1-Way Random Effects Models

Q.1. A 1-Way random effects model was fit, comparing copper concentrations among bottles of a Scotch whiskey brand for a given age. A random sample of 5 bottles was selected, and within each bottle 3 samples were taken, and copper concentration was measured. The following table gives the sample means and variances for the 5 bottles for the model.
$y_{i j}=\mu+a_{i}+e_{i j} \quad a_{i} \sim \operatorname{NID}\left(0, \sigma_{a}^{2}\right) \quad e_{i j} \sim \operatorname{NID}\left(0, \sigma_{e}^{2}\right) \quad\left\{a_{i}\right\} \perp\left\{e_{i j}\right\}$

Bottle	\#reps	Mean	Variance
1	3	265	500
2	3	335	1300
3	3	270	200
4	3	355	1225
5	3	375	625

p.1.a. Compute the Among Bottle sum of squares, give its degrees of freedom, and Expected Mean Square

SSA $=$ \qquad

$$
\mathrm{df}_{\mathrm{A}}=
$$

\qquad $\mathrm{E}\{\mathrm{MSA}\}=$ \qquad
p.1.b. Compute the Within Bottle sum of squares, give its degrees of freedom, and Expected Mean Square

SSW = \qquad $\mathrm{df}_{\mathrm{w}}=$ \qquad $\mathrm{E}\{\mathrm{MSW}\}=$ \qquad
p.1.c. Test whether the variance of the bottle effects is $0 . \mathrm{H}_{0}: \sigma_{\mathrm{a}}{ }^{2}=0 \mathrm{H}_{\mathrm{A}}: \sigma_{\mathrm{a}}{ }^{2}>0$

Test Statistic: \qquad Rejection Region: \qquad
p.1.d. Obtain Point estimates for: $\sigma_{e}^{2}, \quad \sigma_{a}^{2}, \quad \rho_{I}=\frac{\sigma_{a}^{2}}{\sigma_{a}^{2}+\sigma_{e}^{2}}$

$$
\hat{\sigma}_{e}^{2}=\square \hat{\sigma}_{a}^{2}=\square \quad \hat{\rho}_{I}=
$$

Q.2. Consider the 1-Way Random Effects Model:
$y_{i j}=\mu+a_{i}+e_{i j} \quad i=1, \ldots, g \quad j=1, \ldots, n \quad a_{i} \sim \operatorname{NID}\left(0, \sigma_{a}^{2}\right) \quad e_{i j} \sim \operatorname{NID}\left(0, \sigma_{e}^{2}\right) \quad\{a\} \perp\{e\}$
p.2.a. Based on rules involving linear functions of $R V s$, derive the following values:
$E\left(y_{i j}\right), \quad V\left(y_{i j}\right), \quad V\left(y_{i \bullet}\right), \quad V\left(y_{. \bullet}\right), \quad \operatorname{COV}\left(y_{i j}, y_{i \bullet}\right)$
p.2.b. In a population of individuals, 95% have mean values between 80 and 120 . ρ_{1}, the Intraclass Correlation is 0.80 . Within individuals, 95% of individual observations lie within how many units from the individual mean?
Q.3. For the 1-Way Random Effects model, derive the Expected Mean Squares for Treatments and Error by completing the following steps. $\quad Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \quad \alpha_{i} \sim \operatorname{NID}\left(0, \sigma_{\alpha}^{2}\right) \quad \varepsilon_{i j} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \quad\{\alpha\} \perp\{\varepsilon\} \quad i=1, \ldots, g ; j=1, \ldots, n$
p.3.a. Derive: $E\left\{Y_{i j}\right\}, \quad V\left\{Y_{i j}\right\}, \quad E\left\{Y_{i \bullet}\right\}, \quad V\left\{Y_{i \bullet}\right\}, \quad E\left\{Y_{. \bullet}\right\}, \quad V\left\{Y_{\bullet \bullet}\right\} \quad$ SHOW ALL WORK.
p.3.b. Making use of p.3.a., derive: $E\left\{\sum_{i=1}^{g} \sum_{j=1}^{n} Y_{i j}^{2}\right\}, \quad E\left\{n \sum_{i=1}^{g} \bar{Y}_{i \bullet}^{2}\right\}, \quad E\left\{n g \bar{Y}_{\bullet \bullet}^{2}\right\}$
p.3.c. Making use of p.3.b., derive: $E\left\{M S_{\text {TRT }}\right\}$ and $E\left\{M S_{\text {ERR }}\right\}$
Q.4. A 1-Way Random Effects model is fit, comparing readability scores among a random sample of $\mathrm{g}=6$ Business/Economics columnists. A sample of $n=3$ essays were selected from each columnist and their readability was assessed based on the Flesch-Kincaid scale.
$Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \quad \alpha_{i} \sim N\left(0, \sigma_{\alpha}^{2}\right) \quad \varepsilon_{i j} \sim N I D\left(0, \sigma^{2}\right) \quad\{\alpha\} \perp\{\varepsilon\} \quad \sum_{i=1}^{6} \sum_{j=1}^{3}\left(Y_{i j}-\bar{Y}_{i \bullet}\right)^{2}=35.4 \quad \sum_{i=1}^{6} \sum_{j=1}^{3}\left(Y_{i j}-\bar{Y} . .\right)^{2}=90.1$
p.4.a. Test $H_{0}: \sigma_{\alpha}^{2}=0 \quad H_{A}: \sigma_{\alpha}^{2}>0$

Test Statistic: \qquad Rejection Region: \qquad
p.4.b. Obtain a point estimate and an approximate 95% Confidence Interval for σ_{α}^{2} (based on Satterthwaite's Approx.)

