1-Way Random Effects Models

Q.1. A 1-Way random effects model was fit, comparing copper concentrations among bottles of a Scotch whiskey brand for a given age. A random sample of 5 bottles was selected, and within each bottle 3 samples were taken, and copper concentration was measured. The following table gives the sample means and variances for the 5 bottles for the model.

$$y_{ij} = \mu + a_i + e_{ij} \quad a_i \sim NID(0, \sigma_a^2) \quad e_{ij} \sim NID(0, \sigma_e^2) \quad \{a_i\} \perp \{e_{ij}\}$$

Bottle	#reps	Mean	Variance	
1	3	265	500	
2	3	335	1300	
3	3	270	200	
4	3	355	1225	
5	3	375	625	

n	.1.a.	Compute t	he Amon	g Bottle sum	of squares.	give its de	egrees of fre	edom, and Ex	pected Mean Square

 $SSA = \underline{\qquad} E\{MSA\} = \underline{\qquad} E\{M$

p.1.b. Compute the Within Bottle sum of squares, give its degrees of freedom, and Expected Mean Square

 $SSW = \underline{\hspace{1cm}} E\{MSW\} = \underline{\hspace{1cm}}$

p.1.c. Test whether the variance of the bottle effects is 0. H₀: $\sigma_a^2 = 0$ H_A: $\sigma_a^2 > 0$

Test Statistic: ______ Rejection Region: _____

p.1.d. Obtain Point estimates for: σ_e^2 , σ_a^2 , $\rho_I = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_e^2}$

$$\sigma_{e}^{2} = \sigma_{a}^{2} = \sigma_{a}^{2}$$

Q.2. Consider the 1-Way Random Effects Model:

$$y_{ij} = \mu + a_i + e_{ij} \quad i = 1, ..., g \quad j = 1, ..., n \quad a_i \sim NID\left(0, \sigma_a^2\right) \quad e_{ij} \sim NID\left(0, \sigma_e^2\right) \quad \left\{a\right\} \perp \left\{e\right\}$$

p.2.a. Based on rules involving linear functions of RVs, derive the following values:

$$E(y_{ij}), V(y_{ij}), V(y_{i\bullet}), V(y_{\bullet\bullet}), COV(y_{ij}, y_{i\bullet})$$

p.2.b. In a population of individuals, 95% have mean values between 80 and 120. ρ_l , the Intraclass Correlation is 0.80. Within individuals, 95% of individual observations lie within how many units from the individual mean?

Q.3. For the 1-Way Random Effects model, derive the Expected Mean Squares for Treatments and Error by completing the following steps. $Y_{ii} = \mu + \alpha_i + \varepsilon_{ii}$ $\alpha_i \sim NID(0, \sigma_\alpha^2)$ $\varepsilon_{ii} \sim NID(0, \sigma^2)$ $\{\alpha\} \perp \{\varepsilon\}$ i = 1, ..., g; j = 1, ..., n

p.3.a. Derive:
$$E\{Y_{ij}\}, V\{Y_{ij}\}, E\{Y_{i\bullet}\}, V\{Y_{i\bullet}\}, E\{Y_{\bullet\bullet}\}, V\{Y_{\bullet\bullet}\}$$
 SHOW ALL WORK.

p.3.b. Making use of p.3.a., derive:
$$E\left\{\sum_{i=1}^g\sum_{j=1}^nY_{ij}^2\right\}$$
, $E\left\{n\sum_{i=1}^g\overline{Y}_{i\bullet}^2\right\}$, $E\left\{ng\overline{Y}_{\bullet\bullet}^2\right\}$

p.3.c. Making use of p.3.b., derive:
$$E\{MS_{\text{TRT}}\}$$
 and $E\{MS_{\text{ERR}}\}$

Q.4. A 1-Way Random Effects model is fit, comparing readability scores among a random sample of g=6 Business/Economics columnists. A sample of n=3 essays were selected from each columnist and their readability was assessed based on the Flesch-Kincaid scale.

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \quad \alpha_i \sim N(0, \sigma_\alpha^2) \quad \varepsilon_{ij} \sim NID(0, \sigma^2) \quad \{\alpha\} \perp \{\varepsilon\} \quad \sum_{i=1}^6 \sum_{j=1}^3 \left(Y_{ij} - \overline{Y}_{i\bullet}\right)^2 = 35.4 \quad \sum_{i=1}^6 \sum_{j=1}^3 \left(Y_{ij} - \overline{Y}_{\bullet\bullet}\right)^2 = 90.1$$

p.4.a. Test
$$H_0: \sigma_{\alpha}^2 = 0$$
 $H_A: \sigma_{\alpha}^2 > 0$

Test Statistic: _____ Rejection Region: _____

p.4.b. Obtain a point estimate and an approximate 95% Confidence Interval for σ_{α}^2 (based on Satterthwaite's Approx.)

