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Chapter 1

Introduction

1.1 Basic Concepts of Statistical Analysis

Statistical tools and methods are used to describe data and make inferences regarding states of nature in a
wide variety of areas of study. From simple graphs and numeric summaries provided in mainstream press
to highly complex models used to describe measurements across a wide range of individuals or sampling
units, we see reports making use of statistical tools and methods constantly. We will go through many of
the commonly used methods in these notes.

After a brief introduction to descriptive statistics, making use of numeric and graphical summaries
of variables, we will spend the remainder of the notes on inferential statistics that make use of informa-
tion from a sample to make statements regarding a larger population of units. When conducting a study,
researchers typically use the following strategy.

1. Define the problem/research question of interest, including what to measure and all relevant conditions
or groups to study.

2. Collect the data by means of a controlled experiment, observational study, or sample survey.

3. Summarize the data numerically in tabular form and/or graphically.

4. Analyze, interpret, and communicate the study’s findings.

Many methods exist for the final part, data analysis, that we describe in detail in these notes. Many
factors lead to the choice of the statistical methods to use for the analysis, including: data type(s), sampling
method, and distributional assumptions regarding the measurements.

Populations will be thought of as the universe of units, while samples will refer to subsamples of the
populations that are observed and measured. In practice, we observe the sample with the goal of making
inferences regarding the corresponding population. Consider the following examples.

9



10 CHAPTER 1. INTRODUCTION

• A study compared 3 electronic reader models, each at 4 illumination levels in a sample of 60 subjects,
measuring the times to read a document. The goal was to compare the effects of the models and
illumination levels in the general population [13].

• Many studies have been conducted involving extrasensory perception (ESP). In a typical study, there
are 4 choices of what target the sender is viewing and the receiver must identify which target was being
viewed. Researchers wish to determine whether the true proportion of successful trials exceeds 1/4
from a sample of trials [48].

• Studies are conducted to measure general consistency within and between evaluators when assessing
common items (e.g. fingerprints, x-rays, foods/beverages) based on sampled judges and targets [18].

Note that populations can be “fixed”, a well defined and identified population of units (e.g. all National
Hockey League players for the 2014-2015 season) or “conceptual” (e.g. all people with a particular condition
currently or in the near future). In our work, we will often make use of taking random samples from fixed
populations to understand the properties of statistical procedures as they are applied to different samples
from a given population.

1.2 Data Collection

Once a research question has been made, then data is collected to attempt to answer the question. Three
common methods of collecting data are: controlled experiments, observational studies, and sample surveys.

In a Controlled Experiment, a sample of experimental units is obtained, and randomized to the
various treatments or conditions to be compared. There are many ways that these can be conducted, and
we will describe many variations of them throughout this course and its sequel. Some elements of controlled
experiments are given here.

Factors Variable(s) that are controlled by the experimenter (e.g. new drug vs placebo, 4 doses of a pesticide,
3 packages for food product)

Responses Measurements/Outcomes obtained during the experiment (e.g. change in blood pressure, weeds
killed, consumer ratings for the product)

Treatments Conditions that are generated by the factor(s). When only 1 factor, these are the levels. With
2 or more factors, these are combinations of levels.

Experimental Unit Entity that is randomized to the Treatments. These can be individual items (patients
in clinical trial, plants in botanical experiment) or groups of items (classrooms of students in an
education experiment, pens of animals in a feed study).

Replications Treatments are assigned to more than one experimental unit, allowing for experimental error
(variation) to be measured.

Measurement Unit Entity on which measurements are obtained. These can be experimental units when
individuals are randomized, or subunits within the experimental units (students in a classroom, pigs
in a pen).
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Controlled experiments can be conducted in laboratories/hospitals/greenhouses, but can also be con-
ducted in the “real world” where they are often referred to as “field studies” or “natural experiments.”

There are many different treatment designs that are commonly applied. Some classes of designs are
given below.

Single Factor Designs In these designs, there is a single factor to be studied with various levels.

Multi Factor Designs More than one factor is varied. Treatments correspond to combinations of factor
levels.

Completely Randomized Designs Experimental units are randomly assigned to treatments with no re-
striction on randomization.

Randomized Block Designs Experimental units are grouped into homogeneous blocks, with treatments
assigned so that each block receives each treatment.

Latin Square Designs Two or more blocking factors are available.

Repeated Measure Designs Units can be assigned to each treatment or be measured at multiple occa-
sions on the same treatment.

Note that in designs with 2 or more factors, researchers are often interested in whether the effects of the
levels of one factor depend on the levels of the other factor(s). When the effects do depend on the levels of
the other factor, this is referred to as an interaction.

Example 1.1: Electronic Reader Reading Task Times by Model and Illumination

An experiment was conducted to compare reading times for a long duration reading task (Chang, Chou,
and Shieh (2013) [13]). There were two factors: e-reader model with 3 levels (Sony PRS 700, Amazon
Kindle DX, iRex 1000s) and 4 illumination levels (200 lx, 500, 1000, 1500). Thus there were 12 treatments
(combinations of e-reader and illumination level). There were a total of 60 subjects, who were randomly
assigned so that 5 subjects were assigned to each treatment (each subject read only 1 reader under only 1
illumination level). The response was the time to read the document in seconds.

∇

In many settings, it is not possible or ethical to assign units to treatments. For instance, when comparing
quality of products of various brands, you can take samples from the various brands, but not assign “raw
materials” at random to the brands. Studies comparing residents of various parts of a country can only take
samples of residents from the areas, not assign people to them. In studies of the effects of smoking or drinking,
it is unethical to assign subjects to the conditions. In all of these cases, we refer to these as Observational
Studies. Typically the method of analysis is the same for controlled experiments and observational studies,
however the ability to imply “cause and effect” is more difficult in observational studies than controlled
experiments. Researchers in such studies must try and control for any potential alternative explanations of
the association. For an interesting discussion of various aspects of observational studies, including: external
validity (generalizing results beyond the original study), causation, reliability of measurement, and inclusion
of covariates, involving study of interruption and multitasking, see Walter, Dunsmuir, and Westbrook (2015)
[51].
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In many research areas, data are collected through Sample Surveys. In particular, they are often used
in Public Opinion, by Government Bureaus, Business, and Recreational Services. Unless surveys are based
on some sort of sampling based method, they are generally not reliable for making inferences regarding a
population.

It should be noted that certain problems tend to arise with surveys. The primary problem is nonre-
sponse. If the individuals who do not respond tend to be different from those who do respond, then any
estimates of population based quantities will be biased. Also, when the questions are “sensitive” such as
illegal behavior, there will tend to be response bias. Recall bias occurs when some sampled elements are
more likely to recall a previous experience than others. This can effect observed associations in retrospective
surveys. Needless to say wording of questions can have a large impact on responses.

Some commonly used sampling methods are as follow.

Simple Random Sampling All possible samples of size n from a population of size N are equally likely.
This needs a frame listing all elements of the population and a random number generator.

Stratified Random Sampling Elements of the population are classified by group (strata) and simple
random samples are taken within each group.

Cluster Sampling Elements of the population are classified by cluster (possibly physical location) and a
random sample of clusters is taken. Elements within the sampled clusters are the sampled units.

Systematic Sampling When elements of the population are in a sequence, a random starting point is
selected, and every kth subsequent element is sampled.

Note that these techniques are often applied in combination in many government/business/political
surveys. Also, these techniques generalize to taking samples of individuals or elements from any population
to be observed and measured. For instance, in quality control, items may be sampled and tested from an
assembly line by systematic sampling.

All methods covered in this course are based on simple random sampling. Some adjustments for estimates
and standard errors are used for the other sampling plans. For a detailed and accessible coverage of sampling,
see e.g. Scheaffer, Mendenhall, and Ott (1990) [46].

1.3 Variable Types

In most settings, researchers have one or more “output” variable(s) and one or more “input” variable(s).
For instance, a study comparing salaries among males and females would have the output variable be salary
and possible input variables: gender (1 if female, 0 if male), experience (years), and education (years). The
output variables are often referred to as dependent variables, responses, or end points. The input
variables are often referred to as independent variables, predictors, or explanatory variables.

Variables are measured on different scales, and the data analysis methods are determined by variable
types. Variables can be categorical or numeric. Categorical variables can be nominal or ordinal, while
numeric variables can be discrete or continuous.
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Subject Age Gender Dysphonia Subject Age Gender Dysphonia Subject Age Gender Dysphonia

1 10 M 3 11 45 F 3 21 57 F 2
2 19 M 1 12 47 F 3 22 59 F 2
3 27 F 1 13 48 M 1 23 60 F 3
4 32 M 1 14 49 F 2 24 60 M 1
5 37 F 2 15 50 F 3 25 62 F 2
6 37 M 0 16 51 F 3 26 62 M 3
7 39 F 3 17 51 M 0 27 64 F 3
8 42 F 2 18 51 M 0 28 70 M 3
9 44 F 2 19 53 F 1 29 77 F 3
10 45 F 2 20 57 F 3 30 89 F 2

Table 1.1: Age, Gender, and Dysphonia Grade for 30 Subjects - VALI Study

Examples of nominal variables include gender, hair color, and automobile make. These are categories
with no inherent ordering. Ordinal variables are categorical, but with an inherent ordering, such as: strongly
disagree, disagree, neutral, agree, strongly agree. Discrete variables can take on only a finite or countably
infinite set of values, these can be counts of number of occurrences of an event in a series of trials or in a
fixed time or space, or the number facing up on a roll of a dice. Continuous variables can take on any value
along a continuum, such as temperature, time, or blood pressure. When discrete variables take on many
values, they are often treated as continuous, and continuous variables are often reported as discrete values.

Example 1.2: Consistency of Ratings Based on a Rating Scale for Videostroboscopy

A study was conducted to measure inter-rater and intra-rater reliability of the Voice-Vibratory Assess-
ment with Laryngeal Imaging (VALI) rating form for assessing videostroboscopy and high-speed videoendo-
scopic (HSV) recordings (Poburka, Patel, and Bless (2017) [43]). Table 1.1 contains information on the 30
subjects in the study. These include: subject ID, Age (continuous, reported as a discrete variable), gender
(nominal), and an overall dysphonia grade (ordinal, with 0=normal, 1=mild, 2=moderate, 3=severe).

∇
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Chapter 2

Describing Data

Once data have been collected, it is typically described via graphical and numeric means. The methods used
to describe the data will depend on its type (nominal, ordinal, or numeric). We also need to distinguish
whether the data corresponds to a sample or a population. In this chapter, we focus purely on describing a
set of measurements, not making inferences. First we consider graphical and numeric descriptions of a single
variable. Then we consider pairs of variables.

2.1 Graphical Description of a Single Variable

Depending on the type of measurement, common plots are pie charts, bar charts, histograms, box
plots, and density plots.

Pie charts can be used to describe any variable type. Continuous numeric variables must be collapsed
into “bins” or “buckets.” The size of the sectors of the pie represent the relative frequency of each category.

Bar charts are used to describe nominal or ordinal data. The variable levels are arrayed on the bottom
(or left side) of the plot and bars above (or beside) the levels represent the frequency or relative frequency
of the number of observations belonging to the various categories.

Histograms are used for numeric variables, where the heights of the bars above the bins represent the
frequency or relative frequency of the various bins.

Box plots are used on numeric variables. They identify particular percentiles of a distribution and are
useful in detecting outlying observations and spread in the distribution.

Density plots are used for numeric variables. They represent smoothed histograms describing the pro-
portion of measurements within some distance of each point on the continuum.

Example 2.1: Charlotte, NC Traffic Stops - 2016

15
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ChkPntDWI
Invstgtn

Other

SafeMove

SeatBelt

Speed

StopLgtSgn

VhclMove

Rgstrtn

Pie Chart − CLT Traffic Stops

Figure 2.1: Pie Chart for Charlotte, NC traffic stops by Reason for Stop

Data for a population of 79884 traffic stops in Charlotte, North Carolina in 2016 were obtained from
Data.gov. There were 10 possible reasons for the traffic stops (including a category ‘Other’). A pie chart
(Figure 2.1) and a bar chart (Figure 2.2) are displayed. Note that the pie chart does a very poor job with the
categories “DWI” and “Check Point.” Pie charts should generally be avoided. It is clear that Registration
and Speed violations are the most often occurring reasons.

R Commands and Output

### Output

> (table.RsnStop <- table(RsnStop))

RsnStop

ChkPnt DWI Invstgtn Other SafeMove SeatBelt Speed

286 114 1992 1926 4827 631 22222

StopLgtSgn VhclMove Rgstrtn

7946 7535 32405

∇

Example 2.2: Body Mass Index for National Hockey League Players - 2013/2014 Season

Body mass index (BMI) is a measure of body fat that is based on the the work of Adolphe Quetelet, a
renowned Belgian researcher in astronomy and statistics and other areas, particularly social sciences. In terms
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Figure 2.2: Bar Chart for Charlotte, NC traffic stops by Reason for Stop

NHL BMI Distribution 2013−2014 Season
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Figure 2.3: Body Mass Index for 2013/2014 season National Hockey League Players

of metric units, BMI is mass(kg)/height(m)
2
; in the American system, BMI is 703*mass(lbs)/height(in)

2
.

Data for all National Hockey League (NHL) players are obtained, reported in pounds (lbs) and inches,
discretely. A histogram is given in Figure 2.3. The histogram is approximately symmetric and mound-
shaped, centered between 26 and 28.

∇

Example 2.3: Female and Male Speeds at Washington, DC Rock and Roll Marathon - 2015

The 2015 Rock and Roll Marathon in Washington, D.C. was completed by 1045 female and 1454 male
participants. Each participant’s time to complete the marathon was converted to a speed (miles per hour).
Histograms and kernel density plots for females and males are given in Figure 2.4, and side-by-side box plots
are given in Figure 2.5. For both genders, there tend to be more cases at lower speeds with a few extreme
cases with higher speeds. These distributions are right-skewed. The box-plot identifies from bottom to
top the following elements.
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Figure 2.4: Histograms and density plots of Rock and Roll marathon speeds by gender

1. Minimum: Bottom of line at bottom of plot

2. Range for slowest 25% of participants: Line below box

3. 25th percentile: Bottom line of box

4. Range for the 25th to 50th percent of participants: Between bottom of box and second horizontal line

5. Median (50th percentile): Second horizontal line

6. Range for the 50th to 75th percent of participants: Between second horizontal line and top of box

7. 75th percentile: Top line of the box

8. Range for 75th to 100th percent of participants: Line extends to either the Maximum speed or 1.5
times the distance between 75th and 25th percentiles (height of the box), whichever is lowest. Circles
represent outlying measurements (very fast runners).

A smooth version of a boxplot, which does not separate the measurements into quantiles is a violin
plot. For the marathon data, one is displayed in Figure 2.6.

R Output

### Output

> ## Obtain mean and standard deviation by gender

> tapply(mph,Gender,mean)

F M

5.839839 6.336979

> tapply(mph,Gender,sd)

F M

0.8310405 1.0576868

∇
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Figure 2.6: Side-by-side violin plots of Rock and Roll marathon speeds by gender
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Figure 2.7: Monthly Mean Temperature in Miami, FL (January 1949 - December 2014)

Time series plots are widely used in many areas including economics, finance, climatology, and biology.
These graphs include one or more characteristics being observed in a sequential time order. These plots can
be based on virtually any level of sampling interval. They can be used to detect trend and cyclical patterns
over time. Figure 2.7 shows the the monthly and annual mean temperature in Miami for the years 1949
through 2014. Clearly there is a cyclical pattern occurring within years, and after a flat early annual series,
there certainly appears to be evidence of an increasing trend over approximately the second half of the series
(after about 1970).

R Output

### Output (condensed)

> (yearMeanTemp <- aggregate(meantemp ~ year, mw1, mean))

year meantemp

1 1949 76.11667

2 1950 75.15833

3 1951 75.24167

...

64 2012 77.30833

65 2013 77.88333

66 2014 77.54167

Data maps are very popular as more and more spatial datasets are available. Figure 2.8 displays Bigfoot
sightings for the 50 United States.
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Figure 2.8: Bigfoot sightings by US state

2.2 Numerical Descriptive Measures of a Single Variable

Numerical descriptive measures describe a set of measurements in quantitative terms. When describing a
population of measurements, they are referred to as parameters; when describing a sample of data, they
are referred to as statistics.

In terms of nominal and ordinal data, proportions are generally the numeric measures of interest.
These are simply the fraction of measurements falling into the various possible levels (and must sum to
1). For ordinal variables, the cumulative proportions are also of interest, representing the fraction of
measurements falling in or below the various categories.

Example 2.4: CLT Traffic Stops and the VALI Laryngeal Study

For the Charlotte traffic stops, there were 10 categories for the reason for the stop. These reasons are
treated as nominal, as there is no inherent ordering of the levels.

R Commands and Output are given below. The table function counts the number of cases (traffic stops)
that are of each category, and dividing by their sum turns them into proportions.

R Output
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### R Commands/Output (using previous dataset)

(table.RsnStop <- table(RsnStop))

round(table.RsnStop / sum(table.RsnStop), 5)

> (table.RsnStop <- table(RsnStop))

RsnStop

1 2 3 4 5 6 7 8 9 10

286 114 1992 1926 4827 631 22222 7946 7535 32405

> round(table.RsnStop / sum(table.RsnStop), 5)

RsnStop

1 2 3 4 5 6 7 8 9 10

0.00358 0.00143 0.02494 0.02411 0.06043 0.00790 0.27818 0.09947 0.09432 0.40565

For the VALI study, the ordinal dysphonia rating had levels: 0, 1, 2, 3. There were 3, 6, 9, and 12 cases
for those categories (total of 30 subjects). The proportions for the categories are:

0 : 3/30 = .10 1 : 6/30 = .20 2 : 9/30 = .30 3 : 12/30 = .40

The cumulative proportions (at or below that score) are:

0 : .10 1 : .10 + .20 = .30 2 : .30 + .30 = .60 3 : .60 + .40 = 1.00

In these examples, the traffic stop data can be thought of as a population (all traffic stops in Charlotte,
N.C. in 2016), and the VALI dysphonia data is most certainly a sample.

