2^k Full and Fractional Factorial Designs

Q.1. A 2³ factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 4 replicates per treatment.

(1)	-1	-1	-1	1	1	1	40	2
а	1	-1	-1	-1	-1	1	50	3
b	-1	1	-1	-1	1	-1	42	1
с	-1	-1	1	1	-1	-1	38	2
ab	1	1	-1	1	-1	-1	53	2
ас	1	-1	1	-1	1	-1	47	1
bc	-1	1	1	-1	-1	1	40	3
abc	1	1	1	1	1	1	50	2

p.1.a. Give the +1/-1 levels for the ABC Interaction.

p.1.b. Compute
$$l_A = \sum_{i=1}^n k_i \overline{y}_i$$
, $SSA = \frac{r}{2^n} (l_A)^2$ where $k_i = \pm 1$ Test H₀: No Factor A effect
 $l_A = _$ _____ SSA = _____ Test Statistic = _____ Rejection Region: _____

Q.2. A 2³ factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 3 replicates per treatment.

Trt	А	В	С	AB	AC	BC	ABC	Mean	SD
(1)	-1	-1	-1	1	1	1		36	4
а	1	-1	-1	-1	-1	1		64	3
b	-1	1	-1	-1	1	-1		28	3
С	-1	-1	1	1	-1	-1		32	2
ab	1	1	-1	1	-1	-1		68	1
ac	1	-1	1	-1	1	-1		72	2
bc	-1	1	1	-1	-1	1		24	3
abc	1	1	1	1	1	1		76	3

p.2.a. Give the +1/-1 levels for the ABC Interaction in the table above.

p.2.b. Compute MSE

p.2.c. Compute
$$l_A = \sum_{i=1}^n k_i \overline{y}_i$$
, $SSA = \frac{r}{2^n} (l_A)^2$ where $k_i = \pm 1$ Test H₀: No Factor A effect

Q.3. A 2³ factorial experiment is conducted to determine the main effects and interactions among 3 factors (presence/absence) on taste quality for frozen dinners. The following table gives the design, mean, and standard deviation (SD) for the 8 combinations of factor levels. There were 3 replicates per treatment.

Trt	А	В	С	AB	AC	BC	ABC	Mean	SD
(1)	-1	-1	-1	1	1	1		40	3
а	1	-1	-1	-1	-1	1		64	2
b	-1	1	-1	-1	1	-1		24	2
С	-1	-1	1	1	-1	-1		36	3
ab	1	1	-1	1	-1	-1		68	1
ac	1	-1	1	-1	1	-1		76	3
bc	-1	1	1	-1	-1	1		20	2
abc	1	1	1	1	1	1		80	2

p.3.a. Give the +1/-1 levels for the ABC Interaction in the table above.

p.3.b. Compute MSE

p.3.c. Compute $l_A = \sum_{i=1}^n k_i \overline{y}_i$, $SSA = \frac{r}{2^n} (l_A)^2$ where $k_i = \pm 1$ Test H₀: No Factor A effect