Point Estimate: _____ Approximate 95% Confidence Interval: _____

Q.5. In a population of stock market analysts, the mean rate of return is 2%. Approximately 95% of all analysts have a personal mean return within 5% of the overall mean. Among individual stocks selected by a particular analyst, approximately 95% have returns within 7% of his/her mean.

Q.6. Jack runs a small firm with 3 employees. He plans to conduct an experiment to compare them with respect to the quantity of their output using a new drill press, observing each employee's output over 5 sessions. Jill has a large firm with many employees. She plans on sampling 3 at random, and observing each employee's output over 5 sessions.

p.6.a. Clearly state Jack's (treatment effects) model, describing all elements and assumptions.

p.6.b. **Derive (Showing all work)**
$$E\{\overline{Y}_{i\bullet}\}, V\{\overline{Y}_{i\bullet}\}, E\{\overline{Y}_{\bullet\bullet}\}, V\{\overline{Y}_{\bullet\bullet}\},$$
 for Jack's model.

p.6.c. Clearly state Jill's model, describing all elements and assumptions.

p.6.d. Derive (Showing all work)
$$E\{\overline{Y}_{i\bullet}\}, V\{\overline{Y}_{i\bullet}\}, E\{\overline{Y}_{\bullet\bullet}\}, V\{\overline{Y}_{\bullet\bullet}\},$$
 for Jill's model.

Q7. A wine company produces bottles of wine that have mean alcohol contents (percentages) that are normally distributed, with 95% of all bottle means between 10.5 and 13.5. For specimens within bottles, alcohol contents are normally distributed with 95% of specimens falling within 0.6 of the bottle mean. Based on the 1-way random effects model, give:

$$\sigma^2 a =$$

$$\sigma^2 =$$

$$\rho_{l} =$$

Q.8. An experiment is conducted to study variation in breaking strength of denim jeans in a large automated manufacturing facility. There are 1000s of machines. Each machine has a true mean breaking strength of jeans that it produces, and these means are normally distributed. Approximately 95% of the machines have means between 40 and 60. Within a given machine, approximately 95% of individual pairs of jeans lie within 6 of that machine's mean. The model

fit is:
$$y_{ij} = \mu_i + e_{ij}$$
 $\mu_i \sim NID(\mu_{\bullet}, \sigma_a^2)$ $e_{ij} \sim NID(0, \sigma^2)$ $\{\mu_i\} \perp \{e_{ij}\}$

For this scenario, obtain the following parameters and measures:

$$\mu_{ullet} = \underline{\qquad} \qquad \sigma_a^2 = \underline{\qquad} \qquad \sigma^2 = \underline{\qquad} \qquad \rho_I = Corr\{Y_{ij}, Y_{ij'}\} = \underline{\qquad} \qquad j \neq j'$$

Q.9. Among a population of lakes, the mean adult fish lengths are normally distributed, with approximately 95% of the lake means lying between 50 and 70 centimeters. Within lakes, approximately 95% of the fish have lengths within 12 cm of the lake mean. Consider a 1-Way random effects model, where a sample of q lakes is selected and p fish are sampled from each lake.

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \quad i = 1, ..., g; \ j = 1, ..., n \quad \alpha_i \sim NID\left(0, \sigma_{\alpha}^2\right) \quad \varepsilon_{ij} \sim NID\left(0, \sigma^2\right) \quad \left\{\alpha_i\right\} \perp \left\{\varepsilon_{ij}\right\}$$

p.9.a. Obtain
$$\mu$$
, σ_{α}^2 , σ^2

p.9.b. Give the mean and variance of $\overline{Y}_{\bullet \bullet}$

Q.10. Consider the 1-Way Random Effects Model:

$$y_{ij} = \mu + a_i + e_{ij} \quad i = 1, ..., g \quad j = 1, ..., n \quad a_i \sim NID\left(0, \sigma_a^2\right) \quad e_{ij} \sim NID\left(0, \sigma_e^2\right) \quad \left\{a\right\} \perp \left\{e\right\}$$

p.10.a. Based on rules involving linear functions of RVs, derive the following values:

$$E(y_{ij}), V(y_{ij}), V(y_{i\bullet}), V(y_{\bullet\bullet}), COV(y_{ij}, y_{i\bullet})$$

p.10.b. In a population of individuals, 95% have mean values between 40 and 60. Within individuals, 95% of individual observations lie within 4 units from the individual mean. Compute ρ_l , the Intraclass Correlation