∇

2.2.1 Measures of Central Tendency

There are two commonly reported measures of central tendency, or location for a set of measurements. The
mean is the sum of all measurements divided by the number of measurements, and is reported often as “per
capita” in economic reports. The mean is the “balance point” of a set of measurements in a physical sense.
The median is the point where half of the measurements fall at or below it, and half of the measurements
fall at or above it. It is also the 50th percentile of the set of measurements. Many economic reports state
median values. A third, less reported measure is the mode which really is only appropriate for discrete
variables, and is the value that occurs most often. For a histogram of discretely measured data, the mode is
the level with the highest bar.

Note that the mean is affected by outlying measurements, as it is the sum of all measurements, evenly
distributed among all of the measurements. The median is more “robust” as it is not affected by the actual
values of individual measurements, only the center of them. The formulas for the population mean µ, based
on a population of N items and the sample mean y for a sample of n items are given below.

Population Mean: µ =

∑N
i=1 yi

N
Sample Mean: y =

∑n
i=1 yi

n
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To obtain the median, measurements are ordered from smallest to largest, and the middle observation
(odd population/sample size) or the average of the middle two observations (even population/sample size)
are identified.

Example 2.5: NHL BMI’s and Rock and Roll Marathon Speeds

Using the mean and median functions in R, we obtain the population means for NHL BMI’s and
marathon speeds by gender for the Rock and Roll marathon.

R Output

### Output

> cbind(head(bmi.nhl.sort), tail(bmi.nhl.sort))

[,1] [,2]

[1,] 21.56757 29.98314

[2,] 21.75521 30.12259

[3,] 22.14871 30.51215

[4,] 22.64680 30.82813

[5,] 22.75987 31.39688

[6,] 22.75987 32.00386

> round(bmi.cent.out, 4)

N sum mean median

[1,] 717 19000.61 26.5002 26.5159

>

> ### Use built-in mean and median functions

> mean(bmi.nhl)

[1] 26.50015

> median(bmi.nhl)

[1] 26.51586

Note that the mean (26.50) and median (26.52) are very close, as is expected for an (approximately)
symmetric distribution.

For the marathon speeds, we use the tapply function in R that will compute functions separately for
different groups (gender).

R Output

> tapply(mph,Gender,mean)

F M

5.839839 6.336979

> tapply(mph,Gender,median)

F M

5.711109 6.276599

These distributions are skewed-right, with a few very fast runners in each gender. This causes the means
(F=5.84, M=6.37) to be larger than the medians (F=5.71, M=6.28).

∇
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Outliers are observations that lie “far” away from the others. These may be data that have been
entered erroneously or just individual cases that are quite different from others. As stated above, means
can be affected by outliers, while medians generally are not. A measure of the mean that is not affected by
outliers is the trimmed mean. This is the mean of observations in the “middle” of the measurements. For
instance, 90% trimmed mean is the mean of the middle 90% of the ordered measurements (removing the
smallest 5% and largest 5%).

2.2.2 Measures of Variability

Along with the “location” of a set of measurements, researchers are also interested in their variability (aka
dispersion). The range is the distance between the largest and smallest measurements (note that this differs
from the standard meaning which would just give the lowest and highest values). The interquartile range
(IQR) is the distance between the 75th percentile (3/4 of measurements lie below it) and the 25th percentile
(1/4 of the measurements lie below it). That is, the IQR measures the range for the middle half of the
ordered measurements.

Measures that are more widely used in making inferences are the variance and its square root, the
standard deviation. In terms of measurements, the variance is approximately the average squared distance
of the individual measurements from the mean (for a population, it is the average). The formulas for the
population and sample variance are given below. Note that unless stated otherwise specifically, software
packages are reporting the sample version.

Population Variance: σ2 =

∑N
i=1 (yi − µ)

2

N
Sample Variance: s2 =

∑n
i=1 (yi − y)

2

n − 1

The reason for dividing by n− 1 in the sample variance is to make the estimator an unbiased estimator
for the population variance. That is, when computed across all possible samples, the “average” of the sample
variance will be the population variance. The standard deviation is the positive square root of the variance
and is in the same units as the measurements. The population standard deviation is denoted as σ, the
sample standard deviation is denoted as s. For many (but certainly not all) distributions, approximately
2/3 of the measurements lie within one standard deviation of the mean and approximately 19/20 lie within
two standard deviations of the mean.

Example 2.6: NHL BMI’s and Rock and Roll Marathon Speeds

We compute the range, interquartile range, variance, and standard deviations for the NHL BMI’s and
the Rock and Roll mathon speeds by gender. Since we treat each of these as a population, we will make a
slight adjustment to R’s “built-in” functions var and sd, which compute the sample versions by default.

R Output

### Output

> var(bmi.nhl) # Sample Variance with "var" function

[1] 2.116228

> (N-1)*var(bmi.nhl)/N # Pop variance with "var" function

[1] 2.113277
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> sd(bmi.nhl) # Sample Std Dev with "sd" function

[1] 1.454726

> sqrt((N-1)/N)*sd(bmi.nhl) # Population Std Dev with "sd" function

[1] 1.453711

> round(bmi.var.out1, 3)

min max range LQ UQ IQR

21.568 32.004 10.436 25.62 27.439 1.819

> round(bmi.var.out2, 3)

mean sum(dev^2) sigma^2 s^2 sigma s P(mu+/-1sigma) P(mu+/-2sigma)

[1,] 26.5 1515.219 2.113 2.116 1.454 1.455 0.706 0.946

For the marathon speeds, we will simply use the var and sd functions in R, applied separately to Females
and Males. As both population sizes exceed 1000, the adjustment for population variances and standard
deviations would be very small.

R Output

### Output

> round(rr.var.out, 3)

N mean sigma^2 sigma P(mu+/-1sigma) P(mu+/-2sigma)

Females 1045 5.840 0.691 0.831 0.662 0.964

Males 1454 6.337 1.119 1.058 0.665 0.964

Male speeds tend to be higher and more variable than Female speeds. All three distributions have
approximately 2/3 of individuals lying with one standard deviation of the mean, and approximately 95%
lying within two standard deviations from the mean.

∇

Two other measures of variation are given here. The median absolute deviation (MAD) is the median
absolute deviation to the sample (population) median. When data are from a normal (Gaussian) distribution,
this should be approximately 0.6745σ. The other is the coefficient of variation (CV), which is the ratio of
the standard deviation to the mean (and is sometimes reported as a percentage). The coefficient of variation
is often reported as a measure of the accuracy of laboratory equipment.

Example 2.7: NHL BMI’s and Rock and Roll Marathon Speeds - MAD and CV

Here MAD and CV are computed for the three datasets. Note that the MAD for the NHL BMI’s, when
divided by 0.6745 is 1.364, while σ = 1.454, so they are similar, as expected as the BMI distribution is well
approximated by a normal distribution. The CV is .055, so that the magnitude of the standard deviation is
5.5% of the mean.

The output for the Rock and Roll marathon speeds is given as well, by gender. The MAD’s divided by
0.6745 are almost identical to the population standard deviations. The CV’s are between 14 and 17 percent,
reflecting that the spread of the distributions relative to the mean are higher than the NHL body mass
indices.

R Output
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### Output

> round(mad.cv.out, 3)

median MAD MAD/0.6745 sigma mu CV

[1,] 26.516 0.92 1.364 1.454 26.5 0.055

> round(mad.cv.out, 3)

median MAD MAD/0.6745 sigma mu CV

Females 5.711 0.564 0.836 0.831 5.840 0.142

Males 6.277 0.714 1.059 1.057 6.337 0.167

∇

2.2.3 Higher Order Moments

Two other measures are occasionally reported: skewness and kurtosis. Skewness is used to measure the
symmetry of the distribution, and kurtosis measures the heaviness of the tails of the distribution. Positive
values for skewness correspond to right-skewed distributions, while negative values correspond to left-skewed
distributions. Negative values of kurtosis imply a distribution has fewer extreme values (lighter tails) than
a normal distribution, while positive values imply more extreme values (heavier tails) than a normal distri-
bution. These measures are reported in many fields, and are especially important in financial modeling. For
a set of measurements, the skewness and kurtosis are computed as follow.

Population Skewness:
µ3

σ3
µ3 =

∑N
i=1 (yi − µ)

3

N
Sample Skewness:

m3

s3
m3 =

∑n
i=1 (yi − y)

3

n

Population Kurtosis:
µ4

σ4
−3 µ4 =

∑N
i=1 (yi − µ)

4

N
Sample Kurtosis:

m4

s4
−3 where m4 =

∑n
i=1 (yi − y)

4

n

Under normality, the standard errors for the sample skewness and sample kurtosis are given below, and
depend only on the sample size.

ŜE
{m3

s3

}

=

√

6n(n − 1)

(n − 2)(n − 1)(n + 3)
ŜE

{m4

s4
− 3
}

=

√

24n(n − 1)2

(n − 3)(n − 2)(n − 1)(n + 3)(n + 5)

Example 2.8: NHL BMI’s and Rock and Roll Marathon Speeds

Skewness and kurtosis and their standard errors (temporarily treating them as samples) are computed
for the three datasets here.

R Output

### NHL BMI Output



2.3. DESCRIBING MORE THAN ONE VARIABLE 27

> round(skew.kurt.out, 4)

mu3 Skewness SE{Skew} mu4 Kurtosis SE{Kurt}

[1,] -0.1098 -0.0357 0.0914 15.5403 0.4797 0.0068

### Rock and Roll Marathon Output

> round(skew.kurt.out, 4)

mu3 Skewness SE{Skew} mu4 Kurtosis SE{Kurt}

Females 0.3617 0.6302 0.0757 1.4835 0.1103 0.0047

Males 0.5792 0.4895 0.0642 3.8334 0.0631 0.0034

Skewness is very close to 0 for the NHL BMI data, as expected from the histogram. The skewnesses
for the Female and Male marathon speeds are positive, and well away from 0, again consistent with their
histograms. The kurtosis for the NHL BMI data is greater than 0, corresponding to heavier tails than a
normal distribution; the measures for marathon speeds are closer to 0.

∇

2.3 Describing More than One Variable

So far, we have looked at cases one variable at a time, although the marathon speed data set has two
variables: speed and gender. Now we consider describing relationships when two variables are observed on
each sampling/experimental unit. These can be extended to more than two variables, but can be harder to
visualize. We consider graphical techniques as well as numerical measures. Keep in mind that variable types
(nominal, ordinal, and numeric) will dictate which method(s) is (are) appropriate.

When both variables are categorical (nominal or ordinal), two methods of plotting them are stacked
bar graphs and cluster bar graphs. For the stacked bar graph, one variable is on the horizontal axis
(one slot for each level) and the other variable is displayed within the bars with subcategories for each of
its levels. In a cluster (grouped) bar graph, one variable forms “major groupings,” while the second variable
is plotted “side-by-side” within the groupings. Both methods are based on results of a contingency table
also known as a crosstabulation. These are tables where rows are the levels of one categorical variable,
columns are levels of another variable, and numbers within the table are counts of the number of units falling
in that cell (combination of variable levels). Often these are converted into proportions either overall (cell
probabilities sum to 1), or within rows or columns marginally. A contingency table is typically of the form
in Table 2.1.

Example 2.9: Thumb Styles of Blues Guitarists by Region and Period

A study reported hand and thumb styles of Blues guitarists as well as the region they were from and
when they were born (Cohen (1996) [16]). The regions are 1=East, 2=Delta, and 3=Texas. The thumb
styles are 1=Alternating, 2=Utility, and 3=Dead. The birth period was labeled post1906 with 0=Born
before 1906, 1=born after 1906. First, the association between region (row) and thumb style (column) is
considered, then birth period is added. The crosstabulations are given below in the R code. Figure 2.9 gives
the Stacked and Cluster Bar Graphs.

R Output
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Column
1 2 · · · c Total

Row 1 n11 n12 · · · n1c n1.

2 n21 n22 · · · n2c n2.

...
...

...
...

...
...

r nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c n..

Table 2.1: Contingency Table for Row Variable with r levels, and Column variable with c columns

### Output

> (reg_ts <- table(region, thumbSty))

thumbSty

region Alternating Utility Dead

East 20 8 7

Delta 9 19 19

Texas 1 2 8

> ## Obtain Row (1) and Column (2) Marginal Totals

> margin.table(reg_ts,1)

region

East Delta Texas

35 47 11

> margin.table(reg_ts,2)

thumbSty

Alternating Utility Dead

30 29 34

> ## Obtain Proportions across all Cells

> reg_ts/sum(reg_ts)

thumbSty

region Alternating Utility Dead

East 0.21505376 0.08602151 0.07526882

Delta 0.09677419 0.20430108 0.20430108

Texas 0.01075269 0.02150538 0.08602151

> ## Obtain Row Proportions (Thumb Style w/in Region)

> prop.table(reg_ts,1)

thumbSty

region Alternating Utility Dead

East 0.57142857 0.22857143 0.20000000

Delta 0.19148936 0.40425532 0.40425532

Texas 0.09090909 0.18181818 0.72727273

> ## Obtain Column Proportions (Region w/in Thumb Style)

> prop.table(reg_ts,2)

thumbSty

region Alternating Utility Dead

East 0.66666667 0.27586207 0.20588235

Delta 0.30000000 0.65517241 0.55882353

Texas 0.03333333 0.06896552 0.23529412

If there are three or more categorical variables, then tables of higher order dimensions and mosaic plots
can be constructed. Here we consider the three variables: Post1906, thumb style, and region. The mosaic
plot is constructed within the vcd (visualizing categorical data) package and is shown in Figure 2.10.

R Output

### Output
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Figure 2.9: Stacked and Cluster (Grouped) Bar Charts - Blues Guitarists - Region and Thumb Style

> table(post1906,region,thumbSty)

, , thumbSty = Alternating

region

post1906 East Delta Texas

0 5 7 1

1 15 2 0

, , thumbSty = Utility

region

post1906 East Delta Texas

0 1 8 0

1 7 11 2

, , thumbSty = Dead

region

post1906 East Delta Texas

0 4 11 5

1 3 8 3

∇

When the independent variable is categorical (nominal or ordinal) and the response (dependent variable)
is numeric, we can construct side-by-side histograms and density plots (see Figure 2.4), box plots (see
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Figure 2.11: Density plot for Females and Males - Rock and Roll Marathon Speeds

Figure 2.5), or violin plots (see Figure 2.6). Histograms and densities can also be placed into single plots
with different colors or patterns.

Example 2.10: Rock and Roll Marathon Speeds by Gender

A density plot using basic plotting functions in R is displayed in Figure 2.11, and a combined histogram
using the ggplot2 package is given in Figure 2.12.

∇

When two variables (labeled x and y) are both numeric, one numeric descriptive measure that is widely
reported is the correlation between the two variables. Technically, this is called the Pearson product
moment coefficient of correlation. This measure is only for the linear, or “straight line” relation between
the two variables. Unlike in Regression (described later), the variables are not necessarily (but can be)
identified as an independent and or dependent variable. The formula for this measure (population and
sample) are given below.

Population Correlation: ρ =
1
N

∑N
i=1 (xi − µx) (yi − µy)

σxσy
=

∑N
i=1 (xi − µx) (yi − µy)

√

∑N
i=1 (xi − µx)2

∑N
i=1 (yi − µy)2
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Figure 2.12: Combined Female/Male Histogram for Rock and Roll marathon speeds

Sample Correlation: r =
1

n−1

∑n
i=1 (xi − x) (yi − y)

sxsy
=

∑N
i=1 (xi − x) (yi − y)

√

∑N
i=1 (xi − x)

2∑N
i=1 (yi − y)

2

A scatterplot is a plot where each case’s x and y pairs are plotted in two dimensions. When one variable
is the dependent variable, it is labeled y, and plotted on the vertical axis and the independent variable is
labeled x, plotted on the horizontal axis. We are interested in any pattern (linear or possibly nonlinear, or
none at all) between the variables.

Example 2.11: Software Project Development - Size and Effort of Projects

A pair of studies considered the size (number of function points) and the effort needed for completion
(hours) for 17 software development projects (Jeffery and Stathis (1996) [28] and Jorgensen, Indahl, and
Sjoberg (2003) [29]). The data are given in Table 2.2. Note that Project 17 is much larger than the others
and was not used in the Jorgensen paper. We consider data with and without that case, and also data based
on natural logarithms of size (x) and effort (y). For the full dataset, based on the original scale, we obtain
a correlation of r = .9752, see calculations in Table 2.2, based on an Excel spreadsheet. Also, for the full
dataset, based on natural logarithms of size and effort (which often helps meet model assumptions when data
are skewed with extreme case(s), as here), we find the correlation to be r = .8791. This was obtained using
the correl built-in function in Excel. Plots of the four cases (original/log scale and with/without Project
17) are given in Figure 2.13, along with the “least squares regression line”, which minimizes the error sum
of squares (SSE), obtained as follows.
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ŷ = β̂0+β̂1x β̂1 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
β̂0 = y−β̂1x SSE =

n
∑

i=1

(yi − ŷi)
2 =

n
∑

i=1

(

yi −
(

β̂0 + β̂1xi

))2

The plots were obtained in R, and the correlations for the 4 cases were obtained using the cor function.
The abline command after each plot command adds the least squares regression line described above.

R Output

### Text Output

> cor(sizeProj,effortProj)

[1] 0.9752405

> cor(sizeProj[1:16],effortProj[1:16])

[1] 0.9261634

> cor(log(sizeProj),log(effortProj))

[1] 0.8791134

> cor(log(sizeProj[1:16]),log(effortProj[1:16]))

[1] 0.8131933

Note that the extreme Size of Project 17 had the impact of pulling the regression line toward its Effort
level and tended to increase the correlation. That project has high “leverage” on the calculated regression
line.

∇

We often are interested in relationships among more than two numeric variables. Scatterplot and corre-
lation matrices can be constructed to demonstrate the bivariate association of all pairs of variables.

Example 2.12: Compressive Strength and Microfabric Properties of Amphibolites

A study (Ali, Guang, and Ibrahim (2014) [5]) reported the relationship between Uniaxial Compression
Strentgh (UCS) and 8 predictor variables including: percent hornblende (hb), grain size (gs), and grain area
(ga). A simple scatterplot matrix of plots of all pairs of these four variables is given in Figure 2.14. The
correlation matrix is given along with R code below. Note that this can be extended to all pairs of variables,
the plot just gets very difficult to focus on particular pairs of variables.

