — —64.1654)*] = 536.635

j=1
n . _\2
SSRy = ij (Yj - Y) = [15(—36.9588 — —50.9640)* + - - - + 13(—64.1654 — —50.9640)*] = 7457.310
j=1

The F-test for testing Hy : 81 = 0 is as follows.

MSRw 7457.310/1
Fops = = = 55.584 F =7.709 P (Fy 4 > 55.584) = .0017
’ MSEw  536.635/(6 — 2) 05,1,4 (Fi4 )

The R program and output are given below.

### Program

dLDL <- ¢(-35.8,-45.0,-52.7,-49.7,-58.2,-66.0)
DOSE <- ¢(1,2.5,5,10,20,40)

r <- c(15,17,12,14,18,13)

1nDOSE <- log(DOSE)

cholest <- data.frame(dLDL,1nDOSE,m)
attach(cholest)

cholest.wls <- 1m(dLDL ~ 1nDOSE, weights=r)
summary (cholest.wls)

confint (cholest.wls)

cholest.ols <- 1m(dLDL ~ 1nDOSE)
summary (cholest.ols)

confint (cholest.ols)

### Output
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dLDL

dLDL

Figure 6.10: Plot of LDL Change versus In(Dose) with WLS and OLS Fitted Equations
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dLDL vs In(Dose)

InDOSE

Figure 6.9: Plots of LDL Change vs Dose and In(Dose)

WLS and OLS Regression of dLDL on In(DOSE)
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -36.9588 2.2441 -16.469 7.96e-05 *x**
1nDOSE -7.3753 0.9892 -7.456 0.00173 *x*
Residual standard error: 11.58 on 4 degrees of freedom
Multiple R-squared: 0.9329, Adjusted R-squared: 0.9161
F-statistic: 55.59 on 1 and 4 DF, p-value: 0.001729

Analysis of Variance Table
Response: dLDL

Df Sum Sq Mean Sq F value Pr(>F)
1nDOSE 1 7457.3 7457.3 55.586 0.001729 *x*
Residuals 4 ©536.6 134.2
> confint(cholest.wls)

2.5 % 97.5 %
(Intercept) -43.18954 -30.728138
1nDOSE -10.12186 -4.628755

###0RDINARY LEAST SQUARES:
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -36.990 2.377 -15.560 9.96e-05 ***
1nDOSE -7.423 1.041 -7.134 0.00204 *x*
Residual standard error: 3.16 on 4 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9089
F-statistic: 50.89 on 1 and 4 DF, p-value: 0.002042

Analysis of Variance Table
Response: dLDL

Df Sum Sq Mean Sq F value Pr(>F)
1nDOSE 1 508.19 508.19 50.89 0.002042 *x*
Residuals 4 39.94 9.99

> confint(cholest.ols)

2.5 % 97.5 %
(Intercept) -43.58992 -30.38978
1nDOSE -10.31209 -4.53399

6.12.1 Estimated Weighted Least Squares

In most cases, the variances are unknown, and must be estimated. In this case, the squared residuals
(variance) or absolute residuals (standard deviation) are regressed against one or more of the predictor
variables or the mean (fitted values). The process is iterative. We begin by fitting ordinary least squares,
obtaining the residuals, then regressing the squared or absolute residuals on the the predictor variables or
fitted values, leading to (assuming all p predictors are used in the residual regression):

Variance Case: 0; = 50 + SlX»L'l + - ~5le-p Standard Deviation Case: §; = 50 + SlX»L'l + - ~5le-p.

Variance Case: 0; = 50 + 51}71 Standard Deviation Case: §; = 50 + 51}71
Once the estimated variance (standard deviation) is obtained for each case, we get the estimated weights:

. . 1 . . 1
Variance Case: w; = — Standard Deviation Case: w; = —
Uy S5
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Then we compute the estimated weighted least squares estimator as:

@ 0 0
W N -1 R R 0 1@2 0
3" = (X’WX) X'WY W = ,

0 0 W

The process is continued until the estimated regression coefficients are stable from iteration to iteration. The
estimated variance is:

1% {BW} = MSEy, (X’VAVX)A MSEy;, = n%p, (Y — XBW> (Y - XBW> .

It is also possible to estimate the power relation between the standard deviation and the mean o2 o u°.
The Variance and Standard deviation cases considered above correspond to § = 1 and 2, respectively.

2

ol=cp = 111(02):1110—1-5111#

At each stage in the iteration process, fit a regression of In (62) on InY to estimate J.

Example: Construction Plant Maintenance Costs

Edwards, Holt, and Harris (2000), studied the relationship between Maintenance Costs (Y) and p = 4
predictors: Machine Weight (X7), and indicators for Industry Type (X2 = l=opencast coal, 0 if slate),
Machine Type (X5 = 1 if front shovel, 0 if backacter), and Company attitude to Oil Analysis (X, = 1, if
regular use, 0 if not). The data, fitted values, and residuals are given in Table 6.17, based on a regression of
n = 33 maintenance plants.

The program and output for the regression analysis is given below, as well as the Breusch-Pagan test
for constant error variance. Plots of the residuals and absolute residuals versus fitted values are given in
Figure 6.11. The correlation between the absolute residuals and fitted values is 0.6589, while the correlation
between the squared residuals and fitted values is 0.5992. We will fit Estimated Weighted Least Squares,
based on the Standard deviation case, regressing the absolute residuals on the predicted values.

R Program

cmc <- read.table("http://www.stat.ufl.edu/ winner/data/const_maint.dat",
header=F,col.names=c("mach_id","mach_cost","coal","front_shov","use_oil","mach_wt"))
attach(cmc)

mach.modl <- Im(mach_cost ~ mach_wt + coal + front_shov + use_oil)
summary (mach.modl) ; anova(mach.mod1)
yhat.1 <- predict(mach.mod1l); e.1 <- resid(mach.mod1)

par (mfrow=c(2,1))
plot(yhat.1, e.1)
abline (h=0)
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Plant ID Y Xo | X3 | X4 X1 Yors €OLS
1 6.068 1 0 0 16.6 5.028 1.040
2 4.602 1 0 0 20.37 5.844 -1.242
3 3.282 1 0 0 20.37 5.844 -2.562
4 2.192 1 1 0 20.37 1.686 0.506
5 2.572 1 1 0 20.37 1.686 0.886
6 4.142 1 0 0 20.37 5.844 -1.702
7 5.321 1 1 1 21 6.214 -0.893
8 4.421 1 1 1 21 6.214 -1.793
9 5.301 1 1 1 21 6.214 -0.913
10 9.679 1 0 0 27.01 7.283 2.396
11 11.997 1 0 1 31 12.538 -0.541
12 7.757 1 0 0 31 8.147 -0.390
13 12.597 1 0 0 31 8.147 4.450
14 13.045 1 0 1 33.2 13.014 0.031
15 2.471 0 0 0 45 3.677 -1.206
16 6.689 0 0 0 46.27 3.952 2.737
17 12.139 1 0 0 46.27 | 11.454 0.685
18 10.859 1 0 0 46.27 | 11.454 | -0.595
19 7.119 0 1 0 68.42 4.592 2.527
20 3.728 0 1 0 83.7 7.902 -4.174
21 46.057 1 1 0 218 44.494 1.563
22 49.847 1 1 0 218 44.494 5.353
23 61.671 1 1 0 335 69.837 | -8.166
24 56.167 1 0 1 228 55.209 0.958
25 9.721 1 0 1 22.6 10.718 | -0.997
26 8.535 1 0 1 21.7 10.523 | -1.988
27 66.91 1 1 1 229 51.268 15.642
28 11.101 1 0 1 22.6 10.718 0.383
29 12.511 1 0 1 22.6 10.718 1.793
30 11.397 1 0 1 31 12.538 -1.141
31 4.069 0 0 0 46.27 3.952 0.117
32 3.622 1 0 0 20.37 5.844 -2.222
33 40.727 1 1 1 229 51.268 | -10.541

Table 6.17: Plant Maintenance Cost Data
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plot(yhat.1, abs(e.1))
abline(lm(abs(e.1) ~ yhat.1))

library(lmtest)
bptest (mach_cost

coal + front_shov + use_oil + mach_wt, studentize=F)

plot(yhat.1, abs(e.1))
cor(yhat.1, abs(e.1))
plot(yhat.1, e.172)
cor(yhat.1, e.172)
print(cbind(cmc,yhat.1,e.1))

R Output - OLS regression and Breusch-Pagan Test

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -6.06990 2.09210 -2.901 0.00716 *x*
mach_wt 0.21661 0.01041 20.804 < 2e-16 **x*
coal 7.50193 2.29401 3.270 0.00285 **
front_shov -4.15823 1.82931 -2.273 0.03089 *
use_oil 4.39110 1.67713 2.618 0.01410 *

Residual standard error: 4.418 on 28 degrees of freedom
Multiple R-squared: 0.9518, Adjusted R-squared: 0.9449
F-statistic: 138.3 on 4 and 28 DF, p-value: < 2.2e-16

Analysis of Variance Table
Response: mach_cost
Df Sum Sq Mean Sq F value Pr(>F)

mach_wt 1 10164.6 10164.6 520.7042 < 2.2e-16 ***
coal 1 413.0 413.0 21.1570 8.281e-05 *x*x*
front_shov 1 88.0 88.0 4.5071 0.04273 *
use_oil 1 133.8 133.8 6.8550 0.01410 =*
Residuals 28 546.6 19.5

Breusch-Pagan test
data: mach_cost ~ coal + front_shov + use_oil + mach_wt
BP = 51.742, df = 4, p-value = 1.562e-10
> cor(yhat.1, abs(e.1))
[1] 0.6588788
> cor(yhat.1, e.172)
[1] 0.5991547

In the first stage of the EWLS algorithm, we regress the absolute residuals from the OLS regression on
the corresponding fitted values.

R Output - Regression of —e— on Y

> e.reg.ols <- 1m(abs.e.ols ~ yhat.ols)
> summary(e.reg.ols)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.64678 0.57616 1.123 0.27
yhat.ols 0.11728 0.02405 4.877 3.06e-05 **x

Residual standard error: 2.499 on 31 degrees of freedom
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yhat.1

70

yhat.1

Figure 6.11: Residuals vs Fitted (Top) and —Residuals— vs Fitted (Bottom) - Maintenance Costs Example

Multiple R-squared:

0.4341,
F-statistic: 23.78 on 1 and 31 DF,

Adjusted R-squared:
p-value: 3.057e-05

0.4159

The predicted (fitted) values from this regression are the estimated standard deviations of the obser-

vations, as a function of their means. The weights are the inverse of the square of the estimated standard

deviations. The “first round” uses these estimates.

Vi = —6.07040.217X;1+7.502X5—4.158 X ;5+4.391 X ;4

~ o -1 o
B = (XWpX) X'WeY

Yo =XBq

3, = 0.647+0.117Y;

1
w; = —5
32

ey=Y —Yq

W(o) = diag {’LDl}

Next, obtain the first iteration of the EWLS estimator and its new prediction and residual vectors.

The process continued for 3 iterations until the sum of squared differences of the estimated regression

coefficient dropped below 0.0001. The iteration history and the final estimated variance-covariance are given
below. The final estimates, standard errors, and ¢-statistics are given in Table 6.18.
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Parameter | Estimate | Std Error | t-stat
Constant -5.935 1.177 -5.041
X1 0.221 0.017 12.715
X2 7.328 1.010 7.256
X3 -3.952 0.718 -5.501
X4 3.495 0.846 4.130

Table 6.18: Plant Maintenance Cost - Estimated Weighted Least Squares Results

—6.0699 —5.9342
0.2166 0.2202
Bors=| 75019 Bay=| 73465
—4.1582 —3.9819
4.3911 3.5340
0.6507 —0.0074
~, | —0.0074  0.0001
(X'WX) = | -04516  0.0042
—0.0332  —0.0007
0.0162 —0.0002

5(2) -

—0.4546
0.0042
0.4788

—0.0482

—0.1114

—5.9326
0.2206

7.3281 3" =

—3.9525
3.4948

—-0.0332  0.0162
—0.0007 —0.0002
—0.0482 —0.1114

0.2423 —0.0215
-0.0215  0.3363

—5.9346
0.2206
7.3275

—-3.9521
3.4954

1 Y\ AW 1
MSEy = 2—3 (Y -Xp ) (Y -Xp ) = (m> (59.6469) = 2.1302

R Program for EWLS

cmc <- read.table("http://www.stat.ufl.edu/ winner/data/const_maint.dat",
header=F,col.names=c("mach_id","mach_cost","coal","front_shov","use_oil","mach_wt"))

attach(cmc)

#### Matrix form (using 1m for |el,y-hat regressions) #######t##t##

n <- length(mach_cost)
X0 <- rep(1,n)

X <- as.matrix(cbind(X0,mach_wt,coal,front_shov,use_oil))

Y <- as.matrix(mach_cost)
p.star <- ncol(X)

#### Fit original regression, and regress |e| on Y-hat

b.ols <- solve(t(X) %*% X) %x% t(X) %*% Y

yhat.ols <- X %x% b.ols
e.ols <- Y - yhat.ols
abs.e.ols <- abs(e.ols)
e.reg.ols <- 1m(abs.e.ols
summary (e.reg.ols)

s.ols <- predict(e.reg.ols)

yhat.ols)

185
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w.ols <- 1/s.01s"2

b.old <- b.ols
wm.old <- as.matrix(diag(w.ols))
b.diff <- 100
num.iter <- 0

while (b.diff > 0.0001) {

num.iter <- num.iter + 1

b.new <- solve(t(X) %*% wm.old %x*% X) %*% t(X) % wm.old %*% Y
yhat.new <- X %x% b.new

abs.e.new <- abs(Y - yhat.new)

wm.new <- as.matrix(diag(l/predict(lm(abs.e.new”yhat.new))"2))
b.diff <- sum((b.new-b.old)"2)

b.old <- b.new

wm.old <- wm.new

print(b.old)

}

num.iter

b.wls <- b.new

wm.wls <- wm.new

mse.w <- (t(Y-XV/x%b.wls) %*% wm.wls %x% (Y-X%*%b.wls))/(n-p.star)
s2.b.wls <- mse.w[1l,1]*solve(t(X) %*% wm.wls %*% X)

s.b.wls <- sqrt(diag(s2.b.wls))

t.b.wls <- b.wls/s.b.wls

print (round(cbind(b.wls,s.b.wls,t.b.wls),3))

Analysis Based on Estimated Variances with Replicated X Values

When the data collection process is based on a well designed controlled experiment, with multiple cases for
each set of X levels, the variance of the errors can be estimated within each distinct group, and used in
the estimated weighted least squares equation directly. If we have g groups of observations with distinct
X levels, with the j** having n; observations and sample variance S? Then, the vector of responses, Y,
its estimated variance-covariance matrix, and the estimated weight matrix for Estimated Weighted Least

Squares (EWLS) are as follow.

2
‘(1 }aj Sllnlxnl Oanng e Onlxng
2
‘(2 Yéj A Oannl SQIngxng e Onang N o1
Y=| . Y, =| . Sy = W =3
2
‘(g y;jj Ongxnl Onang T SgInang

The EWLS estimator does not need to be iterated, so this is very simple to implement in any matrix
spreadsheet or software package.

3" = (X’Wx)fl X'WY 1% {BW} — MSEy;, (X’Wx)fl
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Distance (]) Y1, Yo Ys; Yij Ys; Y5, ?j Sj
10 (1) 3.01 3.02 3.29 3.00 3.20 3.11 3.105 | 0.119
20 (2) 5.57 5.00 5.42 5.73 5.29 5.10 5.353 | 0.280
30 (3) 8.09 6.80 7.95 8.62 8.41 8.62 8.082 | 0.685
40 (4) 10.81 10.19 13.01 11.17 11.33 9.35 10.797 | 1.232
50 (5) 16.07 14.90 1747 14.21 13.13 11.93 | 14.618 | 1.996

Table 6.19: Shotgun Pellet Spread by Distance
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Example: Shotgun Pellet Spread by Distance

Figure 6.12: Plot of spread versus Range

187

Rowe and Hanson (1985) give results from a forensic experiment to relate shotgun pellet spread as
function of distance. The data given here are from a Remington 12-gauge shotgun shooting Winchester
Super X 12-gauge buckshot cartridges. The response Y, was the square root of the area of the smallest
rectangle that covered the pellet pattern. There were g = 5 ranges (X,in feet) with n; = 6 replicates per
distance. The data, along with group means and standard deviations are given in Table 6.19. A plot of the
data is given in Figure 6.12. Plots of the mean and standard deviation versus range are given in Figure 6.13.

Clearly the standard deviation (and variance) increase with the mean. Further, the mean of Y is not
linearly related to the range (X), as it bends upward. This leads to fitting a quadratic regression model,
with Estimated Weighted Least Squares.
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Figure 6.13: Plots of mean and SD of spread vs Range

Vij =00+ b X;+ 53X +ea; i=1,...6 j=1,...5 X;=10j with weights  ;; =

¥
b.[\;| =

The R program for the matrix form of Ordinary and Estimated Least Squares are given below and results
are summarized in Table 6.20.

### Program
sg_spread <- read.csv("http://wuw.stat.ufl.edu/"winner/sta4210/mydata/shotgun_spread.csv",
header=T)

attach(sg_spread) ; names(sg_spread)

sg_spreadl <- sg_spread[cartridge==1,]
detach(sg_spread); attach(sg_spreadl)

### Matrix Approach

X <- cbind(rep(1,length(sqrtA)) ,range,range”2)
W <- diag(1/SD_range~2)
Y <- sqrtA

(beta.ols <- solve(t(X) %*% X) %*% t(X) %*% Y)
e.ols <- Y - X %*J, beta.ols

(sse.ols <- t(e.ols) %*% e.ols)

(s2.0ls <- sse.ols/(length(Y)-ncol(X)))
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Ordinary Least Squares Estimated Weighted Least Squares OLS - Robust SEs

Parameter | Estimate Std Error t¢-stat | Estimate Std Error t-stat Estimate Std Error t-stat

Constant 1.30867 0.92959 1.408 1.25564 0.24319 5.163 1.30867 0.56985 2.297

X 0.15987 0.07084 2.257 | 0.16460 0.02895 5.686 0.15987 0.05921 2.700

X2 0.00211 0.00116 1.822 0.00203 0.00068 2.992 0.00211 0.00118 1.795

Table 6.20: OLS and EWLS estimates, standard errors, and t-tests

(v.beta.ols <- s2.0ls[1,1] * solve(t(X) %*% X))
se.beta.ols <- sqrt(diag(v.beta.ols))
t.beta.ols <- beta.ols/se.beta.ols

(beta.wls <- solve(t(X) %*% W %x% X) %% t(X) %x% W %*% Y)
e.wls <- Y - X %*J, beta.wls

(sse.wls <- t(e.wls) %*x% W %*), e.wls)

(s2.wls <- sse.wls/(length(Y)-ncol(X)))

(v.beta.wls <- s2.wls[1,1] * solve(t(X) %*% W %x*% X))
se.beta.wls <- sqrt(diag(v.beta.wls))

t.beta.wls <- beta.wls/se.beta.wls

print (round(cbind(beta.ols,se.beta.ols,t.beta.ols,
beta.wls,se.beta.wls,t.beta.wls) ,4))

### Output

> (beta.ols <- solve(t(X) %*% X) %x% t(X) %*% Y)
1.308666667

range 0.159873810
0.002110714

> (sse.ols <- t(e.ols) %*% e.ols)

[1,] 30.43237

> (s2.0ls <- sse.ols/(length(Y)-ncol(X)))

[1,] 1.127125

> (v.beta.ols <- s2.0ls[1,1] * solve(t(X) %*% X))
0.8641289841 -6.199186e-02 9.392706e-04

range -0.0619918619 5.018389e-03 -8.050891e-05
0.0009392706 -8.050891e-05 1.341815e-06

> (beta.wls <- solve(t(X) %% W %*% X) %*% t(X) %*% W %*x% Y)
1.255644821

range 0.164596451
0.002029814

> (sse.wls <- t(e.wls) %*% W %*), e.wls)

[1,] 25.09147

> (s2.wls <- sse.wls/(length(Y)-ncol(X)))

[1,] 0.9293137

> (v.beta.wls <- s2.wls[1,1] * solve(t(X) %*% W %*% X))
0.059140712 -6.868167e-03 1.494750e-04

range -0.006868167 8.380629e-04 -1.895007e-05
0.000149475 -1.895007e-05 4.603523e-07

The R commands and output for OLS and EWLS (with the weight statement are given below, using

the Im function.

### Program
sg_spread <- read.csv("http://wuw.stat.ufl.edu/"winner/sta4210/mydata/shotgun_spread.csv",
header=T)
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attach(sg_spread) ; names(sg_spread)

sg_spreadl <- sg_spread[cartridge==1,]
detach(sg_spread); attach(sg_spreadl)

regweight <- 1/(SD_range~2)

### Ordinary Least Squares

sg.modl <- lm(sqrtA ~ range + I(range~2))
summary (sg.mod1)

#### Weighted Least Squares

sg.mod2 <- 1lm(sqrtA ~ range + I(range~2),
weight=regweight)

summary (sg.mod2)

### Output

> ### Ordinary Least Squares

> sg.modl <- 1m(sqrtA ~ range + I(range~2))
> summary (sg.modl)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.308667 0.929585 1.408 0.1706
range 0.159874 0.070841 2.257 0.0323 *
I(range~2) 0.002111 0.001158 1.822 0.0795 .

Residual standard error: 1.062 on 27 degrees of freedom
Multiple R-squared: 0.9422, Adjusted R-squared: 0.9379
F-statistic: 220.2 on 2 and 27 DF, p-value: < 2.2e-16

#### Weighted Least Squares

sg.mod2 <- 1lm(sqrtA ~ range + I(range~2),
weight=regweight)

summary (sg.mod2)

vV + Vv Vv

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.2556448 0.2431886 5.163 1.96e-05 **x
range 0.1645965 0.0289493 5.686 4.86e-06 ***
I(range~2) 0.0020298 0.0006785 2.992 0.00586 **

Residual standard error: 0.964 on 27 degrees of freedom
Multiple R-squared: 0.9754, Adjusted R-squared: 0.9736
F-statistic: 535.4 on 2 and 27 DF, p-value: < 2.2e-16

Robust Standard Errors

In general, the variance-covariance matrix of the Ordinary Least Squares estimator is:
1% {5} —v {(X’X)*1 X’Y} — (X'X) XSy X (X'X) !

A simple, yet effective method is to obtain robust standard errors of the ordinary least squares (OLS)
estimators based on the residuals from the linear regression (using the squared residuals as estimates of the
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variances for the individual cases). This method was originally proposed by White (1980). The estimated
variance-covariance matrix with resulting robust to heteroskedasticity standard errors for 3 is:

e2 0 -~ 0
o ) ) 0 e - 0
V{B}Z(X’X)*lx’EZX(X’X)*l Ex=| . . = diag(ee’).
0 O e2

Example: Shotgun Pellet Spread by Distance

For the shotgun pellet spread data, we obtain the OLS estimator for 3 and obtain robust standard errors
in matrix form. The results for the estimated coefficients, robust standard errors and t¢-statistics are given
in Table 6.20.

### Robust Standard Errors

(beta.ols <- solve(t(X) %*% X) %*% t(X) %*% Y)

e.ols <- Y - X %*J, beta.ols

E2 <- e.ols J*J, t(e.ols) * diag(length(Y))

(v.beta.ols.robust<- solve(t(X) %*x% X) %x% t(X) %x) E2 %x*)
X %*% solve(t(X) %x% X))

se.beta.ols.robust <- sqrt(diag(v.beta.ols.robust))

t.beta.ols.robust <- beta.ols/se.beta.ols.robust

print (round(cbind(beta.ols,se.beta.ols.robust,t.beta.ols.robust),5))

> (v.beta.ols.robust<- solve(t(X) %x*% X) %*% t(X) %% E2 %x%
+ X %x*% solve(t(X) %*% X))
range
0.3247278501 -3.349684e-02 6.465852e-04
range -0.0334968425 3.505749e-03 -6.867561e-05
0.0006465852 -6.867561e-05 1.383327e-06

6.12.2 Bootstrap Methods When Distribution of Errors is Unknown

The bootstrap is widely used in many applications when the distribution of the data is unknown, or when
the distribution of the estimator of is unknown. In regression applications, there are various ways of boot-
strapping (see e.g. Cameron and Trivedi (2009, Chapter 13) and Kutner, et al (2005, Section 11.5)). All
sampling is done with replacement (except the parametric bootstrap).

One possibility is to bootstrap the individual cases from the dataset, and repeatedly re-fit the regression,
and saving the regression coeflicients, obtaining their standard error. Then we can construct Confidence
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Lager ID X Y | Lager ID X Y | Lager ID X Y | Lager ID X Y

1 148.23 0.66 11 169.51 0.53 21 159.81 0.56 31 177.83  0.63

2 160.38 0.63 12 111.05 0.32 22 163.23  0.56 32 150.11 0.64

3 170.41 0.62 13 143.50 0.42 23 169.59 0.53 33 135.92 0.48

4 208.65 0.90 14 186.96 0.64 24 135.76  0.49 34 162.99 0.96

5 146.03 0.64 15 109.50 0.42 25 198.62 0.58 35 183.54 0.63

6 180.19 0.62 16 209.95 0.77 26 221.94 0.68 36 236.37 0.86

7 169.06  0.58 17 88.47  0.30 27 148.80 0.56 37 163.23  0.58

8 119.04 0.47 18 230.25 0.70 28 120.02  0.36 38 212.48 0.80

9 158.99 0.59 19 152.96 0.51 29 84.64 0.24 39 235.06 0.75

10 153.04 0.72 20 147.42  0.53 30 238.33 0.97 40 267.27 091

Table 6.21: Total Phenolic Content (X) and DPPH Radical Scavenging Activity (Y') for 40 lager beers

Intervals for the regression coefficients by taking the original estimate and adding and subtracting 2 standard
errors for approximate 95% Confidence Intervals. This method is widely used when the X levels are random
(not set up by the experimenter), and when the errors may not have constant variance. Also, the cut-off
values for the middle (1 — &)100% of the bootstrap estimates can be used.

Another possibility that is useful is to retain the fitted values from the original regression }71, cee Y, and
bootstrap the residuals ey, ..., e,. Then the bootstrapped residuals are added to the original fitted values
and the regression coefficients are obtained, and their standard error is computed and used as above.

The reflection method (see e.g. Kutner, et al (2005, Section 11.5)) is another possibility. In this case, we
obtain the lower a//2 percentile of the bootstrapped regression coeflicients (B;‘ (af 2)) and the upper 1 — /2

percentile of the regression coefficients (Bj*(l —af 2)) and obtain the interval:

Bi—B(a/2) < B <B(1—a/2)—f; j=0,1,....p.

In the parametric bootstrap, the residuals are sampled from a specified distribution with parameter(s)
estimated from the original sample.

There are various bias-corrected methods applied as well that are computed by statistical software
packages.

Example: Total Phenolic Content and DPPH Radical Scavenging Activity in Lager Beers

Zhao, Li, Sun, Yang, and Zhao (2013) report the results of a study relating antioxidant activity to
phenolic content in n = 40 lager beers. The response is DPPH Radical Scavenging Activity (Y), and the
predictor is Total Phenolic Content (X). The data are given in Table 6.21 and plotted in Figure 6.14 along
with the OLS simple linear regression line.

The standard output for the regression model is given below.

lager <- read.csv("http://www.stat.ufl.edu/ winner/data/lager_antioxidant_reg.csv",
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dsa

DPPH versus TPC

100 150 200 250

tpc
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Figure 6.14: Plot of DPPH Radical Scavenging Activity vs Total Phenolic Content and Fitted Equation -

Lager Beer Data
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header=T)
attach(lager); names(lager)

# print(cbind(tpc,dsa))
lager.modl <- lm(dsa ~
summary (lager.mod1)
anova(lager.modl)
confint (lager.modl)

tpc)

plot(tpc,dsa, main="DPPH versus TPC")
abline(lager.modl)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.0343018 0.0639781 0.536 0.595
tpc 0.0034132 0.0003694 9.240 2.93e-11 *xx

Residual standard error: 0.09629 on 38 degrees of freedom
Multiple R-squared: 0.692, Adjusted R-squared: 0.6839
F-statistic: 85.38 on 1 and 38 DF, p-value: 2.926e-11

> anova(lager.modl)
Analysis of Variance Table
Response: dsa
Df Sum Sq Mean Sq F value Pr(>F)
tpc 1 0.79175 0.79175 85.385 2.926e-11 *x**
Residuals 38 0.35236 0.00927

> confint(lager.modl)

2.5 % 97.5 %
(Intercept) -0.09521518 0.163818791
tpc 0.00266544 0.004160979

We next apply the two versions of the bootstrap. The first involves saving the fitted values and residuals
from the regression of the actual dataset, then bootstrapping the residuals and adding them to the fixed
fitted values for the “new data” and regressing them on the original X values. The program below fits the
original regression, and saves Y and e, and the estimated slope Bl.

lager <-

read.csv("http://wuw.stat.ufl.edu/ "winner/sta4210/mydata/lager_antioxidant_reg.csv",
header=TRUE)

attach(lager); names(lager)

lager.modl <- lm(dsa ~

summary (lager.mod1)

confint (lager.modl)

yhat <- predict(lager.modl)

e <- residuals(lager.modl)

bl <- coef(lager.modl) [2]

tpc)

The following part of the program sets up the “fixed” X matrix and Y vector. Then it samples n = 40
elements of e with replacement and adds them to Y to obtain Ypoot- We then obtain the least squares
estimate By,qqt = (X'X)™ tx/ Y00t We then save the estimated slope 61 boot" The process is repeated
10000 times. Confidence intervals for 3; are obtained directly from the empirical “bootstrap distribution”
and from the reflection method. The histogram is given in Figure 6.15.
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##S##S##S#S#HE Bootstrap w/ Fixed X’s. Adds random errors to predicted values
n <- length(dsa)
X <- as.matrix(cbind(rep(1,n),tpc))

set.seed(13579)
num.boot <- 10000
bl.boot <- rep(0,num.boot)

for (i in 1:num.boot) {
e.boot <- as.matrix(sample(e,size=n,replace=TRUE))
Y.boot <- yhat + e.boot

b.boot <- solve(t(X) %x% X) %*x% t(X) %*% Y.boot
bl.boot[i] <- b.boot[2,1]
}

hist(bl.boot, breaks=24,main="Bootstrap Method 1")

(bl.boot_025 <- quantile(bl.boot,.025))
(bl.boot_975 <- quantile(bl.boot,.975))

(bl.boot.sd <- sd(bl.boot))

(d1 <- bl-bl.boot_025)
(d2 <- bl.boot_975-b1)

(betal.95CI <- c(b1-d2,bl+d1))

> (bl.boot_025 <- quantile(bl.boot,.025))
2.5%

0.002700025

> (bl.boot_975 <- quantile(bl.boot,.975))
97.5Y%

0.004141108

> (bl.boot.sd <- sd(bl.boot))

[1] 0.0003603104

> (d1 <- bl-bl.boot_025)

0.0007131838

> (d2 <- bl.boot_975-bl)

0.0007278994

> (betal.95CI <- c(b1-d2,bi+d1))
tpc tpc

0.002685310 0.004126393
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The second method involves sampling the observed (X,Y’) pairs with replacement for samples of size
n = 40, and fitting the regression on each sample, saving the estimated slope each time. The program and

output are given below, and the histogram is given in Figure 6.16.

