Comparing 2 Treatments

Q.1. An accounting researcher is interested in comparing two methods of training auditors for preparing tax returns. She wants to choose equal sample sizes for a 2 -sample t-test has a power of 0.90 of detecting a difference in true mean tax assessment of 5 . Based on a pilot study, she believes the standard deviation is about 15 . Note that auditors will be using the same corporate financial data. Complete the following parts, and show all work in parts b-d.

Note: $\mathrm{z} .10=1.28 \quad \mathrm{Z} .05=1.645 \quad \mathrm{z} .025=1.96$
p.1.a. Assuming $Y_{i j} \sim \operatorname{NID}\left(\mu_{i}, \sigma^{2}\right)$ give the sampling distribution of $\bar{Y}_{1 \bullet}-\bar{Y}_{2}$.
p.1.b. Based on the normal distribution, for what values of $\bar{Y}_{1} \bullet-\bar{Y}_{2 \bullet}$ will you reject H_{0} : $\mu_{1}-\mu_{2}=0$ in favor of $H_{A}: \mu_{1}-\mu_{2} \neq 0$ based on a Z-test? Note given the above information, this will be a function of $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$.
.1.c. What will the (upper) critical value from part b be equal to under the alternative hypothesis $\mu_{1}-\mu_{2}=5$, if you want the power to be 0.90 (equivalently $\beta=\mathrm{P}($ Type II Error) $=0.90$). Note given the above information, this will be a function of $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}$.
p.1.d. What sample size $\left(\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}\right)$ will be needed for each group to equate parts b and c ?
Q.2. An experiment to compare 2 treatment means is conducted as a paired experiment. The summary data are:
$n=16 \quad \bar{y}_{1}=52 \quad s_{1}=12 \quad \bar{y}_{2}=45 \quad s_{2}=15$
Technically, this data could be analyzed as an independent sample t-test (ignoring the pairing) or a paired t-test. How large would the sample covariance between the measurements within pairs need to be for the 95% Confidence Interval for $\mu_{1}-\mu_{2}$ to be narrower based on the paired sample approach than the independent samples approach?
Q.3. An investigator wishes to compare the variances of the purity of 2 brands of a chemical product. The experiment will consist of obtaining independent samples of $n_{1}=n_{2}=7$ batches from each brand. How large would the ratio of the larger sample standard deviation to the smaller sample standard deviation need to be to reject $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ in favor of $H_{A}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ at the $\alpha=0.10$ significance level.
Q.4. A textile engineer is interested whether the mean breaking strength of Yarn Type A is larger than the of Type B. Assuming that the sample standard deviations are 10, how large should each sample size be if we want $P\left(\right.$ Reject H_{0} : $\mu_{A}-$ $\mu_{B}=0$ in favor of $H_{A}: \mu_{A}-\mu_{B}>0 \mid \mu_{A}-\mu_{B}=2$) $=0.95$. Show all work based on the normal distribution.