R Output

### Text Output

> cor(rs1[,c(2,6,7,8)])

UCS hb gs ga

UCS 1.0000000 0.6935996 -0.8535317 -0.8537215

hb 0.6935996 1.0000000 -0.7200409 -0.6641698

gs -0.8535317 -0.7200409 1.0000000 0.9845240

ga -0.8537215 -0.6641698 0.9845240 1.0000000
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projID size(x) effort(y) x − x y − y (x − x)(y − y) x∗=ln(x) y∗=ln(y)

1 1164 3777 612.76 1683.71 1031715.54 7.06 8.24
2 1834 4389 1282.76 2295.71 2944850.48 7.51 8.39
3 388 1647 -163.24 -446.29 72850.95 5.96 7.41
4 336 1318 -215.24 -775.29 166870.66 5.82 7.18
5 116 529 -435.24 -1564.29 680836.01 4.75 6.27
6 182 691 -369.24 -1402.29 517776.48 5.20 6.54
7 65 291 -486.24 -1802.29 876339.01 4.17 5.67
8 160 448 -391.24 -1645.29 643697.13 5.08 6.10
9 185 262 -366.24 -1831.29 670684.54 5.22 5.57
10 168 415 -383.24 -1678.29 643181.54 5.12 6.03
11 422 2070 -129.24 -23.29 3010.42 6.05 7.64
12 296 1947 -255.24 -146.29 37339.42 5.69 7.57
13 129 1500 -422.24 -593.29 250509.72 4.86 7.31
14 143 1114 -408.24 -979.29 399782.42 4.96 7.02
15 38 362 -513.24 -1731.29 888561.25 3.64 5.89
16 89 921 -462.24 -1172.29 541875.72 4.49 6.83
17 3656 13905 3104.76 11811.71 36672567.54 8.20 9.54

Mean 551.24 2093.29 Sum/(n-1) 2940153.05

SD 923.09 3265.97 Correlation 0.9752 Correlation 0.8791

Table 2.2: Software Projects Sizes and Effort Levels and Correlation Calculations
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Figure 2.13: Plots of Effort (y) versus Size (x) for Original/log scales and with/without Project 17
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Figure 2.14: Bivariate Plots of Uniaxial Compression Strength (UCS), Percent Hornblende (hb), Grain Size
(gs), and Grain Area (ga)

∇

When data are highly skewed, as in the software development example, individual cases have the ability
to have a large impact on the correlation coefficient. An alternative measure that is widely used is the
Spearman Rank Correlation Coefficient (aka Spearman’s rho). This coefficient is computed by ranking the
x and y values from 1 (smallest) to n or N (largest), and applying the formula for Pearson’s coefficient to
the ranks. This way, extreme x or y values do not have as large of an impact on the coefficient. Also, in
many situations, the natural measurements are the rankings or ordering themselves.

Example 2.13: NASCAR Start and Finish Positions 1975-2003

A study of NASCAR races for the years 1975-2003, considered the correlation between starting and
finishing positions among drivers for the 898 races during those seasons (Winner (2006) [52]). As the data
were orderings, it was natural to compute the correlation using Spearman’s rank correlation. The summary
of the correlations is given below, and a density plot and histogram are given in Figure 2.15.

R Output

### Output

> length(spearman)
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NASCAR Start/Finish − Spearman’s rho

spearman
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Figure 2.15: NASCAR Races 1975-2003 - Spearman’s rank correlation coefficient for start/finish positions

[1] 898

> summary(spearman)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.3768 0.2399 0.3690 0.3590 0.4869 0.8977

∇

Many series (particularly when measured over time) display spurious correlations, particularly when
both variables tend to increase or decrease together with no causal reason that the two (or more) variables
move in tandem. For instance, the correlation between annual U.S. internet users (per 100 people) and
electrical power consumption (kWh per capita) for the years 1994-2010 is .7821 (data source: The World
Bank). Presumably increasing internet usage isn’t leading to large increases in electrical consumption, or
vice versa.

2.4 R Code for Chapter 2

### Chapter 2

### Example 2.1
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## Read data off web page, attach file as data frame, and list variable names

clt2016 <- read.csv("http://www.stat.ufl.edu/~winner/data/trafficstop.csv")

attach(clt2016); names(clt2016)

head(clt2016) ## Print first 6 observations

## Assign RsnStop to be a factor (categorical) variable

## Assign labels to levels to the Catgories of Reasons for Stop

RsnStop <- factor(RsnStop)

levels(RsnStop) <- c("ChkPnt","DWI","Invstgtn","Other",

"SafeMove","SeatBelt","Speed","StopLgtSgn","VhclMove","Rgstrtn")

## Obtain and print frequency table for Reasons for Stop

(table.RsnStop <- table(RsnStop))

## Figure 2.1 - Pie chart based on Table and Labels from above

pie(table.RsnStop, main="Pie Chart - CLT Traffic Stops")

## Figure 2.2 - Bar chart based on Table and Labels from above (cex shrinks size of levels)

barplot(table.RsnStop,

main="Bar Chart - CLT Traffic Stops", xlab="Reason", ylab="Frequency",

cex.names=0.6)

rm(list=ls(all=TRUE))

### Example 2.2

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

bmi.nhl <- 703 * Weight / (Height^2)

### Obtain histogram - Figure 2.3

hist(bmi.nhl, breaks=30, xlab="Body Mass Index",

main="NHL BMI Distribution 2013-2014 Season")

rm(list=ls(all=TRUE))

### Examples 2.3 and 2.5 (Rock and Roll Marathon)

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

## Obtain mean and standard deviation by gender

tapply(mph,Gender,mean)

tapply(mph,Gender,median)

tapply(mph,Gender,var)

tapply(mph,Gender,sd)

## Obtain the densities (for plotting) of mph by gender

d.F <- density(mph[Gender=="F"])

d.M <- density(mph[Gender=="M"])

## Figure 2.4

## Set up a 2x2 grid for plots

par(mfrow=c(2,2))

## Histograms for Female and Male mph

hist(mph[Gender=="F"],breaks=25,main="Histogram of Female Speeds",
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xlab="Female Speeds")

hist(mph[Gender=="M"],breaks=25,main="Histogram of Male Speeds",

xlab="Male Speeds")

## Density Plots for Female and Male mph

plot(d.F,

main="Kernel Density Plot of Female Speeds")

plot(d.M,

main="Kernel Density Plot of Male Speeds")

## Figure 2.5

## Reset Plot to 1 per page and obtain side-by-side boxplots

## Gender is a factor vatiable (on the x-axis)

par(mfrow=c(1,1))

plot(Gender, mph, main="Box Plots of Speed(mph) by Gender")

## Figure 2.6

## Obtain a "violin plot" - a "smoothed density" version of boxplot

# install.packages("ggplot2")

require(ggplot2)

ggplot(rr.mar, aes(y=mph, x=Gender)) + geom_violin()

rm(list=ls(all=TRUE))

### Miami Weather Plots

## Read data and set up data frame

mw1 <- read.csv("http://www.stat.ufl.edu/~winner/data/miami_weather.csv")

attach(mw1); names(mw1)

## Obtain mean temperature by year

(yearMeanTemp <- aggregate(meanTemp ~ Year, mw1, mean))

## Figure 2.7

## Stack Monthly and Annual plots

par(mfrow=c(2,1))

## Monthly Plot gives only "y", not "x", this is a line plot

## type="l" draws lines meeting points

plot(meanTemp, type="l", main="Miami Monthly Mean Temp (F) 1949-2014",

xlab="Month", ylab="Mean Temperature")

## Plot "x"=Year (first column of yearMeanTemp) and

## "y"=mean temp (second column of yearMeanTemp0

plot(yearMeanTemp[,1], yearMeanTemp[,2],

type="l", main="Miami Yearly Mean Temp (F) 1949-2014",

xlab="Year", ylab="Mean Temperature")

rm(list=ls(all=TRUE))

### Bigfoot Map Note: Some of these packages no longer work

bigfoot <- read.csv("http://www.stat.ufl.edu/~winner/data/bigfoot_state.csv",

header=TRUE)

attach(bigfoot); names(bigfoot)

# install.packages("usmap")

library(ggplot2)

library(usmap)

bigfoot$fips <- fips(bigfoot$State)

## Figure 2.8

plot_usmap(data = bigfoot, values = "Bigfoot", color = "red") +

scale_fill_continuous(low="white", high="black", name = "Bigfoot Sightings",
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label = scales::comma) +

theme(legend.position = "right")

rm(list=ls(all=TRUE))

### Example 2.4

## Read data off web page, attach file as data frame, and list variable names

clt2016 <- read.csv("http://www.stat.ufl.edu/~winner/data/trafficstop.csv")

attach(clt2016); names(clt2016)

(table.RsnStop <- table(RsnStop))

round(table.RsnStop / sum(table.RsnStop), 5)

rm(list=ls(all=TRUE))

### Example 2.5 (NHL BMI portion)

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

bmi.nhl <- 703 * Weight / (Height^2)

### obtain the population size from number of rows of data frame

N <- NROW(nhl)

### obtain the total of the BMI values

sum.bmi <- sum(bmi.nhl)

### mean = sum / N

mean.bmi <- sum.bmi/N

### Obtain sorted bmi’s

bmi.nhl.sort <- sort(bmi.nhl)

### Print first and last few cases to confirm ordered

cbind(head(bmi.nhl.sort), tail(bmi.nhl.sort))

### If N is even, average middle 2 cases, otherwise take middle case

median.bmi <- ifelse(N%%2==0,(bmi.nhl.sort[N/2]+bmi.nhl.sort[N/2+1])/2,

bmi.nhl.sort[(N+1)/2])

bmi.cent.out <- cbind(N, sum.bmi, mean.bmi, median.bmi)

colnames(bmi.cent.out) <- c("N", "sum", "mean", "median")

round(bmi.cent.out, 4)

### Use built-in mean and median functions

mean(bmi.nhl)

median(bmi.nhl)

rm(list=ls(all=TRUE))

### Examples 2.6-2.8 (NHL BMI portion)

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

bmi.nhl <- 703 * Weight / (Height^2)

bmi.max <- max(bmi.nhl) # Highest BMI

bmi.min <- min(bmi.nhl) # Lowest BMI

range <- bmi.max - bmi.min # Compute Range

bmi.75 <- quantile(bmi.nhl,.75) # BMI 75%-ile

bmi.25 <- quantile(bmi.nhl,.25) # BMI 25%-ile

IQR <- bmi.75 - bmi.25 # Compute IQR

N <- length(bmi.nhl) # Use "length" function to get N
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mu <- mean(bmi.nhl) # Use "mean" function to get mu

sum.dev2 <- sum((bmi.nhl - mu)^2) # Numerator of Variance

sigma2 <- sum.dev2/N # Population Variance

s2 <- sum.dev2/(N-1) # Sample Variance

sigma <- sqrt(sigma2) # Population Standard Deviation

s <- sqrt(s2) # Sample Standard Deviation

var(bmi.nhl) # Sample Variance with "var" function

(N-1)*var(bmi.nhl)/N # Pop variance with "var" function

sd(bmi.nhl) # Sample Std Dev with "sd" function

sqrt((N-1)/N)*sd(bmi.nhl) # Population Std Dev with "sd" function

## Proportion of Individual w/in 1 and 2 SDs of mean

mu.pm.1sd <- sum(bmi.nhl >= mu-sigma & bmi.nhl <= mu+sigma) / N

mu.pm.2sd <- sum(bmi.nhl >= mu-2*sigma & bmi.nhl <= mu+2*sigma) / N

bmi.var.out1 <- cbind(bmi.min, bmi.max, range, bmi.25, bmi.75, IQR)

bmi.var.out2 <- cbind(mu, sum.dev2, sigma2, s2, sigma, s,

mu.pm.1sd, mu.pm.2sd)

colnames(bmi.var.out1) <- c("min", "max", "range", "LQ", "UQ", "IQR")

colnames(bmi.var.out2) <- c("mean", "sum(dev^2)", "sigma^2", "s^2",

"sigma", "s", "P(mu+/-1sigma)", "P(mu+/-2sigma)")

round(bmi.var.out1, 3)

round(bmi.var.out2, 3)

mu <- mean(bmi.nhl) # Use "mean" function to get mu

sum.dev2 <- sum((bmi.nhl - mu)^2) # Numerator of Variance

sigma2 <- sum.dev2/N # Population Variance

sigma <- sqrt(sigma2) # Population Standard Deviation

bmi.median <- median(bmi.nhl)

mad <- median(abs(bmi.nhl - bmi.median)) # Median absolute deviation

mad_6745 <- mad/0.6745 # Approximating sigma

cv <- sigma/mu # Coefficient of Variation

mad.cv.out <- cbind(bmi.median, mad, mad_6745, sigma, mu, cv)

colnames(mad.cv.out) <- c("median", "MAD", "MAD/0.6745", "sigma", "mu", "CV")

round(mad.cv.out, 3)

mu3 <- (sum((bmi.nhl-mu)^3)/N)

skew <- mu3/(sigma^3)

SE.skew <- sqrt(6*N*(N-1)/((N-2)*(N-1)*(N+3)))

mu4 <- (sum((bmi.nhl-mu)^4)/N)

kurt <- mu4/(sigma^4)-3

SE.kurt <- sqrt(24*N*(N-1)^2/((N-3)*(N-2)*(N-1)*(N+3)*(N+5)))

skew.kurt.out <- cbind(mu3, skew, SE.skew,

mu4, kurt, SE.kurt)

colnames(skew.kurt.out) <- c("mu3", "Skewness", "SE{Skew}",

"mu4", "Kurtosis", "SE{Kurt}")

round(skew.kurt.out, 4)

rm(list=ls(all=TRUE))

### Examples 2.6-2.8 (Rock and Roll Marathon portion)

## Read data from website and attach data frame and obtain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

f.mph <- mph[Gender=="F"]

N.f <- length(f.mph)

mean.f <- mean(f.mph)

var.f <- var(f.mph)

sd.f <- sd(f.mph)

mu.pm.1sd.f <- sum(f.mph >= mean.f - sd.f & f.mph <= mean.f + sd.f) / N.f
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mu.pm.2sd.f <- sum(f.mph >= mean.f - 2*sd.f & f.mph <= mean.f + 2*sd.f) / N.f

m.mph <- mph[Gender=="M"]

N.m <- length(m.mph)

mean.m <- mean(m.mph)

var.m <- var(m.mph)

sd.m <- sd(m.mph)

mu.pm.1sd.m <- sum(m.mph >= mean.m - sd.m & m.mph <= mean.m + sd.m) / N.m

mu.pm.2sd.m <- sum(m.mph >= mean.m - 2*sd.m & m.mph <= mean.m + 2*sd.m) / N.m

rr.var.out.f <- cbind(N.f, mean.f, var.f, sd.f, mu.pm.1sd.f, mu.pm.2sd.f)

rr.var.out.m <- cbind(N.m, mean.m, var.m, sd.m, mu.pm.1sd.m, mu.pm.2sd.m)

rr.var.out <- rbind(rr.var.out.f, rr.var.out.m)

rownames(rr.var.out) <- c("Females", "Males")

colnames(rr.var.out) <- c("N", "mean", "sigma^2", "sigma",

"P(mu+/-1sigma)", "P(mu+/-2sigma)")

round(rr.var.out, 3)

f.mph <- mph[Gender=="F"]

N.f <- length(f.mph)

mu.f <- mean(f.mph)

median.f <- median(f.mph)

sigma.f <- sd(f.mph) * sqrt((N.f-1)/N.f)

mad.f <- median(abs(f.mph-median.f))

mad.f_6745 <- mad.f / 0.6745

cv.f <- sigma.f/mean.f

m.mph <- mph[Gender=="M"]

N.m <- length(m.mph)

mu.m <- mean(m.mph)

median.m <- median(m.mph)

sigma.m <- sd(m.mph) * sqrt((N.m-1)/N.m)

mad.m <- median(abs(m.mph-median.m))

mad.m_6745 <- mad.m / 0.6745

cv.m <- sigma.m/mean.m

mad.cv.out.f <- cbind(median.f, mad.f, mad.f_6745, sigma.f, mu.f, cv.f)

mad.cv.out.m <- cbind(median.m, mad.m, mad.m_6745, sigma.m, mu.m, cv.m)

mad.cv.out <- rbind(mad.cv.out.f, mad.cv.out.m)

rownames(mad.cv.out) <- c("Females", "Males")

colnames(mad.cv.out) <- c("median", "MAD", "MAD/0.6745", "sigma", "mu", "CV")

round(mad.cv.out, 3)

m3.f <- sum((f.mph-mean.f)^3)/N.f

skew.f <- m3.f / sd.f^3

m4.f <- sum((f.mph-mean.f)^4)/N.f

kurt.f <- (m4.f/sd.f^4)-3

SE.skew.f <- sqrt(6*N.f*(N.f-1)/((N.f-2)*(N.f-1)*(N.f+3)))

SE.kurt.f <- sqrt(24*N.f*(N.f-1)^2/((N.f-3)*(N.f-2)*(N.f-1)*(N.f+3)*(N.f+5)))

skew.kurt.out.f <- cbind(m3.f, skew.f, SE.skew.f,

m4.f, kurt.f, SE.kurt.f)

m3.m <- sum((m.mph-mean.m)^3)/N.m

skew.m <- m3.m / sd.m^3

m4.m <- sum((m.mph-mean.m)^4)/N.m

kurt.m <- (m4.m/sd.m^4)-3

SE.skew.m <- sqrt(6*N.m*(N.m-1)/((N.m-2)*(N.m-1)*(N.m+3)))

SE.kurt.m <- sqrt(24*N.m*(N.m-1)^2/((N.m-3)*(N.m-2)*(N.m-1)*(N.m+3)*(N.m+5)))

skew.kurt.out.f <- cbind(m3.f, skew.f, SE.skew.f,

m4.f, kurt.f, SE.kurt.f)
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skew.kurt.out.m <- cbind(m3.m, skew.m, SE.skew.m,

m4.m, kurt.m, SE.kurt.m)

skew.kurt.out <- rbind(skew.kurt.out.f, skew.kurt.out.m)

rownames(skew.kurt.out) <- c("Females", "Males")

colnames(skew.kurt.out) <- c("mu3", "Skewness", "SE{Skew}",

"mu4", "Kurtosis", "SE{Kurt}")

round(skew.kurt.out, 4)

m.mph <- mph[Gender=="M"]

(N.m <- length(m.mph))

(mean.m <- mean(m.mph))

(var.m <- var(m.mph))

(sd.m <- sd(m.mph))

sum(m.mph >= mean.m - sd.m & m.mph <= mean.m + sd.m) / N.m

sum(m.mph >= mean.m - 2*sd.m & m.mph <= mean.m + 2*sd.m) / N.m

(cv.m <- sd.m/mean.m)