##t#### Bootstrap by selecting n (X,Y) pairs with replacement
num.boot <- 10000

set.seed(34567)

bl.boot <- rep(0,num.boot)

for (i in 1:num.boot) {

boot.sample <- sample(l:n,size=n,replace=TRUE)

dsa.b <- dsal[boot.sample]

tpc.b <- tpc[boot.sample]

X.boot <- as.matrix(cbind(rep(1l,n),tpc.b))

Y.boot <- dsa.b

b.boot <- solve(t(X.boot) %*% X.boot) %x% t(X.boot) %*% Y.boot
bl.boot[i] <- b.boot[2,1]
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Bootstrap Method 1
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Figure 6.15: Histogram of Bootstrap Estimates of Regression Slope

}
hist(bl.boot, breaks=24,main="Bootstrap Method 2")

(bl.boot_025 <- quantile(bl.boot,.025))
(bl.boot_975 <- quantile(bl.boot,.975))

(bl.boot.sd <- sd(bl.boot))

(d1 <- bl-bl.boot_025)
(d2 <- bl.boot_975-b1)

(betal.95CI <- c(b1-d2,bl+d1))

> (bl.boot_025 <- quantile(bl.boot,.025))
0.002754063

> (bl.boot_975 <- quantile(bl.boot,.975))
0.004018062

> (bl.boot.sd <- sd(bl.boot))
[1] 0.0003181617

> (d1 <- bl-bl.boot_025)
0.0006591461

> (d2 <- bl.boot_975-b1l)
0.0006048525

> (betal.95CI <- c(b1-d2,b1+d1))
0.002808357 0.004072355

The original interval, based on the t-distribution and the bootstrap intervals are very similar in this
case, as the data are very “well-behaved” in terms of their residuals.



6.13. GENERALIZED LEAST SQUARES FOR CORRELATED ERRORS 197
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Figure 6.16: Histogram of slope estimates from bootstrap with (X,Y") pairs being re-sampled

6.13 Generalized Least Squares for Correlated Errors

Typically when data are collected over time and/or space, the errors are correlated, with correlation tending
to be higher among observations that are closer in time or space. In this case, the variance-covariance matrix
of the error terms is written generally:

2
o7 012+ Oin
2
012 05 o O2p
V{e} =2 = :
2
O1n O2n 0,

For the case where the observations are equally spaced in time, and the error terms form an autoregressive
process of order 1, we have:

ea=v+peg1 —1<p<l vy ~ iid (O, 02) {vivi} L{eed V E>0
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Note that this autoregressive process can extend back to ¢ time points, but the covariance structure gets
2
more complicated. If we start with the definition that E{e1} =0 and V {e1} = 1%, we obtain:
E{GQ} = E{V2 +P€1} =0

2 2 2

Vi{e}l =V{n+pa} =V{n}+V{pa}+2C0V{r,pe} =0 + 1p_0’p2 +2(0) = 3

2

COV {e1,e2} = COV {er,v2 + per} =

1—p?
In general, this extends to the following results.
o? plFlo? COV {et, e141} (1)
= = = — = kj = ’ =
1% {Gt} 1— p2 "Y(O) COV {Gt, €t+k} 1 _ p2 FY( ) % {Gt} ")/(O)
1 P P *;
o2 P 1 p"
pnfl pn72 1

If p were known, then we could use Generalized Least Squares to estimate 3. Let ¥ = ¢?W. Then we

would have:

A — A / A A A~ —
B = (xWIX) XYWy 2= (Y-x377) (v-x57) v {37} =2xwix)

n—yp

In practice, p will be unknown, and can be estimated from the data. Further, if we make the following
transformations for AR(1) errors, the transformed response will have uncorrelated errors:

[V1i—-p2 0 0 -~ 0 0 0]

—p 1 0 - 0 0 0

0 —-p 1 -~ 0 0 0

Y*=T"'Y X*=T71X T ! = : : : Do
0 0 0 - —p 1

i 0 0 0 -~ 0 —p 1]

For this model, the transformed Y*, has the following model and variance-covariance structure:
Y =X"B+T 'e VY =T '*WT ! =54
Then for Estimated Generalized Least Squares (EGLS), also known as Feasible Generalized Least

Squares (FGLS), we obtain estimates of p and o2 based on the residuals from the OLS regression, then
re-fit the EGLS model.

((0) = 2= ) o D= &
OEERT e 500)
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Next, we obtain the “estimated” transformation matrix, and the transformed Y* and X*:

1-2 0 0 0 0 0
—p 1 0 0 0 0
0 -5 1 0 0 0
Y =Ty X=T1'X T'= '
0 0 0 -~ —p 1 0
L0 0 0 -« 0 —p 1|

Note that the transformed responses have the following pattern (the predictors (and intercept) will have a
similar structure).

Yy =+/1-p2"; V) =Y,—pY;1 t=2,...,n

The EGLS estimator, its variance-covariance matrix, and the estimator for o2 are obtained as follow.

BEGLS _ (X,Tfl/,i‘,lx)*l X/'i‘fl/’i‘le _ (X*/X*)il X*/Y*
o e ) )
A (Y B XBEGLS)’T,l/T,l (Y B XBEGLS) ) (Y* 3 X*BEGLS)’ (Y* 3 X*BEGLS)

0'8:

n—p —1 N n—p —1

Tests and Confidence Intervals for regression coefficients are obtained as follow.
BEGLS
J

Hy:8;,=0 Ha:8;#0 TS :tops = —F——
0: B AP # b 5 {B;_EGLS}

RR: |tops| > t(n—p —1,a/2)

(1 — @)100% Confidence Interval: BfGLS +t(n—p —1,a/2) SE {BfGLS}

A test for the autoregressive parameter p is obtained as follows:

T R ) i
S =y SEY =150 o =SB )

This procedure was first described by Gallant and Goebel (1976) that can be applied to linear or nonlinear
regression problems. The method is the basis for the Autoreg procedure in SAS. R has a function gls in
the nlme (nonlinear mixed effects) package. If you use method="ML” as an option, it uses Maximum
Likelihood, and will obtain slightly different estimates than this method. The ML method is an iterative
procedure. Note that the gls function has Restricted Maximum Likelihood (REML) as the default. This
gives totally different and inappropriate estimates for regression models.

Example: U.S. Annual Wine Consumption and Adult Population 1934-2002

Table 6.22 contains annual U.S. adult population (X, in millions) and wine consumption (Y, in millions
of gallons) for the years 1934-2003. Note that 1934 was the first year after Prohibition was repealed. A plot
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Year Wine (Y) Pop(X) | Year Wine (Y) Pop(X) | Year Wine (Y) Pop(X)
1934 33 91.642 | 1957 152 119.383 | 1980 480 175.935
1935 46 92.868 | 1958 155 121.052 | 1981 506 178.212
1936 60 94.068 | 1959 156 123.091 | 1982 514 180.334
1937 67 95.251 | 1960 163 124.594 | 1983 528 182.324
1938 67 96.504 | 1961 172 126.137 | 1984 555 184.343
1939 7 97.760 | 1962 168 128.634 | 1985 580 186.389
1940 90 99.181 | 1963 176 130.777 | 1986 587 188.599
1941 101 100.463 | 1964 186 132.942 | 1987 581 190.430
1942 113 101.734 | 1965 190 135.052 | 1988 551 192.047
1943 98 103.023 | 1966 191 137.301 | 1989 524 193.598
1944 99 104.300 | 1967 203 139.653 | 1990 509 195.477
1945 94 105.350 | 1968 214 142.022 | 1991 466 197.735
1946 140 106.301 | 1969 236 144.417 | 1992 476 200.309
1947 97 107.462 | 1970 267 147.114 | 1993 449 202.824
1948 122 108.623 | 1971 305 149.927 | 1994 459 205.324
1949 133 109.812 | 1972 337 152.849 | 1995 464 208.006
1950 140 110.875 | 1973 347 155.749 | 1996 500 210.691
1951 127 111.981 | 1974 349 158.651 | 1997 520 213.560
1952 138 113.070 | 1975 368 161.611 | 1998 526 216.374
1953 141 114.138 | 1976 376 164.658 | 1999 551 219.085
1954 142 115.336 | 1977 401 167.642 | 2000 558 221.937
1955 145 116.559 | 1978 435 170.630 | 2001 561 224.833
1956 150 117.904 | 1979 444 173.602 | 2002 595 227.723

Table 6.22: U.S. Adult Population and Wine Consumption 1934-2002

of the data and ordinary least squares regression line is given in Figure 6.17, and a plot of residuals versus
time is given in Figure 6.18. As population is increasing over time, the plot of wine sales versus population
has an inherent “time effect” contained in it, and shows periodic behavior in the top portion. The residuals

display clear autocorrelation.

We first give the analysis based on the lm (OLS) and gls (EGLS) functions, as well as the Durbin-Watson
test. The Durbin-Watson statistic is very small, demonstrating very strong evidence of autocorrelation of the
error terms. The lmtest package has the dwtest function, that provides a p-value, based on an assumption

«

of normality, computed by the “pan” algorithm.

### Program

winepop <- read.table("http://www.stat.ufl.edu/ winner/data/winepop.dat" ,header=F,

col .names=c("year" s "tpOp" s upop5u s upop14u s upop24u s upop34u s "POP44" s "POP54" s
llpop64ll s "POPGSP" s "wine"))

attach(winepop)
adultpop <- (tpop-pop5-pop14)/1000

n.wine <- length(wine)
wine.modl <- 1lm(wine ~
summary (wine.mod1)
plot(adultpop,wine)
abline(wine.mod1)

e <- residuals(wine.mod1)

plot(e, type="o", main="Residuals vs Time")
sse <- deviance(wine.modl)

dwl <- 0

gammal <- 0

adultpop)
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Figure 6.17: Plot of Wine Sales versus Adult Population: US 1934-2002

for (i in 2:n.wine) {

dwl <- dwl + (e[i]-e[i-11)"2
gammal <- gammal + (e[i]l*e[i-1])
}

(dw <- dwl/sse)

(gamma0 <- sse/n.wine)

(gammal <- gammal/n.wine)

(rho <- gammal/gammaO)

(sigma2 <- gammaO - rho*gammal)

library(lmtest)
dwtest(wine ~ adultpop)

library(nlme)
wine.mod2 <- gls(wine
summary (wine.mod2)

adultpop, correlation=corAR1(form="year), method=’ML’)

### Output
Ordinary Least Squares
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -347.9736 21.9895 -15.82 <2e-16 **x
adultpop 4.3092 0.1417 30.40 <2e-16 **x*

Residual standard error: 48.64 on 67 degrees of freedom
Multiple R-squared: 0.9324, Adjusted R-squared: 0.9314
F-statistic: 924.2 on 1 and 67 DF, p-value: < 2.2e-16

> (dw <- dwil/sse)
0.1198987
> (gamma0O <- sse/n.wine)

201
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Residuals vs Time
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Figure 6.18: Plot of Residuals versus Time - Wine Sales



6.13. GENERALIZED LEAST SQUARES FOR CORRELATED ERRORS

[1] 2297.689
> (gammal <- gammal/n.wine)

2147.894

> (rho <- gammal/gammaO)
0.9348065

> (sigma2 <- gammaO - rho*gammal)
289.823

> dwtest(wine ~ adultpop)
Durbin-Watson test

data: wine " adultpop
DW = 0.1199, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0O
> summary (wine.mod2)

Generalized least squares fit by maximum likelihood
Correlation Structure: AR(1)

Formula: “year

Parameter estimate(s):

Phi
0.9319506
Coefficients:
Value Std.Error t-value p-value
(Intercept) -346.7972 71.60350 -4.843299 0
adultpop 4.2528 0.44049 9.654536 0

203

The matrix form is used here to obtain the OLS and EGLS estimators, variance-covariance matrices,
standard errors and t-statistics. The final results for OLS and EGLS are given in Table 6.23. Note that
the estimated standard errors based on EGLS are much larger than those based on OLS. OLS leads to

overstating the precision of estimated regression coefficients when errors are autocorrelated.

### Matrix form of OLS and EGLS

X <- cbind(rep(1l,n.wine),adultpop)

Y <- wine

T.inv <- matrix(rep(0,n.wine**2) ,ncol=n.wine)
T.inv[1,1] <- sqrt(l-rhox**2)

for (i in 2:n.wine) {

T.inv[i,i-1] <- -rho

T.inv[i,i] <- 1

}

(beta.ols <- solve(t(X)%*%X) %*% t(X)%*%hY)

(SSE.ols <- t(Y-X¥%xY)beta.ols) %x*% (Y-X)x/beta.ols))
(sigma2.0ls <- SSE.ols/(n.wine-2))

(V.beta.ols <- sigma2.0ls[1,1] * solve(t(X) %*% X))
SE.beta.ols <- sqrt(diag(V.beta.ols))

t.beta.ols <- beta.ols/SE.beta.ols

(beta.egls <- solve(t(X)%*%t (T.inv)%*%T.inv/*%X) %*% t(X)%*%t (T.inv) %*%T. inv/*%Y)
(SSE.egls <- t(Y-XJx*%beta.egls) %*%t(T.inv)%*%T.inv %*} (Y-X%*%beta.egls))
(sigma2.egls <- SSE.egls/(n.wine-3))

(V.beta.egls <- sigma2.egls[1,1] * solve(t(X)%*)t(T.inv)%*%T.inv)*%X))
SE.beta.egls <- sqrt(diag(V.beta.egls))

t.beta.egls <- beta.ols/SE.beta.egls

s2.rho <- (gammaO-rho*gammal)/(n.wine-2-1)
SE.rho <- sqrt(s2.rho/gamma0)
t.rho <- rho/SE.rho

print (round(cbind(beta.ols,SE.beta.ols,t.beta.ols,beta.egls,SE.beta.egls,t.beta.egls),4))

print (round(cbind (rho,SE.rho,t.rho),4))
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Ordinary Least Squares Estimated Generalized Least Squares
Parameter | Estimate Std. Error t-stat Estimate  Std. Error t-stat
Constant | -347.9736 21.9895 -15.8245 | -347.2297 74.0420 -4.6997
Adult Pop 4.3092 0.1417 30.4012 4.2540 0.4546 9.4796

Table 6.23: OLS and EGLS Regression Coefficients, Standard Errors, and t-statistics

#H#H##

> (beta.ols <- solve(t(X)%*%X) %*% t(X)%*%Y)
[,1]
-347.973637
adultpop 4.309183
> (SSE.ols <- t(Y-XY%*%beta.ols) %*% (Y-XY)*%beta.ols))
[,1]
[1,] 158540.5
> (sigma2.0ls <- SSE.ols/(n.wine-2))
[,1]
[1,] 2366.276
> (V.beta.ols <- sigma2.0ls[1,1] * solve(t(X) %*% X))
adultpop
483.538924 -3.00432140
adultpop -3.004321 0.02009137

> (beta.egls <- solve(t(X)%*%t(T.inv) %*%T.inv/*%X) %*% t(X)%*%t (T.inv) %*)T.inv%*%Y)
[,1]
-347.229711
adultpop 4.254013
> (SSE.egls <- t(Y-XVxYbeta.egls) %*%t(T.inv)%*%T.inv %*% (Y-X%*%beta.egls))
[,1]
[1,] 18516.16
> (sigma2.egls <- SSE.egls/(n.wine-3))
[,1]
[1,] 280.5479
> (V.beta.egls <- sigma2.egls[1,1] * solve(t(X)%*)t(T.inv)%*%T.inv)*%X))
adultpop
5482.22471 -31.5150787
adultpop -31.51508 0.2066391

rho SE.rho t.rho
2 0.9348 0.0437 21.3832



Chapter 7

Nonlinear Regression

Often theory leads to a relationship between the response and the predictor variable(s) to be nonlinear,
based on differential equations. While polynomial regression models allow for bends, these models are linear
with respect to the parameters. Many models with multiplicative errors can be transformed to be linear
models. For instance:

Y =6XP¢ E{e}=1 = In)=InG)+AInX)+Inle) = Y* =3 +/X"+c.

If the error term had been additive (with mean=0), the linearizing transformation would not have been
possible, and a nonlinear regression would need to have been fitted. Consider the relationship:

Yi=g(xi,B)+e&  e~NID(0,0%)

for some nonlinear function g (noting that linear regression ends up being a special case of this method). In
matrix form, we have:

}/1 g(Xﬁaﬁ) €1
Y L

Y = :2 g(B) = g(X:z ? €= 612 Y =g(B)+e
Y, 9 (x5, 8) €n

Then by nonlinear least squares (NLS), we wish to estimate (3.

n , 0 = , 9g (xi,
Q=2 i—g (B’ = (Y —g(B) (Y-g(B)  g2=-23 Vi~ 0.0 (M>
i=1 o8 i=1 P
Note that for linear regression, %5,5) = x{. Defining the matrix G (83) as follows, we can obtain the NLS
iterative algorithm.
C o) oslB) | ou() T
a/61 a162 8/617 6
o aln | ol :
G(8) = 23, 003, B, where X; = [ Ti1 Tiz vt Tgp ] B= :
oo B) 2u(uB) | 2o o
L a/61 a132 a’B:D -
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The Gauss-Newton algorithm can be used to obtain the values ,é that minimize @ by setting g_,% =0:

G = o) () = v s e @) = [0 0

o
[

The algorithm begins with setting starting values 3°, and iterating to convergence (which can be difficult
with poor starting values):

. -1
B =+ (G a(8) G [Y-s(8)
At the second round B° is replaced by B(l), and we obtain 3(2). Then iterate to convergence (hopefully).

All of the distributional arguments given below are based on large sample asymptotics, however simula-
tion results have shown that in small samples, tests generally work well. For more information on nonlinear
regression models, see e.g. (Gallant (1987), and Rawlings, Pantula, Dickey (2001, Chapter 15)). When the
errors are independent and normally distributed with equal variances (02), the estimator B is approximately

Normal, with:
1

e{g}=8 v{8}=scG)

The estimated variance-covariance matrix for 3 is:

BTN (B, UQ(G’G)A)

A~ ! A~
et e e (s (-x(3)
v{8} = (¢'G) =858 ¢=c(8) 2=

n—p
where S is the diagonal matrix of estimated standard errors of the elements of B, and p is the matrix of
correlations of the elements of 3, which are printed out in various software packages. Estimates (Confi-
dence Intervals) and tests for the regression coefficients can be conducted (approximately) based on the
t-distribution as in linear regression.

(1—a)100% CI for B; : B; £t (a/2,n — p) SE {BJ} % R Under Ho : f; = Bjo
J

Example: Winning Velocities and Completion Times in the Kentucky Derby

It has been argued in the academic literature that there are limits to performance in animals (e.g.
Denny (2008)). Denny studied historical results involving speed among horses, dogs, and humans with a
wide variety of theoretically based nonlinear models relating performance to year. One model considered for
Velocity was an “S-shaped” logistic function, of the following form, where Y; is the winning velocity (meters
per second) in year t. The data are given in Table 7.1.

exp{fs (t — Ba)}
1+ exp{Bs (t — Ba)}

Y, =51+ (B2 — 1)) +e

In this model, 3; is the lower asymptote (minimum mean speed), (2 is the upper asymptote (maximum
mean speed), (3 is a shape parameter determining the steepness of the curve between lower and upper
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Year t WinTime Velocity | Year t  WinTime Velocity | Year t WinTime Velocity
1896 0 127.75 15.75 1938 42 124.8 16.12 1980 84 122 16.49
1897 1 132.5 15.18 1939 43 123.4 16.30 1981 85 122 16.49
1898 2 129 15.59 1940 44 125 16.09 1982 86 122.4 16.44
1899 3 132 15.24 1941 45 122.4 16.44 1983 87 122.2 16.46
1900 4 126.25 15.93 1942 46 124.4 16.17 1984 88 122.4 16.44
1901 5 127.75 15.75 1943 47 124 16.22 1985 89 120.2 16.74
1902 6 128.75 15.62 1944 48 124.2 16.20 1986 90 122.8 16.38
1903 7 129 15.59 1945 49 127 15.84 1987 91 123.4 16.30
1904 8 128.5 15.66 1946 50 126.6 15.89 1988 92 122.2 16.46
1905 9 130.75 15.39 1947 51 126.8 15.86 1989 93 125 16.09
1906 10 128.8 15.62 1948 52 125.4 16.04 1990 94 122 16.49
1907 11 132.6 15.17 1949 53 124.2 16.20 1991 95 123 16.36
1908 12 135.2 14.88 1950 54 121.6 16.54 1992 96 123 16.36
1909 13 128.2 15.69 1951 55 122.6 16.41 1993 97 122.4 16.44
1910 14 126.4 15.92 1952 56 121.6 16.54 1994 98 123.6 16.28
1911 15 125 16.09 1953 57 122 16.49 1995 99 121.2 16.60
1912 16 129.4 15.55 1954 58 123 16.36 1996 100 121 16.63
1913 17 124.8 16.12 1955 59 121.8 16.52 1997 101 122.4 16.44
1914 18 123.4 16.30 1956 60 123.4 16.30 1998 102 122.2 16.46
1915 19 125.4 16.04 1957 61 122.2 16.46 1999 103 123.2 16.33
1916 20 124 16.22 1958 62 125 16.09 2000 104 121 16.63
1917 21 124.6 16.15 1959 63 122.2 16.46 2001 105 119.97 16.77
1918 22 130.8 15.38 1960 64 122.4 16.44 2002 106 121.13 16.61
1919 23 129.8 15.50 1961 65 124 16.22 2003 107 121.19 16.60
1920 24 129 15.59 1962 66 120.4 16.71 2004 108 124.06 16.22
1921 25 124.2 16.20 1963 67 121.8 16.52 2005 109 122.75 16.39
1922 26 124.6 16.15 1964 68 120 16.76 2006 110 121.36 16.58
1923 27 125.4 16.04 1965 69 121.2 16.60 2007 111 122.17 16.47
1924 28 125.2 16.07 1966 70 122 16.49 2008 112 121.82 16.51
1925 29 127.6 15.77 1967 71 120.6 16.68 2009 113 122.66 16.40
1926 30 123.8 16.25 1968 72 122.2 16.46 2010 114 124.45 16.16
1927 31 126 15.97 1969 73 121.8 16.52 2011 115 122.04 16.48
1928 32 130.4 15.43 1970 74 123.4 16.30 2012 116 121.83 16.51
1929 33 130.8 15.38 1971 75 123.2 16.33 2013 117 122.89 16.37
1930 34 127.6 15.77 1972 76 121.8 16.52 2014 118 123.66 16.27
1931 35 121.8 16.52 1973 77 119.4 16.85 2015 119 123.02 16.35
1932 36 125.2 16.07 1974 78 124 16.22 2016 120 121.31 16.58
1933 37 126.8 15.86 1975 79 122 16.49

1934 38 124 16.22 1976 80 121.6 16.54

1935 39 125 16.09 1977 81 122.2 16.46

1936 40 123.6 16.28 1978 82 121.2 16.60

1937 41 123.2 16.33 1979 83 122.4 16.44

Table 7.1: Kentucky Derby Winning Times (sec) and Velocities (meters/sec) 1896-2016
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asymptotes. Finally, 34 is the year when the curve is steepest, as well as half way between the lower and
upper asymptotes. Here we consider the winning speeds of the Kentucky Derby for years 1896-2016, all years
that the horse race was run at a distance of 1.25 miles. The variable ¢ represents Year - 1896, so that the
“origin” is the first year the race was 1.25 miles long. For this model, we have:

exp {05 (t — fa)} ]

9 (%0 8) = B+ (B = B0) | T T8 A

dg (x¢,8) :[ o9(x,.8) 09(x.B) 09(x..B) 09(x..0) }
0B’ 0p1 0p2 0Bs 0P

09 (x4, 8) _ | _ [ exp{Bs (t — Bu)} ]
0B L+exp{Bs(t—Ba)}

99 (x4,8) _ [ exp {3 (t — Ba)} ]
B2 L+exp{Bs(t—Ba)}

99 (x,8) _ (B — B1)) (14 exp {Bs (t — Ba)}) (t — Ba) exp {Bs (t — Ba)} — (t — Ba) (exp {Bs (t — Bu)})’
00 (1 + exp {Bs (t — Ba)})?
— (B — B1)) (¢ — exp{Bs (t — fu)}
= (B2 — 1)) (t = Ba) (1t exp {5 (L — A1)
99 (x4, 8) _ (% — 31) (1+exp {B3 (t — B1)}) (—Bs) exp {B3 (t — B1)} — (=B3) (exp {B5 (t — Bu)})°
0B (14 exp {Bs (t — Ba)})?

exp {85 (t — Ba)}
(1+exp {Bs (t — Ba)})?

= —B3 (B2 — p1))

When choosing starting values for the parameters, it is helpful to think of their effects on predicted values
in terms of sign and magnitude. For this example, #; and (5 represent the lower and upper asymptotes
of the speeds. Also they enter the equation in a linear form, so that they do not have large effects on the
estimation process (as long as 2 > (31). As all races have Velocities between 10 and 20 meters per second,
we will start with these values for 8; and fs, respectively. The parameter 34 represents the steepest point
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of the curve in terms of the year, we will choose the “middle” year, 60. Finally, 35 represents the steepness
of the curve. Suppose we hypothesize that the points that correspond to being 25% and 75% between the
lower and upper asymptotes are k years below and above 4, respectively.

N 95 — exp {63 (tV25 — 64)} _ €xXp {63(_k)}
' L+exp{Bs(tas —Ba)} 1+exp{Bs(—Fk)}

L g —1n((1/_0}€25) -1) _ —1_11153)

If we choose k = 20 as a reasonable possibility, it leads to a starting value for 83 = 0.05. We used 0.10
in the following program. Note that when using built-in nonlinear regression software procedures in R, SAS,
SPSS, and STATA, it is not necessary to be so precise for starting values. However, in many exponential
growth and decay models, there are multiple parameterizations of the same function, and if a sign is wrong,
or orders of magnitude are incorrect, these programs will not converge.

A set of R commands in matrix form are given below, along with the first two and last two iterated
estimates of 3 and all inferences regarding (3. The variables Year125,...,Speed125 are all based on the years
when the race was 1.25 miles (1896-2016).

### Program

kd <- read.csv("http://www.stat.ufl.edu/ winner/data/kentuckyderby.csv",
header=TRUE)

attach(kd); names(kd)

Year125 <- Year[Length==1.25]

Time125 <- Time[Length==1.25]

Length125 <- Length[Length==1.25]

Year125.0 <- Year125-min(Year125)

Speed125 <- 1609.34*Length125/Time125
summary (Speed125)

### Matrix form for logistic model

Y <- Speed125

X.t <- Year125.0

beta.old <- c¢(10,20,0.1,60)
diff.beta <- 1000

while (diff.beta > .00001) {

exp.t <- exp(beta.old[3] * (X.t - beta.old[4]))

Gl <- 1 - (exp.t/(1+exp.t))

G2 <- exp.t/(l+exp.t)

G3 <- (beta.old[2]-beta.old[1]) * (X.t-beta.old[4]) * (exp.t/(l+exp.t)"2)
G4 <- (beta.old[2]-beta.old[1]) * (-beta.old[3]) * (exp.t/(l+exp.t)"2)
G <- cbind(G1,G2,G3,G4)

Yhat <- beta.old[1] + (beta.old[2]-beta.old[1]) * (exp.t/(1l+exp.t))

e <- Y - Yhat

beta.new <- beta.old + solve(t(G) %*% G) %x% t(G) %*% e
print(beta.new)

diff.beta <- sum((beta.new-beta.old) "2)

beta.old <- beta.new

}

exp.t <- exp(beta.old[3] * (X.t - beta.old[4]))

Gl <- 1 - (exp.t/(1+exp.t))

G2 <- exp.t/(l+exp.t)

G3 <- (beta.old[2]-beta.old[1]) * (X.t-beta.old[4]) * (exp.t/(l+exp.t)"2)
G4 <- (beta.old[2]-beta.old[1]) * (-beta.old[3]) * (exp.t/(l+exp.t)"2)
G <- cbind(G1,G2,G3,G4)

Yhat <- beta.old[1] + (beta.old[2]-beta.old[1]) * (exp.t/(l+exp.t))
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e <- Y - Yhat

(SSE <- t(e) %*% e)

(MSE <- SSE/(length(Y) - ncol(G)))

V.beta <- MSE[1,1] * solve(t(G) %*% G)

SE.beta <- sqrt(diag(V.beta))

t.beta <- beta.new/SE.beta

P.beta <- 2x(1-pt(abs(t.beta),length(Y)-ncol(G)))

print (round(cbind(beta.new,SE.beta,t.beta,P.beta),4))

(CI.betal <- beta.new[1] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[1])
(CI.beta2 <- beta.new[2] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[2])
(CI.beta3 <- beta.new[3] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[3])
(CI.beta4 <- beta.new[4] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[4])

### Output

> Speed125 <- 1609.34*Length125/Time125

> summary (Speed125)
Min. 1st Qu. Median Mean 3rd Qu. Max.
14.88 16.04 16.30 16.20 16.49 16.85

[,1]
G1 15.69133064
G2 16.47338070
G3 0.09592648
G4 58.53688771

[,1]
G1 15.67313699
G2 16.47186534
G3 0.05280251
G4 39.73971423

[,1]
G1 15.36095708
G2 16.48585093
G3 0.06381906
G4 27.58451474

[,1]
G1 15.3609265
G2 16.4858482
G3 0.0638184
G4 27.5832162

> (SSE <- t(e) %*% e)

[,1]
[1,] 6.607435
> (MSE <- SSE/(length(Y) - ncol(G)))

[,1]
[1,] 0.0564738
> print(round(cbind(beta.new,SE.beta,t.beta,P.beta),4))

SE.beta
G1 15.3609 0.2823 54.4092 0.0000
G2 16.4858 0.0464 355.3788 0.0000
G3 0.0638 0.0230 2.7781 0.0064
G4 27.5832 9.2703 2.9755 0.0036
> (CI.betal <- beta.new[1] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal1])
[1] 14.80180 15.92005
> (CI.beta2 <- beta.new[2] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[2])
[1] 16.39398 16.57772
> (CI.beta3 <- beta.new[3] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[3])
[1] 0.01832384 0.10931295
> (CI.beta4 <- beta.new[4] + qt(c(.025,.975),length(Y)-ncol(G))*SE.betal[4])
[1] 9.223954 45.942479
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The analysis based on the nls function is given below. Note that we don’t need to be so precise on
starting values, due to the algorithm used in computations. A plot of the data and the fitted regression
equation is given in Figure 7.1. A plot of Residuals versus Year does demonstrate higher variance in early
years then in later years, but the difference is not very drastic. It could very well be due to less accurate
timing equipment. The residual plot is given in Figure 7.2.

