
Multiple Regression

• Numeric Response variable (y)

• p Numeric predictor variables (p < n)

• Model:

Y = b0 + b1x1 +  + bpxp + e

• Partial Regression Coefficients: bi  effect (on the mean 

response) of increasing the ith predictor variable by 1 

unit, holding all other predictors constant

• Model Assumptions (Involving Error terms e )

– Normally distributed with mean 0

– Constant Variance s2

– Independent (Problematic when data are series in time/space) 



Example - Effect of Birth weight on 

Body Size in Early Adolescence

• Response: Height at Early adolescence (n =250 cases)

• Predictors (p=6 explanatory variables) 

• Adolescent Age (x1, in years -- 11-14)

• Tanner stage (x2, units not given)

• Gender (x3=1 if male, 0 if female)

• Gestational age (x4, in weeks at birth)

• Birth length (x5, units not given)

• Birthweight Group (x6=1,...,6   <1500g (1), 1500-

1999g(2), 2000-2499g(3), 2500-2999g(4), 3000-

3499g(5), >3500g(6))
Source: Falkner, et al (2004)



Least Squares Estimation

• Population Model for mean response:
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• Least Squares Fitted (predicted) equation, minimizing SSE:
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• All statistical software packages/spreadsheets can 

compute least squares estimates and their standard errors



Analysis of Variance 

• Direct extension to ANOVA based on simple 

linear regression

• Only adjustments are to degrees of freedom:

– DFR = p DFE = n-p*     (p*=p+1=#Parameters)
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Testing for the Overall Model - F-test

• Tests whether any of the explanatory variables are 

associated with the response

• H0: b1==bp=0  (None of the xs associated with y)

• HA: Not all bi = 0
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Example - Effect of Birth weight on 

Body Size in Early Adolescence

• Authors did not print ANOVA, but did provide following:

• n=250       p=6      R2=0.26

• H0: b1==b6=0        HA: Not all bi = 0
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Testing Individual Partial Coefficients - t-tests

• Wish to determine whether the response is 

associated with a single explanatory variable, after 

controlling for the others

• H0: bi = 0            HA: bi  0   (2-sided alternative)
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Example - Effect of Birth weight on 

Body Size in Early Adolescence

Variable b SEb t=b/SEb P-val (z)

Adolescent Age 2.86 0.99 2.89 .0038

Tanner Stage 3.41 0.89 3.83 <.001

Male 0.08 1.26 0.06 .9522

Gestational Age -0.11 0.21 -0.52 .6030

Birth Length 0.44 0.19 2.32 .0204

Birth Wt Grp -0.78 0.64 -1.22 .2224

Controlling for all other predictors, adolescent age, Tanner stage, and 

Birth length are associated with adolescent height measurement



Comparing Regression Models

• Conflicting Goals: Explaining variation in Y while 

keeping model as simple as possible (parsimony)

• We can test whether a subset of p-g predictors (including 

possibly cross-product terms) can be dropped from a 

model that contains the remaining g predictors.            

H0: bg+1=…=bp =0 

– Complete Model: Contains all p predictors

– Reduced Model: Eliminates the predictors from H0

– Fit both models, obtaining sums of squares for each 

(or R2 from each): 

• Complete: SSRc , SSEc (Rc
2)   

• Reduced: SSRr , SSEr (Rr
2) 



Comparing Regression Models

• H0: bg+1=…=bp = 0 (After removing the 

effects of X1,…,Xg, none of other predictors 

are associated with Y)

• Ha: H0 is false
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P-value based on F-distribution with p-g and n-p*  d.f.



Models with Dummy Variables

• Some models have both numeric and categorical 

explanatory variables (Recall gender in example)

• If a categorical variable has m levels, need to create m-1 

dummy variables that take on the values 1 if the level of 

interest is present, 0 otherwise.

• The baseline level of the categorical variable is the one 

for which all m-1 dummy variables are set to 0

• The regression coefficient corresponding to a dummy 

variable is the difference between the mean for that 

level and the mean for baseline group, controlling for 

all numeric predictors



Example - Deep Cervical Infections

• Subjects - Patients with deep neck infections 

• Response (Y) - Length of Stay in hospital

• Predictors: (One numeric, 11 Dichotomous)

– Age (x1)

– Gender (x2=1 if female, 0 if male)

– Fever (x3=1 if Body Temp > 38C, 0 if not)

– Neck swelling (x4=1 if Present, 0 if absent)

– Neck Pain (x5=1 if Present, 0 if absent)

– Trismus (x6=1 if Present, 0 if absent)

– Underlying Disease (x7=1 if Present, 0 if absent)