(mad.m <- median(abs(m.mph-mean.m)))

(m3.m <- sum((m.mph-mean.m)^3)/N.m)

(skew.m <- m3.m / sd.m^3)

(m4.m <- sum((m.mph-mean.m)^4)/N.m)

(kurt.m <- (m4.m/sd.m^4)-3)

rm(list=ls(all=TRUE))

### Example 2.9

## Read data off web page, attach file as data frame, and list variable names

bh <- read.csv("http://www.stat.ufl.edu/~winner/data/blues_hand.csv")

attach(bh); names(bh)

region <- factor(region)

levels(region) <- c("East", "Delta", "Texas")

thumbSty <- factor(thumbSty)

levels(thumbSty) <- c("Alternating", "Utility", "Dead")

## Obtain Table of Counts (Row=Region, Column=Thumb Style)

(reg_ts <- table(region, thumbSty))

## Obtain Row (1) and Column (2) Marginal Totals

margin.table(reg_ts,1)

margin.table(reg_ts,2)

## Obtain Proportions across all Cells

reg_ts/sum(reg_ts)

## Obtain Row Proportions (Thumb Style w/in Region)

prop.table(reg_ts,1)

## Obtain Column Proportions (Region w/in Thumb Style)

prop.table(reg_ts,2)

## Obtain Cluster (Grouped) and Stacked Bar Plots

## t(prop.table(reg_ts,1)) takes transpose so that group var is Region

## Figure 2.9

par(mfrow=c(1,2))

barplot(t(prop.table(reg_ts,1)),beside=T,legend=colnames(reg_ts),

ylim=c(0,1), main="Grouped Bar Plot - Blues Guitarists")

barplot(t(prop.table(reg_ts,1)),beside=F,legend=colnames(reg_ts),

main="Stacked Bar Plot - Blues Guitarists", ylim=c(0,1.40))

# install.packages("vcd")

library(vcd)

table(post1906,region,thumbSty)

## Figure 2.10

mosaic(~post1906+region+thumbSty, data=bh, shade=TRUE, legend=TRUE)

rm(list=ls(all=TRUE))
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### Example 2.10

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

## Obtain the densities (for plotting) of mph by gender

d.F <- density(mph[Gender=="F"])

d.M <- density(mph[Gender=="M"])

## Figure 2.11 - Density Plots for Female and Male mph

# win.graph(height=5.5, width=7.0)

plot(d.F,xlim=c(4,11),xlab="Speed(mph)",ylab="Density",

main="Kernel Density Plot of Marathon Speeds")

lines(d.M,lty=2)

legend(9,0.45,c("Females","Males"),lty=c(1,2))

## Figure 2.12 - Combined histogram

library(ggplot2)

## win.graph(height=5.5, width=7.0)

ggplot(rr.mar, aes(x=mph,fill=Gender)) +

geom_histogram(binwidth=0.1)

rm(list=ls(all=TRUE))

### Example 2.11

sw1 <- read.csv("http://www.stat.ufl.edu/~winner/data/software1.csv")

attach(sw1); names(sw1)

cor(sizeProj,effortProj)

cor(sizeProj[1:16],effortProj[1:16])

## Figure 2.13

par(mfrow=c(2,2))

plot(sizeProj,effortProj,xlab="size",ylab="effort",

main="Original Scale, All Projects")

abline(lm(effortProj~sizeProj))

plot(sizeProj[1:16],effortProj[1:16],xlab="size",ylab="effort",

main="Original Scale, Project 17 Removed")

abline(lm(effortProj[1:16]~sizeProj[1:16]))

cor(log(sizeProj),log(effortProj))

cor(log(sizeProj[1:16]),log(effortProj[1:16]))

plot(log(sizeProj),log(effortProj),xlab="ln(size)",ylab="ln(effort)",

main="Log Scale, All Projects")

abline(lm(log(effortProj) ~ log(sizeProj)))

plot(log(sizeProj[1:16]),log(effortProj[1:16]),xlab="ln(size)",ylab="ln(effort)",

main="Log Scale, Project 17 Removed")

abline(lm(log(effortProj[1:16]) ~ log(sizeProj[1:16])))

rm(list=ls(all=TRUE))

### Example 2.12

rs1 <- read.csv("http://www.stat.ufl.edu/~winner/data/rockstrength.csv")

attach(rs1); names(rs1)

## Figure 2.14 - Scatterplot matrix of UCS, hb, gs, ga (columns 2,6,7,8 of rs1)

plot(rs1[,c(2,6,7,8)])

## Obtain correlation matrix of UCS, hb, gs, ga (columns 2,6,7,8 of rs1)



44 CHAPTER 2. DESCRIBING DATA

cor(rs1[,c(2,6,7,8)])

rm(list=ls(all=TRUE))

### Example 2.13

nasRace <- read.fwf("http://www.stat.ufl.edu/~winner/data/nascarr.dat",

widths=c(3,6,4,4,9,7,9,9,7,5,3,4,4,9,7,8,5,38),col.names=c("seriesRace",

"year","yearRace","numCar","payout","cpiU","spearman","kendall","trkLength",

"lapsComp","roadRace","cautionFlag","leadChange","winTime","trkLat","trkLong",

"trkCode","trkName"))

attach(nasRace)

length(spearman)

summary(spearman)

## Figure 2.15

hist(spearman,breaks=seq(-.5,1,.02),prob=T,

main="NASCAR Start/Finish - Spearman’s rho")

lines(density(spearman))

rm(list=ls(all=TRUE)



Chapter 3

Probability

In this chapter, we describe the concepts of probability, random variables, probability distributions, and
sampling distributions. There are three commonly used interpretations of probability: classical, relative
frequency, and subjective. Probability is the basis of all methods of statistical inference covered in this
course and its sequel.

3.1 Terminology and Basic Probability Rules

The classical interpretation of probability involves listing (or using counting rules to quantify) all possible
outcomes of a random process, often referred to as an “experiment.” It is often (but not necessarily) assumed
that each outcome is equally likely. If a coin is tossed once, it can land either “heads” or “tails,” and unless
there is reason to believe otherwise, we would assume the probability of each possible outcome is 1/2. If a
dice is rolled, the possible numbers on the “up face” are {1,2,3,4,5,6}. Again, unless some external evidence
leads us to believe otherwise, we would assume each side has a probability of landing as the “up face” is
1/6. When dealing a 5 card hand from a well shuffled 52 card deck, there are 52!

5!(52−5)!
= 2, 598, 960 possible

hands. Clearly that would be impossible to enumerate, but with counting rules it is still fairly easy to assign
probabilities to different types of hands.

An event is a pre-specified outcome of an experiment/random process. It can be made up of a single
element or a group of elements of the sample space. If the sample space is made up of N elements and the
event of interest constitutes NE elements of the sample space, the probability of the event is pE = NE/N ,
when all elements are equally likely. If elements are not equally likely, pE is the sum of the probabilities of
the elements constituting the event (where the sum of all the N probabilities is 1).

The relative frequency interpretation of probability corresponds to how often an event of interest
would occur if an experiment were conducted repeatedly. If an unbalanced dice were tossed a very large
number of times, we could observe the fractions of times each number was the “up face.” With modern
computing power, simulations can be run to approximate probabilities of complex events, which could never
be able to be obtained via a model of a sample space.

45
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In cases where a sample space can not be enumerated or an experiment can not be repeated, individuals
often resort to assessing subjective probabilities. For instance, in considering whether the price of a stock
will increase over a specific time horizon, individuals may speculate on the probability based on any market
information available at the time of the assessment. Different individuals may have different probabilities
for the same event. Many studies have been conducted to assess people’s abilities and heuristics used to
assign probabilities to events (see e.g. Kahneman, Slovic, and Tversky (1982) [30]), for a large collection of
research on the topic.

Three useful counting tools are the multiplication rule, permutations and combinations. The
multiplication rule is useful when the experiment is made up of k stages, where stage i can end in one of
mi outcomes. Permutations are used when sampling k items from n items without replacement, and order
matters. Combinations are similar to permutations with the exception that order does not matter. The
total possible outcomes for each of these rules is given below.

Multiplication Rule: m1 × m2 × · · · × mk =

k
∏

i=1

mi

Permutations: P n
k = n × (n − 1) × · · · × (n − k + 1) =

n!

(n − k)!
0! ≡ 1

Combinations: Cn
k =

n × (n − 1) × · · · × (n − k + 1)

k × (k − 1) · · · × 1
=

n!

k!(n − k)!

Note that there are k! possible orderings of the k items selected from n items, which is why there are
fewer combinations than permutations.

Example 3.1: Lotteries and Competitions

The Florida lottery has many “products” for consumers (flalottery.com). The Pick 4 game is conducted
twice per day and pays out up to $5000 per drawing. Participants choose 4 digits from 0-9 (digits can be
repeated). Thus at each of k = 4 stages, there are m = 10 potential digits. Thus there are 10(10)(10)(10) =
10,000 possible sequences (order matters in payouts).

In a race among 10 “identical” mice of a given strain, there are P 10
3 = 10(9)(8) = 720 possible orderings

of 1st, 2nd, and 3rd place. In the 2017 Kentucky Derby, there were 22 horses in the race. Starting positions
are taken by “pulling names out of a hat.” Thus, there are 22! = 1.124 × 1021 possible orderings of the
horses to the starting positions. This is 10.4 billion times as many people who had ever lived on the earth
as of 2011 according to the Population Reference Bureau (www.prb.com).

The Florida Lotto game, held every Wednesday and Saturday night, involves selecting 6 numbers without
replacement from the integers 1,...,53; where order does not matter. There are C53

6 = 53!
6!47! = 22, 957, 480

possible drawings.

3.1.1 Basic Probability

Let A and B be events of interest with corresponding probabilities P (A) and P (B), respectively. The Union
of events A and B is the event that either A and/or B occurs and is denoted A ∪ B. Events A and B are
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B B Total
A 909 67 976

A 2528 142 2670
Total 3437 209 3646

Table 3.1: Counts of UFO’s by Shape Type and nation of sighting

mutually exclusive if they can not both occur as an experimental outcome. That is, if A occurs, B cannot
occur, and vice versa. The Complement of event A, is the event that A does not occur and is denoted
by A or sometimes A′. The Intersection of events A and B is the event that both A and B occur, and is
denoted as A ∩ B or simply AB. In terms of probabilities, we have the following rules.

Union: P (A∪B) = P (A)+P (B)−P (AB) Mutually Exclusive: P (AB) = 0 Complement: P
(

A
)

= 1−P (A)

The probability of an event A or B, without any other information, is referred to as its unconditional or
marginal probability. When information is known whether or not another event has (or has not) occurred
is referred to as its conditional probability. If the unconditional probability of A and its conditional
probability given B has occurred are equal, then the events A and B are said to be independent. The
rules for obtaining conditional probabilities (assuming P (A) > 0 and P (B) > 0) are given below, as well as
probabilities under independence.

Prob. of A Given B: P (A|B) =
P (AB)

P (B)
Prob. of B Given A: P (B|A) =

P (AB)

P (A)

P (AB) = P (A)P (B|A) = P (B)P (A|B)

A and B independent: P (A) = P (A|B) = P
(

A|B
)

P (B) = P (B|A) = P
(

B|A
)

P (AB) = P (A)P (B)

Example 3.2: UFO Sightings

Based on 3646 UFO sightings on the UFO Research Database (www.uforesearchdb.com), we define A
to be the event that a UFO is classified as being shaped as an orb/sphere or circular or a disk and event B
that the sighting is in the USA. Table 3.1 gives a cross-tabulation of the counts for this “population.”

P (A) =
976

3646
= .2677 P (B) =

3437

3646
= .9427 P (AB) =

909

3646
= .2493 P (A∪B) = .2677+.9427−.2493 = .9611

P (A|B) =
.2493

.9427
=

909

2528
= .2645 P

(

A|B
)

=
67

209
= .3206 P (B|A) =

.2493

.2677
=

909

976
= .9314
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Note that the event that a UFO is classified as orb/sphere or circular or a disk is not independent of
whether it was sighted in the USA. There is a higher probability for these types of shapes to be sighted
outside the USA (.3206) than in the USA (.2645).

∇

Example 3.3: Women’s and Men’s Marathon Speeds

For the Rock and Roll marathon speeds considered previously, we classify events as follow. Event F is
that the runner is Female, event S5 is the event that a runner’s speed is less than or equal to 5 miles per
hour, and S7 is the event that the runner’s speed is greater than or equal to 7 miles per hour. Counts of
runners by gender and speed are given in Table 3.2. Note that the middle row represents the intersection
of the compliments of events S5 and S7 and represents the runners with speeds between 5 and 7 miles per
hour. We compute various probabilities below.

P (F ) =
1045

2499
= .4182 P

(

F
)

= 1−.4182 =
1454

2499
= .5818 P (S5) =

326

2499
= .1305 P (S7) =

464

2499
= .1857

P
(

S5 ∩ S7

)

= 1−.1305−.1857 =
1709

2499
= .6839 P (F∩S5) =

172

2499
= .0688 P

(

F ∩ S5

)

=
154

2499
= .0616

P (F ∩ S7) =
106

2499
= .0424 P

(

F ∩ S7

)

=
358

2499
= .1433 P

(

F ∩ S5 ∩ S7

)

=
767

2499
= .3069

P
(

F ∩ S5 ∩ S7

)

=
942

2499
= .3770 P (S5|F ) =

.0688

.4182
=

172

1045
= .1646 P (S7|F ) =

.0424

.4182
=

106

1045
= .1014

(

S5 ∩ S7|F
)

=
.3069

.4182
=

767

1045
= .7340

∇

3.1.2 Bayes’ Rule

Bayes’ rule is used in a wide range of areas to update probabilities (and probability distributions) in light
of new information (data). In the case of updating probabilities of particular events, we start with a set
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F F Total
S5 172 154 326

S5 ∩ S7 767 942 1709
S7 106 358 464

Total 1045 1454 2499

Table 3.2: Counts of Speeds (mph) by Gender - 2015 Rock and Roll Marathon

of events A1, . . . , Ak that represent a partition of the sample space. That means that each element in the
sample space must fall in exactly one Ai. In probability terms this means the following statements hold.

i 6= j : P (Ai ∩ Aj) = 0 P (A1) + · · ·P (Ak) = 1

The probability P (Ai) is referred to as the prior probability of the ith portion of the partition, and
in some contexts are referred to as base rates. Let C be an event, such that 0 < P (C) < 1, with known
conditional probabilities P (C|Ai). This leads to being able to “update” the probability that Ai occurred,
given knowledge that C has occurred, the posterior probability of the ith portion of the partition. This
is simply (in this context) an application of conditional probability making use of formulas given above and
the fact that there is a partition of the sample space.

P (Ai ∩ C) = P (Ai)P (C|Ai) P (C) =

k
∑

i=1

P (Ai ∩ C) =

k
∑

i=1

P (Ai)P (C|Ai)

⇒ P (Ai|C) =
P (Ai ∩ C)

P (C)
=

P (Ai)P (C|Ai)
∑k

i=1 P (Ai)P (C|Ai)
i = 1, ..., k

Example 3.4: Women’s and Men’s Marathon Speeds

Treating the three speed ranges (A1 ≡≤ 5, A2 ≡ 5 − 7, A3 ≡≥ 7) as a partition of the sample
space, we can update the probabilities of the runner’s speed range, given knowledge of gender. The prior
probabilities are P (A1) = 326/2499 = .1305, P (A2) = 1709/2499 = .6839, and P (A3) = 464/2499 = .1857.
The relevant probabilities are given below to obtain the posterior probabilities of the speed ranges, given
the runner’s gender.

P (A1) =
326

2499
= .1305 P (F |A1) =

172

326
= .5276 P (A1∩F ) = P (A1)P (F |A1) =

(

326

2499

)(

172

326

)

= .0688

P (A2) =
1709

2499
= .6839 P (F |A2) =

767

1709
= .4488 P (A2∩F ) = P (A2)P (F |A2) =

(

1709

2499

)(

767

1709

)

= .3069

P (A3) =
464

2499
= .1857 P (F |A3) =

106

464
= .2284 P (A3∩F ) = P (A3)P (F |A3) =

(

464

2499

)(

106

464

)

= .0424



50 CHAPTER 3. PROBABILITY

P (F ) =

3
∑

i=1

P (Ai ∩ F ) = .0688 + .3069 + .0424 = .4182 P (A1|F ) =
.0688

.4182
= .1646

P (A2|F ) =
.3069

.4182
= .7340 P (A3|F ) =

.0424

.4182
= .1014

Note that these can be computed very easily from the counts in Table 3.2 by taking the cell counts over
the column totals, as can be seen for the males.

P (M) =
1454

2499
= .5818 P (A1|M) =

154

1454
= .1059 P (A2|M) =

942

1454
= .6479 P (A3|M) =

358

1454
= .2462

∇

Example 3.5: Drug Testing Accuracy

As a second example based on assessed probabilities, Barnum and Gleason (1964), [6], considered drug
tests among workers. They had four sources of prevalence of recreational drug users based on published data
sources (2.4% (.024), 3.1% (.031), 8.2% (.082), and 20.2% (.202)). Further, based on studies of test accuracy
at the time, they had the probability that a drug user (correctly) tests positive is 0.80, and the probability
a non-drug user (incorrectly) tests positive is 0.02. Let D be the event that a worker is a drug user, and T+

be the event that a worker tests positive for drug use.

Consider the case where P (D) = .024. We are interested in the probability a worker who tests positive
is a drug user. Note that we do not have this probability stated above. The relevant probabilities and
calculations are given below.

P (D) = .024 P
(

D
)

= 1 − .024 = .976 P
(

T+|D
)

= .80 P
(

T+|D
)

= .02

P
(

D ∩ T+
)

= .024(.80) = .01920 P
(

D ∩ T+
)

= .976(.02) = .01952 P
(

T+
)

= .01920+.01952 = .03872

P
(

D|T+
)

=
.01920

.03872
= .4959 P

(

D|T+
)

=
.01952

.03872
= .5041

Thus a positive result on the test implies slightly less than a 50:50 chance the worker uses drugs. As the
prevalence increases, this probability increases, see Table 3.3.