R Program

kd <- read.csv("http://www.stat.ufl.edu/ winner/data/kentuckyderby.csv",
header=TRUE)
attach(kd); names(kd)

Year125 <- Year[Length==1.25]
Time125 <- Time[Length==1.25]
Length125 <- Length[Length==1.25]
Year125.0 <- Year125-min(Year125)

Speed125 <- 1609.34*Length125/Time125
summary (Speed125)

Speed125.2008 <- Speed125[Year125<=2008]
Year125.2008 <- Year125[Year125<=2008]

kd.modl <- nls(Speed125 ~ b0 + (b1-b0)*exp(b2*(Year125.0-b3))/
(1+exp(b2*(Year125.0-b3))), start=c(b0=1,b1=20,b2=1,b3=60))

summary (kd.mod1)

AIC(kd.mod1)

confint (kd.mod1)

plot(Year125.0,Speed125)
lines(Year125.0,predict (kd.mod1,Year125))

R Output

Formula: Speed125 ~ b0 + (bl - b0) * exp(b2 * (Year125.0 - b3))/(1 + exp(b2 *
(Year125.0 - b3)))

Parameters:

Estimate Std. Error t value Pr(>|t])
b0 15.36090 0.28235 54.404 < 2e-16 *xx
bl 16.48585 0.04639 355.369 < 2e-16 *xx
b2 0.06382 0.02297 2.778 0.00637 **
b3 27.58248 9.27100 2.975 0.00356 **

Residual standard error: 0.2376 on 117 degrees of freedom

Number of iterations to convergence: 17
Achieved convergence tolerance: 8.259e-06

> AIC(kd.mod1)

[1] 1.564131

> confint (kd.mod1)

Waiting for profiling to be donme...

Error in prof$getProfile() : number of iterations exceeded maximum of 50
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Speed125

Figure 7.1:

resid(kd.mod1)
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For linear functions of 3 of the form K’3, we then have approximate normality of the estimator K’B:
K/3 2> N (K’B, 2K’ (G'G) K)

Thus, to test Hy : K’'B = m, where K’ has ¢ linearly independent rows (restrictions on the regression
coefficients), we have the following test statistic and rejection region.

(x6-m) [k (¢€) k| (k3 -m)

j”f;: lqbbs = B}

g5 RR: Fobs Z qun,p

with an approximate P-value as the area above the test statistic F,ys for the Fy ,_, distribution.

Example: Beer Foam Heights Over Time for 3 Beer Brands

Leike (2002) reported results of an experiment measuring beer foam height over a 6 minute period for
3 brands of beer (Erdinger Weissbier, Augustinerbrau Munchen, and Budweiser). The data are given in
Table 7.2. There are a total of n = 3(15) = 45 observations when we “stack” the data for 3 brands. An
exponential decay model with additive errors is fit, allowing for different curves for the 3 brands, with ¢
representing time, and dummy variables: X;; = 1 if Erdinger, 0 otherwise; X;» = 1 if Augustinerbrau, 0
otherwise; and X;3 = 1 if Budweiser, 0 otherwise.

Yi = fo1Xi1 exp{—F11Xiti} + Bo2Xiz exp{—L12Xiati} + Poz Xiz exp{ —F13Xisti} + € t=1,...,45

The R program and output are given below. Note that the algorithm fails when t; = 0, so replace it
with ¢; = 0.0001. A plot of the data and the fitted curves are given in Figure 7.3.

R Program

beerfoam <- read.table("http://www.stat.ufl.edu/ winner/data/beer_foam2.dat",
header=F,col.names=c("foam.time","brand1","brand2", "brand3"))
attach(beerfoam)

foam.time

for (i in 1:length(foam.time)) {

if (foam.time[i] == 0) foam.time[i] <- 0.0001
}

foam.time

Y.foam <- c(brandil,brand2,brand3)

X1 <- c(rep(1,15),rep(0,15),rep(0,15))

X2 <- c(rep(0,15),rep(1,15),rep(0,15))

X3 <- c(rep(0,15) ,rep(0,15) ,rep(1,15))
t.foam <- c(foam.time,foam.time,foam.time)
brand <- rep(1:3,each=15)

foam.modl <- nls(Y.foam ~ bO1*X1l*exp(-bl1xX1*t.foam) +
b02xX2*exp(-b12*X2*t.foam) + b03*X3*exp(-b13*X3*t.foam),
start=c(b01=10,b02=10,b03=10,b11=0.01,b12=0.01,b13=0.01))

summary (foam.mod1)

time.x <- 0:360
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Time (sec) | Erdinger | Augustinerbrau | Budweiser
0 17.0 14.0 14.0
15 16.1 11.8 12.1
30 14.9 10.5 10.9
45 14.0 9.3 10.0
60 13.2 8.5 9.3
75 12.5 7.7 8.6
90 11.9 7.1 8.0

105 11.2 6.5 7.5
120 10.7 6.0 7.0
150 9.7 5.3 6.2
180 8.9 4.4 5.5
210 8.3 3.5 4.5
240 7.5 2.9 3.5
300 6.3 1.3 2.0
360 5.2 0.7 0.9

Table 7.2: Beer Foam Heights for 3 Brands of Beer over Time

yhat.bl <- coef(foam.mod1) [1] * exp(-coef(foam.mod1) [4]*time.x)
yhat.b2 <- coef (foam.mod1) [2] * exp(-coef(foam.modl) [E]*time.x)
yhat.b3 <- coef (foam.mod1) [3] * exp(-coef(foam.modl) [6]*time.x)

plot(t.foam,Y.foam,pch=brand)

lines(time.x,yhat.bl,1ty=1)

lines(time.x,yhat.b2,1ty=2)

lines(time.x,yhat.b3,1ty=5)

legend(240,16,c("Erd", "Aug", "Bud") ,pch=c(1,2,3),1ty=c(1,2,5))

R Output

> summary (foam.mod1)
Formula: Y.foam ~ b0l * X1 * exp(-bill * X1 * t.foam) + b02 * X2 * exp(-bl2 *
X2 * t.foam) + b03 * X3 * exp(-b13 * X3 * t.foam)

Parameters:
Estimate Std. Error t value Pr(>|t])

b01 1.650e+01 2.080e-01 79.32 <2e-16 **xx*
b02 1.323e+01 2.469e-01 53.61 <2e-16 **xx*
b03 1.337e+01 2.346e-01 57.02 <2e-16 **xx*
b1l 3.396e-03 1.172e-04 28.98 <2e-16 **x*
b12 6.758e-03 2.534e-04 26.67 <2e-16 **xx*
b13 5.625e-03 2.117e-04 26.57 <2e-16 **xx*

Residual standard error: 0.3931 on 39 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 4.779e-07

We test whether the curves for Augustinerbrau and Budweiser are the same. This can be conducted
based on the matrix form described above, as well as by fitting a Reduced Model and comparing it with the
complete model. What is being tested is as follows.
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Figure 7.3: Plot of Beer Foam versus Time and Brand Specific Fitted Equations
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In R, the object produced by many regression functions including lm and nls contains many items
that can be “selected” from the object. Relevant to this test, we can obtain: (3 as coef(foam.mod1),

. Aoyl
SSE as deviance(foam.mod1), and V{3} = s (G’G) as vcov(foam.mod1l). Then we can isolate

Ao\ 1L ~
(G’G) by dividing the estimated variance-covariance of 3 by s> = MSE = SSE/(n — p). The following
R commands, run after fitting foam.mod1 above, will conduct the F-test.

### Commands

(beta.foaml <- coef (foam.mod1))
vcov.foaml <- vcov(foam.modl)

(mse <- deviance(foam.mod1)/(45-6))
GpGinv <- vcov.foaml/mse

Kp <- matrix(c(0,1,-1,0,0,0,0,0,0,0,1,-1),byrow=T,ncol=6)
(F.foamla <- t(Kp %*% beta.foaml) %*% solve(Kp %*% GpGinv %*% t(Kp)) %*%
(Kp %*% beta.foaml))
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(F.foamlb <- nrow(Kp)*mse)
(F.foaml <- F.foamla / F.foamlb)
(crit.F <- qf(.95,2,39))

(P.F <- 1-pf(F.foam1,2,39))

### Output
> (beta.foaml <- coef(foam.mod1))
bo1 b02 b03 bil b12 b13

16.495318508 13.233329203 13.373355980 0.003396205 0.006757962 0.005625264
> (mse <- deviance(foam.mod1)/(45-6))

[1] 0.1545567

> Kp <- matrix(c(0,1,-1,0,0,0,0,0,0,0,1,-1) ,byrow=T,ncol=6)

> (F.foamla <- t(Kp %*% beta.foaml) %*% solve(Kp %*% GpGinv %*% t(Xp)) %*%
+ (Kp %*% beta.foaml))

[1,] 4.186677

> (F.foamlb <- nrow(Kp)*mse)

[1] 0.3091133

> (F.foaml <- F.foamla / F.foamilb)

[1,] 13.54415

> (crit.F <- qf(.95,2,39))

[1] 3.238096

> (P.F <- 1-pf(F.foam1,2,39))

[1,] 3.414526e-05

We strongly reject the hypothesis that the curves are the same for Augustinerbrau and Budweiser. The
second approach involves “forcing” [yo = fBos and (12 = (13 and fitting the ensuing model. This is done as
follows.

Xoz = Xo + X3 Yi = Bo1 X1 exp{—P11Xi1ti} + Bo23Xizz exp{—LPi23Xiasti} + €

The R Program and Output are given below.

R Program

### Fit Reduced Model

X23 <- X2 + X3

foam.mod2 <- nls(Y.foam ~ bO1*X1lk*exp(-bl1xX1*t.foam) +
b023*X23*exp (-b123*X23*t.foam) ,
start=c(b01=10,b023=10,b11=0.01,b123=0.01))

summary (foam.mod2)

### Compare Reduced and Complete Models
anova(foam.mod2,foam.mod1)

R Output

> summary (foam.mod2)
Formula: Y.foam ~ b0l * X1 * exp(-bill * X1 * t.foam) + b023 * X23 * exp(-b123 *
X23 * t.foam)

Parameters:
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Estimate Std. Error t value Pr(>|t])
b0l 1.650e+01 2.652e-01 62.20 <2e-16 *xx
b023 1.329e+01 2.167e-01 61.30 <2e-16 *xx
bll 3.396e-03 1.494e-04 22.73 <2e-16 *xx
b123 6.148e-03 2.082e-04 29.53 <2e-16 *xx

Residual standard error: 0.5014 on 41 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 3.585e-07

>
> anova(foam.mod2,foam.mod1)
Analysis of Variance Table

Model 1: Y.foam ~ b0O1 * X1 * exp(-bill * X1 * t.foam) + b023 * X23 * exp(-b123 * X23 * t.foam)
Model 2: Y.foam ~ b0l * X1 * exp(-bll * X1 * t.foam) + b02 * X2 * exp(-bl2 * X2 * t.foam) +
b03 * X3 * exp(-b13 * X3 * t.foam)
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 41 10.3060
2 39 6.0277 2 4.2783 13.841 2.869e-05 ***

Note that the matrix form and the Complete versus Reduced form give slightly different F-statistics.
The equivalency derived in the case of linear regression does not hold in the case of nonlinear regression.

By the nature of nonlinear models, we may also be interested in nonlinear functions of the parameters,
say h(B3), which cannot be written in the form K’B. In this case, the estimator h (B) is approximately
normally distributed:

h (5) BRI N (h (8), 0 (H (G'G)* H’))

where

H([a)_[a;g? 20 ... 20 ]

The estimated variance of h (B) replaces both H and G with their estimates, replacing 3 with B Estimates

(Confidence Intervals) and tests concerning h (3) can be obtained as follow.

(1-a)100% CI for h () : h (5) +t(a)2,n— p) SE {h (5)} m 2 ¢, Under Ho : h(B) = ho

se{r(8)}
58 {1 (3)} - i (@e) .

When there are several (¢) nonlinear functions, an approximate Wald test of h (3) = hg is:

(1(8) o) [x(er6) "] " (n(3) )

qs>

where:

TS : Fopy = RR:W > Fy,yp
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with P-value being the upper-tail area above F, for the F, ,,_, distribution. Here, we define:

I 8h193) 8h>§6) o ahlgB) T
i o) o(B) | on(B)
hg)=| | Hg) - | B B TR,
hq (8) o (B) on(B)  om(B)
L 9B 9B, B, |

Example: Winning Velocities and Completion Times in the Kentucky Derby

Suppose we are interested in the “percentage change” in mean velocity in horses, based on the Kentucky
Derby data. Recall that (; is the lower asymptote and s is the upper asymptote. Then, we are interested
in the following nonlinear function of the coefficient vector 3.

h(8) = 100 (62 —&) _ Oh(B)  —1008, Oh(B) 100

5 B, B 9B, B

From the model fit previously, we have the following estimates.

By =15.36000 B, = 16.48586 s =0.2376 s> = 0.056454

. 16.48586 — 15.36090 ;
= ()= 100( T ) ~732353  H(B)=[ ~6.98630 6.51004 0 0]

The R Commands and Output to compute a 95% Confidence Interval for h (3) are given below.

### Commands
### Matrix form for logistic model

Y <- Speed125

X.t <- Year125.0

beta.old <- c¢(10,20,0.1,60)
diff.beta <- 1000

while (diff.beta > .00001) {

exp.t <- exp(beta.old[3] * (X.t - beta.old[4]))

Gl <- 1 - (exp.t/(l+exp.t))

G2 <- exp.t/(l+exp.t)

G3 <- (beta.old[2]-beta.old[1]) * (X.t-beta.old[4]) * (exp.t/(l+exp.t)"2)
G4 <- (beta.old[2]-beta.old[1]) * (-beta.old[3]) * (exp.t/(l+exp.t)"2)

G <- cbind(G1,G2,G3,G4)

Yhat <- beta.old[1] + (beta.old[2]-beta.old[1]) * (exp.t/(l+exp.t))

e <- Y - Yhat

beta.new <- beta.old + solve(t(G) %*% G) %*% t(G) %x*% e



219

print(beta.new)

diff.beta <- sum((beta.new-beta.old)"2)

beta.old <- beta.new

}

exp.t <- exp(beta.old[3] * (X.t - beta.old[4]))

Gl <- 1 - (exp.t/(1+exp.t))

G2 <- exp.t/(l+exp.t)

G3 <- (beta.old[2]-beta.old[1]) * (X.t-beta.old[4]) * (exp.t/(l+exp.t)"2)
G4 <- (beta.old[2]-beta.old[1]) * (-beta.old[3]) * (exp.t/(l+exp.t)"2)
G <- cbind(G1,G2,G3,G4)

Yhat <- beta.old[1] + (beta.old[2]-beta.old[1]) * (exp.t/(l+exp.t))

e <- Y - Yhat

(SSE <- t(e) %*% e)

(MSE <- SSE/(length(Y) - ncol(G)))

(h.beta <- 100*(beta.old[2]-beta.old[1]) / beta.old[1])

(H.betal <- -100%*beta.old[2]/(beta.old[1]"2))

(H.beta2 <- 100/beta.old[1])

H.beta3 <- 0; H.betad <- 0

H.beta <- cbind(H.betal,H.beta2,H.beta3,H.betad)

(SE.h.beta <- sqrt(MSE[1,1] * (H.beta %*% solve(t(G) %*% G) %xJ t(H.beta))))
(CI.h.beta <- h.beta + qt(c(.025,.975),length(Y)-ncol(G))*SE.h.beta)

### Output

> (SSE <- t(e) %*% e)

[1,] 6.607435

> (MSE <- SSE/(length(Y) - ncol(G)))

[1,] 0.0564738

> (h.beta <- 100*(beta.old[2]-beta.old[1]) / beta.old[1])

[1] 7.323268

> (H.betal <- -100*beta.old[2]/(beta.old[1]"2))

[1] -6.98677

> (H.beta2 <- 100/beta.old[1])

[1] 6.510024

> H.beta3 <- 0; H.betad <- 0

> H.beta <- cbind(H.betal,H.beta2,H.beta3,H.betad)

> (SE.h.beta <- sqrt(MSE[1,1] * (H.beta %*% solve(t(G) %x% G) %*% t(H.beta))))
[1,] 2.136145

> (CI.h.beta <- h.beta + qt(c(.025,.975),length(Y)-ncol(G))*SE.h.beta)
[1] 3.092744 11.553791

When the error variance is not constant, we can fit estimated weighted NLS. The weights would be the
inverse of the estimated variances, as in the case of Linear Regression described previously. The variances
may be related to the mean and/or the levels of one or more predictor variables. This will necessarily be an
iterative process. The function we want to minimize is:

Qw =Y lo(g(ck @) ' V=g (i B)°  where  oF = (g (xi:8)).

When there are replicates at distinct X levels, we can use the estimated variances of the replicates as the
weights, in a manner like that used for the Shotgun spread example previously.

Example: Experiments in Salmonella Growth
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Alvord, et al (1990) report growth of salmonella as a nonlinear function of mutagen dose over two
experimental days. We consider the data from the second experimental day, with 3 replicates at each of 7
doses, with n = 21. The data are given in Table 7.3, along with the dose specific sample standard deviations.
A plot of the data and the subsequent fitted equation is given in Figure 7.4. The authors fit the following
nonlinear model, where Y is the number of colonies observed, and X is the dose. The weights are the inverse
variance for the various doses.

Y; = [fo +exp{fB1 + foIn Xi}exp{—BsX;} +¢; i=1,...,21

The R Program and Output are given below. The data and fitted equation is given in Figure 7.4.

R Program

salmonella <- read.table("http://www.stat.ufl.edu/ winner/data/salmonella.dat" ,header=F,
col.names=c("expt","dose","colonies"))
attach(salmonella)

for (i in 1:length(dose)) {if(dose[i] == 0) dose[i] <- 0.000001}
expt01 <- expt-1

(vardoseexp <- aggregate(colonies,by=list(dose,expt),FUN=var))
(ndoseexp <- aggregate(colonies,by=1list(dose,expt) ,FUN=length))
(varwt <- rep(1/vardoseexp[[3]],each=ndoseexp[[3]]))

salmonella <- data.frame(salmonella,varwt)
exptl <- subset(salmonella,expt==1)
expt2 <- subset(salmonella,expt==2)

plot(dose,colonies,data=expt2)

salm.mod2 <- nls(colonies ~ (bO+exp(bl+b2*log(dose)))*exp(-b3*dose),
start=c(b0=20,b1=10,b2=1,b3=1) ,weight=varwt,data=expt2)

summary (salm.mod2)

deviance(salm.mod2)

plot(dose,colonies,data=expt2)

dosev <- seq(.001,3.200,.001)

yhatexp2 <- predict(salm.mod2,list(dose=dosev))
lines(dosev,yhatexp2,lty=1)

R Output

> summary (salm.mod2)
Formula: colonies ~ (b0 + exp(bl + b2 * log(dose))) * exp(-b3 * dose)

Parameters:

Estimate Std. Error t value Pr(>|t])
b0 21.19355 2.52609 8.390 1.90e-07 *x*
bl 7.26329 0.04514 160.891 < 2e-16 *xx
b2 1.20024 0.05033 23.846 1.66e-14 *xx
b3 0.30620 0.03571 8.574 1.40e-07 *xx*

Residual standard error: 0.9569 on 17 degrees of freedom
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Experiment Dose Colonies SD.Dose | Experiment Dose Colonies SD.Dose
2 0 17 4.582576 1 0 25 4.358899
2 0 26 4.582576 1 0 18 4.358899
2 0 20 4.582576 1 0 26 4.358899
2 0.1 147 28.05352 1 0.1 156 7.505553
2 0.1 91 28.05352 1 0.1 149 7.505553
2 0.1 116 28.05352 1 0.1 164 7.505553
2 0.2 223 21.37756 1 0.2 294 29.56913
2 0.2 192 21.37756 1 0.2 268 29.56913
2 0.2 233 21.37756 1 0.2 327 29.56913
2 0.4 373 46.04708 1 0.4 511 19.55335
2 0.4 462 46.04708 1 0.4 473 19.55335
2 0.4 438 46.04708 1 0.4 500 19.55335
2 0.8 848 19.2873 1 0.8 1017 46.43634
2 0.8 878 19.2873 1 0.8 925 46.43634
2 0.8 884 19.2873 1 0.8 960 46.43634
2 1.6 1796 147.6347 1 1.6 1432 60.22458
2 1.6 1552 147.6347 1 1.6 1363 60.22458
2 1.6 1530 147.6347 1 1.6 1483 60.22458
2 3.2 2187 126.4608 1 3.2 1890 48.60384
2 3.2 2020 126.4608 1 3.2 1868 48.60384
2 3.2 2268 126.4608 1 3.2 1961 48.60384

Table 7.3: Salmonella Colonies Observed and Mutagen Dose for Experiments 2 and 1

Number of iterations to convergence: 8
Achieved convergence tolerance: 6.668e-07

> deviance(salm.mod2)

[1] 15.56472

A series of models were fit for both experimental days. Let X;; be the dose, and X;2 be 1 for experiment

2, and 0 for experiment 1. Now there are n = 42 total measurements. The models are as follow.

M3:

M4:
M5:
MG6:
M7:
MS:
MO9:

=

SN X X KX

Xio

Xio

= A2

= Xjo

= Xjo

= A2

Xio

[Bo + exp{f1 + B2 In X1 }] exp{—F3 X1 }+(1 — Xi2) [Bo + exp{f1 + F2 In X1 }] exp{—F3 X1 }+e;

[Boz2 + exp{B12 + P22 In Xi1 }] exp{—s2Xi1 }+(1 — Xi2) [Bo1 + exp{f11 + P21 In X1 }] exp{—fs1 Xi1 } +e;
[Boz2 + exp{B1 + BozIn Xi1 }] exp{—F3Xi1 }+(1 — Xi2) [Bo1 + exp{B1 + P21 In Xi1 }] exp{—FsXi1 }+e€;

[Bo + exp{B1 + P22 In Xi1 ] exp{—FsXi1 }4+(1 — Xi2) [Bo + exp{B1 + B21 In Xi1 }] exp{—F3 Xi1 } +e;

[Boz + exp{f1 + B2 In Xi1 ] exp{—FsXi1 }4+(1 — Xi2) [Bo1 + exp{f1 + B2 In Xi1 }] exp{— B3 Xi1 } +e;

[Bo + exp{Bi2 + B2 In Xi1 ] exp{—Fs Xi1 }4+(1 — Xi2) [Bo + exp{B11 + B2 In Xi1 }] exp{—F3 Xi1 } +e;

[Boz2 + exp{B1 + B2 In Xi1 }] exp{— P52 Xi1 }+(1 — Xiz) [Bo1 + exp{B1 + B2 In Xi1 }] exp{—F31 Xi1 } €

A portion of the R Program and Output are given below, and summaries of the models are given in

Table 7.4. A plot of the data and the regression based on Model 4 is given in Figure 7.5. The Residual
Standard Error is based on the weighted residuals, not the “true” residuals. Note that the R functions
deviance, logLik, and AIC do not work correctly for the nls function when the weight option is used.
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Figure 7.4: Plot of Colonies and Fitted Equation for Experiment 2

We computed SSE, AIC, and BIC directly. AIC and BIC are computed as a multiplier of the number of
etimated parameters (including o2) - twice the log-likelihood evaluated at the ML estimates for u and o2

AIC =2(p+1) +n [1n(27r) +1n (SSTE> + 1]

BIC =In(n)(p+1)+n [ln(27r) +1In (SSTE> + 1]

salm.mod4 <- nls(colonies ~ exptO1*(b02+exp(b12+b22*log(dose)))*exp(-b32*dose)
+ (1-expt01)*(bO1l+exp(bl1+b21*log(dose)))*exp(-b31*dose),
start=c(b01=20,b11=10,b21=1,b31=1,b02=20,b12=10,b22=1,b32=1) ,
weight=varwt,data=salmonella)

summary (salm.mod4)

deviance (salm.mod4)

AIC(salm.mod4)

plot(dose,colonies,pch=expt)

dosev <- seq(.001,3.200,.001)

exptlv <- rep(0,length(seq(.001,3.200,.001)))

expt2v <- rep(1,length(seq(.001,3.200,.001)))

yhatexpl <- predict(salm.mod6,list(dose=dosev, exptOl=exptlv))
yhatexp2 <- predict(salm.mod6,list(dose=dosev, exptOl=expt2v))



Table 7.4: Model Fit Statistic (Note that # of Parameters includes o?)

Model SSE AIC BIC Parameters
3 399778.5 | 513.9527 | 522.6410 44+1=5
4 136627.4 | 476.8593 | 492.4983 8+1=9
5 155795.1 | 478.3732 | 490.5369 6+1="7
6 160459.2 | 477.6121 | 488.0381 54+1=6
7 394878.6 | 515.4347 | 525.8607 54+1=6
8 490021.1 | 524.5013 | 534.9273 5+1=6
9 219897.4 | 492.8472 | 505.0109 6+1="7

lines(dosev,yhatexpl,lty=1)
lines(dosev,yhatexp2,lty=2)

legend("topleft",c("Experimentl","Experiment2"),pch=c(1,2),1lty=c(1,2))

### Output
> summary (salm.mod4)

Formula: colonies ~ exptOl1 * (b02 + exp(bl2 + b22 * log(dose))) * exp(-b32 *

Parameters:

b1l
b21
b31
b02
b12
b22
b32

Residual standard error:

Or NPk O

15862
21858
00008

Estimate Std.
b01 23.
7.
1.
.26099
.19355
.26329
.20024
.30620

O OONOOON

Error t value Pr(>[t])

.67842
.03948
.02683
.02292
.82742
.05053
.05634
.03997

8.646 4.21e-10
182.857 < 2e-16
37.274 < 2e-16
11.389 3.77e-13
7.496 1.06e-08
143.744 < 2e-16
21.305 < 2e-16
7.660 6.64e-09

* k%
kK%
* k%
kK %k
kK%
kK%
* k%
* k%

1.071 on 34 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 4.08e-07

> deviance(salm.mod4)
[1] 38.99907

> AIC(salm.mod4)

[1] 11570.38

dose) + (1 - expt01) * (bO1 + exp(bll + b21 * log(dose))) *
exp(-b31 * dose)
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If the errors are correlated with a known correlation structure, such as AR(1), the autoregressive pa-

rameter(s) can be estimated and plugged into the variance-covariance matrix, and we can fit estimated

generalized NLS. Here we want to minimize:

Vi —g(x

B VY -

i)

g(x

;0]

where the elements of V are functions of unknown parameters which are estimated from the residuals. See

the AR(1) description for Linear Regression.
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Figure 7.5: Dose Response Curves Based on Model 6 - Salmonella Experiments



Chapter 8

Random Coefficient Regression
Models

Random coefficient regression (RCR) models are typically longitudinal in nature, with a sample of n
units being observed on multiple occasions, with ¥ and Xi,...,X, being observed on units at the various
occasions. These models are widely used in various disciplines, and are also known as Hierarchical Linear
Models (HLMs) and Multilevel Models. These methods are described in various books and chapters
(e.g. Bryk and Raudenbush (1992), Goldstein (1987), Rawlings, Pantula, and Dickey (1998, Sections 18.3-
18.4), and Littell, Milliken, Stroup, and Wolfinger (1996, Chapter 7). Note that nonlinear regression models
can also have random coefficients. Here we consider a simple, balanced model, then consider more general
cases.

8.1 Balanced Model with 1 Predictor

We consider a case where n experimental units are each observed at t occasion, with observed pairs
(Xi;,Y;) i¢=1,---,n;5 = 1,...,t. The model allows for different intercepts and slopes among te units.
Note that in many growth curve applications among units, the predictor variable is simply the time point.
Yij = a; + B Xij + €5 i=1,...,n; j=1,..,t eijNN(O,UQ) independent
2
o Q@ o Oap ;
~ N , @ er L
]~ (Gl w D) el )
An alternative, widely used way to re-write this model is as follows.
Vij = (a+ BXi5) + [(ai — a) + (8 — B) Xij + €3]
= E{Yi;} = a+BX;; V{Yi;} =0 + X0+ 0° +2X;5005

J#5 s COV{Yy,Yiy} =0b + XijXijoh + (Xij + Xijr) 0ap
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8.2 General Model with p Predictors

Gumpertz and Pantula (1989) considered a general (balanced) model, and obtained unbiased estimators of
the model parameters. When the number of measurements per subject are equal (e.g. balanced model),
these “simple” estimators coincide with those obtained from mixed model statistical software procedures
that perform EGLS estimation of the model parameters. The scalar and matrix forms are given below, along
with the mean and variance/covariance structure.

