STA 6208 - Spring 2016 - Exam 2 PRINT Name ANSWER KEY

Note: Conduct all tests at at $\alpha = 0.05$ significance level and show all work for any partial credit on numeric (calculation) problems.

Satterthwaite's Approximation:
$$\hat{\sigma}^{2}_{*} = \sum_{i=1}^{c} g_{i} M S_{i} \Rightarrow \hat{v}^{2}_{*} = \frac{\left(\sum_{i=1}^{c} g_{i} M S_{i}\right)^{2}}{\sum_{i=1}^{c} \left(g_{i} M S_{i}\right)^{2}} \quad \text{where } v_{i} = df\left(M S_{i}\right)$$

Q.1. A study was conducted, regarding 2 Random factors: A: Wine Judge (a = 9) and B: Wine Brand (b = 10), Each judge rated each brand once, blind to the brand label. The model fit is:

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij} \quad i = 1, ..., 9; \ j = 1, ..., 10 \quad \alpha_i \sim NID\left(0, \sigma_\alpha^2\right) \quad \beta_j \sim NID\left(0, \sigma_\beta^2\right) \quad \varepsilon_{ij} \sim NID\left(0, \sigma^2\right) \quad \left\{\alpha\right\} \perp \left\{\beta\right\} \perp \left\{\varepsilon\right\}$$

$$\text{p.1.a. For this model, } SS_{\text{ERR}} = \sum_{i} \sum_{j} \left(Y_{ij} - \overline{Y}_{i \bullet} - \overline{Y}_{\bullet j} + \overline{Y}_{\bullet \bullet} \right)^2 = \sum_{i} \sum_{j} Y_{ij}^2 - b \sum_{i} \overline{Y}_{i \bullet}^2 - a \sum_{j} \overline{Y}_{\bullet j}^2 + ab \overline{Y}_{\bullet \bullet}^2 \qquad MS_{\text{ERR}} = \frac{SS_{\text{ERR}}}{\left(a - 1\right) \left(b - 1\right)}$$

$$E\{Y_{ij}\} = \underbrace{\mathcal{M} + 0 + 0 + 0}_{E} \underbrace{\mathcal{F}_{i\bullet}}_{E} = \underbrace{\mathcal{F}_{\bullet i}}_{E} = \underbrace{\mathcal{F}_{\bullet$$

$$E\left\{\overline{Y}_{\bullet j}\right\} = \mathcal{L}$$

$$E\left\{\overline{Y}_{\bullet \bullet}\right\} = \mathcal{L}$$

p.1.a.ii. Derive $V\{Y_{ij}\}, V\{\overline{Y}_{i*}\}, V\{\overline{Y}_{*j}\}, V\{\overline{Y}_{*j}\}$ Be very specific on all parts of derivation.

$$V(Y_{ij}) = V(a + \alpha_i + \beta_j + z_{ij}) = 0 + \sigma_a^2 + \sigma_b^2 + \sigma^2$$
 $V(Y_{ij}) = \begin{cases} \sigma_a^2 + \sigma_b^2 + \sigma^2 & i = i', j = i' \\ \sigma_a^2 & \sigma_b^2 & i \neq i', j \neq i' \end{cases}$
 $V(Y_{ij}) = \begin{cases} \sigma_a^2 + \sigma_b^2 + \sigma^2 & i = i', j = i' \\ \sigma_a^2 & i \neq i', j \neq i' \end{cases}$
 $V(Y_{ij}) = \begin{cases} \sigma_a^2 + \sigma_b^2 + \sigma^2 & i = i', j = i' \\ \sigma_a^2 & i \neq i', j \neq i' \end{cases}$

V{Yi) = V{ }Yij = ZV{Yij + 2ZZ(~(Yij,Yij)} = b(02+02+02)+ b(6-1) 02 $\{ p.1.b. \text{ Use the results from above to obtain } E\{MS_{ERR}\} = 6^2 \sigma_s^2 + 6 \sigma_{j3}^2 + 6 \sigma^2 \sqrt{\{?;.\}} = \sigma_0^2 + \frac{\sigma_0^2}{L} + \frac{\sigma_0^2}{L}$ By direct analogy: V{P,3 = 02 + 02 + 02

$$V(Y, S) = \frac{1}{2} V(Y_0) + 2\frac{1}{2} \frac{1}{2} Con(Y_0, Y_0) + 2\frac{1}{2} \frac{1}{2} Con(Y_0, Y_0) + 2\frac{1}{2} \frac{1}{2} Con(Y_0, Y_0) + 4\frac{1}{2} \frac{1}{2} \frac{1}{2} Con(Y_0, Y_0) + 4\frac{1}{2} \frac{1}{2} \frac{1}{2} Con(Y_0, Y_0) + 4\frac{1}{2} \frac{1}{2} \frac{1$$

p.1.c. Write out
$$MS_A$$
 in terms of (a subset) of the components in SS_{ERR} and obtain $E\{MS_A\}$.