∇
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P (D) P
(

D ∩ T+
)

P
(

D ∩ T+
)

P
(

T+
)

P
(

D|T+
)

.024 .01920 .01952 .03872 .4959

.031 .02480 .01938 .04418 .5613

.082 .06560 .01836 .08396 .7813

.202 .16160 .01596 .17756 .9101

Table 3.3: Probability a Positive Drug test corresponds to a drug user as a function of Prevalence of Drug
Use

3.2 Random Variables and Probability Distributions

When an experiment is conducted, or an observation is made, the outcome will not be known in advance, and
is considered to be a random variable. Random variables can be qualitative or quantitative. Qualitative
variables are generally modeled as a list of outcomes and their corresponding counts, as in contingency tables
and cross-tabulations. Quantitative random variables are numeric outcomes and are classified as being either
discrete or continuous, as described previously in describing data.

A probability distribution gives the values a random variable can take on and their corresponding
probabilities (discrete case) or density (continuous case). Probability distributions can be given in tabular,
graphic, or formulaic form. Some commonly used families of distributions are described below.

3.3 Discrete Random Variables

Discrete random variables can take on a finite, or countably infinite, set of outcomes. We label the random
variable as Y , and its specific outcomes as y1, y2, . . . , yk. Note that in some cases there is no upper limit for
k. We denote the probabilities of the outcomes as P (Y = yi) = p (yi), with the following restrictions.

0 ≤ p (yi) ≤ 1

k
∑

i=1

p (yi) = 1 F (yt) = P (Y ≤ yt) =

t
∑

i=1

p (yi) t = 1, . . . , k

Here F (y) is called the cumulative distribution function (cdf). This is a monotonic “step” function
for discrete random variables, and ranges from 0 to 1.

Example 3.6: NASCAR Race Finish Positions - 1975-2003

For the NASCAR race data in Winner (2006) [52], each driver was classified by their starting position
and their finishing position in the 898 races (34884 driver/races). For each race, we identify the number of
racers who start in the top 10, that finish in the top 3. This random variable (Y ) can take on the values y =
0, 1, 2, or 3. That is, none of the people who start toward the front (top 10) finish in the top 3, or one, or
two, or three. Table 3.4 gives the counts, probabilities, cumulative probabilities, and calculations used later
to numerically describe the empirical population distribution. The probability of either 2 or 3 drivers who
started in the top 10 finish in the top 3, is over 3/4 (.3987+.3708=.7695).
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y # races p(y) F (y) yp(y) y2p(y)

0 37 .0412 .0412 0.0000 0.0000
1 170 .1893 .2305 0.1893 0.1893
2 358 .3987 .6292 0.7974 1.5948
3 333 .3708 1.0000 1.1124 3.3372

Total 898 1 2.0991 5.1213

Table 3.4: Probability Distribution for Number of Top 10 Starters finishing in Top 3 positions, NASCAR
races 1975-2003

R Output

## Output

> (t.strt10Fin3 <- table(strt10Fin3)) ### Count 0,1,2,3 Top 3 finishers

strt10Fin3

0 1 2 3

37 170 358 333

> t.strt10Fin3 / sum(t.strt10Fin3) ### Turn counts to proportions

strt10Fin3

0 1 2 3

0.04120267 0.18930958 0.39866370 0.37082405

∇

Population Numerical Descriptive Measures

Three widely used numerical descriptive measures corresponding to a population are the population mean,
µ, the population variance, σ2, and the population standard deviation, σ. While we have previously
covered these based on a population of measurements, we now base them on a probability distribution. Their
formulas are given below.

Mean: E{Y } = µY = y1p(y1) + · · ·+ ykp(yk) =
∑

y

yp(y)

Variance: V {Y } = E{(Y − µY )2} = σ2
Y = (y1 − µY )2p(y1) + · · ·+ (yk − µY )2p(yk) =

∑

y

(y − µY )2p(y) =

=
∑

y

y2p(y) − µ2
Y Standard Deviation: σY = +

√

σ2
Y

Example 3.7: NASCAR Race Finish Positions - 1975-2003

If we repeatedly sampled a race from this population, observed and saved the number of the top 10
starters who finished in the top 3, the long run mean would be µY , and a “typical” distance from the mean
would be σY . From Table 3.4, the necessary calculations to compute µY , σ2

Y , and σY are given.
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µY =
∑

y

yp(y) = 2.0991 σ2
Y =

∑

y

(y − µY )2p(y) =
∑

y

y2p(y) − µ2
Y = 5.1213− 2.09912 = 0.7151

σY = +
√

0.7151 = 0.8456

A sample of 10000 races is taken from this population (equivalently done by taking 10000 integers
between 1 and 898 WITH replacement), observing the number of top 3 finishers for each race. Then the
mean and standard deviation of those numbers are computed.

R Output

## Output

> mean(strt10Fin3[sample.race])

[1] 2.0816

> sd(strt10Fin3[sample.race])

[1] 0.8542918

Note that the mean of the 10000 sampled races is close to the population mean (2.0816 vs 2.0991) and
sample standard deviation is close to the corresponding population value (0.8543 vs 0.8456). If a different
(or no) seed had been used, the samples, and thus their means and standard deviations would change as
well.

∇

Some useful rules among linear functions of random variables are given here. Suppose Y is a random
variable with mean and variance µY and σ2

Y , respectively. Further, suppose that a and b are constants (not
random). Then we have the following results.

E{a + bY } =
∑

y

(a + by)p(y) = a
∑

y

p(y) + b
∑

y

yp(y) = a(1) + bµY = a + bµY

V {a + bY } =
∑

y

((a + by) − (a + bµY ))2p(y) = b2
∑

y

(y − µY )2p(y) = b2σ2
Y σa+bY = |b|σY

Examples where these can be applied involve transforming from inches to centimeters (1 inch = 2.54
cm, 1 cm = 1/2.54=0.3937 inch), from pounds to kilograms (1 kilogram = 2.204623 pounds) and from
degrees Fahrenheit to Celsius (deg F = 32 +1.8 deg C). These rules do not work for values raised to powers,
exponentials, or logarithms, although some approximations exist.

Example 3.8: NHL Hockey Player BMI and Marathon Speeds

Previously, we obtained the population mean and variance for NHL player body mass indices. Now
we obtain the mean, variance, and standard deviation of their weights (pounds) and heights (inches), and
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convert them to kilograms and centimeters, respectively. The mean weight is 202.42 pounds, and the
variance is 228.60 pounds2. To convert from pounds to kilos, we have to divide pounds by 2.2, that is
K = (1/2.204623)P = 0.453592P . Thus, we obtain the following quantities.

µK = 0.453592µP = 0.453592(202.42) = 91.92 σ2
K = (0.453592)2σ2

P = (0.453592)2(228.60) = 47.03

σK =
√

47.03 = 6.86

The population mean and variance of heights are 73.26 inches and 4.26 inches2, respectively. To convert
inches to centimeters, we have to multiply by 2.54, that is C = 2.54I. Thus, we obtain the following
quantities.

µC = 2.54µI = 2.54(73.26) = 186.08 σ2
C = (2.54)2σ2

I = (2.54)2(4.26) = 27.48 σC =
√

27.48 = 5.24

Note that in the metric system, the weights in kilograms are less variable than weights in pounds, while
the heights in centimeters are more variable than than heights in inches.

For the female marathon runners, the mean and variance of their speeds were 5.84 mph and 0.69 mph2,
respectively. One mile represents 1.60394 kilometers, so that so that a person who runs M miles in 1 hour,
runs K = 1.60394M kilometers in one hour. This leads to the following quantities.

µK = 1.60394(5.84) = 9.37 σ2
K = (1.60394)2(0.69) = 1.78 σK =

√
1.78 = 1.33

∇

In many settings, we are interested in linear functions of a sequence of random variables: Y1, . . . , Yn.
Typically, we have fixed coefficients a1, . . . , an, and E{Yi} = µi, V {Yi} = σ2

i , and COV{Yi, Yj} = σij.

W =

n
∑

i=1

aiYi E{W} = µW =

n
∑

i=1

aiµi V {W} =

n
∑

i=1

a2
i σ

2
i + 2

n−1
∑

i=1

n
∑

j=i+1

aiajσij

If, as in many, but by no means all, cases, the Yi values are independent (σij = 0), the variance simplifies
to V {W} =

∑n
i=1 a2

i σ
2
i . A special case is when we have two random variables: X and Y , and a linear function

W = aX + bY for fixed constants. We have means µX , µY , standard deviations σX , σY , covariance σXY ,
and correlation ρXY .

W = aX +bY E{W} = aµX +bµY V {W} = a2σ2
X +b2σ2

Y +2abσXY = a2σ2
X +b2σ2

Y +2abρXY σXσY

Some special cases include where we have: a = 1, b = 1 (sums), and a = 1, b = −1 (differences). This
leads to the following results.
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E{X + Y } = µX + µY V {X + Y } = σ2
X + σ2

Y + 2ρXY σXσY

E{X − Y } = µX − µY V {X − Y } = σ2
X + σ2

Y − 2ρXY σXσY

Example 3.9: Movie “Close Up” Scenes

Barry Salt has classified film shots along an ordinal scale for a “population” of 398 movies. The levels
are (BCU=Big Close Up, CU=Close Up, MCU=Medium Close Up, MLS=Medium Long Shot, LS=Long
Shot, and VLS=Very Long Shot). We consider X to be the number of Big Close Up’s and Y to be the
number of Close Up’s in a film. For this population, µX = 28.84, µY = 79.23, σX = 31.48, σY = 61.37, and
ρXY = 0.51. We obtain the population mean, variance, and standard deviations of the sum of Big Close
Up’s and Close Up’s (X + Y ) and the difference between Big Close Up’s and Close Up’s (X − Y ).

E{X+Y } = 28.84+79.23 = 108.07 V {X+Y } = 31.482+61.372+2(0.51)(31.48)(61.37) = 6727.83 σX+Y = 82.02

E{X−Y } = 28.84−79.23 = −50.39 V {X−Y } = 31.482+61.372−2(0.51)(31.48)(61.37) = 2786.70 σX−Y = 52.79

Source: http://www.cinemetrics.lv/salt.php

∇

3.3.1 Common Families of Discrete Probability Distributions

Here we consider some commonly used families of discrete probability distributions, namely the Binomial,
Poisson, and Negative Binomial families. These are used in many situations where data are counts of numbers
of events occurring in an experiment.

Binomial Distribution

A binomial “experiment” is based on a series of Bernoulli trials with the following characteristics.

• The experiment consists of n trials or observations.

• Trial outcomes are independent of one another.

• Each trial can end in one of two possible outcomes, often labeled Success or Failure.

• The probability of Success, π is constant across all trials.

• The random variable, Y , is the number of Successes in the n trials
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Note that many experiments are well approximated by this model, and thus it has wide applicability.
One problem that has been considered in great detail is the assumption of independence from trial to trial. A
classic paper that looked at the “hot hand” in basketball shooting has led to many studies in sports involving
the topic is Gilovich, Vallone, and Tversy, 1985, [23].

The probability of any sequence of y Successes and n − y Failures is πy(1 − π)n−y for y = 0, 1, . . . , n.
The number of ways to observe y successes in n trials makes use of combinations described previously. The
number of ways of choosing y positions from 1, 2, . . . , n is Cn

y = n!
y!(n−y)!

=
(

n
y

)

. For instance, there is only

one way observing either 0 or n Successes, there are n ways of observing 1 or n − 1 Successes, and so on.
This leads to the following probability distribution for Y ∼ Bin(n, π).

P (Y = y) = p(y) =

(

n

y

)

πy(1 − π)n−y y = 0, 1, . . . , n

n
∑

y=0

p(y) = (π + (1 − π))
n

= 1n = 1

Statistical packages and spreadsheets have functions for computing probabilities for the Binomial (and
all distributions covered in these notes). In R, the function dbinom(y,n,π) returns P (Y = y) = p(y) (the
probability “density”) when Y ∼ Bin(n, π).

To obtain the mean and variance of the Binomial distribution, consider the n independent trials indi-
vidually (these are referred to as Bernoulli trials). Let Si = 1 if trial i is a success, and Si = 0 if it is a
failure. Then Y , the number of Successes is the sum of the independent Si values, leading to the following
results.

E{Si} = 1π+0(1−π) = π E{S2
i } = 12π+02(1−π) = π V {Si} = E{S2

i }−(E{Si})2 = π−π2 = π(1−π)

Y =

n
∑

i=1

Si ⇒ E{Y } = µY =

n
∑

i=1

E{Si} = nπ V {Y } = σ2
Y =

n
∑

i=1

V {Si} = nπ(1−π) σY =
√

nπ(1 − π)

Example 3.10: Experiments of Mobile Phone Telepathy

A set of experiments was conducted to determine whether people displayed evidence of telepathy in
receiving mobile phone calls (Sheldrake, Smart, and Avraamides, 2015, [47]). Each subject received 6 calls
from one of two potential callers. Each subject predicted which caller was calling. Assuming random
guessing, the number of successful predictions should be Binomial, with n = 6 trials, and probability of
Success π = 0.5, since there were two potential callers. The probabilities of 0,1,2,...,6 successes for a subject
in the experiment are given below. A plot of the probability distribution is given in Figure 3.1.

6!

0!(6− 0)!
=

6!

6!(6 − 6)!
= 1

6!

1!(6 − 1)!
=

6!

5!(6− 5)!
= 6

6!

2!(6− 2)!
=

6!

4!(6 − 4)!
= 15

6!

3!(6 − 3)!
= 20

.5y(1 − .5)6−y = .56 = .015625
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y π = 0.50 : p(y) π = 0.56 : p(y) π = 0.50: Expected # π = 0.56: Expected # Observed #

0 .015625 .007256 1.72 0.80 1
1 .093750 .055412 10.31 6.10 5
2 .234375 .176310 25.78 19.39 18
3 .312500 .299193 34.38 32.91 37
4 .234375 .285594 25.78 31.42 31
5 .093750 .145393 10.31 15.99 15
6 .015625 .030841 1.72 3.39 3

Total 1 1 110 110 110

Table 3.5: Probability Distribution for Number of successful prediction for mobile telephone telepathy study

p(0) = p(6) = .015625 p(1) = p(5) = .09375 p(2) = p(4) = .234375 p(3) = .3125

R Output

### Output

> (p_y <- dbinom(y, 6, 0.5)) ## Obtain p(y) for y=0,1,...,6

[1] 0.015625 0.093750 0.234375 0.312500 0.234375 0.093750 0.015625

The mean, variance, and standard deviation of the number of Successful predictions in the n = 6 trials
under this model are as follow.

µY = nπ = 6(0.5) = 3 σ2
Y = nπ(1 − π) = 6(0.5)(1− 0.5) = 1.5 σY =

√
1.5 = 1.2247

For the Sheldrake, et al study, [47], 110 subjects completed 6 trials each (660 total trials). There were a
total of 369 hits (there appears to be a typo saying 370 in their Table 3). This corresponds to a proportion of
369/660=.559, in other words, these subjects in aggregate showed better than expected success in predicting
callers. Table 3.5 gives the probability distributions for π = 0.50 and π = 0.56, along with expected counts
under the two models and the observed counts (N = 110 subjects).

∇

Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect
of the Poisson family is that the mean and variance are the same. This is one aspect that does not work for
all applications. We use the notation: Y ∼ Poi (λ). The probability distribution, mean and variance of Y
are:

p(y) =
e−λλy

y!
y = 0, 1, . . .; λ > 0 E {Y } = µY = λ V {Y } = σ2

Y = λ
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Figure 3.1: Probability Distribution for Mobile Telephone Telepathy experiment assuming random guessing,
Y ∼Bin(6,0.5)
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Note that λ > 0. The Poisson arises by dividing the time/space into n “infinitely” small areas, each having
either 0 or 1 Success, with Success probability π = λ/n. Then Y is the number of areas having a success.

p(y) =
n!

y!(n − y)!

(

λ

n

)y (

1 − λ

n

)n−y

=
n(n − 1) · · · (n − y + 1)

y!

(

λ

n

)y (

1 − λ

n

)n−y

=

=
1

y!

(n

n

)

(

n − 1

n

)

· · ·
(

n − y + 1

n

)

λy

(

1 − λ

n

)n(

1 − λ

n

)−y

The limit as n goes to ∞ is:

lim
n→∞

p(y) =
1

y!
(1)(1) · · · (1)λye−λ(1) = p(y) =

e−λλy

y!
y = 0, 1, 2...

The mean and variance for the Poisson distribution are both λ. This restriction can be problematic in many
applications, and the Negative Binomial distribution (described below) is often used when the variance
exceeds the mean.

Example 3.11: E Coli Bacterial Cell Counts

A study considered the distribution of bacterial cell counts for various bacteria strains in single-cell
studies (Koyama, et al, 2016 [33]). There were 8 strains, and the authors observed counts for 96 cells under
target means of λ = 1 and λ = 2 in an experimental study. They found that the observed counts were highly
consistent with the Poisson models. The theoretical probability distributions are given as follow.

λ = 1 : p(y) =
e−11y

y!
=

e−1

y!
y = 0, 1, 2, . . . λ = 2 : p(y) =

e−22y

y!
y = 0, 1, 2, . . .

∇

Example 3.12: London Bomb Hits in World War II

A widely reported application of the Poisson Distribution involves the counts of the number of bombs
hitting among 576 areas of 0.5km2 in south London during WWII (Clarke (1946), [15], also reported in
Feller (1950), [22]). There were a total of 537 bombs hit with a mean of 537/576 = .9323. Table 3.6 gives
the counts, and their expected counts (576p(y)) for the occurrences of 0 bombs, 1 bomb, ..., ≥ 5 bombs (the
last cell involves 1 area which was hit 7 times).

Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rth success occurs. The random variable Y is the number of trials needed until the rth

success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance are given below.

p(y) =

(

y − 1

r − 1

)

πr (1 − π)
y−r

E {Y } = µY =
r

π
V {Y } = σ2

Y =
r (1 − π)

π2
.
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y p(y) Expected # Observed #

0 .3936 226.71 229
1 .3670 211.39 211
2 .1711 98.55 93
3 .0532 30.64 35
4 .0124 7.14 7

≥ 5 .0027 1.56 1

Total 1 576 576

Table 3.6: Probability Distribution for Number of bombs hitting within 576 areas on a grid in the south of
London during World War II

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as follow (see e.g. Agresti (2002) [1] and
Cameron and Trivedi (2005) [11]).

f (y; µ, α) =
Γ
(

α−1 + y
)

Γ (α−1) Γ (y + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)y

Γ(w) =

∫ ∞

0

xw−1e−xdx = (w − 1)Γ (w − 1) .