Yij = Bio + BuXijn + -+ BipXijp+ e i=1,....n; j=1,...,1

Y; 1 X - X Bio €i1
Y; 1 X1 - Xigp Bi €i2
Y; =X;8; +¢€; Y; = : X; = : : : B; = . g; = .
}/'it 1 X - Xip Bip €it
B, ~ NID(B,Xp3) ei ~ NID(0,0°1) {8;} L{es}
Bo V{Bio} COV{Bi0, Bin} --- COV{Bio,Bip}
B1 COV {Bio, Bir } V{Bu} - COV{Bi1, Bip}
B= . 3p = : : . :
Bp COV {Bio, Bip} COV{Bi1,Bip} --- V{Bip}

Y, ~ N(XiB X;ZsX]+0°I)

The predictor of the i*” unit’s regression coefficient vector can be obtained by fitting the regression for that

individual. . .
g =xix) ' xiy:  B{8} = xix) I XiXip =

1 1

V{8 = (XX X XX+ 0] X (XX = B+ 0? (XX

Note that each individual’s Bl is an unbiased estimator of the population mean 3. That leads to making
use of a simple average of the 3; as an unbiased estimator of the mean vector.

5135 - p{)-Ltes-p

; n
1=1
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1

{8}

nSs + o zn: (XgXi)ll cov {B B} - % [zﬁ o (XIX,)™

=1

Now, making use of the distributional properties of the regression model, we can estimate o2 and X.

(Yi _ XiBi)/ (Yi _ XiBi) —Y/I-P)Y: P,=X;(XX)) X,

E{Y;(I-P)Y:} = o’trace([—P;) + X[ (I-P)X;B = o>(t—p)+0

n R R R N n—1 n o n n .
- %z@ﬁ@@ww—4n>mwb%~ﬁz IS
Note that in the last double summation, each unit (i) appears n — 1 times.

= E{i(@-@)(Bi—a)’}—m—mzﬁa[u%_gﬂ;]z(m)1

=1

—(n-1)S5+0° (”T_l> XE (Xix;)™!

This leads to the following unbiased estimator for Xg.
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Example: Airline Annual Revenues for 10 Large Markets 1996 /7-2000/1

Data in Table 8.1 are annual revenues for a random sample of n = 10 large airline markets over ¢t = 5
fiscal years. The years are labeled as 0, 1, 2, 3, 4 in the regression model. As all markets have the same
years, the X; matrix is the same for all markets. We will fit a linear regression for each market, relating
In(Revenue) to year.

, 50] [ T% B0 D 2
Y, =X;8,+e; i=1,...,n i ~N|(p= Y= Po o g; ~ N (05,0°1
8 8 (5 [51 o= o (05, 0°1;)

10
bl 5 10 L[ 060 —0.20
o / o / N1 . —U.
Xi= i z - XXi= [ 10 30 } = (XX) = [ —0.20 0.10 }
1 4

0.6 04 02 0 -0.2

5 AED U=
(XiXq) X, [—0.2 -0.1 0.0 01 0.2

] = B, = (X/X,)'X)Y;, i=1,...,10

The results for the n = 10 individual regressions are given in Table 8.2.
3= 1 7.1821 et 6.3676 B 7.095741
- 10 0.0337 0.0325 N 0.065320

1 0.093505
2 o (0.0188+---+0.0132) = ——2_—0.00311
s 10(5_2)(0088+ +0.0132) 20 0.003117

> (8.-8) (5 —B)/ = [ _0(')(_)536?6 ] [ 0.0864 —0.0316 ] +---+ [ :ggggé } [ —0.7281 —0.0328 | =

0.007465 —0.002730 0.530130 0.023882 | | 4.336061 —0.035867
—0.002730  0.000999 0.023882 0.001076 | | —0.035867 0.009864
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= S = -

A 1 4.336061  —0.035867 | 0.003117 0.60 —0.20
B 10—1 | —0.035867 0.009864

(10) 0.479915 —0.003362
10 —-0.20 0.10

—0.003362  0.000784

The R program and output are given below. They make use of the ImerTest package and the lmer
function. The graphs are given in Figure 8.1 (all lines on one plot) and Figure 8.2 (trellis graphs with data
and simple linear regressions).

### Program

big20 <- big20 <- read.fwf ("http://www.stat.ufl.edu/ winner/sta6208/reg_ex/big20_air_samp.prn",
width=c(3,8,13,8,8), col.names=c("cityl", "city2", "market", "revenue", "year"))

attach(big20)

market <- factor(market)

library(lmerTest)

airl <- Ilmer(log(revenue) ~ year + (year|market))
summary (airl)

ranef (airl)

coef (airl)

fixef (airl)

yearplot <- 0:4

Rev_all <- fixef(airl) [1] + fixef (airl) [2]*yearplot

Rev_each <- matrix(rep(0,50),ncol=10)

for (i in 1:10) {

Rev_each[,i] <- coef(airl)$market[i,1] + coef (airl)$market[i,2]*yearplot
}

Rev_each
ylimlo <- 0.9#min(Rev_each); ylimhi <- 1.1*max(Rev_each)

plot(yearplot,Rev_all,type="1",xlab="Year",ylab="1n(Rev)",lwd=4,
ylim=c(ylimlo,ylimhi) ,main="Ln(Revenues) by Year")

for (i in 1:10) {

lines(yearplot,Rev_each[,i],lty=1)

}

library(lattice)

xyplot(log(revenue) ~ year | market,
panel = function(x,y) {
panel.xyplot(x,y,pch=16)
panel.abline(Im(y~x))

b

# Text Output

> summary(airl)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to
degrees of freedom [merModLmerTest]

Formula: log(revenue) ~ year + (year | market)

REML criterion at convergence: -61.4

Random effects:

Groups Name Variance Std.Dev. Corr
market (Intercept) 0.4799143 0.69276

year 0.0007843 0.02801 -0.17
Residual 0.0031168 0.05583

Number of obs: 50, groups: market, 10
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Fixed effects:

Estimate Std. Error df t value Pr(>|tl)
(Intercept) 7.09574 0.21950 9.00000 32.327 1.27e-10 ***
year 0.06532 0.01047 9.00000 6.239 0.000152 *xx

Correlation of Fixed Effects:
(Intr)
year -0.173
> ranef (airl)
$market
(Intercept) year
2 0.06839075 -0.0225839637
3 0.17257281 0.0091886257
6 1.10490018 -0.0132366004
8 0.25520157 0.0311881120
19 -1.07023650 -0.0003365672
25 -0.14995496 -0.0137260742
31 -0.01721360 0.0378828442
42 -0.57770515 0.0212227803
95 0.96152897 -0.0270340094
108 -0.74748408 -0.0225651472

> coef(airl)

$market

(Intercept) year
2 7.164132 0.04273622
3 7.268314 0.07450881
6 8.200641 0.05208359
8 7.350943 0.09650830
19 6.025505 0.06498362
25 6.945786 0.05159411
31 7.078528 0.10320303
42 6.518036 0.08654297
95 8.057270 0.03828618
108 6.348257 0.04275504

attr(,"class")
[1] "coef.mer"
> fixef (airl)
(Intercept) year
7.09574112 0.06532019

8.2.1 Unequal Sample Sizes Within Subjects

When the data are “stacked” so that the measurements from unit 1 are followed by those for units 2 through
n, we have the following structure.

Y, X118 X1 1 X - Xigp
Y, X8 X2 1 X1 -0 Xigp
y=| E{v}=| " |=x3 x=|" X =.

Yn Xn/B Xn 1 Xitil e Xitip
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cityl | city2 | market | revenue | year | Y= In(rev)
ATL BOS 2 1274.6 0 7.150388
ATL BOS 2 1506.1 1 7.317279
ATL BOS 2 1307.7 2 7.176025
ATL BOS 2 1412.4 3 7.253046
ATL BOS 2 1557.9 4 7.351094
ATL | DFW 3 1511.1 0 7.320593
ATL | DFW 3 1489.4 1 7.306129
ATL | DFW 3 1591.2 2 7.372244
ATL | DFW 3 1713.1 3 7.44606
ATL | DFW 3 2086.1 4 7.643052
ATL | LGA 6 3626.3 0 8.195968
ATL | LGA 6 3957.3 1 8.283317
ATL | LGA 6 3977.9 2 8.288509
ATL | LGA 6 4302.7 3 8.366998
ATL | LGA 6 4430.5 4 8.396268
ATL | ORD 8 1487.9 0 7.305121
ATL | ORD 8 1738.1 1 7.460548
ATL | ORD 8 1924.4 2 7.56237
ATL | ORD 8 2044.6 3 7.622957
ATL | ORD 8 2371.8 4 7.771404
BUR | LAS 19 413.5 0 6.024658
BUR | LAS 19 444.5 1 6.09695
BUR LAS 19 467.6 2 6.147613
BUR | LAS 19 504.5 3 6.223568
BUR | LAS 19 532.4 4 6.277395
BWI | ORD 25 1062.3 0 6.968192
BWI | ORD 25 1079.4 1 6.984161
BWI | ORD 25 1163 2 7.058758
BWI | ORD 25 1195.1 3 7.085985
BWI | ORD 25 1269.5 4 7.146378
DEN SFO 31 1116.2 0 7.017685
DEN SFO 31 1269.4 1 7.1463
DEN SFO 31 1515.8 2 7.323699
DEN SFO 31 1825.2 3 7.509445
DEN SFO 31 1683.3 4 7.428511
DTW | MCO 42 714.8 0 6.572003
DTW | MCO 42 681.2 1 6.523856
DTW | MCO 42 753.2 2 6.624331
DTW | MCO 42 947.8 3 6.854144
DTW | MCO 42 970.7 4 6.878017
ORD | LAX 95 3190.1 0 8.067808
ORD | LAX 95 3304.5 1 8.10304
ORD | LAX 95 3467.8 2 8.151276
ORD | LAX 95 3563.4 3 8.17847
ORD | LAX 95 3548.5 4 8.17428
PHX SFO 108 548.3 0 6.306823
PHX SFO 108 634.9 1 6.453468
PHX SFO 108 631.5 2 6.448098
PHX SFO 108 676.9 3 6.517524
PHX SFO 108 624.7 4 6.437272

Table 8.1: Airline Market Annual Revenues 1996 /7-2000/1
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Y. Y. Y3 Y, Ys Ys Y~ Ys Yo Yo
7.1504 7.3206 8.1960 7.3051 6.0247 6.9682 7.0177 6.5720 8.0678 6.3068
7.3173 7.3061 8.2833 7.4605 6.0970 6.9842 7.1463 6.5239 8.1030 6.4535
7.1760 7.3722 8.2885 7.5624 6.1476 7.0588 7.3237 6.6243 8.1513 6.4481
7.2530 7.4461 8.3670 7.6230 6.2236 7.0860 7.5094 6.8541 8.1785 6.5175
7.3511 7.6431 8.3963 7.7714 6.2774 7.1464 7.4285 6.8780 8.1743 6.4373

B Bs Bs By Bs Be B Bs By B1o
7.1821 7.2606 8.2094 7.3255 6.0276 6.9571 7.0482 6.5020 8.0773 6.3676
0.0337 0.0785 0.0484 0.1095 0.0632 0.0458 0.1185 0.0942 0.0288 0.0325

Y. Yo Y3 Y, Y5 Y Y Ys Yo Yo
7.1821 7.2606 8.2094 7.3255 6.0276 6.9571 7.0482 6.5020 8.0773 6.3676
7.2158 7.3391 8.2578 7.4350 6.0908 7.0029 7.1666 6.5962 8.1061 6.4001
7.2496 7.4176 8.3062 7.5445 6.1540 7.0487 7.2851 6.6905 8.1350 6.4326
7.2833 7.4961 8.3546 7.6540 6.2172 7.0945 7.4036 6.7847 8.1638 6.4651
7.3170 7.5746 8.4031 7.7635 6.2805 7.1403 7.5221 6.8789 8.1926 6.4976
SSEL SSEs SSEs SSE, SSFEs SSEg SSE~ SSFEg SSEy SSFE1o
0.0188 0.0139 0.0013 0.0024 0.0001 0.0007 0.0228 0.0193 0.0009 0.0132
Bi=B | Ba=B|B3-=8B|B,=B|B5—=8B|Bs—B|B,—B|Bs—B|Bg—B | Brp— B
0.0864 0.1649 1.1136 0.2297 | -1.0681 | -0.1387 | -0.0476 | -0.5937 | 0.9816 -0.7281
-0.0316 | 0.0132 | -0.0169 | 0.0442 | -0.0021 | -0.0195 | 0.0532 0.0289 | -0.0365 | -0.0328

Table 8.2: Market Specific Revenues, Regression Coefficients, Fitted Values, SSE, and Coefficient Deviations

Ln(Revenues) by Year

In(Rev)

Year

Figure 8.1: Estimated Mean Line (Bold) and Individual Market Lines
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Figure 8.2: Trellis Graph for Individual Markets with RCR Lines

X, 25X, + 020y, 0., . 0.,
Ot XQEQX/ + O'2It e Otn
V{Y}= N S .
Otl 0152 tee XHEQX; + U2Itn

Statistical software packages can be used to estimate the elements of 3, X5 and the error variance o2.

These can be used when the number of measurements per unit differ, where unit ¢ has ¢; observations. In
this case, the overall sample size is N = >""" | ;. The goal is to minimize the following function (this is
another application of Generalized Least Squares).

(Y -X8) (V{Y}H ' (Y -XB)

Estimates of the unknown parameters in V {Y} must be obtained. Two methods are maximum likelihood
(ML) and restricted maximum likelihood (REML). It has been shown that REML provides less biased
estimates of the elements of V {Y}, which we will denote as 8. When comparing various models in terms
of the fixed effects (elements of 3 in this case), ML should be used. The methods maximize the normal log-
likelihood. Maximum likelihood does it “directly,” REML transforms Y to have mean zero, then maximizes
the likelihood for the “transformed” response vector.

ML: haA(e):—l [1n|V{Y}|+N1n( (V{Y}) 15)

]
REML: ln)\R(G):——[1n|V{Y}|+1n‘X’ (V{Y})~ X‘ (N —p' 1n(e’V{Y} )}

where: € = (I -X (X’ (V{yH™! X) X/ (V {Y})1> Y
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The two resulting estimators are labeled as éML and éRML, with estimated variances for Y being VML {Y}
and Vi {Y}. These lead to two estimators for 8 and their corresponding estimated variance-covariance
matrices.

5. - (X/ (Vi {Y})lx> T (Ve {Y})A Y V{8 } = (X’ (Ve {Y})il X) -1

B = (X (o)) %) X ()Y P} = (X (Fnv)) X)

Example: Women’s NBA Players’ Points per Game

In the 2014 Women’s National Basketball Association (WNBA) season, there were 117 players who
average 10 or more minutes per game they played in. The regular season, there are 34 games (due to
injuries, not all players play every game). Games are made up of four 10 minute quarters, some games have
overtime. In this example, we take a random sample of n = 20 players, and fit a regression relating the
player’s points (Y;;) in an individual game to: minutes played (X;;1), an indicator of whether the game was
a home game (X;2), and the opponents (centered) average points per game (X;3).

Yij = Bio + Bin Xij1 + BinXijo + BizXijs + €5 =

Bo + B1Xij1 + BaXijo + B3 Xijz + (Bio — Po) + (Bin — B1) Xiji + (Biz — B2) Xijo + (Bis — B3) Xijs + €5

A plot of the individual players’ points versus minutes with simple linear regression lines in given in
Figure 8.3. The R program using the Imer function within the lme4 package is given below along with the
output. The program also includes the lme function within the nlme package, that output is not included.

The random effects (Bl - B) and the random coefficients (Bl) are given in Table 8.3.

### Program

wnbal <- read.csv("http://www.stat.ufl.edu/ winner/data/wnba2014al.csv",
header=T)

attach(wnbal); names(wnbal)

set.seed(54321)

max.id <- max(id2min)

id2min <- factor(id2min)

wnba1[1:300,]

wnba.samp <- wnbal[is.element(id2min,sample(levels(id2min),20)),]

detach(wnbal); attach(wnba.samp)

wnba.samp

library(nlme)

wnba.rcrl <- lme(points ~ minutes + c_opp_av + home,
random = ~ minutes|player_id,

control=1lmeControl (opt="optim"))
summary (wnba.rcrl)
random.effects(wnba.rcrl)

library(1me4)
library(lattice)
require (optimx)
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xyplot(points ~ minutes | Player,
panel = function(x,y) {
panel.xyplot(x,y,pch=16)
panel.abline(Im(y~x))

b

wnba.rcr2 <- lmer(points” minutes + c_opp_av + home +
(minutes + home + c_opp_av|player_id) ,REML=TRUE,

control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))

summary (wnba.rcr2)
logLik(wnba.rcr2)

random.effects (wnba.rcr2)
coef (wnba.rcr2)

### Output
> summary (wnba.rcr2)
Linear mixed model fit by REML [’1lmerMod’]

Formula: points ~ minutes + c_opp_av + home + (minutes + home + c_opp_av
Control: lmerControl(opt = "optimx", optCtrl = list(method = "nlminb"))

REML criterion at convergence: 3685.8
Scaled residuals:

Min 1Q Median 3Q Max
-2.5791 -0.6337 -0.0404 0.5914 4.8761

Random effects:

Groups Name Variance Std.Dev. Corr
player_id (Intercept) 2.61510 1.6171
minutes 0.01789 0.1337 -0.98
home 1.06872 1.0338 -0.58 0.73
c_opp_av 0.01635 0.1279 -0.54 0.36 -0.37
Residual 18.30500 4.2784

Number of obs: 631, groups: player_id, 20

Fixed effects:
Estimate Std. Error t value

(Intercept) -3.25295 0.72662 -4.477
minutes 0.49971 0.03900 12.814
c_opp_av -0.06108 0.05285 -1.156
home 0.57415 0.41355 1.388

Correlation of Fixed Effects:
(Intr) minuts c_pp_v

minutes -0.883

c_opp_av -0.164 0.151

home -0.355 0.317 -0.095

> logLik(wnba.rcr2)

’log Lik.’ -1842.915 (df=15)

235

The (REML) estimates variance-covariance matrix for 8, is obtained from the variances, standard de-

viations, and correlations of the estimated random effects.

V{By =63  {COVHB, B} = 65,5, = poo;
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Random Effects Random Coefficients
Player ID | Bio —Bo B — 01 Bio—pP2 Bz —F3 Bio Bi1 Bi2 Bi3

4 -2.1804 0.2096 1.8547 -0.0405 | -5.4334 0.7093 -0.1016  2.4288
5 -2.9762 0.2138 0.2374 0.2387 -6.2292 0.7135 0.1776 0.8116
21 -1.3147 0.1430 1.6428 -0.0916 -4.5677 0.6427 -0.1527  2.2170
22 0.3516 -0.0301 -0.1817 -0.0085 | -2.9014 0.4696 -0.0696  0.3925
30 0.5435 -0.0356 0.0648 -0.0574 | -2.7095 0.4641 -0.1185 0.6389
32 0.3003 -0.0383 -0.5532 0.0437 -2.9526 0.4614 -0.0174 0.0210
33 -1.3558 0.1130 0.6018 0.0455 -4.6088 0.6127 -0.0156 1.1760
34 -2.3806 0.2194 1.7234 -0.0056 | -5.6335 0.7191 -0.0666  2.2975
41 0.3893 -0.0330 -0.1914 -0.0107 | -2.8636 0.4667 -0.0718  0.3827
42 0.7952 -0.0694 -0.4514 -0.0141 -2.4578 0.4303 -0.0751  0.1227
44 -0.0580 0.0073 0.1038 -0.0081 -3.3110 0.5070 -0.0691 0.6779
47 0.0862 -0.0244 -0.5847 0.0671 -3.1668 0.4753 0.0061 -0.0105
49 0.4641 -0.0717 -1.2531 0.1186 -2.7888  0.4280 0.0575 -0.6790
51 2.0034 -0.1547 -0.5020 -0.1168 | -1.2496 0.3450 -0.1779 0.0722
72 0.5627 -0.0412 -0.0706 -0.0418 | -2.6902 0.4585 -0.1029 0.5036
73 1.6616 -0.1553 -1.2722 0.0128 -1.5914 0.3444 -0.0483 -0.6981
85 1.2298 -0.0877 -0.0785 -0.1012 | -2.0232 0.4120 -0.1622 0.4956
95 0.7575 -0.0699 -0.5502 0.0020 -2.4954  0.4298 -0.0591  0.0240
102 1.9650 -0.1701 -1.0730 -0.0402 | -1.2879 0.3297 -0.1013 -0.4989
108 -0.8444 0.0753 0.5333 0.0080 -4.0973 0.5751 -0.0531 1.1074

Table 8.3: Random Effects and Random Coefficients for WNBA Sample

{ 2.61510 —0.21188 —0.96962 —0.11169-|
¢ _ | —0.21188 0.01789  0.10090  0.00616
B~ | —0.96962 0.10090 1.06872 —0.04892

[—0.11169 0.00616 —0.04892  0.01635 |

8.2.2 Tests Regarding Elements of >3

To test whether variance components (variances of regression coefficients) are 0, fit the model with and
without the random effect(s) for the component(s) of interest. Obtain the log-likelihood with and without
the random effect(s) of interest, along with the degrees of freedom. In R, these are obtained using the
logLik() function. A conservative test is conducted as follows.

Ho:03, =05 =0 TS:Xjp=-2[InLgp —InLe] RR:X7p>Xogo-am PP (Xio-am = Xin)

In R, the lmerTest package takes the output of the lmer function, and conducts the Likelihood-Ratio
test, one-at-a-time for the regression coefficients (not including the intercept). To test multiple coefficients
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Figure 8.3: WNBA Data - Points versus Minutes with Simple Linear Regression

simultaneously (and/or the intercept), multiple models need to be fit, and their log-likelihoods can

compared using the test above.
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The following R program and output conducts Likelihood Ratio Tests regarding the variance components
a%j. Note that the variable the centered opponent average has been renamed coppav, as the rand command
tries to treat c, opp, and av as 3 separate variables due to the underscore characters.

## Program

wnbal <- read.csv("http://www.stat.ufl.edu/ winner/data/wnba2014al.csv",

header=T)
attach(wnbal); names(wnbal)
set.seed(54321)
max.id <- max(id2min)
id2min <- factor(id2min)
wnba1[1:300,]

wnba.samp <- wnbal[is.element(id2min,sample(levels(id2min),20)),]

detach(wnbal); attach(wnba.samp)

library(lmerTest)
library(lattice)
require (optimx)
coppav <- c_opp_av
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wnba.rcr2 <- lmer(points”™ minutes + coppav + home +

(1 + minutes + home + coppav|player_id) ,REML=TRUE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
summary (wnba.rcr2)

(1nL2 <- logLik(wnba.rcr2))

rand (wnba.rcr2)

wnba.rcr3 <- lmer(points”™ minutes + coppav + home +

(0 + minutes + home + coppav|player_id) ,REML=TRUE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
summary (wnba.rcr3)

(1nL3 <- logLik(wnba.rcr3))

(X2.intercept <- -2%(1nL3 - 1nL2))

(P.X2.intercept <- 1 - pchisq(X2.intercept,4))

wnba.rcr4 <- lmer(points”™ minutes + coppav + home +

(0 + minutes|player_id) ,REML=TRUE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
summary (wnba.rcr4)

(1nL4 <- logLik(wnba.rcr4))

(X2.inthmoppav <- -2*(1nL4 - 1nL2))

(P.X2.inthmoppav <- 1 - pchisq(X2.inthmoppav,9))

rand (wnba.rcr4)

#### Output
> summary (wnba.rcr2)
Random effects:

Groups Name Variance Std.Dev. Corr
player_id (Intercept) 2.61510 1.6171
minutes 0.01789 0.1337 -0.98
home 1.06872 1.0338 -0.58 0.73
coppav 0.01635 0.1279 -0.54 0.36 -0.37
Residual 18.30500 4.2784

Number of obs: 631, groups: player_id, 20

Fixed effects:

Estimate Std. Error df t value Pr(>|tl)
(Intercept) -3.25295 0.72662 23.55900 -4.477 0.000163 *x*x*
minutes 0.49971 0.03900 18.44700 12.814 1.26e-10 **x*
coppav -0.06108 0.05285 21.05100 -1.156 0.260747
home 0.57415 0.41355 28.85100 1.388 0.175661

> (1nL2 <- logLik(wnba.rcr2))

’log Lik.’ -1842.915 (df=15)

> rand(wnba.rcr2)

Analysis of Random effects Table:
Chi.sq Chi.DF p.value

minutes:player_id 17.11 4  0.002 *x
home:player_id 6.93 4 0.140
coppav:player_id 2.30 4 0.682

>

> summary (wnba.rcr3)
Random effects:

Groups Name Variance Std.Dev. Corr
player_id minutes 0.005715 0.0756
home 0.981320 0.9906 0.69
coppav  0.017320 0.1316 0.29 -0.49
Residual 18.441315 4.2943

Number of obs: 631, groups: player_id, 20

Fixed effects:

Estimate Std. Error df t value Pr(>|t]|)
(Intercept) -2.92394 0.66746 582.20000 -4.381 1.4e-05 **x
minutes 0.49310 0.03154 90.10000 15.633 < 2e-16 **x
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coppav -0.05986 0.05356 20.00000 -1.118 0.277
home 0.56485 0.40891 29.60000 1.381 0.177
> (1nL3 <- logLik(wnba.rcr3))

’log Lik.’ -1844.804 (df=11)

>

> (X2.intercept <- -2%(1nL3 - 1nlL2))

’log Lik.’ 3.777442 (df=11)

> (P.X2.intercept <- 1 - pchisq(X2.intercept,4))

’log Lik.’ 0.4369629 (df=11)

>

> summary (wnba.rcr4)

Random effects:

Groups Name Variance Std.Dev.
player_id minutes 0.008065 0.08981
Residual 18.936503 4.35161

Number of obs: 631, groups: player_id, 20

Fixed effects:

Estimate Std. Error df t value Pr(>|t]|)
(Intercept) -3.02526 0.66085 586.00000 -4.578 5.74e-06 **x
minutes 0.49626 0.03333 77.40000 14.889 < 2e-16 **x
coppav -0.06675 0.04499 613.80000 -1.484 0.138
home 0.57061 0.34746 608.90000 1.642 0.101

> (1nL4 <- logLik(wnba.rcr4))
’log Lik.’ -1848.065 (df=6)
>
> (X2.inthmoppav <- -2x(1lnL4 - 1nL2))
’log Lik.’ 10.30022 (df=6)
> (P.X2.inthmoppav <- 1 - pchisq(X2.inthmoppav,9))
’log Lik.’ 0.3267316 (df=6)
>
> rand(wnba.rcr4)
Analysis of Random effects Table:
Chi.sq Chi.DF p.value
minutes:player_id 108 1 <2e-16 **x

For the “one-at-a-time” tests, we have the following test statistics and P-values, controlling for all other
variance components being in the model.

Hy:05 =0 TS:X2, =3777 df =4 P=P(xi=>3.777) =0.4370

obs

Hy:o5, =0 TS:X2%, =1711 df=4 P =P (x]>17.11)=0.002

obs

Hi:03,=0 TS:X3 =693 df=4 P=P(xj>6.93)=0.140

Hi:03,=0 TS:X3 =230 df=4 P=P(xj>230)=0.0682

It appears the only important random effect is the minutes played effect. We can test simultaneously
that all other variance components are 0.
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Hy* :oh =03, =05, =0 TS:X2 =1030 df=9 P=P(x5>10.30)=0.327

obs

The variance component for minutes played is very significant (X2 = 108, df = 1, P ~ 0). We now

obs
work with the following model.

Yi; = Bo + Bin Xij1 + BoXijo + B3Xij3 + €5 = Bo + 51 Xij1 + BeXijo + B3 Xij3 + (Bin — Br) Xij1 + €ij

8.2.3 Tests Regarding 3

General Linear Tests regarding elements of 3 can be conducted as follow. There are two “classes” of tests.
The first is conducted directly from the linear hypothesis to be tested, and can make use of either the ML or
REML estimator and variance-covariance matrix. The second involves fitting a “Complete” and a “Reduced”
model which imposes restrictions on the parameters; this method must be based on ML, due to the fact that
the two models will have different sets of predictors. In each case, we are testing Hy : K'3 = m, where K’
has ¢ < p’ linearly independent rows. The first version is a Wald test, the second is a likelihood-ratio test.

~ / N ~ -1 ~
Class 1: X2, = (K’BML - m) [K’VML {5} K} (K’BML - m)
Under the null hypothesis, X2, and X2, are approximately chi-square with ¢ degrees of freedom. When

~C ~R
fitting a Complete and Reduced model with respect to 3, we obtain 8,,, and 6,,, and evaluate -2 times the
log-likelihood for each case.

Class 2: —2 [hm (éﬁL) “In A (05)}
Under the null (Reduced) model, the test statistic is approximately chi-square with ¢ degrees of freedom.

Example: Women’s NBA Player’s Points per Game

Suppose we wish to test whether there is neither a home or opponent’s average effect. That is, we are
testing Hy : B2 = (B3 = 0. Using the Wald test, with the REML estimate of the minutes played variance
component, we have the following elements of the test.

