$\underline{2^{k} \text { Full and Fractional Factorial Designs }}$

Q.1. A 2^{3} factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 4 replicates per treatment.

(1)	-1	-1	-1	1	1	1		40	2
a	1	-1	-1	-1	-1	1		50	3
b	-1	1	-1	-1	1	-1		42	1
c	-1	-1	1	1	-1	-1		38	2
ab	1	1	-1	1	-1	-1		53	2
ac	1	-1	1	-1	1	-1		47	1
bc	-1	1	1	-1	-1	1		40	3
abc	1	1	1	1	1	1		50	2

p.1.a. Give the $+1 /-1$ levels for the $A B C$ Interaction.
p.1.b. Compute $l_{A}=\sum_{i=1}^{n} k_{i} \bar{y}_{i}, \quad S S A=\frac{r}{2^{n}}\left(l_{A}\right)^{2}$
where $k_{i}= \pm 1 \quad$ Test H_{0} : No Factor A effect
$I_{A}=$ \qquad SSA = \qquad Test Statistic $=$ \qquad Rejection Region: \qquad
Q.2. A 2^{3} factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 3 replicates per treatment.

Trt	A	B	C	AB	AC	BC	ABC	Mean	SD
(1)	-1	-1	-1	1	1	1		36	4
a	1	-1	-1	-1	-1	1		64	3
b	-1	1	-1	-1	1	-1		28	3
c	-1	-1	1	1	-1	-1		32	2
ab	1	1	-1	1	-1	-1		68	1
ac	1	-1	1	-1	1	-1		72	2
bc	-1	1	1	-1	-1	1		24	3
abc	1	1	1	1	1	1		76	3

p.2.a. Give the $+1 /-1$ levels for the $A B C$ Interaction in the table above.
p.2.b. Compute MSE
p.2.c. Compute $l_{A}=\sum_{i=1}^{n} k_{i} \bar{y}_{i}, \quad S S A=\frac{r}{2^{n}}\left(l_{A}\right)^{2} \quad$ where $k_{i}= \pm 1 \quad$ Test H_{0} : No Factor A effect $I_{A}=$ \qquad SSA = \qquad Test Statistic = \qquad Rejection Region: \qquad
Q.3. A 2^{3} factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 3 replicates per treatment.

Trt	A	B	C	AB	AC	BC	ABC	Mean	SD
(1)	-1	-1	-1	1	1	1		40	3
a	1	-1	-1	-1	-1	1		64	2
b	-1	1	-1	-1	1	-1		24	2
c	-1	-1	1	1	-1	-1		36	3
ab	1	1	-1	1	-1	-1		68	1
ac	1	-1	1	-1	1	-1		76	3
bc	-1	1	1	-1	-1	1		20	2
abc	1	1	1	1	1	1		80	2

p.3.a. Give the $+1 /-1$ levels for the $A B C$ Interaction in the table above.
p.3.b. Compute MSE
p.3.c. Compute $l_{A}=\sum_{i=1}^{n} k_{i} \bar{y}_{i}, \quad S S A=\frac{r}{2^{n}}\left(l_{A}\right)^{2} \quad$ where $k_{i}= \pm 1 \quad$ Test H_{0} : No Factor A effect