(a) $E\{ZZY_5^2\} = abM^2 + ab\sigma_A^2 + ab\sigma_B^2 + ab\sigma_B^2$

(b) $E\{bZY_5^2\} = abM^2 + abG_A^2 + a\sigma_B^2 + a\sigma_B^2$

(d)
$$E(ab7.2) = ab M^2 + box + aox + o^2$$

=)
$$E(907...)$$

=) $E(55)$ = $(a)-(b)-(c)+(d)=(ab-a-b+1)\sigma^{2}=(a-1)(b-1)\sigma^{2}$
=) $E(Msinn)=\sigma^{2}$

 \mathcal{L}_{B} p.1.d. Write out MS_B in terms of (a subset) of the components in SS_{ERR} and obtain $E\{MS_B\}$.

$$E\{SSA\} = (b)-(d) = (ab-b)\sigma_{\alpha}^{2} + (a-1)\sigma_{\beta}^{2} = 2 E\{MSA\} = b\sigma_{\alpha}^{2} + \sigma_{\alpha}^{2}$$

 $E\{SSB\} = (c)-(d) = (ab-a)\sigma_{\beta}^{2} + (b-1)\sigma_{\alpha}^{2} = 2 E\{MSB\} = a\sigma_{\beta}^{2} + \sigma_{\alpha}^{2}$

 $N_{\rm ERR} = 395.12$ Obtain unbiased estimates of the model's three variances.

$$MSA = \frac{180.32}{9-1} = 22.54 \qquad MSB = \frac{(14.90)}{10-1} = 12.77$$

$$MSE = \frac{395.12}{8(9)} = 5.49$$

$$\hat{G}^2 = 5.49 \qquad \hat{G}^2_{\alpha} = \frac{22.54 - 5.49}{10} = 1.705$$

$$\hat{G}^2_{\beta} = \frac{12.77 - 5.49}{9} = 0.81 \qquad \hat{G}^2_{\psi} = 5.49 + 1.71 + 0.81$$

$$= 8.01$$

p.1.f. Out of the (estimated) total variance $V\left\{Y_{ijk}\right\} = \sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma^2$, what percentages are accounted by the 3 sources:

6

$$\frac{1.1}{5.0!} = .213$$
 $0.81 = .101$ $5.49 = .685$ Brands (B) $8.01 = .101$ Error (AB) $8.01 = .685$

Q.2. A study compared the effects of a = 3 brands of squash rackets (Factor A: med, high, and higher price) and b = 2 levels of strings (Factor B: factory or new) the speed of a ball's bounce off the racket (Y, in m/sec) after having been dropped from a standard height. There were n = 10 replicates per treatment (combination of racket brand and string type). Assume these are the only levels of interest to the researchers (that is, both are fixed factors).

p.2.a. Write out the statistical model assuming errors are iid Normal.

$$\frac{10}{\sqrt{ijk}} = \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} +$$

p.2.b. The following table gives the sample means. Compute the following least squares estimates of model parameters and σ^2 :

Means			
Racket\String	Factory(j=1)	New(j=2)	Overall
Medium Price(i=1)	0.363	0.377	0.370
High Price(i=2)	0.350	0.322	0.336
Higher Price(i=3)	0.250	0.360	0.305
Overall	0.321	0.353	0.337

$$\sum_{i=1}^{3} \sum_{j=1}^{2} s_{ij}^{2} = 0.0025$$

$$\frac{7}{\hat{\mu} = 0.339} \hat{\sigma}^{2} = \frac{9(0.0025)}{3(2)(10-1)} = .000041617$$

$$\hat{\alpha}_{1} = .033$$
 $\hat{\alpha}_{2} = -.001$ $\hat{\alpha}_{3} = -.032$ $\hat{\beta}_{1} = -.016$ $\hat{\beta}_{2} = .016$

$$3 e^{\alpha \hat{\beta}}_{(\alpha \hat{\beta})_{11}} = 0.009 \qquad (\hat{\alpha}\hat{\beta})_{21} = 0.039 \qquad (\hat{\alpha}\hat{\beta})_{31} = 0.039$$

$$(\hat{\alpha}\hat{\beta})_{12} = \frac{-0.009}{(\hat{\alpha}\hat{\beta})_{22}} = \frac{-.030}{(\hat{\alpha}\hat{\beta})_{32}} = \frac{.039}{(\hat{\alpha}\hat{\beta})_{32}} = \frac{.039}{(\hat{\alpha}\hat{\beta})_{32}}$$

$$SSA = 2(10)[.033^{2} + .001^{2} + .032^{2}] = .04228$$

 $SSB = 3(10)[.016^{2} + .016^{2}] = .01536$
 $SSAB = 10[2(.009)^{2} + 2(.030)^{2} + 2(.039)^{2}] = .05004$
 $SSE = 9(.0025) = .0225$