—3.02526

, oo 10 ~ | 0.49626 5 [ —0.06675

K‘[o 00 1] A= _0.06675 Kﬁ_[ 0.57061]
0.57061

0.43671784 —0.01628390 —0.00061881 —0.06007691

v {B} _ | —0.01628390  0.00111084 —0.00000494  0.00005909
T —0.00061881 —0.00000494  0.00202397  0.00038255
—0.06007691  0.00005909  0.00038255  0.12072720
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" 2 ~ | 0.00202397 0.00038255 " 2 —L | 494.3746 —1.5665
K Vi {B}K n [ 0.00038255 0.12072720 } [K Vi {B}K} N [ —1.5665  8.2881

(8, ) [0 (3] (3, ) -

494.3746 —1.5665 | [ —0.06675
[ -0.06675 057061 [ ~1.5665  8.2881 ] [ 0.57061

] = 5.0206

= TS: X2, =50206 RR:X23, =>x%5,=5991 P =P(x3>50206)=.0812
The R program and output to compute both forms of the test are given below.

### Program

wnba.rcr4 <- lmer(points”™ minutes + coppav + home +

(0 + minutes|player_id) ,REML=TRUE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
beta <- fixef(wnba.rcr4)

v.beta <- vcov(wnba.rcr4)

Kp <- matrix(c(0,0,1,0,0,0,0,1),byrow=T,ncol=4)

(X2.0bs.1 <-

(t (Kp %*% beta) %x% solve(Kp %*% v.beta %*% t(Kp)) %*% (Kp %*% beta)))
(P.X2.0bs.1 <- 1 - pchisq(as.numeric(X2.0obs.1) ,nrow(Kp)))

wnba.rcrb <- lmer(points”™ minutes + coppav + home +

(0 + minutes|player_id) ,REML=FALSE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
logLik(wnba.rcrb)

wnba.rcr6 <- lmer(points”~ minutes +

(0 + minutes|player_id) ,REML=FALSE,
control=1lmerControl(opt="optimx",optCtrl = list(method="nlminb")))
logLik(wnba.rcr6)

(X2.0bs.2 <~ -2%(logLik(wnba.rcr6)-logLik(wnba.rcr5)))
(P.X2.0bs.2 <- 1 - pchisq(X2.0bs.2,2))

### Output
> (X2.o0bs.1 <-
+ (t(Kp %*% beta) %x% solve(Kp %*% v.beta %*% t(Kp)) %*% (Kp %*% beta)))
1 x 1 Matrix of class "dgeMatrix"
[,1]
[1,] 5.020417
> (P.X2.0bs.1 <- 1 - pchisq(as.numeric(X2.o0bs.1) ,nrow(Kp)))
[1] 0.08125131

> logLik(wnba.rcr5)

’log Lik.’ -1843.272 (df=6)

>

> logLik(wnba.rcr6)

’log Lik.’ -1845.789 (df=4)

>

> (X2.0bs.2 <- -2x(logLik(wnba.rcr6)-logLik(wnba.rcr5)))
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’log Lik.’ 5.033893 (df=4)
> (P.X2.0bs.2 <- 1 - pchisq(X2.0bs.2,2))
’log Lik.’ 0.08070568 (df=4)

8.2.4 Correlated Errors

Note that we have so far assumed that the €* within individuals are “conditionally” independent given X;3,.
In practice, these measurements can be collected over time, and thus the errors may be autocorrelated. If
the observations are made at equally spaced time points, we may use an AR(1) process on the errors within
individuals.

1 p ptifl
o2 P 1 e phit?
R, =V{e}=—— ) ) :
1-p? : ;
ptifl pti72 1
XXX+ Ry 0, . 0,
0, XoYXXL+ Ry --- 0,
VI{Y} = ) . .
0, 0, o X EXL 4+ R,

This will change the variance-covariance matrix for B Statistical software packages, such as SAS’ Proc
Mixed can handle these structures.

8.3 Nonlinear Models

The methods described for linear models can also be applied to nonlinear models. This topic is covered in
detail in Davidian and Giltinan (1995). Without getting into the rather messy estimation methods, the form
of the model is given here. As with the general linear case, statistical software procedures are needed to
obtain the estimates. In general, there will be n individuals, with the i*" individual being observed on t;
occasions.

i1

Bip
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B, ~ NID(B,Xp3) ei ~ NID(0,0%) {8} L{e}

Example: Cumulative Revenues for 8 Harry Potter Films

There were 8 Harry Potter films released between 2001 and 2011 in the United States. These films were
wildly popular with huge initial box office success with exponential decay in terms of revenues per week. We
consider an asymptotic model for cumulative domestic revenue by week. The model is fit through the origin.

Yie = Bi1 [1 — exp{—exp{(Bi2) t}}] = [B1 + (Bir — B1)] [1 — exp{—exp{(B2 + (Bi2 — B2)) t} }]

R has a built-in function SSasympOrig that uses a self starting algorithm for starting values of pa-
rameters. We make use of the nlme package and function to fit the model for the n = 8 films. Note that
the data must be “grouped” within the nlme package. In this case, we group the data by their film number.
The data are given in Table 8.4 and plotted in Figure 8.4. We consider two models: the first assumes that
0Bi1 and B;2 are independent, the second does not. The R program and output are given below.

### Program

hp <- read.csv("E:\\coursenotes\\harrypotter.csv",header=T)
hp$film <- factor (hp$film)

hp$revperday <- hp$revperday/1000

hp$cumerev <- hp$cumerev/1000000

attach(hp); names (hp)

library(nlme)
library(lattice)

hp.grp <- groupedData(cumerev
plot(hp.grp, aspect=2)

weeknum | film, data=hp)

hpO1.1lis <- nlsList(cumerev ~ SSasympOrig(weeknum,betal,beta2) | film,
data = hp.grp)

hpO1.1lis

plot(intervals (hpO1.1lis))

hpO1l.nlme <- nlme(hpO1l.lis, random=pdDiag(betal + beta2 ~ 1))
hpO1.nlme

hp03.nlme <- update(hpOl.nlme,random = betal + beta2 ~ 1)
hp03.nlme

(1101 <- logLik(hpOl.nlme))
(1103 <- logLik(hp03.nlme))
(LRTO13 <- -2%(1101 - 1103))
(P013 <- 1 - pchisq(LRT013,1))

plot (hp03.nlme, id=.05, adj = -1)
qgnorm (hp03.nlme)

plot (augPred (hp03.nlme, level=0:1))
summary (hp03.nlme)

#### Output
> hpO1.1lis <- nlsList(cumerev ~ SSasympOrig(weeknum,betal,beta2) | film,
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+ data = hp.grp)
> hpO1.lis
Call:

Model: cumerev ~ SSasympOrig(weeknum, betal, beta2) | film
Data: hp.grp

Coefficients:

betal beta2
246.9838 -0.5222464
259.9362 -0.7314847
285.5305 -0.4913518
288.8013 -0.2321239
290.3397 -0.2863040
298.6841 -0.1390780
314.4891 -0.8694231
376.8952 -0.2204142

W ONOd N

Degrees of freedom: 175 total; 159 residual
Residual standard error: 6.584572

> hpOl.nlme
Nonlinear mixed-effects model fit by maximum likelihood
Model: cumerev ~ SSasympOrig(weeknum, betal, beta2)
Data: hp.grp
Log-likelihood: -618.3634
Fixed: list(betal ~ 1, beta2 ~ 1)
betal beta2
295.2046097 -0.4376524

Random effects:
Formula: list(betal ~ 1, beta2 ~ 1)
Level: film
Structure: Diagonal
betal beta2 Residual
StdDev: 36.71555 0.2429555 6.5842

Number of Observations: 175
Number of Groups: 8

> hp03.nlme
Nonlinear mixed-effects model fit by maximum likelihood
Model: cumerev ~ SSasympOrig(weeknum, betal, beta2)
Data: hp.grp
Log-likelihood: -617.917
Fixed: list(betal ~ 1, beta2 ~ 1)
betal beta2
295.2086443 -0.4381722

Random effects:
Formula: list(betal ~ 1, beta2 ~ 1)
Level: film
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
betal 36.676401 betal
beta2 0.242754 0.331
Residual 6.584466

Number of Observations: 175
Number of Groups: 8

>

> (1101 <- logLik(hpOl.nlme))
’log Lik.’ -618.3634 (df=5)

> (1103 <- logLik(hpO3.nlme))
’log Lik.’ -617.917 (df=6)
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> (LRT013 <- -2%(1101 - 1103))
’log Lik.’ 0.892802 (df=b)
> (P013 <- 1 - pchisq(LRT013,1))
’log Lik.’ 0.3447191 (df=5)
>
> plot (hp03.nlme, id=.05, adj = -1)
> plot(augPred (hp03.nlme, level=0:1))
> summary (hp03.nlme)
Nonlinear mixed-effects model fit by maximum likelihood
Model: cumerev ~ SSasympOrig(weeknum, betal, beta2)
Data: hp.grp
AIC BIC logLik
1247.834 1266.823 -617.917

Random effects:
Formula: list(betal ~ 1, beta2 ~ 1)
Level: film
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
betal 36.676401 betal
beta2 0.242754 0.331
Residual 6.584466

Fixed effects: list(betal ~ 1, beta2 ~ 1)
Value Std.Error DF t-value p-value

betal 295.20864 13.054724 166 22.61317 0
beta2 -0.43817 0.087527 166 -5.00615 0
Correlation:
betal
beta2 0.323

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.9453481 -0.2079161 0.2300135 0.4534575 3.1874196

Number of Observations: 175
Number of Groups: 8

The Likelihood Ratio Test does not reject the null hypothesis that COV(5;1, 8i2) = 0, however we use
the more complex model for plots and the final summary. The estimates for the fixed effects and the variance
components for the random effects are as follow. The fixed and random fitted curve are given in Figure 8.5.

V{e} = 6.5845% = 43.36

4 [ 295.20864 ] _— [ 36.67642 = 1345.16  36.6764(0.2428)(0.331) = 2.95

—0.43817 25 - 2.95 0.2428% = 0.0589
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Week | HP1  HP2 HP3 HP4 HP5 HP6 HP7 HPS
1 129.5 106.1 123.1 146.3 1754 191.8 170.0 226.1

2 196.0 168.0 1729 209.4 224.7 237.8 2275 296.5

3 2249 2039 200.3 233.8 251.5 2649 249.2 330.6

4 243.3 216.3 2172 246.6 266.6 278.7 260.7 350.1

5 257.0 2245 228.7 256.7 275.1 286.8 269.8 361.5

6

7

8

2747 233.8 2356 269.4 280.8 291.8 278.9 368.2
294.5 2474 240.1 2787 284.3 295.1 285.3 372.2
301.6  253.0 242.9 282.2 2872 2979 288.4 376.1
9 306.2 256.0 244.6 284.6 288.5 299.1 290.4 3775
10 310.2  258.1 245.8 285.8 289.5 299.7 291.6 3784
11 311.9  259.1 246.5 286.4 289.9 300.1 2924 379.0
12 313.2  259.7 247.1 286.9 290.2 300.3 292.9 379.3
13 313.9 260.1 247.8 287.3 290.8 300.9 293.5 380.0
14 3144 260.6 2484 288.2 291.1 301.2 294.1 380.4
15 314.7  260.9 248.7 288.9 2914 301.5 2944 380.6
16 315.1  261.2 2489 289.3 291.6 301.6 294.6 380.8
17 315.4  261.5 249.1 289.5 291.7 301.7 294.8 380.9
18 315.7  261.6 249.2 289.8 291.8 301.8 294.9 381.0
19 316.2  261.8 249.2 289.9 2919 301.9 2949 381.0
20 316.6 2619 249.3 290.0 292.0 301.9 295.0

21 316.9 2619 249.3 292.0 302.0

22 3171 262.0 2494 292.0 302.0

23 317.3  262.0

24 3174 262.0

25 317.5

26 317.5

Table 8.4: Harry Potter Films’ Cumulative U.S. Revenues
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Figure 8.4: Cumulative U.S. Revenues by Week - Harry Potter Films
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Figure 8.5: Fixed and Random Fitted Curves for Harry Potter Revenues
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Chapter 9

Alternative Regression Models

9.1 Introduction

The normal theory based Regression model is based on the assumptions that the error terms are independent,
Normally distributed with mean 0, and variance 02. We have considered those models in detail, and checked
assumptions, as well as considered transformations to remedy any problems, and Estimated Generalized
Least Squares when data are not independent.

Alternative types regression models are also used in specific situations, including when data arise from
a non-normal family of distributions (e.g. Binomial, Poisson, Negative Binomial, Gamma, and Beta). While
some of these distributions are part of exponential families and are analyzed as Generalized Linear Mod-
els, (see e.g. McCullaugh and Nelder (1989), and Agresti (2002)), we will consider each family separately,
and work through the computations directly for ML estimation. When appropriate (Binomial, Poisson, and
Gamma), we make use of software developed for Generalized Linear Models. Other regression models can
be used to model quantiles (not just the mean) for data with skewed distributions.

In all cases, we will have a single response variable, and p predictors, as in the case of linear regression.
These predictors can include dummy variables for categorical predictors, quadratic terms, and cross-product
terms to model interactions.

9.2 Binary Responses - Logistic Regression

Suppose we have m distinct levels of the independent variable(s) with n; trials at the i*" level and y;
“successes” at that level. The goal is to model the probability of success, 7, as a function of the predictors.
A problem arises in that probabilities are required to lie between 0 and 1, while if we treat m = Gy + 1 X1 +
-+ =+ (pX,, then there is no restriction. One possible (of several) link functions is the logit link.

249
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T exp{x'B}
— 1 — X e X = / = = "
glm) n(l—ﬂ> Pot iyt oot fpdy =P ™) 1 + exp{x'B}
Define the X matrix and 3 vector:

x) Bo
X! 51
X=| "’ Xi=[1 Xaq - Xip] B=]|.
X, Bp

Set up the likelihood and log-likelihood functions, and take the derivatives of the log-likelihood.

l=1In(L) = Z [ (n3!) = In (y:!) = In ((ns = g))] + Y yixiB— > niln (1 +exp{x;B})

=1 =1

7 81 7 m m 1 , 7 m 7 ,
93 = % = ; YiXi — ;TMW exp{x;B}x; = ; n; (y; —nim) x; = X' (Y — )

ni1m
; eXp{Xé/@} . Namo
" T+enp{x8) =
N Tm,
PO [+ exp{xBl e {xAIK] — lexpxB} e (xB}x] _
G = opop ;mxl (1 + exp{x/8))°
m exp{xé,@} ) m / /
;n (1+eXp{X§B})2]XXl ;nw(l ) XX,

The Newton-Raphson algorithm can be used to obtain Maximum Likelihood estimates of the elements
of 3.
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-1
~(k) (1)

= — |G =1
B8 B8 [5( ))] g

~(k—1)

B

After setting staring values, iterate until convergence. A simple way to obtain starting values is as
follows.

BY = =B =0 P -n(5) il o

The estimated variance of 3 is —E{GB}.

v{8}- (X’v‘vx)f1

In software packages, such as SAS, R, SPSS, and STATA, data can be entered at the individual (Bernoulli
trial) level, or grouped by distinct combinations of x’ levels (either numbers of successes and failures (e.g. R
glm) or successes and trials (e.g. SAS Proc Genmod).

9.2.1 Interpreting the Slope Coefficients

In linear regression, the slope parameter(s) represent the change in the mean response when the independent
variable(s) are increased by 1 unit, controlling for all other independent variables when there are multiple
predictors. In the case of logistic regression, the slope parameters represent the change in the logit (aka
log(odds)) when the independent variable(s) increase by 1 unit. This is not of primary interest to researchers.
Consider the odds of a Success, which is defined as the number of Successes per 1 Failure: odds = /(1 —).

/ e B)
m(x) = % v ko= M =exp{x'B} = exp{fo + L1 X1 + -+ 3, X}
exp{x

The Odds Ratio for an independent variable is the ratio of the odds when the independent variable is
increased by 1 unit to the odds when it is held constant, while holding all other variables constant. There is
an Odds Ratio for each predictor.

exp{fo+ X1+ + 5 (X + 1)+ +5,X}
exp{fBo + 1 X1+ -+ Bpo}

OR; = = exp{f;}

The odds of a Success change multiplicatively by e’ when X; is increased by 1 unit. Note that if 8; = 0,
the odds (and probability) of Success are the same for all levels of X, and we say that X is not associated
with the probability of Success, after controlling for all other predictors.
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9.2.2 Inferences for the Regression Parameters

Tests for the regression coefficients are typically conducted as Likelihood Ratio and Wald tests. While being
asymptotically equivalent, Likelihood Ratio tests tend to work better in small samples (Agresti (2002, p.12)).

Likelihood Ratio tests are based on the log-likelihood computed under the null hypothesis, Iy = In Ly,
and the log-likelihood under the alternative hypothesis (no restrictions) 4 = In L. The Likelihood Ratio
test statistic, rejection region and P-value are given below, where £ is the number of parameter restrictions
under the null hypothesis.

Xin=-2[o—14] RR: X[ > Xo P=P(x;>Xip)

In R, the glm function prints two deviance measures: Null and Residual. These represent the differ-
ences Dy = —2[lp —lg] and Dy = —2[la — ls], where lg is the log-likelihood under the saturated model,
where 7; = y;/n;. It is computed as follows.

ls = In (n;!) —In (y;!) — 1 i —Yi)! in [ =— i —yi)l 1. 01 =
5= D) ~ D st~ (s =)0+ 3o n(2) 2 () o (M) s 0w =0
The Likelihood Ratio test statistic for testing Ho : 81 = - - = B, = 0 is the difference between the Null

and Residual Deviances, with p degrees of freedom.

Wald tests of the form Hy : 8; = Bjo are of the forms (chi-square and Z) given below.

N 2
(@' —@'0)
Xy = ——F— RR: X3, > X2, P=P(x{>X3)
v {5}
2w B = Bio RR: |2w| > 242 P=2P(Z>|zwl)

5w {5

For general linear tests among the regression coefficients, Hy : K3 —m = 0, the Wald Test is conducted
as a chi-square test, with k restrictions (number of rows in K').

Xp = (KB -m) [KVBK]  (KB-m) RR:X} > P=P(d>Xh)

Confidence intervals for the regression coefficients and their corresponding odds ratios are obtained by
using the approximate normality of the estimated regression coefficients, and then exponentiating the end
points for the odds ratios.



9.2. BINARY RESPONSES - LOGISTIC REGRESSION 253

(1—a)100% CI for B; : B % za/2SE{B;} = (Bjr, Bjm) (1 —a)100% CI for OR,; : (e%=, ePim)

9.2.3 Goodness of Fit Tests and Measures

There are two commonly reported goodness-of-fit tests for grouped (with respect to independent variable(s))
data. In each case, the null hypothesis is that the current model is appropriate.

The first test is based on the model’s Deviance residuals and their corresponding chi-square statistic
(Deviance), and compares it with the chi-square distribution with m — p’ degrees of freedom, where p’ is
the number of parameters in the proposed model. Note that X?% is the (Residual) Deviance for the current
model.

The second method is based on Pearson residuals and their corresponding chi-square statistic, also with
m — p’ degrees of freedom. For both tests, the approximate P-value is the area greater than equal to the
chi-square statistic for the anfp/ distribution.

A N m
. A s
Pearson Residuals: e;p = Yi " Y _ % Ll X3 = E elp

When the independent variable(s) are continuous, and do not have exact groupings, the data can be
collapsed into g groups based on their predicted values (see e.g. Hosmer and Lemeshow (1989), Section
5.2.2). The test makes use of the numbers of observed successes in each derived group (o0;), the size of the
group (n;), and the average predicted probability for the group (%) They suggest using g = 10 derived
groups, however this clearly will depend on the number of individual cases in the dataset. Under the null
hypothesis, the statistic is approximately chi-square with g — 2 degrees of freedom.

There are various measures that attempt to replicate R? for linear models, comparing the fit of a
particular model to the null model. One possibility is to measure the deviance explained by the model. A
second measure is due to Nagelkerke and is considered a better statistic (see e.g. Faraway (2006, p. 41)).

D o L= exp{(Da— Do)/}
Dy Nag 1 —exp{—Dy/n}

2 _
RDev =1-
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where n is the number of individual Bernoulli trials.

We will analyze the data directly making use of the matrix form in R, then make use of the glm function,
first grouped, then individually.

Example: National Football League Field Goal Attempts - 2008 Regular Season

In the National Football League (NFL), teams can attempt field goals for 3 points. The kicker must
kick the ball between the uprights for a successful kick. In this example, we aggregate all kicks for the 2008
regular season (240 total games, with N = 1039 attempts. Table 9.1 contains the numbers of attempts (n;)
and successes (y;) for the m = 45 distances attempted. Note that a Generalized Linear Mixed Model could
be fit that includes random kicker effects. A plot of the the sample proportions and fitted model is given in
Figure 9.1.

The matrix form and the Newton-Raphson algorithm are given below in R.

### Program

£ga2008 <- read.csv("http://www.stat.ufl.edu/ winner/data/nf12008_fga.csv",
header=T)

attach(£ga2008) ; names (£ga2008)

mindist <- min(distance); maxdist <- max(distance)
n.dist <- numeric(maxdist-mindist+1)

y.dist <- numeric(maxdist-mindist+1)

pi_hat.dist <- numeric(maxdist-mindist+1)
fga.dist <- numeric(maxdist-mindist+1)

cnt.dist <- 0

for (i in mindist:maxdist) {

cnt.dist <- cnt.dist+1

n.dist[cnt.dist] <- length(distance[distance==1i])
y.dist[cnt.dist] <- sum(GOOD[distance==i])

fga.dist[cnt.dist] <- i

if (n.dist[cnt.dist] == 0) pi_hat.dist[cnt.dist] <- NA

else pi_hat.dist[cnt.dist] <- y.dist[cnt.dist] / n.dist[cnt.dist]
}

###############HE Direct Computations

m.dist <- length(n.dist[n.dist > 0])
X0 <- rep(1l,m.dist)

X <- cbind(X0,fga.dist[n.dist > 0])
Y <- y.dist[n.dist > 0]

n <- n.dist[n.dist > 0]

(pi.hat.all <- sum(y.dist[n.dist > 0]) / sum(n.dist[n.dist > 0]))

beta.old <- matrix(c(log(pi.hat.all/(1-pi.hat.all)),0),ncol=1)
beta.diff <- 1000
num.iter <- 0

while (beta.diff > 0.00001) {

num.iter <- num.iter + 1

pi.hat <- exp(X %*% beta.old) / (1 + exp(X %+’ beta.old))
w.v <~ n.dist[n.dist > 0] * pi.hat * (1-pi.hat)

W.M <- matrix(rep(0,m.dist"~2),ncol=m.dist)
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for (i in 1:m.dist) W.M[i,i] <- w.v[i, 1]

mu.Y <- n.dist[n.dist > 0] * pi.hat

g.beta <- t(X) %*% (Y - mu.Y)

G.beta <- -t(X) %*% W.M %*) X

beta.new <- beta.old - solve(G.beta) %*J, g.beta
beta.diff <- sum((beta.new - beta.old)"2)
beta.old <- beta.new

print(beta.old)

}

num.iter

V.beta <- -solve(G.beta)

SE.beta <- sqrt(diag(V.beta))

z.beta <- beta.old / SE.beta

pv.beta <- 2x(1-pnorm(abs(z.beta),0,1))

beta.est <- cbind(beta.old,SE.beta,z.beta,pv.beta,
beta.old - gnorm(.975)*SE.beta,
beta.old + gnorm(.975)*SE.beta)

colnames (beta.est) <- c("Estimate", "Std. Error", "z", "Pr(>lzl|)",
|lLLll . l|ULl|)

rownames (beta.est) <- c("Intercept","Distance")

beta.est

pi.hat <- exp(X %*% beta.old) / (1 + exp(X %+’ beta.old))
1.0 <- rep(0O,m.dist); 1.A <- rep(0O,m.dist); 1.S <- rep(O,m.dist)
pearson.r <- rep(0,m.dist)

for (i in 1:m.dist) {

1.0[i] <- Y[i] * log(pi.hat.all) + (n[i] - Y[i]) * log(l-pi.hat.all)

1.A[i] <= Y[i] * log(pi.hat[i]) + (n[i] - Y[i]) * log(i-pi.hat[i])

if (Y[i] == 0) 1.S[i]l <- 0

else if (Y[i] == n[i]) 1.S[i] <- 0

else 1.5[i] <- Y[i] * log(Y[il/n[il) + (al[il - Y[il) * log(1-Y[il/n[il)
pearson.r[i] <- (Y[i] - n[il*pi.hat[i]) / sqrt(a[il*pi.hat[i]*(1-pi.hat[i]))
}

D.0 <- -2*(sum(1.0) - sum(1.8))
D.A <- -2%(sum(1.A) - sum(1.8))

X2.LR <- D.0O - D.A
p-X2.LR <- 1 - pchisq(X2.LR,1)

LR.test <- cbind(D.0,D.A,X2.LR,p.X2.LR)
colnames(LR.test) <- c("Null Dev","Resid Dev","LR X2 Stat","P(>X2)")
LR.test

X2.pearson <- sum(pearson.r~2)
p.X2.pearson <- 1-pchisq(X2.pearson,m.dist-2)
p-X2.deviance <- 1-pchisq(D.A,m.dist-2)

GOF.test <- cbind(X2.pearson,p.X2.pearson,D.A,p.X2.deviance)
colnames (GOF.test) <- c("Pearson X2","P(>X2)","Deviance X2","P(>X2)")
GOF.test

(R2.Dev <~ 1 - D.A/D.O)
(R2.Nag <- (1-exp((D.A-D.0)/sum(n))) / (1-exp(-D.0/sum(n))))

### Output
> (pi.hat.all <- sum(y.dist[n.dist > 0]) / sum(n.dist[n.dist > 0]))
[1] 0.8662175

> beta.est
Estimate Std. Error z Pr(>|zl) LL UL

255
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Intercept 6.7627078 0.54442506 12.421742 0 5.6956543 7.82976136
Distance -0.1208357 0.01228512 -9.835941 0 -0.1449141 -0.09675729
> LR.test

Null Dev Resid Dev LR X2 Stat P(>X2)
[1,] 170.9969 40.20124 130.7957 0
> GOF.test

Pearson X2 P(>X2) Deviance X2 P(>X2)
[1,] 36.07857 0.7635178 40.20124 0.593378

> (R2.Dev <- 1 - D.A/D.O)

[1] 0.7649008

> (R2.Nag <- (1-exp((D.A-D.0)/sum(n))) / (1-exp(-D.0/sum(n))))
[1] 0.7794778

The fitted equation is given below, followed by the R program based on aggregated data (fga.10) and
individual kick data (fga.l), based on the glm function.

exp(7.7627 — 0.1208X)
1 + exp(7.7627 — 0.1208X)

ﬁ'z

95%CI for By : —0.1208 + 1.96(0.0123) = (—0.1449, —0.0967)

OR; = e %1208 =0.8862  95% CI for ORy : (e "9, ¢709967) = (0.8561,0.9078)

The odds of a successful field goal decreases multiplicatively by 0.8862 for each added yard of distance
(95% CI: ((0.8561,0.9078)). This corresponds to a 100(0.8862-1) = -11.38% decrease per yard.

### Program

£ga2008 <- read.csv("http://www.stat.ufl.edu/ winner/data/nf12008_fga.csv",
header=T)

attach(£ga2008) ; names (£ga2008)

mindist <- min(distance); maxdist <- max(distance)
n.dist <- numeric(maxdist-mindist+1)

y.dist <- numeric(maxdist-mindist+1)

pi_hat.dist <- numeric(maxdist-mindist+1)
fga.dist <- numeric(maxdist-mindist+1)

cnt.dist <- 0

for (i in mindist:maxdist) {

cnt.dist <- cnt.dist+1

n.dist[cnt.dist] <- length(distance[distance==1i])
y.dist[cnt.dist] <- sum(GOOD[distance==i])

fga.dist[cnt.dist] <- i

if (n.dist[cnt.dist] == 0) pi_hat.dist[cnt.dist] <- NA

else pi_hat.dist[cnt.dist] <- y.dist[cnt.dist] / n.dist[cnt.dist]
}

yl.dist <- y.dist
yO0.dist <- n.dist - y.dist
y10 <- cbind(yl.dist,y0.dist)

fga.10 <- glm(y1l0 ~ fga.dist, binomial("logit"))
summary (fga. 10)
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confint(fga.10)

logLik(fga.10)

(X2.P1 <- sum(resid(fga.10,type="pearson")"2))
(P.X2.P1 <- 1-pchisq(X2.P1,45-2))

(X2.D1 <- deviance(fga.10))

(P.X2.D1 <- 1-pchisq(X2.D1,45-2))

fga.100 <- glm(y10 ~ 1, binomial("logit"))
summary (fga.100)

logLik(fga.100)

(X2.PO <- sum(resid(fga.100,type="pearson")"2))
(P.X2.P0 <- 1-pchisq(X2.P0,45-1))

(X2.DO <- deviance(fga.100))

(P.X2.D0 <- 1-pchisq(X2.D0,45-1))

anova(fga.100, fga.10, test="Chisq")

fga.distl <- seq(16,80,0.01)
plot(fga.dist,pi_hat.dist,pch=16)
lines(fga.distl,predict(fga.10,list(fga.dist=fga.distl),type="response"))

fga.1l <- glm(GOOD ~ distance, family=binomial("logit"))
summary (fga.1)
confint(fga.1)

### Output
> summary(fga.10)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 6.76271 0.54441 12.422 <2e-16 **x
fga.dist -0.12084 0.01228 -9.836 <2e-16 **x

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 170.997 on 44 degrees of freedom
Residual deviance: 40.201 on 43 degrees of freedom

AIC: 132.65

> confint(fga.10)

2.5 % 97.5 %
(Intercept) 5.7399741 7.87764341
fga.dist -0.1457751 -0.09754001

> logLik(fga.10)

’log Lik.’ -64.32263 (df=2)

>

> (X2.P1 <- sum(resid(fga.10,type="pearson")"2))
[1] 36.07857

> (P.X2.P1 <- 1-pchisq(X2.P1,45-2))
[1] 0.7635178

> (X2.D1 <- deviance(fga.10))

[1] 40.20124

> (P.X2.D1 <- 1-pchisq(X2.D1,45-2))
[1] 0.593378

> fga.100 <- glm(y10 ~ 1, binomial("logit"))
> summary(fga.100)
Coefficients:
Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.86792 0.09113 20.5 <2e-16 *xx*

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 171 on 44 degrees of freedom
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Residual deviance: 171 on 44 degrees of freedom
AIC: 261.44

> logLik(fga.100)

’log Lik.’ -129.7205 (df=1)

> (X2.PO <- sum(resid(fga.100,type="pearson")"2))
[1] 181.3516

> (P.X2.P0 <- 1-pchisq(X2.P0,45-1))

[11 0

> (X2.DO <- deviance(fga.100))

[1] 170.9969

> (P.X2.D0 <- 1-pchisq(X2.D0,45-1))

[1] 1.110223e-16

> anova(fga.100, fga.10, test="Chisq")
Analysis of Deviance Table

Model 1: y10 ~ 1
Model 2: y10 ~ fga.dist
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 44 170.997
43 40.201 1 130.8 < 2.2e-16 *xx

> summary(fga.1)
Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 6.76271 0.54443 12.422 <2e-16 **x*
distance -0.12084 0.01229 -9.836 <2e-16 **x*

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 817.72 on 1038 degrees of freedom
Residual deviance: 686.93 on 1037 degrees of freedom
AIC: 690.93

> confint(fga.1)

2.5 % 97.5 %
(Intercept) 5.7399740 7.87764350
distance -0.1457751 -0.09754001

The Likelihood Ratio test for Hy : 81 = 0 (probability of success is not related to distance) is given
below.