– Respiration Difficulty (x8=1 if Present, 0 if absent)

– Complication (x9=1 if Present, 0 if absent)

– WBC > 15000/mm3 (x10=1 if Present, 0 if absent)

– CRP > 100mg/ml  (x11=1 if Present, 0 if absent)

Source: Wang, et al (2003)



Example - Weather  and Spinal Patients

• Subjects - Visitors to National Spinal Network in 23 cities 

Completing SF-36 Form

• Response - Physical Function subscale (1 of 10 reported)

• Predictors:

– Patient’s age (x1)

– Gender (x2=1 if female, 0 if male)

– High temperature on day of visit (x3)

– Low temperature on day of visit (x4)

– Dew point (x5)

– Wet bulb (x6)

– Total precipitation (x7)

– Barometric Pressure (x7)

– Length of sunlight (x8)

– Moon Phase (new, wax crescent, 1st Qtr, wax gibbous, full moon, 

wan gibbous, last Qtr, wan crescent, presumably had 8-1=7 

dummy variables)Source: Glaser, et al (2004)



Modeling Interactions
• Statistical Interaction: When the effect of one 

predictor (on the response) depends on the level 

of other predictors.

• Can be modeled (and thus tested) with cross-

product terms (case of 2 predictors):

– E(Y) =   b1X1 + b2X2 + b3X1X2

– X2=0  E(Y) =   b1X1

– X2=10  E(Y) =   b1X1 + 10b2 + 10b3X1

= ( + 10b2) + (b1 + 10b3)X1

• The effect of increasing X1 by 1 on E(Y) depends 

on level of X2, unless b3=0  (t-test)



Regression Model Building

• Setting: Possibly a large set of predictor variables 

(including interactions).

• Goal: Fit a parsimonious model that explains 

variation in Y with a small set of predictors

• Automated Procedures and all possible regressions:

– Backward Elimination (Top down approach)

– Forward Selection (Bottom up approach)

– Stepwise Regression (Combines Forward/Backward)

– Cp, AIC, BIC- Summarizes each possible model, where 

“best” model can be selected based on each statistic



Backward Elimination

• Select a significance level to stay in the model (e.g. 

SLS=0.20, generally .05 is too low, causing too many 

variables to be removed)

• Fit the full model with all possible predictors

• Consider the predictor with lowest t-statistic (highest 

P-value).

– If P > SLS, remove the predictor and fit model without this 

variable (must re-fit model here because partial regression 

coefficients change)

– If P  SLS, stop and keep current model

• Continue until all predictors have P-values below SLS



Forward Selection

• Choose a significance level to enter the model (e.g. 

SLE=0.20, generally .05 is too low, causing too few 

variables to be entered)

• Fit all simple regression models.

• Consider the predictor with the highest t-statistic (lowest 

P-value)

– If P  SLE, keep this variable and fit all two variable models 

that include this predictor

– If P > SLE, stop and keep previous model

• Continue until no new predictors have P  SLE



Stepwise Regression

• Select SLS and SLE (SLE<SLS)

• Starts like Forward Selection (Bottom up process)

• New variables must have P  SLE to enter

• Re-tests all “old variables” that have already been 

entered, must have P  SLS to stay in model

• Continues until no new variables can be entered 

and no old variables need to be removed



All Possible Regressions – Cp and PRESS

• Fit every possible model. If K potential predictor 

variables, there are 2K-1 models.

• Label the Mean Square Error for the model containing 

all K predictors as MSEK

– Cp:  For each model, compute SSE and Cp where p* is the 

number of parameters (including intercept) in model

– PRESS: Fitted values for each observation when that 

observation is not used in model fit.
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• Cp: Select the model with the fewest predictors that has Cp  p*

• PRESS: Choose model with minimum value for PRESS



All Possible Regressions – AIC, BIC

• Fits every possible model. If K potential predictor 

variables, there are 2K-1 models.

• For each model, compute SSE and AIC and BIC where 

p* is the number of parameters (including intercept) in 

model
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• Select the model that minimizes the criterion. BIC puts a higher 

penalty (for most sample sizes) and tends to choose “smaller” 

models. Note that various computing packages use different 

variations, but goal is to choose model that minimizes measure. 



Regression Diagnostics

• Model Assumptions:

– Regression function correctly specified (e.g. linear)

– Conditional distribution of Y is normal distribution

– Conditional distribution of Y has constant standard deviation

– Observations on Y are statistically independent

• Residual plots can be used to check the assumptions

– Histogram (stem-and-leaf plot) should be mound-shaped 

(normal)

– Plot of Residuals versus each predictor should be random cloud

• U-shaped (or inverted U)   Nonlinear relation

• Funnel shaped  Non-constant Variance

– Plot of Residuals versus Time order (Time series data) should be 

random cloud. If pattern appears, not independent.



