Analysis of Covariance

Q.1. Jack and Jill each fit an Analysis of Covariance, relating post-trt score (Y) to treatment and pre-trt score (X). The overall pre-treatment mean score is $\bar{x}_{\bullet \bullet} = 25$ and there are r=5 subjects per treatment and no interaction.

Jack's Model:
$$y_{ij} = \mu_i + \beta (x_{ij} - x_{\bullet \bullet}) + e_{ij}$$
 $i = 1, 2, 3$ $j = 1, ..., 5$

	Jack's Beta			Jill's Beta	
	59.20	μ1		40.28	β0
	54.83	μ2		0.33	β1
	48.57	μ3		10.64	γ1
	0.33	β		6.27	γ2
Trt	1		2	3	overall
y-bar	58.38		54.83	49.40	54.20
x-bar	22.5		25	27.5	25

p.1.a. Show how Jack uses his model to obtain an estimate of Jill's $\beta_0 + \gamma_1$

p.1.b. Show how Jill uses her model to obtain an estimate of Jack's μ_3

p.1.c. Compute the adjusted means for each treatment.

Trt 1 _____ Trt 2 ____ Trt 3 ____