X7 = —2[(—129.7205) — (—64.32263)] = 130.80 ~ RR:Xjp > X5, =3.841 P =P (x] >130.80) ~ 0

The computations to obtain the Null and Residual Deviances are given in Table 9.2.

Null Deviance:  — 2[lp — lg] = —2[(—129.72) — (—44.22)] = 171.00
Residual Deviance: — — 2[4 — lg] = —2[(—64.32) — (—44.22)] = 40.20

Based on the Goodness-of-Fit tests, we fail to reject the null hypothesis that the model with Distance
provides a good fit (Pearson p = .7635, Deviance p = .5934). The intercept only model clearly does not
provide a good fit (both P-values = 0).
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Distance  Attempts Successes | Distance Attempts Successes | Distance Attempts Successes
18 2 2 33 37 35 48 37 23
19 7 7 34 33 31 49 27 19
20 23 22 35 34 33 50 22 15
21 25 25 36 22 19 51 26 16
22 27 27 37 34 30 52 12 9
23 33 33 38 50 47 53 18 11
24 19 19 39 24 22 54 15 10
25 29 29 40 29 23 55 2 2
26 36 34 41 30 27 56 5 4
27 32 31 42 34 29 57 3 2
28 32 31 43 40 33 58 1 0
29 19 19 44 31 28 59 1 0
30 34 31 45 27 25 68 1 0
31 29 27 46 23 13 69 1 0
32 36 34 47 36 23 76 1 0

Table 9.1: NFL Field Goal Attempts and Successes by Distance - 2008 Regular Season

pi_hat.dist

Figure 9.1:
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distance n y A o la lo yIn(y/n)  (n—y)In((n —1y)/n) ls
18 2 2 0.9899 0.8662  -0.0203  -0.2872 0 0 0
19 7 7 0.9886 0.8662 -0.0799  -1.0053 0 0 0
20 23 22 09872 0.8662 -1.5066 -2.0357  -0.9779 -3.1355 -0.9779
21 25 25 09856 0.8662 -0.3629  -3.5905 0 0 0
22 27 27 09838 0.8662 -0.4419  -3.8777 0 0 0
23 33 33  0.9817 0.8662 -0.6088  -4.7394 0 0 0
24 19 19  0.9794 0.8662 -0.3951  -2.7288 0 0 0
25 29 29 09768 0.8662 -0.6796 -4.165 0 0 0
26 36 34 09739 0.8662 -1.7468 -2.4604 -1.9434 -5.7807 -1.2784
27 32 31 09707 0.8662 -0.9863 -2.998 -0.9842 -3.4657 -0.9842
28 32 31 09671 0.8662  -0.9857 -2.998 -0.9842 -3.4657 -0.9842
29 19 19 0.963 0.8662 -0.7168  -2.7288 0 0 0
30 34 31 09584 0.8662 -2.1601 -1.79 -2.8636 -7.2832 -1.45
31 29 27 0.9533 0.8662 -1.4134 -1.8944 -1.9294 -5.3483 -1.2713
32 36 34 09476 0.8662 -1.2821 -2.4604 -1.9434 -5.7807 -1.2784
33 37 35 09413 0.8662 -1.2866  -2.5485 -1.9449 -5.8355 -1.2792
34 33 31  0.9343 0.8662 -1.283 -2.2062 -1.9381 -5.6067 -1.2758
35 34 33 09265 0.8662 -1.6044 -3.2246  -0.9851 -3.5264 -0.9851
36 22 19 0.9178 0.8662  -1.7858  -1.4238  -2.7855 -5.9773 -1.4232
37 34 30  0.9082 0.8662 -1.6967 -1.6102 -3.7549 -8.5603 -1.5706
38 50 47 0.8976 0.8662  -2.0305 -2.9014  -2.9081 -8.4402 -1.4651
39 24 22 0.886  0.8662 -1.3859  -1.5623  -1.9143 -4.9698 -1.2637
40 29 23 0.8732 0.8662 -2.4377 -2.3014 -5.3314 -9.4532 -1.7135
41 30 27 0.8592 0.8662 -1.6699 -1.6034  -2.8447 -6.9078 -1.4436
42 34 29 0.8439 0.8662 -1.6719 -1.6864 -4.6129 -9.5846 -1.6612
43 40 33 0.8273 0.8662 -1.8088  -2.0792 -6.3483 -12.2008 -1.808
44 31 28 0.8094 0.8662 -2.4835 -1.6452 -2.8499 -7.0061 -1.4453
45 27 25 0.79 0.8662  -3.1529  -1.7528 -1.924 -5.2054 -1.2686
46 23 13 0.7693 0.8662 -4.1254 -8.0324  -7.4171 -8.3291 -1.7961
47 36 23 0.7471 0.8662 -3.0177 -7.8924 -10.3046 -13.2414 -1.9851
48 37 23  0.7236 0.8662 -2.9116 -8.9321 -10.9347 -13.606 -2.0081
49 27 19  0.6988 0.8662  -1.7962 -4.208 -6.6766 -9.7312 -1.7947
50 22 15  0.6728 0.8662  -1.7181  -4.1883  -5.7449 -8.0159 -1.7141
51 26 16 0.6457 0.8662 -1.8893 -6.9279  -7.7681 -9.5551 -1.8378
52 12 9 0.6176 0.8662  -1.8277 -1.9336  -2.5891 -4.1589 -1.3544
53 18 11 0.5887 0.8662  -1.6793  -5.2926  -5.4172 -6.6112 -1.6605
54 15 10 0.5591 0.8662  -1.9015  -3.4865 -4.0547 -5.4931 -1.5403
55 2 2 0.5292  0.8662 -1.273 -0.2872 0 0 0
56 5 4 0.499 0.8662 -1.8624 -0.9766  -0.8926 -1.6094 -0.8926
57 3 2 0.4688 0.8662  -1.0491  -1.2002 -0.8109 -1.0986 -0.8109
58 1 0 0.4389 0.8662 -0.5778  -2.0115 0 0 0
59 1 0 0.4094 0.8662  -0.5266  -2.0115 0 0 0
68 1 0 0.1894 0.8662  -0.2099  -2.0115 0 0 0
69 1 0 0.1715 0.8662  -0.1882  -2.0115 0 0 0
76 1 0 0.0816 0.8662  -0.0851  -2.0115 0 0 0
Sum 1039 900 -64.3228 -129.72 -44.2219

Table 9.2: NFL Field Goal Attempts and Successes by Distance - Computations for Null and Residual
Deviance
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9.3 Count Data - Poisson and Negative Binomial Regression

When the response variable is the count of some item or event occurring in some time and/or space, regression
models typically are based on the Poisson or Negative Binomial distributions. The Poisson has a particular
restriction, that the mean and variance are equal. Typically (but not always) when that does not hold, the
variance exceeds the mean, and the data are said to be “overdispersed.” There are methods to adjust tests of
regression coefficients when overdispersion is present. An alternative possibility is to fit a Negative Binomial
model, which has two parameters and allows for the variance to exceed the mean.

9.3.1 Poisson Regression

The Poisson mean A is required to be positive, so it is natural (but not necessary) to model the log of the
mean as being a linear function of X1, ..., X,. This is referred to as a log link.

g\ =In(A)=fo +AX1+ -+ 68X, =x'B = I=exp{x'8}

The likelihood and log likelihood for the Poisson, are given below, along with the relevant derivatives.

I 12[ exp{—exp{x;B}} [exp{x;B}"

N
i=1 Yi:

[=1In(L) =Y [~ exp{x;B} +y:x;B — In (y,!)]

i=1

9B = a8 = ; [— exp{x;B}x; + yixi] = ; (i —Ai)xi =X (Y =) A = diag [\j]
I ) - L _ /

Gg= 907 — ;exp{xi,ﬁ}xlxi = -X'WX W = diag [\] Ai = exp{x;0}

The Newton-Raphson algorithm can be used to obtain Maximum Likelihood estimates of the elements

of 3.

—1
B(k) = B(kl)—[Gﬁkl))] géocfl)
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After setting staring values, iterate until convergence. A simple way to obtain starting values is as
follows.

BO = — o =g B = (V)

The estimated variance of 3 is —E{GB}.

(A . -1
v{8} = (xWx)
Interpreting the Regression Coefficients

The estimated mean of Y is exp{x’B}. When Xj; is increased by 1 unit, holding all other independent
variables constant, we obtain the following ratio for the mean.

exp{fo + 61Xy + -+ 61 Xj 1 + 6 (G + D + i Xjpr + -+ 5 Xp} g,
exp{fo + L1 X1+ + Bi—1Xj-1 + B X + Bja X1+ + BpXp )

When §; = 0, the multiplicative effect of increasing X; by 1 unit, holding all other predictors constant,
is to change the mean by e%. When B; = 0, the multiplicative change is e® = 1, and we say Y is not
associated with X, controlling for all other variables.

In many studies, researchers are interested in Risk Ratios, the ratio of the mean response at x; and
x;. This can be written in the following form.

exp{x;8}

exp( B} exp{ (xj —x}) B}

Inferences Regarding Regression Parameters

The Likelihood-Ratio and Wald tests are conducted in a similar manner as in Logistic Regression, making
use of the Poisson likelihood, ML estimates, and estimated variances.

Likelihood Ratio tests are based on the log-likelihood computed under the null hypothesis, Iy = In Ly,
and the log-likelihood under the alternative hypothesis (no restrictions) 4 = In L4. The Likelihood Ratio
test statistic, rejection region and P-value are given below, where £ is the number of parameter restrictions
under the null hypothesis.

Xip=—2[lo —la] RR:XPp > Xox P =P (xi = Xin)
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In R, the glm function prints two deviance measures: Null and Residual. These represent the differ-
ences —2[lp — lg] and —2[l4 — lg], where lg is the log-likelihood under the saturated model, where A; = y;.
It is computed as follows.

l= [ + vy ln(N) — In (y))] = ls = Z [~y +vi1n (v;) — In (y:))] s.t. 0In(0) =0
i=1 i=1
The Likelihood Ratio test statistic for testing Ho : 81 = --- = B, = 0 is the difference between the Null

and Residual Deviances, with p degrees of freedom.

Wald tests of the form Hy : 8; = Bjo are of the forms (chi-square and Z) given below.

N 2
(3 = B0)
Xp =~ RR: X% > %, P=P(x}=>X%)
v {5}
2w B = Bio. RR: |2w| > 2o P=2P(Z > |zw])

- se {5

For general linear tests among the regression coefficients, Hy : K3 —m = 0, the Wald Test is conducted
as a chi-square test, with k restrictions (number of rows in K').

Xy = (KA -m) [KVBIK] " (KB-m) RR:Xp>xlw  P=P(d=Xh)

Confidence intervals for the regression coefficients and their corresponding risk ratios (RR) are obtained
by using the approximate normality of the estimated regression coefficients, and then exponentiating the
end points for the odds ratios.

(1—a)100% CI for 3; :  Bj + 2a/2SE{3;} = (Bjr, Bjm) (1 —a)100% CI for RR; : (ePit, ePin)

In general, for more complex Risk Ratios of the following form, we can set up Tests and Confidence
Intervals based on the following result.

~

RR = exp{(x; — x;)' B} =  In{RR}=(xi —x;)' B

7 {n(BRY} = (- x,) VIBY (s — %) = (5 — ) (X'WX) (3~ xy)

Tests and Confidence Intervals regarding 1n{RAR} can be made, and Confidence Intervals for the Risk
Ratio can be obtained by exponentiating the endpoints.
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9.3.2 Goodness of Fit Tests

When there is a fixed number of n distinct x levels, the Pearson and Likelihood-Ratio (Deviance) Goodness-
of-Fit statistics given below have approximate chi-square distributions with n — p’ degrees of freedom (see
e.g. Agresti (1996, pp.89-90)).

N2
N - A
Pearson: X3 = Z AN Z Zp  ep— Yi— A
i=1 Ai i=1 Ai
- . " ) | g1
Deviance: X% = G? = 22 |:y1 In 2 (yz - )\1)] = Z el eip = sgn{yi—\;} |:2yl. 111% _ (yl _ )\1)]
i=1 i=1 i

When the independent variable(s) have many distinct level(s) or combinations, observations can be
grouped based on their X levels in cases where there is p = 1 independent variable, or grouped based on

their predicted means in general. The sums of events (y) and their corresponding predicted values (5\1 are

obtained for each group. Pearson residuals are obtained for each group based on the sums of their observed
and predicted values. If we have g groups and p predictors, the approximate Pearson chi-square statistic will
have g — p’ degrees of freedom (see e.g. Agresti (1996, p. 90)).

Example: NASCAR Crashes - 1972-1979 Seasons

NASCAR is a professional stock car racing organization in the United States. The top division is
currently called the Sprint Cup. We consider all races during the 1972-1979 season (Winner (2006)). The
response is the number of Caution Flags (a proxy for crashes) for each race (Y'), and the predictors considered
are: Track Length (X1), Number of Drivers (X3), and Number of Laps (X3). During this period, there were
n = 151 races. Table 9.3 contains summaries (quantiles) and correlations for X7, X2,X3, and Y. The pairs
of independent variables with high correlations are Track Length is highly correlated with Laps (—.901) and
Drivers (.731). The following model is fit, first in matrix form, then using R’s glm function.

Y; ~ PoissonP (\;) In (X)) = Bo + B1Xi1 + B2 X2 + B3 X3

R Program and Output - Matrix Form

### Program
racel <- read.fwf("http://www.stat.ufl.edu/"winner/data/race7579.dat", width=c(8,8,8,8,8,8,8,8,8,12,40),
col.names=c(’srace’, ’yr’, ’yrace’, ’drivers’, ’trklen’, ’laps’, ’roadtrk’,

’cautions’, ’leadchng’, ’trkid’, ’track’))

race <- data.frame(drivers=racel$drivers, trklen=racel$trklen, laps=racel$laps,
cautions=racel$cautions)
attach(race)
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###HH##RHHAH#E Matrix Form

n.race <- length(cautions)

X0 <- rep(1l,n.race)

X <- cbind(X0,drivers,trklen,laps)
Y <- cautions

beta.old <- matrix(c(log(mean(cautions)),0,0,0),ncol=1)
beta.diff <- 1000
num.iter <- 0

while (beta.diff > 0.00001) {

num.iter <- num.iter + 1

lambda.hat <- exp(X %*% beta.old)

w.v <- lambda.hat

W.M <- matrix(rep(0,n.race”2),ncol=n.race)
for (i in 1:n.race) W.M[i,i] <- w.v[i, 1]
mu.Y <- lambda.hat

g.beta <= t(X) %*% (Y - mu.Y)

G.beta <- -t(X) %*% W.M %x% X

beta.new <- beta.old - solve(G.beta) %*, g.beta
beta.diff <- sum((beta.new - beta.old)"2)
beta.old <- beta.new

print(beta.old)

}

num.iter

lambda.hat <- exp(X %*’ beta.old)

w.v <- lambda.hat

W.M <- matrix(rep(0,n.race”2),ncol=n.race)
for (i in 1:n.race) W.M[i,i] <- w.v[i,1]
g.beta <- t(X) %*) (Y - lambda.hat)
G.beta <- -t(X) %*% W.M %x% X

V.beta <- -solve(G.beta)

SE.beta <- sqrt(diag(V.beta))

z.beta <- beta.old / SE.beta

pv.beta <- 2x(1-pnorm(abs(z.beta),0,1))

beta.est <- cbind(beta.old,SE.beta,z.beta,pv.beta,

beta.old - 1.96*SE.beta, beta.old + 1.96*SE.beta)

colnames (beta.est) <- c("Estimate","Robust SE","z","Pr(>|z|)","LL","UL")
beta.est

### Output

> num.iter
[11 3

> beta.est

Estimate Robust SE z Pr(>lzl) LL UL
X0 -0.796270269 0.4117015586 -1.9340958 0.053101346 -1.603205324 0.010664786
drivers 0.036525310 0.0124933565 2.9235786 0.003460328 0.012038331 0.061012288
trklen 0.114498691 0.1684265631 0.6798137 0.496622410 -0.215617373 0.444614754
laps 0.002596319 0.0007893063 3.2893681 0.001004126 0.001049279 0.004143359

R Program and Output - glm Function

### Program
race.mod <- glm(formula = cautions ~ drivers + trklen + laps, family=poisson("log"))

265
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summary (race.mod)
anova(race.mod, test="Chisq")

muhat <- predict(race.mod, type="response")

#print (cbind(cautions, muhat))

(pearson.x2 <- sum((cautions - muhat) ~2/muhat))
(pearson.x2a <- sum(resid(race.mod,type="pearson")"2))
(deviance.x2 <- sum(resid(race.mod)"2))

### Output
> summary (race.mod)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.7962699 0.4116942 -1.934 0.05310 .

drivers 0.0365253 0.0124932 2.924 0.00346 *x*
trklen 0.1144986 0.1684236 0.680 0.49662
laps 0.0025963 0.0007893 3.289 0.00100 *x*

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.22 on 147 degrees of freedom

AIC: 671.11

Number of Fisher Scoring iteratiomns: 4

> anova(race.mod, test="Chisq")
Analysis of Deviance Table
Model: poisson, link: log
Response: cautions
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 150 215.49

drivers 1 5.1673 149 210.32 0.023016 *
trklen 1 28.1912 148 182.13 1.099e-07 *xx
laps 1 10.9167 147 171.22 0.000953 *xx

> muhat <- predict(race.mod, type="response")

> #print(cbind(cautions, muhat))

> (pearson.x2 <- sum((cautions - muhat)~2/muhat))

[1] 158.8281

> (pearson.x2a <- sum(resid(race.mod,type="pearson")"2))
[1] 158.8281

> (deviance.x2 <- sum(resid(race.mod)~2))

[1] 171.2162

Note that the anova given in the second portion of the output is testing terms sequentially. Given that
drivers is in the model, trklen is highly significant (p = 1.099e-07). Then when laps is added to a model
with drivers and trklen, it is highly significant (p = .000953). However, when looking at the z-tests in the
summary portion, which test for each predictor given all other predictors, trklen is no longer significant (p
= .49662). This is an example of collinearity among the predictors.

A “grouped” (12 groups) goodness of fit test is conducted based on the model with drivers and laps. We
see that the null hypothesis of the Poisson model being appropriate is rejected (p = .0188).

### Program

race.modl <- glm(formula = cautions ~ drivers + laps, family=poisson("log"))
summary (race.modl)

anova(race.modl, test="Chisq")

muhat <- predict(race.modl, type="response")
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mean.grp <- rep(0,length(cautions))
for (i in 1:length(cautions)) {
if (muhat[i] < 3.50) mean.grpl[i] <- 1

else if (muhat[i] < 3.70) mean.grp[i] <- 2
else if (muhat[i] < 4.00) mean.grp[i] <- 3
else if (muhat[i] < 4.15) mean.grp[i] <- 4
else if (muhat[i] < 4.30) mean.grpl[i] <- &
else if (muhat[i] < 4.40) mean.grp[i] <- 6
else if (muhat[i] < 4.70) mean.grpl[i] <- 7
else if (muhat[i] < 5.25) mean.grp[i] <- 8
else if (muhat[i] < 5.50) mean.grp[i] <- 9
else if (muhat[i] < 6.00) mean.grp[i] <- 10
else if (muhat[i] < 6.80) mean.grp[i] <- 11
else mean.grp[i] <- 12

}

count.mg <- rep(0,max(mean.grp))

sum.mg <- rep(0,max(mean.grp))

sum.muhat.mg <- rep(0,max(mean.grp))

for (i in 1:max(mean.grp)) {

count.mg[i] <- length(cautions[mean.grp == i])
sum.mg[i] <- sum(cautions[mean.grp == i])
sum.muhat.mg[i] <- sum(muhat[mean.grp == i])

}

gof.grp <- cbind(count.mg,sum.mg,sum.muhat.mg,pearson.r)
colnames(gof.grp) <- c("# Races","Total Obs", "Total Exp", "Pearson r")
gof.grp

### Output

> summary (race.modl)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.6876335 0.3776880 -1.821 0.0687 .
drivers 0.0428077 0.0084250 5.081 3.75e-07 **x
laps 0.0021136 0.0003435 6.153 7.59e-10 *xx

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.68 on 148 degrees of freedom

AIC: 669.57

Number of Fisher Scoring iteratiomns: 4

> pearson.r <- (sum.mg - sum.muhat.mg) / sqrt(sum.muhat.mg)
> (pearson.X2.mg <- sum(pearson.r”2))

[1] 19.85854

> qchisq(.95,12-2-1)

[1] 16.91898

> (pval.mg <- 1-pchisq(pearson.X2.mg,12-2-1))

[1] 0.01880574

> gof.grp

# Races Total Obs Total Exp Pearson r
[1,] 15 37 46.15526 -1.3475973
[2,] 11 50 39.37362 1.6934908
[3,] 11 39 42.13560 -0.4830542
[4,] 14 58 57.20983 0.1044684
[5,] 16 53 67.80602 -1.7980605
[6,] 4 20 17.30750 0.6471999
[7,1] 17 80 76.85249 0.3590364
[8,] 21 129 108.13139 2.0068626
[9,] 2 10 10.81521 -0.2478863

[10,] 8 40 45.35976 -0.7958108
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Quantiles Correlations
Variable Min  25% Med Mean T75%  Max | TrkLen Drivers Laps Cautions
TrkLen 0.526 0.625 1.366 1.446 2.500 2.660 1 0.731 -0.901 -0.317
Drivers 22 30 36 35.2 40 50 0.731 1 -0.508 0.160
Laps 95 200 367 339.7 420 500 -0.901 -0.508 1 0.297
Cautions 0 3 5 4.795 6 12 -0.317 0.160 0.297 1

Table 9.3: NASCAR Caution Flag, Track Length, Drivers, Laps: Summaries and Correlations

[11,] 24 167 154.12482 1.0370914
[12,] 8 41 58.72850 -2.3133835

9.3.3 Overdispersion

The Poisson distribution has a restriction that the mean and variance are equal. In practice, actual data
may demonstrate that the variance exceeds the mean (overdispersion), or less frequently in practice, that the
variance is smaller than the mean (underdispersion). There are several ways of checking for overdispersion (or
underdispersion). If the model is appropriate, then the Pearson chi-square statistic should be approximately
equal to its degrees of freedom (n — p’). If the chi-square statistic is much larger, then there is evidence
of overdispersion. If the chi-square statistic is much smaller, this is evidence of underdispersion. Three
possibilities that can be used in the presence of overdispersion are given here. The first involves fitting a
quasipoisson model by adjusting the standard errors of the regression coefficients. The second involves using
robust standard errors for the regression coefficients, computed in the manner of White’s robust standard
errors for the linear regression model. The third involves fitting a two parameter Negative Binomial model
which allows the variance to exceed the mean.

The quasipoisson model corrects the Poisson assumption of variance being equal to the mean. The
estimated regression coefficients remain the same, however the variances and standard errors are inflated
(when overdispesion is present) or deflated (underdispersion). The correction factor is given below. The R
function glm has a quasipoisson option for the “distribution family,” and uses this correction.

o= 22 V(B) = o (XWX)

Robust standard errors for the regression coefficients are another option (see Cameron and Trivedi (2010,

pp. 574-575)). This is an extension of White’s robust variance for normal based regression models. Let E?
N2

be a diagonal matrix of the squared residuals from the Poisson regression model: (Yi — )\i) . Then the

robust variance-covariance matrix for the estimated regression vector is given below. This method can be
run in R, making use of sandwich and msm packages.

VeiB) = (X’v‘vx)f1 (X’EQX) (X’WX) o
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The Negative Binomial model will be described in the following section.

Example: NASCAR Crashes - 1972-1979 Seasons

The model with Drivers and Laps is fit below, with and without correction for overdispersion. First, the
model is fit directly making use of the matrix form. Then it is fit making use of R functions and packages.

### Program

###HH###HHHAH#R Matrix Form
n.race <- length(cautions)
X0 <- rep(1l,n.race)

X <- cbind(X0,drivers,laps)
Y <- cautions

beta.old <- matrix(c(log(mean(cautions)),0,0) ,ncol=1)
beta.diff <- 1000
num.iter <- 0

while (beta.diff > 0.0000001) {

num.iter <- num.iter + 1

lambda.hat <- exp(X %*’ beta.old)

w.v <- lambda.hat

W.M <- matrix(rep(0,n.race”2),ncol=n.race)
for (i in 1:n.race) W.M[i,i] <- w.v[i, 1]
g.beta <- t(X) %*) (Y - lambda.hat)
G.beta <- -t(X) %% W.M %*% X

beta.new <- beta.old - solve(G.beta) %*J, g.beta
beta.diff <- sum((beta.new - beta.old)"2)
beta.old <- beta.new

print(beta.old)

}

num.iter

lambda.hat <- exp(X %*’ beta.old)

w.v <- lambda.hat

W.M <- matrix(rep(0,n.race”2),ncol=n.race)
for (i in 1:n.race) W.M[i,i] <- w.v[i,1]
g.beta <- t(X) %*) (Y - lambda.hat)
G.beta <- -t(X) %% W.M %*% X

V.beta <- -solve(G.beta)

SE.beta <- sqrt(diag(V.beta))

z.beta <- beta.old / SE.beta

pv.beta <- 2x(1-pnorm(abs(z.beta),0,1))

beta.est <- cbind(beta.old,SE.beta,z.beta,pv.beta,

beta.old - 1.96*SE.beta, beta.old + 1.96*SE.beta)

colnames (beta.est) <- c("Estimate","Std Error","z","Pr(>|z|)","LL","UL")
rownames (beta.est) <- c("Intercept","Drivers","Laps")

beta.est

### quasipoisson model

pearson.res.m <- (Y - lambda.hat) / sqrt(lambda.hat)
phi <- sum(pearson.res.m”2)/(n.race-ncol(X))
SE.beta.qp <- SE.beta * sqrt(phi)

z.beta.qgp <- beta.old / SE.beta.qp

pv.beta.gp <- 2*(l-pnorm(abs(z.beta.qp)))

gp.est <- cbind(beta.old, SE.beta.qgp, z.beta.qp, pv.beta.qp,
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beta.old - 1.96 * SE.beta.qp,

beta.old + 1.96 * SE.beta.qp)

colnames(qgp.est) <- c("Estimate","QP SE","QP z","Pr(>|z|)","LL","UL")
rownames (qp.est) <- c("Intercept","Drivers","Laps")

gp.est

### Robust Variance-Covariance matrix and SEs
e2.v <- (Y-lambda.hat) "2

e2.M <- matrix(rep(0,n.race”2),ncol=n.race)
for (i in 1:n.race) e2.M[i,i] <- e2.v[il
X.e.X.M <= t(X) %x*% e2.M %*) X

V.beta.R <- V.beta %*% X.e.X.M %x*% V.beta
SE.beta.R <- sqrt(diag(V.beta.R))

z.beta.R <- beta.old / SE.beta.R

pv.beta.R <- 2x(1-pnorm(abs(z.beta.R),0,1))

robust.est <- cbind(beta.old, SE.beta.R, z.beta.R, pv.beta.R,

beta.old - 1.96 *x SE.beta.R,

beta.old + 1.96 * SE.beta.R)

colnames (robust.est) <- c("Estimate","Robust SE","z","Pr(>|z|)","LL","UL")
rownames (robust.est) <- c("Intercept","Drivers","Laps")

robust.est

#### Output
> beta.est

Estimate Std Error z Pr(>lzl) LL UL
Intercept -0.687633518 0.3776937513 -1.820611 6.866596e-02 -1.42791327 0.052646235

Drivers 0.042807669 0.0084250966 5.080971 3.755110e-07 0.02629448 0.059320858
Laps 0.002113642 0.0003435008 6.153237 7.591725e-10 0.00144038 0.002786904
> gp.est

Estimate QP SE QP z Pr(>lzl) LL UL

Intercept -0.687633518 0.3916890187 -1.755560 7.916359e-02 -1.455343994 0.080076959
Drivers 0.042807669 0.0087372847 .899425 9.611763e-07 .025682591 0.059932747
Laps 0.002113642 0.0003562291 5.933378 2.967639e-09 0.001415433 0.002811851

IS
o

> robust.est

Estimate Robust SE z Pr(>lzl) LL UL
Intercept -0.687633518 0.4030183158 .706209 8.796916e-02 —-1.477549417 0.102282381
Drivers 0.042807669 0.0087162900 .911226 9.050875e-07 0.025723741 0.059891598
Laps 0.002113642 0.0003694014 5.721803 1.053995e-08 0.001389615 0.002837669

[}
QAN

Note that there is little evidence of overdispersion, as x% = 159.101, n — p’ = 151 — 3 = 148, and
¢ = 1.076. Thus, the effects of the quasipoisson model and the robust standard errors are very small.