E {Y } = µ V {Y } = µ (1 + αµ) .

Example 3.13: Number of Comets Observed per Year - 1789-1888

The number of comets observed per year for the century 1789-1888 inclusive were reported by Chambers,
1889, [12] and included in a large number of datasets by Thorndike, 1926, [50]. The annual number of comets
ranged from 0 (19 years) to 9 (1 year), with frequency counts and computations for the mean and variance
given in Table 3.7, treating this as a population of years. The mean and variance are given below, along
with “method of moments” estimates for µ and α for the Negative Binomial distribution.

µY =
∑

y

yp(y) = 2.58 σ2
Y =

∑

y

y2p(y) − µ2
Y = 11.36− 2.582 = 4.70

σ2 = µ(1 + αµ) ⇒ α =
σ2/µ − 1

µ
=

4.70/2.58− 1

2.58
= 0.32

The Negative Binomial appears to fit better than a Poisson distribution with mean 2.58, based on
observed and expected counts, this will be quantified later.

∇
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y # comets p(y) yp(y) y2p(y) Exp(Poi) Exp(NegBin)

0 19 .19 0.00 0.00 7.58 15.22
1 19 .19 0.19 0.19 19.55 21.54
2 17 .17 0.34 0.68 25.22 20.11
3 14 .14 0.42 1.26 21.69 15.54
4 13 .13 0.52 2.04 13.99 10.76
5 8 .08 0.40 2.00 7.22 6.93
6 4 .04 0.24 1.44 3.10 4.24
7 2 .02 0.14 0.98 1.14 2.50
8 3 .03 0.24 1.92 0.37 1.43

≥ 9 1 .01 0.09 0.81 0.14 1.73

Total 100 1 2.58 11.36 100 100

Table 3.7: Probability Distribution for Number of Comets Observed for years 1789-1888

3.4 Continuous Random Variables

Continuous random variables can take on any values along a continuum. Their distributions are described
as densities, with probabilities being assigned as areas under the curve. Unlike discrete random variables,
individual points have no probability assigned to them. While discrete probabilities and means and variances
make use of summation, continuous probabilities and means and variances are obtained by integration. The
following rules and results are used for continuous random variables and probability distributions. We use
f(y) to denote a probability density function and F (y) to dentote the cumulative distribution function.

f(y) ≥ 0

∫ ∞

−∞
f(y)dy = 1 P (a ≤ Y ≤ b) =

∫ b

a

f(y)dy F (y) =

∫ y

−∞
f(t)dt

E{Y } = µY =

∫ ∞

−∞
yf(y)dy V {Y } = σ2

Y =

∫ ∞

−∞
(y − µY )

2
f(y)dy =

∫ ∞

−∞
y2f(y)dy−µ2

Y σY = +
√

σ2
Y

3.4.1 Common Families of Continuous Probability Distributions

Three commonly applied families of distributions for describing populations of continuous measurements are
the normal, gamma, and beta families, although there are many other families also used in practice.

The normal distribution is symmetric and mound-shaped. It has two parameters: a mean and variance
(the standard deviation is often used in software packages). Many variables have distributions that are
modeled well by the normal distribution, and many estimators have sampling distributions that are
approximately normal. The gamma distribution has a density over positive values that is skewed to the
right. There are many applications where data are skewed with a few extreme observations, such as the
marathon running times observed previously. The gamma distribution also has two parameters associated
with it. The beta distribution is often used to model data that are proportions (or can be extended to any
finite length interval). The beta distribution also has two parameters. All of these families can take on a
wide range of shapes by changing parameter values.
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Probabilities, quantiles, densities, and random number generators for specific distributions and param-
eter values can be obtained from many statistical software packages and spreadsheets such as EXCEL. We
will use R throughout these notes.

Normal Distribution

The normal distributions, also known as the Gaussian distributions, are a family of symmetric mound-
shaped distributions. The distribution has 2 parameters: the mean µ and the variance σ2, although often it
is indexed by its standard deviation σ. We use the notation Y ∼ N (µ, σ). The probability density function,
the mean and variance are:

f(y) =
1√

2πσ2
exp

(

−(y − µ)
2

2σ2

)

−∞ < y < ∞,−∞ < µ < ∞, σ > 0 E {Y } = µY = µ V {Y } = σ2
Y = σ2

The mean µ defines the center (median and mode) of the distribution, and the standard deviation σ is a
measure of the spread (µ − σ and µ + σ are the inflection points). Despite the differences in location and
spread of the different distributions in the normal family, probabilities with respect to standard deviations
from the mean are the same for all normal distributions. For −∞ < z1 < z2 < ∞, we have:

P (µ + z1σ ≤ Y ≤ µ + z2σ) =

∫ µ+z2σ

µ+z1σ

1√
2πσ2

exp

(

−(y − µ)
2

2σ2

)

dy =

∫ z2

z1

1√
2π

e−z2/2dz = Φ(z2) − Φ(z1).

Here Z is standard normal, a normal distribution with mean 0, and variance (standard deviation) 1. Φ(z∗)
is the cumulative distribution function of the standard normal distribution, up to the point z∗:

Φ(z∗) =

∫ z∗

−∞

1√
2π

e−z2/2dz

These probabilities and critical values can be obtained directly or indirectly from standard tables, statistical
software, or spreadsheets. Note that:

Y ∼ N (µ, σ) ⇒ Z =
Y − µ

σ
∼ N(0, 1).

This makes it possible to use the standard normal table to obtain probabilities and quantiles for any normal
distribution. Plots of three normal distributions are given in Figure 3.2.

Approximately 68% (.6826) of the probability lies within 1 standard deviation from the mean, 95%
(.9544) lies within 2 standard deviations, and virtually all (.9970) lies within 3 standard deviations.

Example 3.14: NHL Player Body Mass Indices

Previously, we saw that the Body Mass Indices (BMI) of National Hockey League players for the 2013-
2014 season were mound shaped with a mean of 26.50 and standard deviation 1.45. Figure 3.3 gives a
histogram along with the corresponding normal density. There is a tendency to observe more actual BMI’s
in the center than the normal distribution would imply, but the normal model seems to be reasonable.

Consider the following quantiles (.10, .25, .50, .75, .90) for the NHL data and the corresponding N(26.50,
1.45) distribution. Also consider the probabilities of the following ranges (< 26.50 − 2(1.45) = 23.60, >
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Figure 3.2: Three Normal Densities

26.50 + 2(1.45) = 29.40, and (25.05 = 26.50− 1.45, 26.50+ 1.45 = 27.95)) for the NHL data and the normal
distribution.

R Output

### Output

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical 24.637 25.52 26.500 27.481 28.363

Empirical 24.702 25.62 26.516 27.439 28.342

>

> round(p.out, 4)

<mu-2sigma (mu-sigma,mu+sigma) >mu+2sigma

Theoretical 0.0228 0.6827 0.0228

Empirical 0.0265 0.7057 0.0279

The quantiles and probabilities are very similar, showing the normal model is a reasonable approximation
to the distribution of NHL BMI values.

∇
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Figure 3.3: NHL Body Mass Indices and Normal Distribution

Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale

parameters.

f(y) =
1

Γ(α)βα
yα−1e−y/β y ≥ 0, α > 0, β > 0 E {Y } = µY = αβ V {Y } = σ2

Y = αβ2

Here, Γ(α) is the gamma function Γ(α) =
∫∞
0 yα−1e−ydy and is built-in to virtually all statistical packages

and spreadsheets. It also has two simple properties.

α > 1 : Γ(α) = (α − 1) Γ(α − 1) Γ

(

1

2

)

=
√

π

Thus, if α is an integer, Γ(α) = (α − 1)!. The second parameterization given here is in terms of shape and
rate parameters.

f(y) =
βα

Γ(α)
yα−1e−yβ y ≥ 0, α > 0, β > 0 E {Y } = µY =

α

β
V {Y } = σ2

Y =
α

β2

Note that different software packages use the different parameterizations in generating samples and giving
tail-areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second.
Figure 3.4 displays three gamma densities of various shapes.

Example 3.15: Rock and Roll Marathon Speeds
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Figure 3.4: Three Gamma Densities

As seen previously, when considering females and males separately, the distributions of running speeds
are all positive, and skewed to the right. The means for females and males were 5.8398 and 6.3370, re-
spectively; and the variances were 0.6906 and 1.1187, respectively. Using the second formulation of the
gamma distribution, with µ = α/β and σ2 = α/β2, we obtain the following parameter values for the two
distributions based on the method of moments.

µ2

σ2
=

(α/β)2

α/β2
= α

µ

σ2
=

α/β

α/β2
= β

Females: αF =
5.83982

0.6906
= 49.38 βF =

5.8398

0.6906
= 8.46

Males: αM =
6.33702

1.1187
= 35.90 βM =

6.3370

1.1187
= 5.66

Histograms of the actual speeds and the corresponding Gamma densities are given in Figure 3.5. Similar
to what was done for the NHL BMI measurements, we compare the theoretical quantiles for the female
and male speeds with the actual quantiles, and compare theoretical probabilities for females and males with
observed probabilities. There is very good agreement between the quantiles. The extreme probabilities do
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Figure 3.5: Rock and Roll Marathon speeds and Gamma Distributions for Females and Males

not match up as well, but still show fairly good agreement, with exception of no actual cases falling more
than 2 standard deviations below the means.

R Output

## Output

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical/Female 4.803 5.260 5.800 6.377 6.927

Empirical/Female 4.811 5.203 5.711 6.357 7.015

Theoretical/Male 5.025 5.595 6.278 7.015 7.725

Empirical/Male 4.970 5.561 6.277 6.986 7.718

> round(p.out, 4)

<mu-2sigma (mu-sigma,mu+sigma) >mu+2sigma

Theoretical/Female 0.0146 0.6843 0.0298

Empirical/Female 0.0000 0.6622 0.0364

Theoretical/Male 0.0131 0.6850 0.0309

Empirical/Male 0.0000 0.6651 0.0365

∇

Two special cases are the exponential family, where α = 1 and the Chi-square family, with α = ν/2 and
β = 2 for integer valued ν . For the exponential family, based on the second parameterization, the symbol β
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Figure 3.6: Three Exponential Densities

is often replaced by θ.

f(y) = θe−yθ E {Y } = µY =
1

θ
V {Y } = σ2

Y =
1

θ2
.

Probabilities for the exponential distribution are trivial to obtain as F (y∗) = 1 − e−y∗θ. Figure 3.6 gives
three exponential distributions.

For the chi-square family, based on the first parameterization, we have the following.

f(y) =
1

Γ
(

ν
2

)

2ν/2
y

ν
2
−1e−y/2 E {Y } = µY = ν V {Y } = σ2

Y = 2ν

Here, ν is the degrees of freedom and we denote the distribution as: Y ∼ χ2
ν. Upper and lower critical

values of the chi-square distribution are available in tabular form, and in statistical packages and spread-
sheets. Probabilities, quantiles, densities, and random samples can be obtained with statistical packages and
spreadsheets. The chi-square distribution is widely used in statistical testing as will be seen later. Figure 3.7
gives three Chi-square distributions.
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Figure 3.7: Three Chi-Square Densities

Beta Distribution

The Beta distribution can be used to model data that are proportions (or percentages divided by 100). The
traditional model for the Beta distribution is given below.

f (y; α, β) =
Γ (α + β)

Γ (α) Γ (β)
yα−1 (1 − y)β−1 0 < y < 1; α > 0, β > 0

∫ 1

0

wa (1 − w)b dw =
Γ (a + 1)Γ (b + 1)

Γ (a + b + 2)

Note that the Uniform distribution is a special case, with α = β = 1. The mean and variance of the Beta
distribution are given here.

E {Y } =
α

α + β
V {Y } =

αβ

(α + β + 1) (α + β)2

An alternative formulation of the distribution involves a re-parameterization as follows.

µ =
α

α + β
φ = α + β ⇒ α = µφ β = (1 − µ)φ

V {Y } = σ2 =
αβ

(α + β)2(α + β + 1)
=

µ(1 − µ)φ2

φ2(φ + 1)
=

µ(1 − µ)

φ + 1
⇒ φ =

µ(1 − µ)

σ2
− 1

Figure 3.8 gives three Beta distributions.
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Figure 3.8: Three Beta Densities

Example 3.16: NBA 3-Point Field Goal Proportion by Team/Game - 2016/2017 Regular
Season

During the NBA 2016/2017 regular season, each of the 30 teams played 82 games, for a total of 2460
team/games. For each team/game, the 3-Point field goal proportion is obtained by dividing the the number
made by the number attempted. The number attempted per team/game ranged from 7 to 61, with mean
and median of 27, and standard deviation of 6.7. Among the proportions made, the mean and standard
deviation are 0.3566 and 0.0947, respectively. These lead to the following parameters based on the method
of moments.

φ =
0.3566(1− 0.3566)

0.09472
− 1 = 24.60 α = 24.60(.3566) = 8.77 β = 24.60(1− .3566) = 15.83

A histogram of the data and the corresponding Beta density are given in Figure 3.9. As with the
previous examples, we compare the theoretical quantiles and probabilities for the beta denstities with the
actual values for this population. They show considerable agreement.

R Output

## Output

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical 0.237 0.289 0.353 0.420 0.482
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Histogram of 3−Point Field Goal Proportions and Beta(8.77,15.83)
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Figure 3.9: Three Point Field Goal proportions by team/game - NBA 2016/2017 regular season

Empirical 0.238 0.294 0.355 0.415 0.478

> round(p.out, 4)

<mu-2sigma (mu-sigma,mu+sigma) >mu+2sigma

Theoretical 0.0139 0.6742 0.0282

Empirical 0.0236 0.6829 0.0297

∇

3.4.2 Functions of Normal Random Variables

First, note that if Z ∼ N(0, 1), then Z2 ∼ χ2
1. Many software packages present Z-tests as (Wald) χ2-tests.

Suppose Y1, ..., Yn are independent with Yi ∼ N (µ, σ) for i = 1, . . . , n. Then the sample mean and
sample variance are computed as follow.

Y =

∑n
i=1 Yi

n
S2 =

∑n
i=1(Yi − Y )2

n − 1

In this case, we obtain the following sampling distributions for the mean and a function of the variance.

Y ∼ N

(

µ,
σ√
n

)

(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2

n−1 Y ,
(n − 1)S2

σ2
are independent.
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Figure 3.10: Three t-densities and z

Note that in general, if Y1, ..., Yn are normally distributed (and not necessarily with the same mean and/or
variance), any linear function of them will be normally distributed, with mean and variance given previously
in the section with linear functions of random variables.

Two distributions associated with the normal and chi-square distributions are Student’s t and F .
Student’s t-distribution is similar to the standard normal (N(0, 1)), except that it is indexed by its degrees
of freedom and that it has heavier tails than the standard normal. As its degrees of freedom approach
infinity, its distribution converges to the standard normal. Let Z ∼ N (0, 1) and W ∼ χ2

ν, where Z and W
are independent. Then, we have the following result.

Y ∼ N (µ, σ) ⇒ Z =
Y − µ

σ
∼ N(0, 1) T =

Z
√

W/ν
∼ tν

where the probability density, mean, and variance for Student’s t-distribution are:

f(t) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)√
νπ

(

1 +
t2

ν

)− ν+1

2

E {T} = µT = 0 V {T} =
ν

ν − 2
ν > 2

and we use the notation T ∼ tν . Three t-distributions, along with the standard normal (z) distribution are
shown in Figure 3.10.

Now consider the sample mean and variance, and the fact they are independent.

Y ∼ N

(

µ,
σ√
n

)

⇒ Z =
Y − µ
√

σ2

n

=
√

n
Y − µ

σ
∼ N(0, 1)
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W =
(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2

n−1 ⇒
√

W

ν
=

√

(n − 1)S2

σ2(n − 1)
=

S

σ

⇒ T =
Z

√

W/ν
=

√
nY −µ

σ
S
σ

=
√

n
Y − µ

S
∼ tn−1

The F -distribution arises often in Regression and Analysis of Variance applications. If W1 ∼ χ2
ν1

,
W2 ∼ χ2

ν2
, and W1, W2 are independent, then:

F =

[

W1

ν1

]

[

W2

ν2

] ∼ Fν1,ν2
.

where the probability density, mean, and variance for the F -distribution are given below as a function of the
specific point F = f .

f(f) =

[

Γ
((

ν1+ν2

2

))

ν
ν1/2
1 ν

ν2/2
2

Γ (ν1/2) Γ (ν2/2)

][

fν1/2−1

(ν1f + ν2)
(ν1+ν2)/2

]

E {F } = µF =
ν1

ν2 − 2
ν2 > 2 V {F } =

2ν2
2 (ν1 + ν2 − 2)

ν1 (ν2 − 2) (ν2 − 4)
ν2 > 4

Three F -distributions are given in Figure 3.11.

Critical values for the t, χ2, and F -distributions are given in statistical textbooks and webpages. Prob-
abilities, quantiles, densities, and random samples can be obtained from many statistical packages and
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spreadsheets. Technically, the t, χ2, and F distributions described here are central t, central χ2, and
central F distributions. These will be made use of repeatedly when making inferences regarding population
parameters.

3.5 Sampling Distributions and the Central Limit Theorem

Sampling distributions are the probability distributions of sample statistics across different random samples
from a population. That is, if we take many random samples, compute the statistic for each sample, then
save that value, what would be the distribution of those saved statistics? In particular, if we are interested
in the sample mean Y , or the sample proportion with a characteristic π̂, we know the following results, based
on independence of elements within a random sample.

Sample Mean: E{Yi} = µ V {Yi} = σ2 E{Y } = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

µ = µ

V {Y } = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

σ2 =
σ2

n

SE{Y } = σY =
σ√
n

Sample Proportion: E{Yi} = π V {Yi} = π(1 − π) E{π̂} = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

π = π

V {π̂} = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

π(1 − π) =
π(1 − π)

n

SE{π̂} = σπ̂ =

√

π(1 − π)

n

The standard deviation of the sampling distribution of a sample statistic (aka estimator) is referred to
as its standard error. Thus SE{Y } = σY is the standard error of the sample mean, and SE{π̂} = σπ̂ is
the standard error of the sample proportion.