ANOVA	3 en	Beau	2each	2659	3cal	1 each	Dead
Source	df	SS	MS	F_obs	F(.05)	H_0:	Reject H0?
Racket	2	-04221	.OZIIY	50,73	~3.17	a,=dr=d>>0	Yes No
String	COSTERONO	,01534	.01536	36.86	20.7~	B1= B2=0	Yes/No
R45	2	Y0020.	.02502	60.04	-3.17	(ap) in bij	Yes/No
Emi	54	,0225	f311000,	#N/A	#N/A	#N/A	#N/A
Total	59	.13618	-	#N/A	#N/A	#N/A	#N/A

Q.3. A study was conducted to test for effects on willingness to pay during online auctions. There were 2 factors, each with 2 levels (both fixed): Urgency (Present (i=1) / Absent (i=2)) and Contrast (3 of 6 items "Featured" (High, j=1)/all 6 items "Featured" (Low, j=2)). There were 6 watches, and the response was the amount the participant was willing to pay for the watch. Although the researchers started with 80 subjects, 9 were eliminated due to incomplete information, so N = 71. The model fit is:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijk} \quad i = 1, 2; j = 1, 2; k = 1, ..., n_{ij} \quad \alpha_1 + \alpha_2 = \beta_1 + \beta_2 = \sum_{i=1}^{2} (\alpha \beta)_{ij} = \sum_{i=1}^{2} (\alpha \beta)_{ij} = 0 \quad i, j = 1, 2$$

p.3.a. Give the form of the (full rank) X matrix and β vector for this model. Note that although X has 71 rows, there are only 4 "blocks" of distinct levels, each with a particular numbers of subjects.

$$\mathcal{B}_{2}$$

$$\left[\begin{array}{c} \mathcal{A}_{1} \\ \mathcal{B}_{2} \\ (\alpha p)_{11} \end{array}\right]$$

$$\mathcal{B}^{2} = \begin{bmatrix} \mathcal{A}_{1} \\ \mathcal{B}_{2} \\ \mathcal{B}_{3} \\ \mathcal{B}_{4} \\ \mathcal{B}_{5} \\ \mathcal{B}_{6} \\ \mathcal{B}_{1} \\ \mathcal{B}_{1} \\ \mathcal{B}_{2} \end{bmatrix}$$

$$\begin{cases} \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{3} \\ \mathcal{A}_{4} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{4} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{4} \\ \mathcal{A}_{1} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{4} \\ \mathcal{A}_{1} \\ \mathcal{A}_{2} \\ \mathcal{A}_{3} \\ \mathcal{A}_{4} \\ \mathcal{A}_{5} \\ \mathcal{$$

p.3.b. Obtain X'X as functions of the cell sample sizes (Just give the values on or above the main diagonal). $N = n_1 + n_2 + n_3 + n_4 +$

$$\Lambda_{ii} - \Lambda_{ix} + \Lambda_{xi} - \Lambda_{xx}$$

$$\Lambda_{ii} - \Lambda_{ix} - \Lambda_{xi} + \Lambda_{xx}$$

p.3.c. The authors fit the following 4 models, with approximate Error sums of squares (divided by 1000 for ease of calculation):

 $\text{Model 1: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 2: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j \quad \text{Model 3: } E\left\{Y_{ijk}\right\} = \mu + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \alpha_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha\beta)_{ij} \quad \text{Model 4: } E\left\{Y_{ijk}\right\} = \mu + \alpha_i + \beta_i + (\alpha$ $SSErr_1 = 884.0$ $SSErr_2 = 937.0$ $SSErr_3 = 941.5$ $SSErr_4 = 978.3$

Test:
$$H_0^{AB}: (\alpha\beta)_{11} = (\alpha\beta)_{12} = (\alpha\beta)_{21} = (\alpha\beta)_{22} = 0$$

T.S.
$$f_{obs} = \frac{55E_2 - 55E_1}{(71-3)-(71-4)^2} = \frac{937 - 884}{1} = \frac{67(53)}{884} = 4.017$$

$$\frac{55E_1}{71-4^2} = \frac{884}{67} = \frac{884}{67}$$

$$\frac{937 - 884}{1} = \frac{67(53)}{884} = 4.07$$

F= 4.017
Rejection Region: F> 3.985
Do you conclude the Urgency effect "depends" on Contrast? Y N

p.3.d. The sample means for the 4 treatments are: $\overline{Y}_{11\bullet} = 216.94$ $\overline{Y}_{12\bullet} = 90.26$ $\overline{Y}_{21\bullet} = 106.12$ $\overline{Y}_{22\bullet} = 88.06$. Treating the cell sample sizes as $n_{ii} = 18$ as an approximation, use Bonferroni's method to compare all pairs of treatment means.