### Program
require (sandwich)
require (msm)

race.l <- glm(formula = cautions ~ drivers + laps, family=poisson("log"))
summary (race.1)

race.2 <- glm(formula = cautions ~ drivers + laps,
family=quasipoisson("log"))
summary (race.2)

cov.racel <- vcovHC(race.1l, type="HCO")
std.err.R <- sqrt(diag(cov.racel))
z.R <- coef(race.1) / std.err.R
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r.est <- cbind(coef(race.1),std.err.R,z.R,

2 * pnorm(abs(z.R), lower.tail=FALSE),

coef(race.1) - 1.96 * std.err.R,

coef(race.1) + 1.96 * std.err.R)

colnames(r.est) <- c("Estimate","Robust SE","z","Pr(>|z|)","LL","UL")
r.est

### Output
> summary(race.1)
Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.6876335 0.3776880 -1.821 0.0687 .
drivers 0.0428077 0.0084250 5.081 3.75e-07 **x*
laps 0.0021136 0.0003435 6.153 7.59e-10 *xx

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.68 on 148 degrees of freedom

AIC: 669.57

Number of Fisher Scoring iteratiomns: 4

> summary (race.2)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.6876335 0.3916893 -1.756 0.0812 .
drivers 0.0428077 0.0087373 4.899 2.49e-06 **x*
laps 0.0021136 0.0003562 5.933 2.02e-08 **x

(Dispersion parameter for quasipoisson family taken to be 1.075517)
Null deviance: 215.49 on 150 degrees of freedom

Residual deviance: 171.68 on 148 degrees of freedom

AIC: NA

Number of Fisher Scoring iteratiomns: 4

> r.est
Estimate Robust SE z Pr(>lzl) LL UL
(Intercept) -0.687633511 0.4030185239 -1.706208 8.796932e-02 -1.477549818 0.102282795
drivers 0.042807669 0.0087163133 4.911213 9.051480e-07 0.025723695 0.059891643
laps 0.002113642 0.0003694006 5.721815 1.053923e-08 0.001389617 0.002837667
\%

9.3.4 Models with Varying Exposures
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In many studies, interest is in comparing rates of events in groups or observations with different amounts of
exposure to the outcome of interest. In these cases, the response is the number of of observations per unit
of exposure. A log linear model is assumed for the expectation of the ratio. The fixed exposure (in the log

model) is referred to as an offset. The model is as follows.

t; t

K2

Y; Y; i i
Sample Rate: - E {—} = i\— log ()\ ) =log(\;) —log (t;) = Bo + 51 X1 + - - - + BpXip

Note that we will place log(¢;) on the right-hand side of the equal sign, but do not want to put a
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regression coefficient on it. In statistical software packages, an offset option is typically available. The
predicted values for the observations are given below.

Vi=ti\ = exp{log (¢;) + Bo+ X+ + Bsz'p} =1 GXP{BO +h X+ + BpXip}

Inferences are conducted as in the previously described Poisson model.

Example: Friday the 13th, Gender, and Traffic Deaths

A study reported incidences of traffic deaths by gender on Friday the 13th and other Fridays in Finland
over the years 1971-1997 (Nayha (2002)). The response was the number of traffic deaths and the exposure
was the number of person-days (100000s). The groups were the 4 combinations of Friday type (X;; = 1 if
Friday the 13th, 0 otherwise) and Gender (X;2 = 1 if Female, 0 if Male). The model contains an interaction
term, X;3 = X;1 X2, which allows the Friday the 13th effect to differ by Gender (and vice versa). Table 9.4
gives the data, exposure, the independent variables, the predicted mean, and Total Death Rate per 100000
exposures for the four classifications/groups.

For Males and Females, the Friday the 13th effects are given below.

exp{fo + 51 + B2 + B3}

~exp{fo + i}
' exp{fo + B}

Males
exp{ 6o}

= exp{f1 + B3}

=exp{f1} Females:

Thus, a significant interaction (83 # 0) implies the Friday the 13th effect is not the same among Males
and Females. To obtain 95% Confidence Intervals for the Male and Female Friday the 13th effects, first
obtain 95% CIs for $; and 81 + (3, then exponentiate the endpoints.

8, : B@L%SF{&} Bi+ B : Bl+Bgi1.96\/17{5}}+V{Bg}+2cév{ﬁl,33}

The R Program and Output are given below. The Friday the 13th effect is not significant for Males, as
the 95% CI for their Risk Ratio (0.8442,1.3110) contains 1. For Females, there is evidence of a Friday the
13th effect, as the 95% CI for their Risk Ratio (1.1793,2.2096) is entirely above 1.

### Program

Y.13 <- c(41,82,789,2423)

t.13 <- c(86.5,79.9,2687.1,2483.7)
X0.13 <- c(1,1,1,1)

X1.13 <- ¢(1,1,0,0)

X2.13 <- ¢(1,0,1,0)

X3.13 <- ¢(1,0,0,0)

f13.mod1l <- glm(Y.13 ~ X1.13 + X2.13 + X3.13, offset=log(t.13),
family=poisson("log"))

summary (£13.mod1)

vcov(£13.mod1)
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Group i Y t; X X2 Xiz  log ()\Z) TDR; = \;
Friday 13th/Female 1 41 86.5 1 1 1 -0.7466 0.4740
Friday 13th/Male 2 82 79.9 1 0 0 0.0259 1.0263
Other Friday/Female 3 789  2687.1 0 1 0 -1.2255 0.2936
Other Friday/Male 4 2423 2483.7 0 0 0 -0.0247 0.9756

Table 9.4: Friday the 13th and Gender for Finland Traffic Deaths

betal.hat <- coef(f13.mod1) [2]

se.betal.hat <- sqrt(vcov(f13.mod1)[2,2])

betal3.hat <- betal.hat + coef(f13.modl) [4]

se.betal3.hat <- sqrt(vcov(f13.mod1) [2,2]+vcov(£13.modl) [4,4]+
2xvcov(f13.mod1) [2,4])

11.betal <- betal.hat - 1.96%se.betal.hat

ul.betal <- betal.hat + 1.96*se.betal.hat

11.betal3 <- betal3.hat - 1.96%*se.betal3.hat

ul.betal3 <- betal3.hat + 1.96%*se.betal3.hat

f13.eff.m <- cbind(betal.hat,se.betal.hat,ll.betal,ul.betal,
exp(betal.hat) ,exp(ll.betal) ,exp(ul.betal))

f13.eff.f <- cbind(betal3.hat,se.betal3.hat,11l.betal3,ul.betal3,
exp(betal3.hat),exp(1ll.betalld),exp(ul.betalld))

f13.eff <- rbind(f13.eff.m,f13.eff.f)

rownames (f13.eff) <- c("Males","Females")

colnames(f13.eff) <- c("Estimate","Std Err","LL","UL",

"Risk Ratio", "LL RR", "UL RR")
round(f13.eff,4)

### Output
> summary(£13.mod1)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -0.02474 0.02032 -1.218 0.2232
X1.13 0.05069 0.11228 0.451 0.6517
X2.13 -1.20071 0.04099 -29.293 <2e-16 **x*
X3.13 0.42819 0.19662 2.189 0.0286 *

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 1.0258e+03 on 3 degrees of freedom

Residual deviance: 1.8230e-13 on O degrees of freedom

AIC: 37.942

Number of Fisher Scoring iteratiomns: 2

> vcov(£f13.mod1)

(Intercept) X1.13 X2.13 X3.13
(Intercept) 0.0004127115 -0.0004127115 -0.0004127115 0.0004127115
X1.13 -0.0004127115 0.0126078244 0.0004127115 -0.0126078244
X2.13 -0.0004127115 0.0004127115 0.0016801386 -0.0016801386
X3.13 0.0004127115 -0.0126078244 -0.0016801386 0.0382654231

> round(f13.eff,4)

Estimate Std Err LL UL Risk Ratio LL RR UL RR
Males 0.0507 0.1123 -0.1694 0.2708 1.0520 0.8442 1.3110
Females 0.4789 0.1602 0.1649 0.7928 1.6143 1.1793 2.2096

273
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9.4 Negative Binomial Regression

An alternative to the Poisson Regression model for count data is the Negative Binomial Regression model.
This distribution has 2 parameters, and allows for the variance to exceed the mean. The model arises
as a Poisson distribution with parameters A that follow a Gamma distribution (see e.g. Agresti (2002)
and Cameron and Trivedi (2010)). Suppose that Y is Poisson with mean Av, where v is distributed

Gamma(a~!, o), with mean 1, and variance a. Then we have the following results.
e M ()Y 1 a-lo1 v
p(yl)\,V):T y=0,1,... p(Vla):WV eXp{—E} v>0

exp{—v(A+al)} AvpyFai—1
F'y+ )T (at)ao!

= p (YA v,a)=

Y /OO —1_ v
= A a) = — vt “lexpd ————— b dv =
PO = T @ e Jy p{ (/\+a1)1}

o T(y+a) [(raty ] - Eke) ( A >y< ot )

Py+ )T (at)ax PTy+ )T (e ) \N+a ! Atat

That is, given A and «, Y is distributed Negative Binomial(r, p), with the following parameters and
mean and variance (see e.g. Casella and Berger (1990)).

— 2
=\ V{Y}:T“p2 P14 aa)=at 2

-1
-1 o r(1—p)
r=a p:7A+a*1 E{Y} =

The model can be parameterized with a log link function, with log(\) being linearly related to a set of
predictors, and with a* = In (a~!). This way both estimates A and a~! will be positive. The likelihood and
log-likelihood functions are given below for data yi, ..., y, with means A1, ..., Ay.

—1

I T (yl + Ofl) i i a~t “ B
T+ D () \ N +at Ai+a~t N
(yl 4 O[il _ 1) . ~oFlF (O[il) )\1 Yi 0171 a~ ! B
F(ail)r(yi + 1) A +a-l A +a-l o

—1

(i to ' —1)-—a”! Ai Yat N
yi! A +a-l A +a-l o

* *
a
*

(yl + ea* o 1) o ea* )\l Yi ea* e? _ 31:—01 (ea* +]) eXp{Xi//B} Yi ea e
;! Ai +e? Ai + e’ yi! exp{xi'B} +e*’ exp{xi'B} + e’
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yi—1

l,=InL; = Z In (ea* + j) —1In (y;!) + v [Xi’ﬁ —In (exp{x{,@} + ea*)} + e [a* —In (exp{xi’,B} + e“*)}
=0

Taking the necessary derivatives of [; with respect to a* and 8, we obtain the following results.

1

i _ o ( yi — exp {xi'8} )
op exp {xi'B} + e

i _ o @’z’:l (R o TR (SG*HX {x"ﬁ})
da* = e +j e + exp {xi’'B} D%
0%l ( o ) exp {a* + xi' B} xixi’
R ;
0B0p’ (e + exp {xi'B})*
i—1 . a* a*
%L oo yz: J ra 42— 2e" 4y n (yi —exp{xi'B})e* In (ea* + exp {X'/B})
d (a*)* = (e +5)° e +exp{xi'B}  (e*” +exp {xi/8})

ol * X yi —exp {xi'B} i

To obtain Newton-Raphson estimates of a* and 3, we construct the following matrix (Ggq+) and vector
(9Ba~)-

9 R T
Ja*x = 8a* gﬁ - ; 86 gﬁa* - |: Jar :|

=1

" 92 "L 9%, o | Gw Gy
Cloa = — G = ; oBog’ Goa = 2 0pB0a* Gbar = [ Gy, Gaa

(2]
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To obtain starting values for the Newton-Raphson algorithm, first set a* = 0, which corresponds to
a~! =1, and obtain an estimate of 3. Then set 3 to this estimate and obtain an estimate of a*. Then use
these for the process of estimating 6.

- [be]71 95 a*® = gx(=1) _ [Gaa]il Jar 0

Once the maximum likelihood estimate of @ is obtained, its estimated variance-covariance matrix is
obtained as follows.

-1

o ( 021 ol Ew  Epq
0 =—|EF{y —— EFd— 7 =

it [ {8080’}’9_9“] laoow = L2t

. _ [ exp {a* +Xi//3} 2 ’ T exp {a” J’_Xi/IB}
where: Ey, = Z - (W xixi | = —X'AX A = diag exp{xi/B} + e

=1 "
Eba - Op/
n —yifl ] ea*
Foo = e ——+a"+1l—-———————In (ea* + exp {X/,B})

(o X'WX)™' o0,
= V{OML}: [( o ) _ha ” ]
p/ Eaa OZON[L

A conservative test of whether the Poisson Regression is appropriate (Hp) versus the Negative Binomial
Regression is appropriate (H,4) compares -2(log-likelihood) for the 2 models, and compares the difference
with the chi-square distribution with 1 degree of freedom.

TS:X2%,=—2[InLp —InLyg] RR: X}, > Xon

obs

Example: NASCAR Lead Changes - 1972-1979 Seasons

In the same NASCAR races described in Crash data example, Lead Changes are also measured. In
racing, lead changes typically occur much more frequently than crashes, due to teams having to make pit
stops for fuel and tire changes. We first fit the Negative Binomial Regression model relating the number of
lead changes (V') to the 3 predictors: numbers of drivers, track length, and laps based on direct computations
of the matrix form. Then we fit and compare the Poisson and the Negative Binomial models based on the
glm and glm.nb functions in R, where glm.nb is contained in the M ASS package.

R Program
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racel <- read.fwf("http://www.stat.ufl.edu/"winner/data/race7579.dat", width=c(8,8,8,8,8,8,8,8,8,12,40),

col.names=c(’srace’, ’yr’, ’yrace’, ’n.drivers’, ’trklen’, ’laps’, ’roadtrk’,
’cautions’, ’leadchng’, ’trkid’, ’track’))

race <- data.frame(n.drivers=racel$n.drivers, trklen=racel$trklen, laps=racel$laps,

cautions=racel$cautions, leadchng = racel$leadchng)
attach(race)

### Direct Computations

n.lc <- length(leadchng)

X <- cbind(rep(1,n.1lc), n.drivers, trklen, laps)
Y <- leadchng

### Preliminary estimate of Beta

a.st <- 0

beta.o0ld0 <- matrix(c(1, 0, 0, 0),ncol=1)

beta.diff0 <- 1000

num.iter.b0 <- O

while (beta.diff0 >= 0.000001) {

num.iter.b0 <- num.iter.b0 + 1

mu0 <- X %*7% beta.oldO

g.b01 <- (exp(a.st) * (leadchng - exp(mu0))) / (exp(a.st) + exp(mu0))

g.b0 <- t(X) %*J g.bo1

G.bb01 <- -(exp(a.st) + leadchng)*exp(a.st + mu0)/
((exp(a.st) + exp(mu0))~2)

G.bb02 <- matrix(rep(0,n.1lc~2),ncol=n.1lc)

for (i in 1:n.1c) G.bb02[i,i] <- G.bb0O1[i]

G.bb0 <- t(X) %% G.bb02 %%} X

beta.new0 <- beta.old0 - solve(G.bb0) %*% g.bO0

# print(beta.new0)

beta.diff0 <- t(beta.new0 - beta.o0ld0) %*% (beta.new0 - beta.oldO)

beta.o0ld0 <- beta.newO

}

beta.new0

num.iter.bO

### Preliminary estimate of ax
ast.old0<- 0
# beta.a <- matrix(c(1, 0, 0, 0),ncol=1)
beta.a <- beta.new0
ast.diff0 <- 1000
num.iter.ast0 <- 0
while (ast.diff0 >= 0.000001) {
num.iter.astO <- num.iter.astO + 1
mu0.a <- X %*% beta.a
g.a0l1 <- rep(0,n.1lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) g.a01[i] <- 0
else for (il in 0:(leadchngl[i]-1)) g.a01[i] <- g.a01[i] + 1/(exp(ast.o0ld0)+il)
}
g.a02 <- exp(ast.old0)*(g.a01l + ast.o0ld0 + 1 - ((exp(ast.o0ld0)+leadchng) /
(exp(ast.o0ld0) + exp(mu0.a))) - log(exp(ast.old0) + exp(mu0.a)))
g.a0 <- sum(g.a02)
G.aa01 <- rep(0O,n.1lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) G.aa01[i] <- 0
else for (il in 0:(leadchngl[i]-1)) G.aa01[i] <- G.aaO01[i] +
i1/ ((exp(ast.o0ld0)+il)"2)
}
G.aa02 <- exp(ast.o0ld0)*(G.aa01l + ast.old0 + 2 - ((2xexp(ast.old0)+leadchng) /
(exp(ast.o0ld0) + exp(mu0.a))) - log(exp(ast.old0) + exp(mu0.a)) +
((leadchng-exp(mu0.a))*exp(ast.01ld0))/((exp(ast.old0) + exp(mu0.a))~2) )
G.aa0 <- sum(G.aa02)
ast.new0 <- ast.old0 - g.a0/G.aal
ast.diff0 <- t(ast.newO - ast.o0ld0) %*% (ast.newO - ast.old0)
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ast.o0ld0 <- ast.newO
print(ast.new0)

}

ast.newO
num.iter.astO

##FHHHHH A #H##E Combined estimation of theta
beta.old <- beta.new0
ast.old <- ast.newO
theta.old <- rbind(beta.old, ast.old)
theta.diff <- 1000
num.iter.theta <- 0
while (theta.diff >= .000000001) {
num.iter.theta <- num.iter.theta + 1
mu <- X %%} beta.old
# print(mu)
g.bl <- (exp(ast.old) * (leadchng - exp(mu))) / (exp(ast.old) + exp(mu))
g.b <= t(X) %*% g.bl
G.bbl <- -(exp(ast.old) + leadchng)*exp(ast.old + mu)/
((exp(ast.old) + exp(mu))~2)
G.bb2 <- matrix(rep(0,n.1lc"2),ncol=n.1lc)
for (i in 1:n.1c) G.bb2[i,i] <- G.bbi[i]
G.bb <= t(X) %*% G.bb2 %*% X
g.al <- rep(0,n.lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) g.al[i] <- 0
else for (il in 0:(leadchngl[i]-1)) g.al[i] <- g.ail[i] + 1/(exp(ast.old)+il)
}
g.a2 <- exp(ast.old)*(g.al + ast.old + 1 - ((exp(ast.old)+leadchng) /
(exp(ast.old) + exp(mu))) - log(exp(ast.old) + exp(mu)))
g.a <- sum(g.a2)
G.aal <- rep(0,n.1lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) G.aal[i] <- O
else for (il in 0:(leadchngl[i]-1)) G.aal[i] <- G.aal[i] + i1/((exp(ast.old)+il)"2)
}

G.aa2 <- exp(ast.old)*(G.aal + ast.old + 2 - ((2*exp(ast.old)+leadchng) /
(exp(ast.old) + exp(mu))) - log(exp(ast.old) + exp(mu)) +
((leadchng-exp(mu) )*exp(ast.old))/((exp(ast.old) + exp(mu))~2) )

.aa <- sum(G.aa2)

.bal <- exp(ast.old + mu)*(leadchng - exp(mu)) / ((exp(ast.old) + exp(mu))"2)
.ba <= t(X) %*% G.bal

.theta <- rbind( cbind(G.bb,G.ba) , cbind(t(G.ba),G.aa) )

.theta <- rbind(g.b , g.a)

theta.new <- theta.old - solve(G.theta) %*% g.theta

theta.diff <- t(theta.new - theta.old) %#*), (theta.new - theta.old)
theta.old <- theta.new

# print(theta.old)

beta.old <- theta.old[1:ncol(X)]

ast.old <- theta.old[ncol(X)+1]

# print(beta.old)

# print(ast.old)

}

theta.new

num.iter.theta

QO

o

### Plug in ML estimates for Variance and Standard Error Estimates
theta.old <- theta.new

# print(theta.old)

beta.old <- theta.old[1:ncol(X)]

ast.old <- theta.old[ncol(X)+1]

mu <- X %*% beta.old

# print(mu)

g.bl <- (exp(ast.old) * (leadchng - exp(mu))) / (exp(ast.old) + exp(mu))
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g.b <= t(X) %*% g.bl
G.bbl <- -(exp(ast.old) + leadchng)*exp(ast.old + mu)/
((exp(ast.old) + exp(mu))~2)
G.bb2 <- matrix(rep(0,n.1lc"2),ncol=n.1lc)
for (i in 1:n.1c) G.bb2[i,i] <- G.bbi[i]
G.bb <= t(X) %*% G.bb2 %*% X
g.al <- rep(0,n.lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) g.al[i] <- 0
else for (il in 0:(leadchngl[i]-1)) g.al[i] <- g.ail[i] + 1/(exp(ast.old)+il)
}
g.a2 <- exp(ast.old)*(g.al + ast.old + 1 - ((exp(ast.old)+leadchng) /
(exp(ast.old) + exp(mu))) - log(exp(ast.old) + exp(mu)))
g.a <- sum(g.a2)
G.aal <- rep(0,n.1lc)
for (i in 1:n.1lc) {
if (leadchng[i] == 0) G.aal[i] <- O
else for (il in 0:(leadchngl[i]-1)) G.aal[i] <- G.aal[i] + i1/((exp(ast.old)+il)"2)
}
G.aa2 <- exp(ast.old)*(G.aal + ast.old + 2 - ((2*exp(ast.old)+leadchng) /
(exp(ast.old) + exp(mu))) - log(exp(ast.old) + exp(mu)) +
((leadchng-exp(mu) )*exp(ast.old))/((exp(ast.old) + exp(mu))~2) )
.aa <- sum(G.aa2)
.bal <- exp(ast.old + mu)*(leadchng - exp(mu)) / ((exp(ast.old) + exp(mu))"2)
.ba <- t(X) %*% G.bal
.theta <- rbind( cbind(G.bb,G.ba) , cbind(t(G.ba),G.aa) )
.theta <- rbind(g.b , g.a)

| Qoo

d21.bb.1 <~ -(exp(ast.old + mu))/(exp(ast.old)+exp(mu))

d21.bb.2 <- matrix(rep(0,n.1lc"2),ncol=n.1lc)

for (i in 1:n.1lc) d21.bb.2[i,i] <- d21.bb.1[i]

d21.bb <= t(X) %} d21.bb.2 %x) X

sqrt(diag(solve(-d21.bb)))

d21.bal <- rep(0,n.1lc)

d21l.ba <- t(X) %*% d2l.bal

d21l.aal <- exp(ast.old)*(G.aal + ast.old + 1 - (exp(ast.old) /
(exp(ast.old) + exp(mu))) - log(exp(ast.old) + exp(mu)))

d2l.aa <- sum(d2l.aal)

d21.tt <- rbind( cbind(d21l.bb , d21.ba) , cbind(t(d2l.ba), d21.aa) )

SE.nb <- sqrt(diag(solve(-d21.tt)))
SE.beta.nb <- SE.nb[1:ncol(X)]

z.beta.nb <- beta.old / SE.beta.nb
pv.beta.nb <- 2*(l-pnorm(abs(z.beta.nb)))

nb.est <- cbind(beta.old, SE.beta.nb, z.beta.nb, pv.beta.nb,
beta.old - 1.96 *x SE.beta.nb,

beta.old + 1.96 * SE.beta.nb)

colnames(nb.est) <- c("Estimate","NB SE","NB z","Pr(>|z|)","LL","UL")
print(round(nb.est,6))

alpha.est <- cbind(ast.old, exp(ast.old))
colnames(alpha.est) <- c("log(alpha~(-1))", "alpha~(-1)")
alpha.est

R Output

> beta.new0
[,1]
-0.525373491
n.drivers 0.062055478
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trklen 0.492484225
laps 0.001656048
> num.iter.b0

[1]1 6

> ast.newO

[1] 1.657059

> num.iter.astO
[1] 4

> theta.new
[,1]

-0.503775021
n.drivers 0.059689981
trklen 0.515298326
laps 0.001742154
ast.old 1.657923341
> num.iter.theta
[11 3

> print(round(nb.est,6))
Estimate NB SE NB z Pr(>lzl) LL UL
-0.503775 0.448626 -1.122928 0.261468 -1.383083 0.375533
n.drivers 0.059690 0.013602 4.388283 0.000011 0.033030 0.086350
trklen 0.515298 0.178934 2.879831 0.003979 0.164589 0.866008
laps 0.001742 0.000867 2.009160 0.044520 0.000043 0.003442

> alpha.est
log(alpha~(-1)) alpha~(-1)
[1,] 1.657923 5.2484

The model fit based on the glm (Poisson and quasipoisson) and glm.nb (Negative Binomial) functions
is given below, as well as a test between the the Poisson and Negative Binomial models.

### Program

racel <- read.fwf ("http://www.stat.ufl.edu/"winner/data/race7579.dat", width=c(8,8,8,8,8,8,8,8,8,12,40),
col.names=c(’srace’, ’yr’, ’yrace’, ’n.drivers’, ’trklen’, ’laps’, ’roadtrk’,

’cautions’, ’leadchng’, ’trkid’, ’track’))
race <- data.frame(n.drivers=racel$n.drivers, trklen=racel$trklen, laps=racel$laps,
cautions=racel$cautions, leadchng = racel$leadchng)
attach(race)

race.mod <- glm(leadchng ~ n.drivers + trklen + laps, family=poisson("log"))
summary (race.mod)

anova(race.mod, test="Chisq")

muhat <- predict(race.mod, type="response")

(pearson.x2 <- sum((leadchng - muhat)"2/muhat))

(pearson.x2a <- sum(resid(race.mod,type="pearson")"2))

phi <- pearson.x2a / df.residual(race.mod)

round (c(phi,sqrt(phi)),4)

qchisq(.95,df.residual (race.mod))

deviance(race.mod)

race.modl <- glm(leadchng ~ n.drivers + trklen + laps, family=quasipoisson)
summary (race.modl)

library (MASS)
race.mod2 <- glm.nb(leadchng ~ n.drivers + trklen + laps)
summary (race.mod2)
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X2.p.nb <- -2%(loglLik(race.mod) - logLik(race.mod2))
X2.p.nb

### Output

> summary (race.mod)
Call:

glm(formula = leadchng ~ n.drivers + trklen + laps, family = poisson("log"))

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.490253 0.217796 -2.251  0.0244 *
n.drivers 0.051612 0.005679 9.089 < 2e-16 ***
trklen 0.610414 0.082949 7.359 1.85e-13 *xxx
laps 0.002138 0.000415 5.152 2.58e-07 *xx

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1388.59 on 150 degrees of freedom
Residual deviance: 687.61 on 147 degrees of freedom
AIC: 1395.2

> anova(race.mod, test="Chisq")
Analysis of Deviance Table
Model: poisson, link: log
Response: leadchng
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 150 1388.59

n.drivers 1  627.31 149 761.28 < 2.2e-16 **x*
trklen 1 46.94 148 714.34 7.308e-12 **x*
laps 1 26.73 147 687.61 2.343e-07 ***

> (pearson.x2 <- sum((leadchng - muhat)"2/muhat))

[1] 655.6059

> (pearson.x2a <- sum(resid(race.mod,type="pearson")"2))
[1] 655.6059

> phi <- pearson.x2a / df.residual(race.mod)

> round(c(phi,sqrt(phi)),4)

[1] 4.4599 2.1118

> summary (race.modl)
Call:

glm(formula = leadchng ~ n.drivers + trklen + laps, family = quasipoisson)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.4902529 0.4599522 -1.066 0.28823
n.drivers 0.0516117 0.0119924 4.304 3.05e-05 *xx
trklen 0.6104140 0.1751757 3.485 0.00065 *xx
laps 0.0021381 0.0008764 2.440 0.01590 =*

(Dispersion parameter for quasipoisson family taken to be 4.459904)

Null deviance: 1388.59 on 150 degrees of freedom
Residual deviance: 687.61 on 147 degrees of freedom
AIC: NA

> summary (race.mod2)
Call:

glm.nb(formula = leadchng ~ n.drivers + trklen + laps, init.theta

link = log)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.5037750 0.4486264 -1.123 0.26147
n.drivers 0.0596900 0.0136021 4.388 1.14e-05 *xx
trklen 0.5152983 0.1789336 2.880 0.00398 **
laps 0.0017422 0.0008671 2.009 0.04452 =*

5.248400381,
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(Dispersion parameter for Negative Binomial(5.2484) family taken to be 1)
Null deviance: 308.06 on 150 degrees of freedom

Residual deviance: 162.80 on 147 degrees of freedom

AIC: 1098.1

Number of Fisher Scoring iteratioms: 1
Theta: 5.248

Std. Err.: 0.809
2 x log-likelihood: -1088.054
>
> X2.p.nb <- -2*%(logLik(race.mod) - logLik(race.mod2))
> X2.p.nb
’log Lik.’ 299.1397

### Plot of mean-variance for gp and nb models

pred.nb <- predict(race.mod2,type="response")

grp.lc <- cut(pred.nb, breaks=quantile(pred.nb,seq(0,100,100/10)/100))
mean.lc <- tapply(leadchng,grp.lc,mean)

var.lc <- tapply(leadchng,grp.lc,var)

plot(mean.lc, var.lc, xlab="Mean", ylab="Variance",
main="Mean-Variance Relationship - Lead Change Data")

x.1lc <- seq(2,50.1)

lines(x.lc, phix*x.lc, 1lty=2)

lines(x.lc, x.lc+x.lc"2/race.mod2$theta, 1ty=1)
legend("topleft",lty=c(2,1),legend=c("quasipoisson", "Negative Binomial"))

Clearly the Negative Binomial fits better than the Poisson (X2 ,=299.1, df=1). The relationship between
the variance and the mean for the quasipoisson and the Negative Binomial models are obtained as follow.

~2 ~2
quasipoisson: V {ji;} = ¢fi; = 4.46/i; Negative Binomial: V {ji;} = fi; + Hi i+ 5/25

= fi; +0.1942
7 fri +0.19/;

Figure 9.2 is based on 10 “groups” of races and plots the predicted and observed variances versus means
for the two models. It is not clear whether one model is better than the other based on the plot.