When the data are normally distributed, the sampling distribution of the sample mean is also normal.
When the data are not normally distributed, as the sample size increases, the sampling distribution of the
sample mean or proportion tends to normality. The “rate” of convergence to normality depends on how
“non-normal” the underlying distribution is. The mathematical arguments for these results are Central
Limit Theorems.

Sample Mean: Y
·∼ N

(

µ,
σ√
n

)

Sample Proportion: π̂
·∼ N

(

π,

√

π(1 − π)

n

)
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Example 3.17: Sampling Distributions - NHL BMI, Female Marathon Speeds, Charlotte
Traffic Stops

We consider the sampling distributions of sample means for the NHL player Body Mass Indices, Female
Rock and Roll Marathon Speeds, and Charlotte, N.C. traffic stops (proportion of stops due to speed vio-
lations, category 7). For the NHL BMI data, the population mean is µ = 26.500 and standard deviation
is σ = 1.454. As the underlying distribution is approximately normal, the sampling distribution of the
mean is approximately normal, regardless of the sample size. We take 10000 random samples of size n = 9,
computing and saving the sample mean for each sample. The theoretical and empirical (based on the 10000
random samples) mean and standard error of the sample means are given below and a histogram with the
normal density are shown in Figure 3.12.

Theory: µY = µ = 26.500 σY =
1.454√

9
= 0.485 Empirical: y = 26.504 sy = 0.485

The mean and standard deviation are very close to the corresponding theoretical values (they won’t
always be this close, as sampling error exists).

For the female marathon speeds, we saw that the distribution was skewed to the right, and well modeled
by a gamma distribution with mean µ = 5.84 and standard deviation σ = 0.83. We take 10000 random
samples of n = 16 from this population, computing and saving the sample mean from each sample. The
theoretical and empirical (based on the 10000 random samples) mean and standard error of the sample
means are given below and a histogram with the normal density are shown in Figure 3.13.

Theory: µY = µ = 5.840 SE{Y } =
0.831√

16
= 0.208 Empirical: y = 5.839 SE{y} = 0.206

Again, we see very strong agreement between the empirical and theoretical values (as we should). Also,
note that the sampling distribution is very well approximated by the N(5.840,0.208) in the graph.

Finally, we consider the proportions of traffic stops due to speeding for the Charlotte, NC traffic stops,
based on 10000 random samples of n = 50. For the population, π = 22222/79884 = .2782. The theoretical
and empirical results are given below, and the histogram is given in Figure 3.14.

Theory: µπ̂ = π = .2782 σπ̂ =

√

.2782(1− .2782)

50
= .0634 Empirical: π̂ = .2775 SE{π̂} = .0633

The empirical mean and standard error, again, are in strong agreement with their theoretical values.
Note that the sample proportion is discrete as it can only take on values .00, .02, ..., .98, 1.00, as n = 50. The
histogram is clearly bell-shaped like a normal distribution. As n gets larger π̂ becomes more “continuous.”

∇
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Sampling Distribution of Sample Mean, n=9
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Figure 3.12: Sampling distribution for sample means (n=9) for NHL Body Mass Index

Sampling Distribution of Sample Mean, n=16
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Figure 3.13: Sampling Distribution for sample means (n=16) for Female Rock and Roll Marathon speeds
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Sampling Distribution of Sample Mean, n=50
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Figure 3.14: Sampling Distribution for sample proportions (n=50) for Charlotte traffic stops for speeding

3.6 R Code for Chapter 3

### Chapter 3

### Examples 3.6-3.7

## Read Driver Level Data into "nascard"

nascard <- read.fwf("http://www.stat.ufl.edu/~winner/data/nascard.dat",

width=c(3,6,4,4,4,5,9,4,11,32), col.names=c("serRace", "year",

"yrRace", "finPos", "strtPos", "lapsComp", "winnings", "numCars",

"carMake", "driver"))

names(nascard)

nascard[1:100, c(1,4,5)]

## Subset rows of nascard w/ driver starting in 1st 10 positions in "start10"

## Save only columns: series Race, start and finish positions

start10 <- nascard[nascard$strtPos <= 10,c("serRace","strtPos","finPos")]

nrow(start10)

start10[1:30,]

(nraces <- length(unique(start10$serRace))) ### number races=898

strt10Fin3 <- rep(0, nraces) ### Initialize Top 3 Fins per race

strt10Len <- rep(0, nraces)

### Count # of top 10 starters finish in top 3

for (i in 1:nraces) {

strt10Fin3[i] <- sum(start10[start10$serRace==i,]$finPos <=3)

strt10Len[i] <- length(start10[start10$serRace==i,]$finPos)
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}

strt10Len

strt10Fin3

(t.strt10Fin3 <- table(strt10Fin3)) ### Count 0,1,2,3 Top 3 finishers

t.strt10Fin3 / sum(t.strt10Fin3) ### Turn counts to proportions

set.seed(12345)

sample.race <- sample(x=1:nraces, size=10000, replace=TRUE)

mean(strt10Fin3[sample.race])

sd(strt10Fin3[sample.race])

rm(list=ls(all=TRUE))

### Example 3.10

y <- 0:6 ## Values that Y can take on: y=0,1,...,6

(p_y <- dbinom(y, 6, 0.5)) ## Obtain p(y) for y=0,1,...,6

### Plot probabilities (type="h" is histogram) - Figure 3.1

plot(y, p_y, type="h", lwd=5, ylab="p(y)",

main="Probabilty Distribution for Binomial(6,0.5)")

rm(list=ls(all=TRUE))

### Figure 3.2 - Normal plots (3 on same graph)

y.seq <- seq(0,100,0.01)

mu <- c(25,50,75)

sigma <- c(5,10,3)

par(mfrow=c(1,1))

plot(y.seq, dnorm(y.seq,mu[1],sigma[1]), type="l", ylim=c(0,0.15),

xlab="y", ylab="f(y)",

main=expression(paste("Normal(", mu,",", sigma,")")))

lines(y.seq, dnorm(y.seq,mu[2],sigma[2]), lty=2)

lines(y.seq, dnorm(y.seq,mu[3],sigma[3]), lty=3)

legend(10,0.14, c("N(25,5)", "N(50,10)","N(75,3)"), lty=1:3)

rm(list=ls(all=TRUE))

### Example 3.14

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

bmi.nhl <- 703 * Weight / (Height^2)

N <- length(bmi.nhl)

(mean.bmi.nhl <- mean(bmi.nhl))

(sd.bmi.nhl <- sd(bmi.nhl)*sqrt((N-1)/N))

bmi <- seq(21,33,.01)

### Obtain histogram - Figure 3.3

hist(bmi.nhl, breaks=seq(21,33,0.2), xlab="Body Mass Index", freq=FALSE,

main="NHL BMI Distribution 2013-2014 Season")

lines(bmi, dnorm(bmi, mean.bmi.nhl, sd.bmi.nhl))

## Quantiles: Theoretical Normal, Empirical Distribution

q.the <- qnorm(c(.10,.25,.50,.75,.90), mean.bmi.nhl, sd.bmi.nhl)

q.emp <- quantile(bmi.nhl, c(.10,.25,.50,.75,.90))

q.out <- rbind(q.the, q.emp)

rownames(q.out) <- c("Theoretical", "Empirical")
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colnames(q.out) <- c("10%", "25%", "50", "75%", "90%")

round(q.out, 3)

## Probabilities: Theoretical Normal, Actual Distribution

# Theoretical

p.the1 <- pnorm(mean.bmi.nhl-2*sd.bmi.nhl, mean.bmi.nhl, sd.bmi.nhl)

p.the3 <- 1-pnorm(mean.bmi.nhl+2*sd.bmi.nhl, mean.bmi.nhl, sd.bmi.nhl)

p.the2 <- pnorm(mean.bmi.nhl+sd.bmi.nhl, mean.bmi.nhl, sd.bmi.nhl) -

pnorm(mean.bmi.nhl-sd.bmi.nhl, mean.bmi.nhl, sd.bmi.nhl)

# Empirical

p.emp1 <- sum(bmi.nhl <= mean.bmi.nhl-2*sd.bmi.nhl)/N

p.emp3 <- sum(bmi.nhl >= mean.bmi.nhl+2*sd.bmi.nhl)/N

p.emp2 <- sum(bmi.nhl >= mean.bmi.nhl-sd.bmi.nhl &

bmi.nhl <= mean.bmi.nhl+sd.bmi.nhl)/N

p.out <- rbind(cbind(p.the1, p.the2, p.the3), cbind(p.emp1, p.emp2, p.emp3))

rownames(p.out) <- c("Theoretical", "Empirical")

colnames(p.out) <- c("<mu-2sigma","(mu-sigma,mu+sigma)",">mu+2sigma")

round(p.out, 4)

rm(list=ls(all=TRUE))

### Figure 3.4 - Gamma plots (3 on same graph)

y.seq <- seq(0,100,0.01)

alpha <- c(20,50,50)

beta <- c(2,2,1)

# win.graph(height=5.5, width=7.0)

par(mfrow=c(1,1))

plot(y.seq, dgamma(y.seq,alpha[1],beta[1]), type="l", ylim=c(0,0.20),

xlab="y", ylab="f(y)",

main=expression(paste("Gamma(", alpha,",", beta,")")))

lines(y.seq, dgamma(y.seq,alpha[2],beta[2]), lty=2)

lines(y.seq, dgamma(y.seq,alpha[3],beta[3]), lty=3)

legend(60,0.15, c("Gamma(20,2)", "Gamma(50,2)","Gamma(50,1)"), lty=1:3)

rm(list=ls(all=TRUE))

### Example 3.15

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

## Obtain mean and standard deviation by gender

tapply(mph,Gender,mean)

tapply(mph,Gender,median)

tapply(mph,Gender,var)

tapply(mph,Gender,sd)

## Obtain the Gamma parameters (for plotting) of mph by gender

(alpha.f <- mean(mph[Gender=="F"])^2 / var(mph[Gender=="F"]))

(alpha.m <- mean(mph[Gender=="M"])^2 / var(mph[Gender=="M"]))

(beta.f <- mean(mph[Gender=="F"]) / var(mph[Gender=="F"]))

(beta.m <- mean(mph[Gender=="M"]) / var(mph[Gender=="M"]))

## Figure 3.5

## Set up a 1x2 grid for plots

par(mfrow=c(1,2))

## Histograms for Female and Male mph

hist(mph[Gender=="F"],breaks=25,main="Histogram of Female Speeds",

xlab="Female Speeds", xlim=c(4,11), freq=FALSE)

x.seq <- seq(4,11,.01)

lines(x.seq, dgamma(x.seq, alpha.f, beta.f))
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hist(mph[Gender=="M"],breaks=25,main="Histogram of Male Speeds",

xlab="Male Speeds", xlim=c(4,11), freq=FALSE)

lines(x.seq, dgamma(x.seq, alpha.m, beta.m))

## Quantiles: Theoretical Gamma, Empirical Distribution

q.the.f <- qgamma(c(.10,.25,.50,.75,.90), alpha.f, beta.f)

q.emp.f <- quantile(mph[Gender=="F"], c(.10,.25,.50,.75,.90))

## Quantiles: Theoretical Gamma, Empirical Distribution

q.the.m <- qgamma(c(.10,.25,.50,.75,.90), alpha.m, beta.m)

q.emp.m <- quantile(mph[Gender=="M"], c(.10,.25,.50,.75,.90))

q.out <- rbind(q.the.f, q.emp.f, q.the.m, q.emp.m)

rownames(q.out) <- c("Theoretical/Female", "Empirical/Female",

"Theoretical/Male", "Empirical/Male")

colnames(q.out) <- c("10%", "25%", "50", "75%", "90%")

round(q.out, 3)

## Probabilities: Theoretical Normal, Actual Distribution

# Theoretical Female

(mean.mph.female <- alpha.f / beta.f)

(sd.mph.female <- sqrt(alpha.f) / beta.f)

(N.female <- length(mph[Gender=="F"]))

p.the1.f <- pgamma(mean.mph.female-2*sd.mph.female, alpha.f, beta.f)

p.the3.f <- 1-pgamma(mean.mph.female+2*sd.mph.female, alpha.f, beta.f)

p.the2.f <- pgamma(mean.mph.female+sd.mph.female, alpha.f, beta.f) -

pgamma(mean.mph.female-sd.mph.female, alpha.f, beta.f)

# Actual Female

p.emp1.f <- sum(mph[Gender=="F"] <= mean.mph.female-2*sd.mph.female)/N.female

p.emp3.f <- sum(mph[Gender=="F"] >= mean.mph.female+2*sd.mph.female)/N.female

p.emp2.f <- sum(mph[Gender=="F"] >= mean.mph.female-sd.mph.female &

mph[Gender=="F"] <= mean.mph.female+sd.mph.female)/N.female

# Theoretical Male

(mean.mph.male <- alpha.m / beta.m)

(sd.mph.male <- sqrt(alpha.m) / beta.m)

(N.male <- length(mph[Gender=="M"]))

p.the1.m <- pgamma(mean.mph.male-2*sd.mph.male, alpha.m, beta.m)

p.the3.m <- 1-pgamma(mean.mph.male+2*sd.mph.male, alpha.m, beta.m)

p.the2.m <- pgamma(mean.mph.male+sd.mph.male, alpha.m, beta.m) -

pgamma(mean.mph.male-sd.mph.male, alpha.m, beta.m)

# Actual Male

p.emp1.m <- sum(mph[Gender=="M"] <= mean.mph.male-2*sd.mph.male)/N.male

p.emp3.m <- sum(mph[Gender=="M"] >= mean.mph.male+2*sd.mph.male)/N.male

p.emp2.m <- sum(mph[Gender=="M"] >= mean.mph.male-sd.mph.male &

mph[Gender=="M"] <= mean.mph.male+sd.mph.male)/N.male

p.out <- rbind(cbind(p.the1.f, p.the2.f, p.the3.f),

cbind(p.emp1.f, p.emp2.f, p.emp3.f),

cbind(p.the1.m, p.the2.m, p.the3.m),

cbind(p.emp1.m, p.emp2.m, p.emp3.m))

rownames(p.out) <- c("Theoretical/Female", "Empirical/Female",

"Theoretical/Male", "Empirical/Male")

colnames(p.out) <- c("<mu-2sigma","(mu-sigma,mu+sigma)",">mu+2sigma")

round(p.out, 4)

rm(list=ls(all=TRUE))

###### Exponential, Chi-Square, Beta Distribution Plots (3 per graph)

## Figure 3.6

y.seq <- seq(0,30,0.01)

alpha <- c(1,1,1)

beta <- c(1,0.5,0.2)

par(mfrow=c(1,1))

plot(y.seq, dexp(y.seq,beta[1]), type="l", ylim=c(0,0.50),
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xlab="y", ylab="f(y)",

main=expression(paste("Exponential(", theta,")")))

lines(y.seq, dexp(y.seq,beta[2]), lty=2)

lines(y.seq, dexp(y.seq,beta[3]), lty=3)

legend(15,0.35, c("Exponential(1)", "Exponential(0.5)","Exponential(0.2)"),

lty=1:3)

rm(list=ls(all=TRUE))

## Figure 3.7

y.seq <- seq(0,100,0.01)

nu <- c(5,15,40)

par(mfrow=c(1,1))

plot(y.seq, dchisq(y.seq,nu[1]), type="l", ylim=c(0,0.20),

xlab="y", ylab="f(y)",

main=expression(paste(chi^2,"(", nu,")")))

lines(y.seq, dchisq(y.seq,nu[2]), lty=2)

lines(y.seq, dgamma(y.seq,nu[3]), lty=3)

legend(60,0.18, c("Chi-square(5)", "Chi-square(15)",

"Chi-square(40)"), lty=1:3)

rm(list=ls(all=TRUE))

## Figure 3.8

y.seq <- seq(0,1,0.001)

alpha <- c(1,4,0.5)

beta <- c(1,2,2)

par(mfrow=c(1,1))

plot(y.seq, dbeta(y.seq,alpha[1],beta[1]), type="l", ylim=c(0,3.0),

xlab="y", ylab="f(y)",

main=expression(paste("Beta(", alpha,",", beta,")")))

lines(y.seq, dbeta(y.seq,alpha[2],beta[2]), lty=2)

lines(y.seq, dbeta(y.seq,alpha[3],beta[3]), lty=3)

legend(0.3,2.8, c("Beta(1,1)", "Beta(4,2)","Beta(0.5,2)"), lty=1:3)

rm(list=ls(all=TRUE))

### Example 3.16

nba2017 <- read.csv("http://www.stat.ufl.edu/~winner/data/nba_teamgame_20167.csv")

attach(nba2017); names(nba2017)

# Regular Season Games Only (GameType=1)

fg3prop <- fg3m[GameType==1]/fg3a[GameType==1]

summary(fg3a[GameType==1])

sd(fg3a[GameType==1])

# Function to compute phi, alpha, beta from mean, sd

betaShRtMeanSD <- function(mean, sd) {

if (mean <= 0 | sd <= 0) return("FAIL")

phi <- (mean*(1-mean) / sd^2) - 1

alpha <- mean*phi

beta <- (1-mean) * phi

return(list(phi=phi, alpha=alpha, beta=beta))

}

(fg3ab <- betaShRtMeanSD(mean(fg3prop),

sd(fg3prop)))

(mean.fg3 <- mean(fg3prop))

(sd.fg3 <- sd(fg3prop))

(N.fg3 <- length(fg3prop))

## Figure 3.9

hist(fg3prop, xlim=c(0,1), freq=FALSE, breaks=35,
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main="Histogram of 3-Point Field Goal Proportions and Beta(8.77,15.83)")

x <- seq(0,1.0,0.01)

lines(x,dbeta(x, fg3ab$alpha, fg3ab$beta))

## Quantiles: Theoretical Beta, Actual Distribution

q.the <- qbeta(c(.10,.25,.50,.75,.90), fg3ab$alpha, fg3ab$beta)

q.emp <-quantile(fg3prop, c(.10,.25,.50,.75,.90))

q.out <- rbind(q.the, q.emp)

rownames(q.out) <- c("Theoretical", "Empirical")

colnames(q.out) <- c("10%", "25%", "50", "75%", "90%")

round(q.out, 3)

## Probabilities: Theoretical Beta, Empirical Distribution

# Theoretical

p.the1 <- pbeta(mean.fg3-2*sd.fg3, fg3ab$alpha, fg3ab$beta)

p.the3 <- 1-pbeta(mean.fg3+2*sd.fg3, fg3ab$alpha, fg3ab$beta)

p.the2 <- pbeta(mean.fg3+sd.fg3, fg3ab$alpha, fg3ab$beta) -

pbeta(mean.fg3-sd.fg3, fg3ab$alpha, fg3ab$beta)