Linearity of Regression (SLR)
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Non-Normal Errors

• Box-Plot of Residuals – Can confirm symmetry and 

lack of outliers

• Check Proportion that lie within 1 standard deviation 

from 0, 2 SD, etc, where SD=sqrt(MSE)

• Normal probability plot of residual versus expected 

values under normality – should fall approximately 

on a straight line (Only works well with moderate to 

large samples)     qqnorm(e); qqline(e)   in R

Expected value of Residuals under Normality:

1)  Rank residuals from smallest (large/negative) to highest (large/positive)  Rank = 

0.375
2) Compute the percentile using   and obtain correspon
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Test for Normality of Residuals

• Correlation Test

1) Obtain correlation between observed residuals and 

expected values under normality (see slide 7)

2) Compare correlation with critical value based on 0.05

level with:   1.02-1/sqrt(10n)

3) Reject the null hypothesis of normal errors if the 

correlation falls below the critical value

• Shapiro-Wilk Test – Performed by most software 

packages. Related to correlation test, but more 

complex calculations



Equal (Homogeneous) Variance 
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Test For Independence - Durbin-Watson Test
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Detecting Influential Observations

 Studentized Residuals – Residuals divided by their estimated 

standard errors (like t-statistics). Observations with values 

larger than 3 in absolute value are considered outliers.

 Leverage Values (Hat Diag) – Measure of how far an 

observation is from the others in terms of the levels of the 

independent variables (not the dependent variable). 

Observations with values larger than 2p*/n are considered to be 

potentially highly influential, where p is the number of 

predictors and n is the sample size.

 DFFITS – Measure of how much an observation has effected 

its fitted value from the regression model. Values larger than 

2sqrt(p*/n) in absolute value are considered highly influential. 

Use standardized DFFITS in SPSS.



Detecting Influential Observations

 DFBETAS – Measure of how much an observation has 

effected the estimate of a regression coefficient (there is one 

DFBETA for each regression coefficient, including the 

intercept). Values larger than 2/sqrt(n) in absolute value are 

considered highly influential.

 Cook’s D – Measure of aggregate impact of each observation 

on the group of regression coefficients, as well as the group of 

fitted values. Values larger than 4/n are considered highly 

influential.

 COVRATIO – Measure of the impact of each observation on 

the variances (and standard errors) of the regression 

coefficients and their covariances. Values outside the interval 1 

+/- 3p*/n are considered highly influential.



Variance Inflation Factors

• Variance Inflation Factor (VIF) – Measure of 

how highly correlated each independent 

variable is with the other predictors in the 

model. Used to identify Multicollinearity.

• Values larger than 10 for a predictor imply large 

inflation of standard errors of regression 

coefficients due to this variable being in model.

• Inflated standard errors lead to small t-statistics 

for partial regression coefficients and wider 

confidence intervals



Remedial Measures

• Nonlinear Relation – Add polynomials, fit 

exponential regression function, or transform Y

and/or X

• Non-Constant Variance – Weighted Least Squares, 

transform Y and/or X, or fit Generalized Linear Model

• Non-Independence of Errors – Transform Y or use 

Generalized Least Squares

• Non-Normality of Errors – Box-Cox tranformation, 

or fit Generalized Linear Model

• Omitted Predictors – Include important predictors in 

a multiple regression model

• Outlying Observations – Robust Estimation



Nonlinearity: Polynomial Regression

• When relation between Y and X is not linear, 

polynomial models can be fit that approximate 

the relationship within a particular range of X

• General form of model:
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• Second order model (most widely used case, allows one “bend”):
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• Must be very careful not to extrapolate beyond observed X levels



Transformations for Non-Linearity – Constant Variance

X’ = √X   X’ = ln(X) X’ = X2 X’ = eX X’ = 1/X       X’ = e-X



Transformations for Non-Linearity – Non-Constant Variance

Y’ = √Y Y’ = ln(Y) Y’ = 1/Y



Box-Cox Transformations

• Automatically selects a transformation from power family 

with goal of obtaining: normality, linearity, and constant 

variance (not always successful, but widely used)

• Goal: Fit model: Y’ = b0 + b1X + e for various power 

transformations on Y, and selecting transformation 

producing minimum SSE (maximum likelihood)

• Procedure: over a range of l from, say -2 to +2, obtain Wi

and regress Wi on X (assuming all Yi > 0, although adding 

constant won’t affect shape or spread of Y distribution) 
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