9.5 Gamma Regression

When data are purely positive, and are right-skewed, they are frequently modeled as following a gamma
distribution. Regression models can be fit utilizing this distribution, with potential link functions being the
identity, inverse, or log. That is, we could model the mean as a function of the predictors as follow.

1
G(p)=p=0+bXi+ - +5X, g(p= m g3 (1) = log (u)
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Mean-Variance Relationship - Lead Change Data
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Figure 9.2: Variance versus Mean - Grouped Lead Change Race Data

The density function for the Gamma family can be parameterized in various ways. The parameterization
with E{Y'} = af is used here.

1

f(yi|a,5)—Wyia1€Xp{—%} ¥ >0; «o,8>0

Letting p = af, ¢ = 1/, and 8 = u¢, the following parameterization is obtained for the likelihood
function for observation 1.

g (i) = Po+ 1 X+ + BpXip =xi' B

1 _ Yi 1 Yi 1/¢ { Yi }
L;=—— 4! == — —
T (a) B Yi exp{ B } y;T (%) (,ui ) exp s

9.5.1 Estimating Model Parameters

The likelihood and log-likelihood under the inverse link function, where u; = 1/x;'3 are given below.
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1 yixi'B\ "¢ {_yixi/ﬁ}
L”yir()( 27) e

=tz =) ~1n (T (5 ) ) + 5 o) + 10 /) ~ ()] - 2252

Taking the necessary derivatives of I; with respect to 3, we obtain the following results.

al, 1 1 17 1 2oL 1w 1
e e e R LR S B Y M R

B~ ¢ |x/B B
d%1; 11 , AL I~ 1 , 1, ) 1
—_— = —— ——=XiXj G = ;= — 7 7ii:——XWX W:d
8/@8/6/ ¢ (Xi/B)QX X = (IB) ; 8,38,6 ¢ gt (Xi/B)QX X ¢ 1ag{ (Xi/B)Q

The iterative procedure for the Newton-Raphson algorithm goes as follows.
~New -Old -0ld\1™! /-0l
RN U G G

For starting values, set 5y =--- =8, =0and Gy =1 /Y. Then the procedure is iterated to convergence
with the ML estimate and its estimated variance-covariance matrix.

1Y )
A V{B}—[E{—G<ﬁ>}|ﬁ_3 =6 (X'WX) ™!

The likelihood and log-likelihood under the log link, where u; = exp {x;i’3} is given below.

1 Ui 1/¢ { Ui } 1 (y exp{—xi/ﬁ}>1/¢ { Yi exp{—xi/ﬂ}}
L; = — = s Sl Nadb
T (%) (eXp {Xi/ﬁ}¢> P o (/B) ¢ y,T (%) ) exp "

li=InL; = —In(y) —In (F (%)) + % lIn (y;) — xi'8 — In ()] — LD ;—Xi’ﬁ}
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Taking the necessary derivatives of [; with respect to 3, we obtain the following results.

O Lpen(xB)-Ux = a(8) =23 e (—x/B} - 1),

8/6 ¢ K3 1 1 ¢ gt K3 1 1
ﬂ*—l ;exp {—x;' B} xix;’ = G(B) = Z exp {—xi'B} xixi’ *——X WX
8/68/6/ ¢ yl 1 131 ¢ yl 1 1 ¢

1 n
W —ding (o {(-xB))  E{-G() =] Zm exp (=B} mixt = 53 xix — XX
The iterative procedure for the Newton-Raphson algorithm goes as follows.
-New -Old -0ld\]~" (-0l
=8 [o (87)] (57
For starting values, set f; = --- = 3, = 0and 3y = In (7) Then the procedure is iterated to convergence
with the ML estimate and its estimated variance-covariance matrix.
In (7)
~0 0 A A -1 1
-] {8} = |ECoON 54 —oxx)
: B-A
0

The parameter ¢ can be estimated by the method of moments as follows.

Y; Y — s
E{Yi} = = E{;}_l = E{ u_”}_o

V(Y=o = V{#X} — ¢

Y —m\® 2 1 & yi—ﬂz‘>2
E _ = =
- {( Hi ) } i i ”—p’; i

For the inverse and log links we have the following estimated means.

3
<
—

=
|
IS
——
Il
<

4

1 N
Inverse Link: ji; = 3 Log Link: [i; = exp {x{,@}
Xi




286 CHAPTER 9. ALTERNATIVE REGRESSION MODELS

9.5.2 Inferences for Model Parameters and Goodness of Fit Test

Wald tests for the individual regression coefficients are obtained by obtaining the ratio between the point
estimates and their estimated standard errors (z-tests), or equivalently the square of the ratio (x?-tests).

Hy: B8, =0 Hy: B #0 TS:zobS:# RR : |2ops| > 2a)2
£ {0}

Hy:Br=0 Ha:Be#0 TS:X2%, = # RR: X2, > X2,
{0}

Confidence Intervals for the individual regression coeflicients can be obtained as follow.
(1 — @)100% Confidence Interval for fy : B £ za/QSF {Bk}

To obtain the Likelihood Ratio test for comparison of two nested models, first define the Deviance and
Scaled Deviance for a given model. The following results are obtained.

Deviance = DEV = —22 [ ( ) Y A_'ul]
,Uq Hi

1=1

Scaled Deviance = — 2[l ({1, ¢, y) — I (y, ¢, v)] where:

L(j, d,y) = Zyl nln( ( )) Zm i) Z ) — nln(¢

[y, ¢, y) Zyl nln( (¢>>+% gln(yi)—zngl ) — nln(¢
S )y b = & lZm +§mw

ew
s

&IH
RS

s s
HM: HM:
— —

o]
3 o] -5
sesu] s B > Tﬂ

To test Hy : Bxy1-..0p =0, construct the full model with all p predictors, the reduced model with k < p
predictors, and compute the deviance for each model: DEVr and DEVER. Then the test is conducted as

follows.

1= 1

DEVR — DEV,
Ho:fp1 Bp=0  TS: X5, = # RR: X5 > Xyt  P=P{Xjp-r > X}
F

To test whether the current model is correct, the test statistic is obtained by dividing the Deviance of
the model by ¢ and comparing that with the chi-square distribution with n — p’ degrees of freedom.
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Figure 9.3: Plot of Inverse and Log MPH by Age by Gender - 2015 NAPA Marathon

TS: Xéor = 3 RR: X¢op > Xam-p P =P{xa_p > Xéor}

Example: Napa Marathon Velocities - 2015

The Napa Valley marathon in 2015 had 977 Males and 905 Females complete the 26.2 mile race. Consider
a model relating runners’ speeds in miles per hour (Y=mph) to Gender (X; = 1 if Male, 0 if Female), Age
(X2, in Years), and an interaction term (X; Xs, allowing for different slopes with respect to age for Males
and Females. Figure 9.3 plots the reciprocal of mph and the log of mph separately for Males and Females.
Both the inverse link and log link models are fit in matrix form, then using the glm function in R. Note
that the “default” link for the gamma regression model in the glm function is the inverse link.

The model with the Inverse link is fit first the R Program and Output are given below.

napaf2015 <- read.csv("http://www.stat.ufl.edu/ winner/data/napa_marathon_fm2015.csv",
header=T)

attach(napaf2015) ; names(napaf2015)

#### Matrix form - Inverse Link

n.napa <- length(mph)
Y <- mph
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X0 <- rep(1l,n.napa)

male <- rep(0,n.napa)

for (i in 1:n.napa) {

if (Gender[i] == "M") male[i] <- 1
}

Age.male <- Age*male

X <- cbind(X0,Age,male,Age.male)
beta.old <- matrix(rep(0,ncol(X)),ncol=1)
beta.old[1] <- 1/mean(Y)
beta.diff <- 10000

num.iter <- 0

while (beta.diff > 0.000001) {

num.iter <- num.iter + 1

mu <- 1/(X%*%beta.old)

g_beta <- t(X) %*% (mu - Y)

W <- matrix(rep(0,n.napa”2),ncol=n.napa)

for (i in 1:n.napa) W[i,i] <- mu[i]"2

G_beta <- -t(X) %*% W %*% X

beta.new <- beta.old - solve(G_beta) %*J g_beta
beta.diff <- t(beta.new-beta.old) %*J (beta.new-beta.old)
beta.old <- beta.new

}

num.iter

beta.new

beta.old <- beta.new

mu <- 1/(X%*%beta.old)

phi.hat <- (1/(n.napa))*(sum(((Y-mu) /mu) ~2))

W <- matrix(rep(0,n.napa”2),ncol=n.napa)

for (i in 1:n.napa) W[i,i] <- mu[i]"2

V_beta <- phi.hat * solve(t(X) %x% W %*% X)

SE_beta <- sqrt(diag(V_beta))

z_beta <- beta.new/SE_beta

p_z_beta <- 2*(1-pnorm(abs(z_beta)))

beta.outl <- cbind(beta.new, SE_beta, z_beta, p_z_beta)
colnames(beta.outl) <- c("Estimate", "Std. Error", "z", "Pr(>lzl|)")
round(beta.out1,6)

phi.hat
deviance <- -2*sum(log(Y/mu) - (Y-mu)/mu)
deviance

mu0 <- rep(mean(Y),n.napa)

deviance.0 <- -2*sum(log(Y/mu0) - (Y-muO)/mu0)
deviance.O

X2.0bs <- (deviance.O-deviance)/phi.hat
p-X2.0bs <- 1 - pchisq(X2.0bs,3)

LR.outl <- cbind(X2.obs, p.X2.o0bs)
colnames(LR.out1) <- c("LR Stat", "P(>LR)")
LR.out1

X2.GOF <- deviance/phi.hat

p.-X2.GOF <- 1-pchisq(X2.GOF,n.napa-ncol(X))
GOF.outl <- cbind(X2.GOF, p.X2.GOF)

colnames (GOF.out1) <- c("GOF Stat", "P(>GOF)")

GOF.out1
### Output
> round(beta.outl,6)

Estimate Std. Error z Pr(>lzl)
X0 0.157079 0.003707 42.376417 0.000000
Age 0.000302 0.000093 3.264476 0.001097
male -0.022808 0.005062 -4.505580 0.000007

Age.male 0.000175 0.000121 1.444146 0.148698
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> phi.hat

[1] 0.02872085

> deviance <- -2*sum(log(Y/mu) - (Y-mu)/mu)
> deviance

[1] 53.6987

>

> deviance.O

[1] 58.58576

> LR.outl

LR Stat P(>LR)
[1,] 170.1571 0
>
> GOF.out1l

GOF Stat P (>GOF)
[1,] 1869.677 0.5497886

In terms of the individual regression coefficients, Age and male are highly significant, while the interaction
term is not significant. An additive model with Age and male appears to be appropriate, and will be fit with
the glm function. The Likelihood ratio test of whether any of the 3 predictors are related to inverse mph,
yields a a chi-square statistic of 170.1571 with 3 degrees of freedom, with a p-value of 0. The Goodness of
Fit test (X2 = 1869.677, df=1882-4=1878, p=.5498) does not reject the hypothesis that the gamma model
is correct.

The model fit on the log link function is given below. It gives very similar conclusions to the inverse link
model.

#### Matrix form - Log Link

n.napa <- length(mph)

Y <- mph

X0 <- rep(1l,n.napa)

male <- rep(0,n.napa)

for (i in 1:n.napa) {

if (Gender[i] == "M") male[i] <- 1
}

Age.male <- Age*male

X <- cbind(X0,Age,male,Age.male)
beta.old <- matrix(rep(0,ncol(X)),ncol=1)
beta.old[1] <- log(mean(Y))
beta.diff <- 10000

num.iter <- 0

while (beta.diff > 0.000001) {

num.iter <- num.iter + 1

mu <- exp(X%*%beta.old)

g_beta <- t(X) %*} (Y/mu - XO)

W <- matrix(rep(0,n.napa”2),ncol=n.napa)

for (i in 1:n.napa) W[i,i] <- Y[i]/mu[i]

G_beta <- -t(X) %*% W %x% X

beta.new <- beta.old - solve(G_beta) %*J, g_beta
beta.diff <- t(beta.new-beta.old) %*J (beta.new-beta.old)
beta.old <- beta.new

}

num.iter

beta.new

beta.old <- beta.new

mu <- exp(X%*%beta.old)

phi.hat <- (1/(n.napa-ncol(X)))* (sum(((Y-mu)/mu) ~2))
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W <- matrix(rep(0,n.napa”2),ncol=n.napa)

for (i in 1:n.napa) W[i,i] <- mu[i]"2

V_beta <- phi.hat * solve(t(X) %*% X)

SE_beta <- sqrt(diag(V_beta))

z_beta <- beta.new/SE_beta

p_z_beta <- 2*(1-pnorm(abs(z_beta)))

beta.out2 <- cbind(beta.new, SE_beta, z_beta, p_z_beta)

colnames (beta.out2) <- c("Estimate", "Std. Error", "z", "Pr(>lzl|)")
round(beta.out2,6)

phi.hat
deviance <- -2*sum(log(Y/mu) - (Y-mu)/mu)
deviance

mu0 <- rep(mean(Y),n.napa)

deviance.0 <- -2*sum(log(Y/mu0) - (Y-muO)/mu0)
deviance.O

X2.0bs <- (deviance.O-deviance)/phi.hat
p-X2.0bs <- 1 - pchisq(X2.0bs,3)

LR.out2 <- cbind(X2.obs, p.X2.obs)
colnames(LR.out2) <- c("LR Stat", "P(>LR)")
LR.out2

X2.GOF <- deviance/phi.hat

p.X2.GOF <- 1-pchisq(X2.GOF,n.napa-ncol(X))
GOF.out2 <- cbind(X2.GOF, p.X2.GOF)

colnames (GOF.out2) <- c("GOF Stat", "P(>GOF)")

GOF.out?2
### Output
> round(beta.out2,6)

Estimate Std. Error z Pr(>lzl)
X0 1.849418 0.022058 83.843194 0.000000
Age -0.001812 0.000546 -3.317099 0.000910
male 0.152194 0.031508 4.830278 0.000001
Age.male -0.001339 0.000742 -1.803920 0.071244
>
> phi.hat

[1] 0.02876127

> deviance <- -2*sum(log(Y/mu) - (Y-mu)/mu)

> deviance

[1] 53.66784

>

> mu0 <- rep(mean(Y),n.napa)

> deviance.0 <- -2*sum(log(Y/mu0) - (Y-muO)/mu0)
> deviance.O

[1] 58.58576

> X2.o0bs <- (deviance.O-deviance)/phi.hat

> p.X2.0bs <- 1 - pchisq(X2.0bs,3)
> LR.out2 <- cbind(X2.obs, p.X2.o0bs)
> colnames (LR.out2) <- c("LR Stat", "P(>LR)")
> LR.out2
LR Stat P(>LR)
[1,] 170.9909 0
>
> X2.GOF <- deviance/phi.hat
> p.X2.GOF <- 1-pchisq(X2.GOF,n.napa-ncol(X))
> GOF.out2 <- cbind(X2.GOF, p.X2.GOF)
> colnames (GOF.out2) <- c("GOF Stat", "P(>GOF)")
> GOF.out2

GOF Stat P (>GOF)
[1,] 1865.976 0.5736719
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The R Program and Output for the Additive and Interaction models are given below.

gender <- factor(Gender)

par (mfrow=c(2,2))

plot (Age[gender=="M"],1/mph[gender=="M"] ,xlab="Age" ,ylab="1/mph",
main="Males - Inverse",xlim=c(16,76),ylim=c(0.09,0.25))

plot (Age[gender=="F"],1/mph[gender=="F"] ,xlab="Age" ,ylab="1/mph",
main="Females - Inverse",xlim=c(16,76),ylim=c(0.09,0.25))

plot (Age[gender=="M"],log(mph[gender=="M"]) ,xlab="Age",ylab="log(mph)",
main="Males - Log",x1lim=c(16,76),ylim=c(1.25,2.50))
plot (Age[gender=="F"],log(mph[gender=="F"]) ,xlab="Age",ylab="log(mph)",

main="Females - Log",xlim=c(16,76),ylim=c(1.25,2.50))
par (mfrow=c(1,1))

napa.mod5 <- glm(mph~Age + gender,family=Gamma)

summary (napa.mod5)

napa.mod6 <- glm(mph ~ Age + gender, family=Gamma(link="log"))
summary (napa.mod6é)

napa.mod7 <- glm(mph~Age*gender,family=Gamma)

summary (napa.mod7)

napa.mod8 <- glm(mph ~ Age*gender, family=Gamma(link="log"))
summary (napa.mod8)

agel <- min(Age) :max(Age)
yhat.F <- exp(1.8494178 - 0.0018116%*agel)
yhat.M <- exp((1.8494178+0.1521938) - (0.0018116+0.0013388)*agel)

plot (Age,mph,col=gender)
lines(agel,yhat.F,col=1)
lines(agel,yhat.M,col=2)

anova(napa.mod5,napa.mod7,test="Chisq")
anova(napa.mod6,napa.mod8,test="Chisq")

### R Output
> summary (napa.mod5)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.531e-01 2.496e-03 61.34 < 2e-16 ***
Age 4.048e-04 5.988e-05 6.76 1.83e-11 *x%x*
genderM -1.574e-02 1.296e-03 -12.15 < 2e-16 **x*

(Dispersion parameter for Gamma family taken to be 0.02879748)

Null deviance: 58.586 on 1881 degrees of freedom
Residual deviance: 53.759 on 1879 degrees of freedom

> summary (napa.mod6)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.877592 0.015512 121.044 < 2e-16 *x*
Age -0.002532 0.000370 -6.844 1.04e-11 **x*
genderM 0.097190 0.007997 12.154 < 2e-16 *x*

(Dispersion parameter for Gamma family taken to be 0.02879762)
Null deviance: 58.586 on 1881 degrees of freedom

Residual deviance: 53.760 on 1879 degrees of freedom

AIC: 5475.7

> summary (napa.mod7)
Coefficients:
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Estimate Std. Error t value Pr(>|t])
(Intercept) 1.571e-01 3.711e-03 42.331 < 2e-16 ***
Age 3.025e-04 9.275e-05 3.261 0.00113 *x*
genderM -2.281e-02 5.068e-03 -4.501 7.19e-06 **x
Age:genderM 1.751e-04 1.214e-04 1.443 0.14930

(Dispersion parameter for Gamma family taken to be 0.02878207)

Null deviance: 58.586 on 1881 degrees of freedom
Residual deviance: 53.699 on 1878 degrees of freedom

> summary (napa.mod8)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.8494178 0.0220581 83.843 < 2e-16 **x
Age -0.0018116 0.0005461 -3.317 0.000927 ***
genderM 0.1521938 0.0315083 4.830 1.47e-06 ***
Age:genderM -0.0013388 0.0007422 -1.804 0.071404 .

(Dispersion parameter for Gamma family taken to be 0.02876127)

Null deviance: 58.586 on 1881 degrees of freedom
Residual deviance: 53.668 on 1878 degrees of freedom

> anova(napa.mod5,napa.mod7,test="Chisq")
Analysis of Deviance Table
Model 1: mph ~ Age + gender
Model 2: mph ~ Age * gender

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1879 53.759
2 1878 53.699 1 0.05987 0.1492
>
> anova(napa.mod6,napa.mod8,test="Chisq")
Analysis of Deviance Table
Model 1: mph ~ Age + gender
Model 2: mph ~ Age * gender

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1879 53.760
2 1878 53.668 1 0.091878 0.07389 .

Based on the Additive models, we have the following fitted models and estimated variances and standard
deviations. Plots are shown in Figure 9.4.

1
0.1531 + 0.0004048A4; — 0.01574M;

Inverse Link: ji; = 62 = 0.028797487;  &; = 0.1697\/fu;

Log Link: ji; = exp {1.877592 — 0.0025324; + 0.097190M;} 62 = 0.028761274;  6; = 0.1696/fi;
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Figure 9.4: Data and Fitted Equations by Gender and Link Finction - 2015 Napa Marathon

9.6 Beta Regression

When data are rates or proportions, a regression model based on the Beta Distribution can be fit (Ferrari
and Cribari-Neto (2004)). The density function and the mean and variance for a beta random variable are
given below.

Fllod) = p o =™ 0Sw<h >0
- _ of
E{Y}=p=—— V{v}=

a+p (a+B+1)(a+p)’

A re-parameterization of the model is used in estimating the regression model. Below is the re-
parameterized likelihood function.

¢p=a+p = a=pp f=010-po¢ =  E{}=up V{Y}:%
Li L(7) P A=) TR g () = Bo+ X+ + By X = xi/B

T T (o) T ((1— ) 9)
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9.6.1 Estimating Model Parameters

Using the logit as the link function, we obtain the following likelihood and log-likelihood functions.

i exp {xi'B} 1
i) =1 = T 1—py = ———Fr
9 () = log (1—;%) = # 1+ exp {xi’B} # 1+ exp {xi’B}

NS S e DI R CiGa V) N
7= (ﬁ) [ (1— p)? ] )
e
L'L - F((b) yl+ xp{ IB} _yl) 1+cxp{xi/16}¢

() (=) )

li=In(L;) =In(I'(¢)) — In (T (i®)) — In (T (1 — i) ¢)) + (i — 1) In () + (1 — 1) ¢ — 1) In (1 — )

—1n(T(¢)) —In (r (%@) —n (F ((W) ¢>> "

(%é - 1) In (y:) + (m¢ - 1) In(1—y)

Making use of the following results based on the digamma (¢)) and trigamma (¢') functions (which are
available in R), the relevant derivatives with respect to [; are obtained.

dln (T'(2))
dz

=(2)

B = 0 ) 66 (1= ) )9+ 0l (1) — o1 (1~ ) = [1n (T2 ) = (0 (s0) — 0 (1 = ) )

E{SZ}_O = E{<1%yi>—(‘/’(ﬂi¢)—¢((1—ﬂi)¢))}—0

%= s et | (emtesr?) (o) 7o (725
8/3_(1+€Xp{xi//3})2¢ v 1+GXP{Xi’5}¢ Y 1+€Xp{xi/5}¢ +in 11—y, x

5=V~ (1 o] ¢> [1 ixfxixf;f}b}] v (1 T A ¢> [1 o {xm}] *
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(%) (o) + (W) In(1-y,)

-2 (i8] oe£d e-gh

%;
0Bop’

(S ) o) () 25

A, <¢Qexp{2><i’ﬂ}(1—eXp{Xi’B})> [ W(( exp {xi'8) | ¢>+ W(( ! ¢>]

=[A1 — A2]x;x;’ where:

(1+ exp {xy/B})* 1 — exp {xi'B} 1 —exp {xi'8})
Ol _ ¢2 exp {2x;'B} (1 — exp {x;'B}) ’ exp {xi'B} ’ 1 x| —
24 5 ) = ( (1+ exp {x/B})’ ) (o emtmn?) Y (e pan?) =

—¢ ((bﬂ? (1- ui)Q) [0 (i) + ¢ (1 — i) §) xixi” = —¢ laﬁ ,
/Ll)

9%l " 0%l = " (i) +1/)/ 1_/%(25
# {09 | = ;E{aﬂaﬁ} Z[

[ (1) + w/«l—mwﬂl -
( 1 1

xiX; = —pX'WX

W (oIS [ iy ixfxi’?;f’?m )+ ()] | -

diag { (o0 (1= 1)?) [0 (i6) + ' (1 = us) 0)]}

02,
0B0¢

By = —¢' (i) s (1 — pus) dpaa] + " (1 — pa) @) [ (L — ) ¢ (1 — pg)]

= [B1 +Ba]x;’ where:

By = pi (1 — i) [—1/) (1i®) + ¥ (1 — pi) ¢) +In (1 %%)]

E {%} = (100 [ (1= ) bp] + ' (L= 1) @) s (1 = 1) 6 (1 = pus))} 5 = —X'Te

where: T =ding { s = (=)} 6= 000 (o (1= ) 0) (1= )]

g’ (wi)
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8211’7 ’ . 2 (1 ) 1 2_g 0%l
o = (0= ()~ 0 (1= ) 9) (1~ ) = {%2}
@ = - = di am 2 ! 1 N2
E 95 | = trace (D) D = diag {1/) (i) i + " (L= pa) ¢) (1 — i)™ — (¢)}
921 ] 921 (bX/WX <'T
ao)= | 98 9B E{G(0)} = [ TPUTX —trace (D) ]
os03 992

The Fisher Scoring algorithm iterates the following equation to convergence for the maximum likelihood

estimator 6.

Once the ML estimator has been obtained, its estimated Variance-Covariance matrix is obtained.

v{B} = (E{CO)} lg_p)
To obtain starting values for the Fisher Scoring algorithm, consider the following model components.

Hi — x/ o Ha (L~ ) o (L= )
1“(1—m>_x‘ﬁ M O 2

Let h(y) =In(y/(1 — y)), then we have the following.

h(Ye) mh () + (Y= ) I () = VIR = VY ()] = VY= VR ()} ()]

First, fit a linear regression of h(y) on X1, ..., X, and obtain the residuals.

Next, obtain the estimated means, and obtain an estimate of V {h (V;)}.

A exp{xi’BOId} L A o é'e
e ™) OO v
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Finally, obtain estimates of V {Y¥;} and ¢.

VIV RV} (- b= BT l%ZM

9.6.2 Diagnostics and Influence Measures

A measure of the goodness-of-fit of the Beta Regression model is pseudo-R?, which represents the squared
correlation between ¢ (y;) and g (fi;), where:

g9(yi) =In (1 %y) 9 () =xi'B.

The deviance and Pearson residuals for the individual observations are described below.

Deviance Residuals: rp; = sgn{y; — fi; } \/2 [li (yi, Yi, (Jg) — 1 (yi, i, QB)]

where: 1 (yi, 1) = In [F e ¢)] T (i — (i) + (1= i) 6 — 1) In (1 — )
. . T (fud T ((1—7)é . ;
= li (yz',yu(b) -1 (yz',ﬂufb) =In . Eyla;; +1n W + (yi — f1:) ¢1n (1 f yz>
Yi — [l Y~ il

Pearson Residuals:

TR =D
y Hi(l—Hq
V{Y:} H+1
Computations for the Hat matrix, Cook’s D, and the Generalized Leverage are given below.

Hat Matrix: H=W"/2X (X'WX) ' X'W'2 = {H,;}

2
Hiirp;

Cook’s D: Dj= ———
p' (1 — Hy)

1
Generalized Leverage: GL(B,¢) = AM + _¢AF (f'AM —b)
Y
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where:
W = diag { (642 (1 - 4)°) [0/ (i) + v (1= ) 6)] }
_yi—i
B 1 y1(1—y1)
A=TX(X'QX) 'X'T M_diag{m} b= :
‘yf?i@"n

1
T—diag{ -

: <m>} —ding {ju (1 j)}  e=

Q- diag{ [qa (' (i) + ' (1 - ) 8)) + (1n (1 fy> RGCORCED (’3))> ey ]

Example: Ford Prize Winnings in NASCAR Races: 1992-2000

The NASCAR Winston Cup series had n = 267 races during the years 1992-2000. For each race, we
obtain Y, the proportion of the prize money won by Ford cars. Variables used as predictors include: Xi,
the proportion of cars in the race that are Fords, Xo, the track length (miles), X3, the bank of the turns of
the track (degrees), X4, the number of laps, and dummy variables for the years 1993-2000.

The matrix form of the program is very long and available on the course notes webpage. The R program,
making use of the betareg package and function and partial output are given below. As the proportion of
Ford cars increases, so does the proportion of Ford prize money (not surprisingly). As track length and laps
increase, proportion of Ford prize money decreases. All years, with the exception of 1994, have significantly
lower proportion of Ford prize money than the reference year of 1992. Summary plots are given in Figure 9.5.

### R Program
ford <- read.csv("http://www.stat.ufl.edu/ winner/data/nas_ford_1992_2000a.csv" ,header=T)

attach(ford); names(ford)

library(betareg)
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Year <- factor(Year)
Track_id <- factor(Track_id)
g.Y <- log(FPrzp / (1-FPrzp))

beta.modl <- betareg(FPrzp ~ FDrvp + TrkLng + Bank + Laps + Year)
summary (beta.mod1)

resid(beta.modl,type="pearson")

resid(beta.modl,type="deviance")

cooks.distance(beta.modl)

gleverage(beta.mod1)

hatvalues(beta.mod1)

vcov(beta.modl)

(pseudo.R2 <- cor(g.Y, predict(beta.mod1))"~2)

par (mfrow=c(2,2))
plot(beta.modl,which=1:4,type="pearson")

### Output

Call:
betareg(formula = FPrzp ~ FDrvp + TrkLng + Bank + Laps + Year)

Standardized weighted residuals 2:
Min 1Q Median 3Q Max
-3.7996 -0.6602 0.0031 0.6532 5.2351

Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z])

(Intercept) -0.7312457 0.2074226 -3.525 0.000423 **x*
FDrvp 2.5440987 0.4128540 6.162 7.17e-10 **x*
TrkLng -0.1106140 0.0405332 -2.729 0.006353 **
Bank -0.0019614 0.0015161 -1.294 0.195767
Laps -0.0007601 0.0002544 -2.988 0.002808 **
Year1993 -0.2225534 0.0817810 -2.721 0.006502 **
Year1994 -0.0441460 0.0852535 -0.518 0.604584
Year1995 -0.1924006 0.0844577 -2.278 0.022722 *
Year1996 -0.2031800 0.0785715 -2.586 0.009712 **
Year1997 -0.1441680 0.0571996 -2.520 0.011721 *
Year1998 -0.1585144 0.0550342 -2.880 0.003973 **
Year1999 -0.1892330 0.0602789 -3.139 0.001694 **
Year2000 -0.1904757 0.0571511 -3.333 0.000860 **x*

Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z])
(phi) 102.877 8.861 11.61 <2e-16 ***

Type of estimator: ML (maximum likelihood)
Log-likelihood: 427.4 on 14 Df

Pseudo R-squared: 0.3906

Number of iterations: 23 (BFGS) + 2 (Fisher scoring)
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Residuals vs indices of obs. Cook’s distance plot
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