$$MSE = \frac{884000}{67} = 13194$$
 $t(.025,6,67) \approx 2.72$
 $\sqrt{\frac{2(13194)}{18}} = 38.29$
 $B = 104.1$
Conclude $M_{II} > M_{II}, M_{2I}, M_{2I}$
 $Mone other are significantly different$

W/L loke

Q.4. Among a population of lakes, the mean adult fish lengths are normally distributed, with approximately 95% of the lake means lying between 50 and 70 centimeters. Within lakes, approximately 95% of the fish have lengths within 12 cm of the lake mean. Consider a 1-Way random effects model, where a sample of g lakes is selected and n fish are sampled from each lake.

$$Y_{ij} = \mu + \alpha_{i} + \varepsilon_{ij} \quad i = 1, ..., g; j = 1, ..., n \quad \alpha_{i} \sim NID(0, \sigma_{\alpha}^{2}) \quad \varepsilon_{ij} \sim NID(0, \sigma^{2}) \quad \{\alpha_{i}\} \perp \{\varepsilon_{ij}\}$$

$$p.4.a. \text{ Obtain } \mu, \quad \sigma_{\alpha}^{2}, \quad \sigma^{2}$$

$$\forall \quad \mathcal{M} = 60$$

$$\forall \quad \mathcal{M} = 50$$

$$\forall \quad \mathcal{M}$$

p.4.b. Give the mean and variance of $\overline{Y}_{\bullet \bullet}$

$$V(Y_{..}) = ng(\sigma_{\alpha}^{2} + \sigma^{2}) + gn(n-1)\sigma_{\alpha}^{2}$$

$$= gn^{2}\sigma_{\alpha}^{2} + ng\sigma^{2}$$

$$= 2 \sqrt{(q_{..})} \pm (\frac{1}{n_{5}})^{2} \left[gn^{2}\sigma_{\alpha}^{2} + ng\sigma^{2} \right] = \frac{\sigma_{\alpha}^{2}}{g} + \frac{\sigma^{2}}{n_{5}} = \frac{36}{g}$$

Q.5. Based on the 2014 WNBA season, we have the point totals (Y) by game Location (Home/Away) for a sample of 10 Players. Each player played 17 home games and 17 away games. Consider the model:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk} \quad i = 1, ..., a \quad j = 1, ..., b \quad k = 1, ..., n \quad \sum_{i=1}^{a} \alpha_i = 0 \quad \beta_j \sim N(0, \sigma_\beta^2) \quad \alpha \beta_{ij} \sim N(0, \sigma_{\alpha\beta}^2) \quad \varepsilon_{ijk} \sim N(0, \sigma^2)$$

ANOVA	Yeah	And the second s	2 esch	464	3 esc
Source	df	SS	MS		F(0.05)
Player	10-129	3879.30	431.03	11.99	3,177
Location	2-1-0	1.30	1.30	0.036	5.117
P*L	9(1)=9	323.67	35.96	0.929	~1-9
Error	2(10)(17-1)=320	15787.29	49.34	#N/A	#N/A
Total	8(19(17)-1=331	19991.56	#N/A	#N/A	#N/A

p.5.a. Complete the partial ANOVA table.

p.5.b. Test whether there is an interaction between Player and Location (Home). H_0 : $\sigma_{\alpha\beta}^2 = 0$

p.5.b.i. Test Stat: 0.729 p.5.b.ii. Reject H₀ if Test Stat is in the range p.5.b.iii. P-value > or < .05?

p.5.c. Test whether there is Location (Home vs Away) Main Effect. H_0 : $\alpha_1=\alpha_2=0$

p.5.c.i. Test Stat: 0.036 p.5.c.ii. Reject H₀ if Test Stat is in the range 5.117 p.5.c.iii. P-value or < .05?

p.5.d. Test whether there is Player Main Effect. H₀: $\sigma_{\beta}^{\ 2} = 0$

p.5.d.i. Test Stat: 1.99 p.5.d.ii. Reject H₀ if Test Stat is in the range 3.179 p.5.d.iii. P-value > or < .05?

p.5.e. Give unbiased estimates of each of the variance components:

 $\frac{E[MSAB] = \sigma^2 + n \sigma_{\alpha\beta}^2}{35.96 - 49.34} = -0.79$ $\frac{431.03 - 35.96}{2(17)} = 11.62$

 $\hat{\sigma_{\alpha\beta}^2} = \frac{-0.79(0)}{\hat{\sigma_{\beta}^2}} = \frac{11.62}{11.62} \hat{\sigma^2} = \frac{49.34}{2}$

56