Point Estimate: \qquad Approximate 95\% Confidence Interval: \qquad
Q.5. In a population of stock market analysts, the mean rate of return is 2%. Approximately 95% of all analysts have a personal mean return within 5% of the overall mean. Among individual stocks selected by a particular analyst, approximately 95% have returns within 7% of his/her mean.

Compute: $\sigma_{\alpha}^{2}=$ \qquad $\sigma^{2}=$ \qquad $V\{Y\}=$ \qquad $\rho_{I}=$ \qquad
Q.6. Jack runs a small firm with 3 employees. He plans to conduct an experiment to compare them with respect to the quantity of their output using a new drill press, observing each employee's output over 5 sessions. Jill has a large firm with many employees. She plans on sampling 3 at random, and observing each employee's output over 5 sessions.
p.6.a. Clearly state Jack's (treatment effects) model, describing all elements and assumptions.
p.6.b. Derive (Showing all work) $E\left\{\bar{Y}_{i \bullet}\right\}, \quad V\left\{\bar{Y}_{i_{\bullet}}\right\}, \quad E\left\{\bar{Y}_{\bullet \bullet}\right\}, \quad V\left\{\bar{Y}_{\bullet \bullet}\right\}, \quad$ for Jack's model.
p.6.c. Clearly state Jill's model, describing all elements and assumptions.
p.6.d. Derive (Showing all work) $E\left\{\bar{Y}_{i \bullet}\right\}, \quad V\left\{\bar{Y}_{\bullet \bullet}\right\}, \quad E\left\{\bar{Y}_{\bullet \bullet}\right\}, \quad V\left\{\bar{Y}_{\bullet \bullet}\right\}, \quad$ for Jill's model.

Q7. A wine company produces bottles of wine that have mean alcohol contents (percentages) that are normally distributed, with 95% of all bottle means between 10.5 and 13.5 . For specimens within bottles, alcohol contents are normally distributed with 95% of specimens falling within 0.6 of the bottle mean. Based on the 1 -way random effects model, give:
$\sigma^{2} a=$
$\sigma^{2}=$
$\rho_{l}=$
Q.8. An experiment is conducted to study variation in breaking strength of denim jeans in a large automated manufacturing facility. There are 1000s of machines. Each machine has a true mean breaking strength of jeans that it produces, and these means are normally distributed. Approximately 95% of the machines have means between 40 and 60 . Within a given machine, approximately 95% of individual pairs of jeans lie within 6 of that machine's mean. The model fit is: $\quad y_{i j}=\mu_{i}+e_{i j} \quad \mu_{i} \sim \operatorname{NID}\left(\mu_{\bullet}, \sigma_{a}^{2}\right) \quad e_{i j} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \quad\left\{\mu_{i}\right\} \perp\left\{e_{i j}\right\}$

For this scenario, obtain the following parameters and measures:
$\mu_{0}=$ \qquad $\sigma^{2}=$ \qquad $\rho_{I}=\operatorname{Corr}\left\{Y_{i j}, Y_{i j^{\prime}}\right\}=$ \qquad $j \neq j^{\prime}$
Q.9. Among a population of lakes, the mean adult fish lengths are normally distributed, with approximately 95% of the lake means lying between 50 and 70 centimeters. Within lakes, approximately 95% of the fish have lengths within 12 cm of the lake mean. Consider a 1-Way random effects model, where a sample of g lakes is selected and n fish are sampled from each lake.
$Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \quad i=1, \ldots, g ; j=1, \ldots, n \quad \alpha_{i} \sim \operatorname{NID}\left(0, \sigma_{\alpha}^{2}\right) \quad \varepsilon_{i j} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \quad\left\{\alpha_{i}\right\} \perp\left\{\varepsilon_{i j}\right\}$
p.9.a. Obtain $\mu, \quad \sigma_{\alpha}^{2}, \quad \sigma^{2}$
p.9.b. Give the mean and variance of \bar{Y}..
Q.10. Consider the 1-Way Random Effects Model:

$$
y_{i j}=\mu+a_{i}+e_{i j} \quad i=1, \ldots, g \quad j=1, \ldots, n \quad a_{i} \sim \operatorname{NID}\left(0, \sigma_{a}^{2}\right) \quad e_{i j} \sim \operatorname{NID}\left(0, \sigma_{e}^{2}\right) \quad\{a\} \perp\{e\}
$$

p.10.a. Based on rules involving linear functions of RVs, derive the following values:
$E\left(y_{i j}\right), \quad V\left(y_{i j}\right), \quad V\left(y_{i \bullet}\right), \quad V\left(y_{. .}\right), \operatorname{COV}\left(y_{i j}, y_{i \bullet}\right)$
p.10.b. In a population of individuals, 95% have mean values between 40 and 60 . Within individuals, 95% of individual observations lie within 4 units from the individual mean. Compute ρ_{l}, the Intraclass Correlation