# Empirical

p.emp1 <- sum(fg3prop <= mean.fg3-2*sd.fg3)/N.fg3

p.emp3 <- sum(fg3prop >= mean.fg3+2*sd.fg3)/N.fg3

p.emp2 <- sum(fg3prop >= mean.fg3-sd.fg3 &

fg3prop <= mean.fg3+sd.fg3)/N.fg3

p.out <- rbind(cbind(p.the1, p.the2, p.the3), cbind(p.emp1, p.emp2, p.emp3))

rownames(p.out) <- c("Theoretical", "Empirical")

colnames(p.out) <- c("<mu-2sigma","(mu-sigma,mu+sigma)",">mu+2sigma")

round(p.out, 4)

rm(list=ls(all=TRUE))

### Plots of t- and F- densties (3 per graph)

y.seq <- seq(-4,4,0.01)

nu <- c(3,12,25)

## Figure 3.10

par(mfrow=c(1,1))

plot(y.seq, dt(y.seq,nu[1]), type="l", ylim=c(0,0.50),

xlab="t", ylab="f(t)",

main=expression(paste("t(", nu,")")))

lines(y.seq, dt(y.seq,nu[2]), lty=2)

lines(y.seq, dt(y.seq,nu[3]), lty=3)

lines(y.seq, dnorm(y.seq,0,1), lty=4)

legend(2,0.4, c("t(3)", "t(12)","t(25)","N(0,1)"), lty=1:4)

rm(list=ls(all=TRUE))

y.seq <- seq(0,6,0.01)

nu1 <- c(3,2,6)

nu2 <- c(12,24,30)

## Figure 3.11

par(mfrow=c(1,1))

plot(y.seq, df(y.seq,nu1[1],nu2[1]), type="l", ylim=c(0,1.0),

xlab="f", ylab="f(f)",

main=expression(paste("F(", nu[1],",", nu[2],")")))

lines(y.seq, df(y.seq,nu1[2],nu2[2]), lty=2)

lines(y.seq, df(y.seq,nu1[3],nu2[3]), lty=3)

legend(4,0.7, c("F(3,12)", "F(2,24)","F(6,30)"), lty=1:3)

rm(list=ls(all=TRUE))
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### Example 3.17

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

bmi.nhl <- 703 * Weight / (Height^2)

N <- length(bmi.nhl)

mean(bmi.nhl)

sd(bmi.nhl) * sqrt((N-1)/N)

set.seed(34567)

num.sim <- 10000

num.sample <- 9

sampmean.bmi <- rep(0,num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.sample, replace=F)

sampmean.bmi[i] <- mean(bmi.nhl[sample])

}

mean(sampmean.bmi)

sd(sampmean.bmi)

## Figure 3.12

hist(sampmean.bmi, breaks=50, xlim=c(24,29), freq=F,

main="Sampling Distribution of Sample Mean, n=9")

bmi.seq <- seq(24,29,0.01)

lines(bmi.seq,dnorm(bmi.seq,mean(bmi.nhl),sd(bmi.nhl)/sqrt(num.sample)))

detach(nhl)

rm(list=ls(all=TRUE))

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

f.mph <- mph[Gender == "F"]

mean(f.mph)

sd(f.mph)

N <- length(f.mph)

num.sim <- 10000

num.sample <- 16

sampmean.fmph <- rep(0,num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.sample, replace=F)

sampmean.fmph[i] <- mean(f.mph[sample])

}

mean(sampmean.fmph)

sd(sampmean.fmph)

## Figure 3.13

hist(sampmean.fmph, breaks=100, xlim=c(4.80,7.00), freq=F,

main="Sampling Distribution of Sample Mean, n=16")

fmph.seq <- seq(4.80,7.00,0.01)

lines(fmph.seq,dnorm(fmph.seq,mean(f.mph),sd(f.mph)/sqrt(num.sample)))

detach(rr.mar)

rm(list=ls(all=TRUE))

## Read data off web page, attach file as data frame, and list variable names

clt2016 <- read.csv("http://www.stat.ufl.edu/~winner/data/trafficstop.csv")

attach(clt2016); names(clt2016)
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table(RsnStop)

N <- length(RsnStop)

table(RsnStop)/N

num.sim <- 10000

num.sample <- 50

sampprop.cltspd <- rep(0,num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.sample, replace=F)

sampprop.cltspd[i] <- sum(RsnStop[sample] == 7) / num.sample

}

mean(sampprop.cltspd)

sd(sampprop.cltspd)

## Figure 3.14

hist(sampprop.cltspd, breaks=100, xlim=c(0,0.50), freq=F,

main="Sampling Distribution of Sample Mean, n=50")

rm(list=ls(all=TRUE))
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Chapter 4

Inferences for Population Means and
Medians

Researchers often are interested in making statements regarding unknown population means and medians
based on sample data. There are two common methods for making inferences: Estimation and Hypothesis
Testing. The two methods are related and make use of the sampling distribution of the sample mean when
making statements regarding the population mean.

Estimation can provide a single “best” prediction of the population mean, a point estimate, or it
can provide a range of values that hopefully encompass the true population mean, an interval estimate.
Hypothesis testing involves setting an a priori (null) value for the unknown population mean, and measuring
the extent to which the sample data contradict that value. Note that a confidence interval provides a credible
set of values for the unknown population mean, and can be used to test whether or not the population mean
is the null value. Both methods involve uncertainty as we are making statements regarding a population
based on sample data.

4.1 Estimation

For large samples, the sample mean has an approximately normal sampling distribution centered at the
population mean, µ, and a standard error σ/

√
n. When the data are normally distributed, the sampling

distribution is normal for all sample sizes. For normal distributions, 95% of its density lies in the range
(mean +/- 1.96 SD). Thus, when we take a random sample, we obtain the following probability statement
regarding the sample mean.

Y
·∼ N

(

µ, SE{Y } =
σ√
n

)

⇒ P

(

µ − zα/2
σ√
n

≤ Y ≤ µ + zα/2
σ√
n

)

≈ 1 − α P (Z ≥ za) = a

85
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⇒ 1 − α ≈ P

(

−zα/2 ≤ Y − µ

σ/
√

n
≤ zα/2

)

= P

(

Y − zα/2
σ√
n

≤ µ ≤ Y + zα/2
σ√
n

)

Some commonly used coverage probabilities (1−α) are given here, along with the corresponding z values.

1−α = .90 ⇒ α = .10 ⇒ α

2
= .05 ⇒ z.05 = 1.645 1−α = .95 ⇒ z.025 = 1.96 1−α = .99 ⇒ z.005 = 2.576

Note that in the probability statements above, µ is a fixed, unknown constant in practice, and Y is a
random variable that varies from sample to sample. The probability refers to the fraction of the samples
that will provide sample means such that the lower and upper bounds “cover” µ. Also, in practice, σ will
be unknown and need to be replaced by the sample standard deviation.

A Large-Sample (1 − α)100% Confidence Interval for a Population Mean µ is given below, where y and
s are the observed mean and standard deviation from a random sample of size n and ŜE{Y } represents the
estimated standard error .

y ± zα/2ŜE{Y } y ± zα/2
s√
n

When the data are normally distributed, for small samples (although this has shown to work well for
other distributions), replace zα/2 with tα/2,n−1.

y ± tα/2,n−1ŜE{Y } y ± tα/2,n−1
s√
n

Any software package or spreadsheet that is used to obtain a confidence interval for a mean (or difference
between two means) will always use the version based on the t-distribution. There will be settings, when
making confidence intervals for parameters, that there is no justification for using the t-distribution, and we
will make use the z-distribution, as does statistical software packages.

Example 4.1: NHL Players’ BMI

The Body Mass Indices for the NHL players are approximately normally distributed with mean µ =
26.500 and standard deviation σ = 1.454. We take 10000 random samples of size n = 12, implying a standard
error of σY = 1.454/

√
12 = 0.420. We count the number of the 10000 sample means that lie in the ranges

µ ± zα/2σY for the three values of 1 − α given above.

Of the 10000 sample means, 8975 (89.75%) lied within µ ± 1.645(.420), 9512 (95.12%) within µ ±
1.96(.420), and 9902 (99.02%) within µ±2.576(.420). Had we constructed intervals of the form y±zα/2(.420)
for each sample mean, the coverage rates for µ would have been the same values (89.75%, 95.12%, 99.02%).

When the population standard error SE{Y } = σ/
√

n is replaced by the estimated standard error
ŜE{Y } = s/

√
n, which varies from sample to sample, we find the coverage rates of the intervals decrease.
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When constructing intervals of the form y±zα/2s/
√

n, the coverage rates fall to 86.78%, 92.29%, and 97.58%,
respectively. This is a by-product of the fact that the sampling distribution of the standard deviation is
skewed right, and its median is below its mean. Whenever the sample standard deviation is small, the width
of the constructed interval is shortened. When using the estimated standard error, replace zα/2 with the
corresponding critical value for the t-distribution, with n − 1 degrees of freedom: tα/2,n−1. For this case,
with n = 12, we obtain t.05,11 = 1.796, t.025,11 = 2.201, and t.005,11 = 3.106. When z is replaced by the
corresponding t values, the coverage rates for the constructed intervals with the estimated standard errors
reach their nominal rates: 89.79%, 95.22%, and 99.15%, respectively.

For the first random sample of the 10000 generated, we observe y = 25.838 and s = 1.717. The 95%
Confidence Interval for µ based on the first sample is obtained as follows.

y ± t.025,n−1
s√
n

≡ 25.838± 2.201

(

1.717√
12

)

≡ 25.838± 1.091 ≡ (24.747, 26.929)

Thus, this interval does contain µ = 26.500.

R Output

### Output

> round(cover.out,4)

90% Confidence 95% Confidence 99% Confidence

Z - True SE 0.8975 0.9512 0.9902

Z - Estimated SE 0.8678 0.9229 0.9758

t - Estimated SE 0.8979 0.9522 0.9915

∇

Often, researchers choose the sample size so that the margin of error will not exceed some fixed level
E with high confidence. That is, we want the difference between the sample and population means to be
within E with confidence level 1 − α. This means the width of a (1 − α)100% Confidence Interval will be
2E. This can be done in one calculation based on using the z distribution, or more conservatively, by trivial
iteration based on the t-distribution. Either way, we must have an approximation of σ based on previous
research or a pilot study.

z : Ez = zα/2
σ√
n

⇒ n =

(

zα/2σ

Ez

)2

t : Smallest n such that Et ≤ tα/2,n−1
σ√
n

Example 4.2: Estimating Population Mean Male Marathon Speed

Suppose we want to estimate the population mean of the male Rock and Roll marathon running speeds
within E = 0.20 miles per hour with 95% confidence. We treat the standard deviation as known, σ = 1.058.
The calculation for the sample size based on the z-distribution is given below, followed by R commands that
iteratively solve for n based on the t-distribution.
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z : z.025 = 1.96 n =

(

1.96(1.058)

0.20

)2

= 107.5 ≈ 108

R Output

## Output

> cbind(n, E.t)

n E.t

[1,] 110 0.1999336

Since n was needed to be so large, z.025 and t.025,n−1 are very close, and both methods give virtually
the same n (108 and 110).

4.2 Hypothesis Testing

In hypothesis testing, a sample of data is used to determine whether a population mean is equal to some
pre-specified level µ0. It is rare, except in some situations to test whether the mean is some specific value
based on historical level, or government or corporate specified level to have a null value to test. These tests
are more common when comparing two or more populations or treatments and determining whether their
means are equal. The elements of a hypothesis test are given below.

Null Hypothesis (H0) Statement regarding a parameter that is to be tested. It always includes an equality,
and the test is conducted assuming its truth.

Alternative (Research) Hypothesis (HA) Statement that contradicts the null hypothesis. Includes
“greater than” (>), “less than” (<),or “not equal too” (6=)]

Test Statistic (T.S.) A statistic measuring the discrepancy between the sample statistic and the parameter
value under the null hypothesis (where the equality holds).

Rejection Region (R.R.) Values of the Test Statistic for which the Null Hypothesis is rejected. Depends
on the significance level of the test.

P -value Probability under the null hypothesis (at the equality) of observing a Test Statistic as extreme or
more extreme than the observed Test Statistic. Also known as the observed significance level.

Type I Error Rejecting the Null Hypothesis when in fact it is true. The Rejection Region is chosen so that
this has a particular small probability (α = P (Type I Error) is the significance level and is often set
at 0.05).

Type II Error Failing to reject the Null Hypothesis when it is false. Depends on the true value of the
parameter. Sample size is often selected so that it has a particular small probability for an important
difference. β = P (Type II Error).

Power The probability the Null Hypothesis is rejected. When H0 is true the power is π = α, when HA is
true, it is π = 1 − β.
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The testing procedure for a mean is based on the sampling distribution of Y being approximately normal
with mean µ0 under the null hypothesis. Also, when the data are normal the difference between the sample
mean and µ0 divided by its estimated standard error is distributed as t with n− 1 degrees of freedom under
the null hypothesis.

Y
·∼ N

(

µ0, SE{Y } =
σ√
n

)

Y − µ0

ŜE{Y }
=

Y − µ0

s/
√

n
∼ tn−1

When the absolute value of the t-statistic is large, there is evidence against the null hypothesis. Once a
sample is taken (observed), and the sample mean y and sample standard deviation s are observed, the test
is conducted as follows for 2-tailed, upper tailed, and lower tailed alternatives.

2-tailed: H0 : µ = µ0 HA : µ 6= µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: |tobs| ≥ tα/2,n−1 P = 2P (tn−1 ≥ |tobs|)

Upper tailed: H0 : µ ≤ µ0 HA : µ > µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≥ tα,n−1 P = P (tn−1 ≥ tobs)

Lower tailed: H0 : µ ≥ µ0 HA : µ < µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≤ −tα,n−1 P = P (tn−1 ≤ tobs)

The form of the rejection regions are given for 2-tailed, Upper and Lower tailed tests in Figure 4.1. These
are based on α = 0.05, and n = 16. The vertical lines lie at t.975,15 = −t.025,15 = −2.131 and t.025,15 = 2.131
for the 2-tailed test, t.05,15 = 1.753 for the Upper tailed test, and t.95,15 = −t.05,15 = −1.753 for the Lower
tailed test.

When the Null Hypothesis is false, the test statistic is distributed as non-central t with non-centrality
parameter given below.

H0 : µ = µ0 In reality: µ = µA 6= µ0 ∆ =
µA − µ0

σ/
√

n
t =

Y − µ0

S/
√

n

·∼ tn−1,∆

Power probabilities, which depend on whether the test is 2-tailed or 1-tailed can be obtained from
statistical software packages, such as R, but not directly in EXCEL.

2-tailed tests: π = P
(

tn−1,∆ ≤ −tα/2,n−1

)

+ P
(

tn−1,∆ ≥ tα/2,n−1

)

Lower tailed tests: π = P (tn−1,∆ ≤ −tα,n−1) Upper tailed tests: π = P (tn−1,∆ ≥ tα,n−1)
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Figure 4.1: Rejection Regions for 2-tailed, Upper and Lower tailed tests, with α = 0.05 and n = 16

While it is rare to use hypothesis testing regarding a single mean (except in the case where data are
paired differences within individual units), the procedure is demonstrated based on male Rock and Roll
marathon speeds with several vlaues of µ0.

Example 4.3: Male Rock and Roll Marathon Speeds

For the males participating in the Rock and Roll marathon, the population mean speed was µ = 6.337
miles per hour with standard deviation of σ = 1.058. We will demonstrate hypothesis testing regarding a
single mean by first testing H0 : µ = 6.337 versus HA : µ 6= 6.337, based on random samples of n = 40. Since
the null hypothesis is true, if the test is conducted with a Type I Error rate of α = 0.05, the test should
reject the null in approximately 5% of samples. The distribution of the test statistic is t with n − 1 = 39
degrees of freedom. Further, the P -values should approximate a Uniform distribution between 0 and 1. Note
that 482 (4.82%) of the 10000 samples reject the null hypothesis, in agreement with what is to be expected.
A histogram of the observed test statistics, along with the t-density, and the P -values and the the Uniform
density are given in Figure 4.2. The two vertical bars on the t-statistic plot are at ±t.025,39 = ±2.023.

Next consider cases where the null hypothesis is not true. Consider H01 : µ = 6 versus HA1 : µ 6= 6 and
H02 : µ = 6.5 versus HA2 : µ 6= 6.5. Since the null value for H02 is closer to the true value µA = 6.337 than
the null value for H01, we expect that we will reject H02 less often for tests based on the same sample size.
That is, the power is higher for H01 than H02. The non-centrality parameters and the corresponding power
values are given below, based on samples of n = 40.
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Figure 4.2: t-statistics and P -values for testing H0 : µ = 6.337

∆1 =
6.337− 6.0

1.058/
√

40
= 2.015 π1 = .5022 ∆2 =

6.337− 6.5

1.058/
√

40
= −0.974 π2 = .1583

Based on 10000 random samples from the male marathon speeds, 49.93% rejected H0 : µ = 6, and for
another set of 10000 random samples, 17.05% rejected H0 : µ = 6.5. The histogram of the test statistics and
the non-central t-distribution are given in Figure 4.3 for testing H0 : µ = 6.

R Output

## Output

> round(power.out, 4)

Delta Theoretical Power Empirical Power

mu0=6.33 0.0000 0.0500 0.0482

mu0=6.00 2.0150 0.5022 0.4993

mu0=6.50 -0.9748 0.1583 0.1705

∇
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Figure 4.3: t-statistics and non-central t-distribution for testing H0 : µ = 6.0

4.2.1 Choosing Sample Size for Fixed Power for an Alternative

Once an important difference µA−µ0 is determined, and an estimate of σ is obtained, the functions involving
the non-central t-distribution can be used iteratively to find the n that makes the power large enough. The
algorithm goes as follows for 2-tailed tests.

1. Choose an important difference µA − µ0 and σ. Or alternatively make the difference in units of σ:
(µA − µ0)/σ.

2. Start with a small value for n, and compute the critical values for the t-test: CVLO = −tα/2,n−1,
CVHI = tα/2,n−1.

3. Compute ∆ = (µ0 − µA)/ (σ/
√

n).

4. Obtain the probability the test statistic falls in the Rejection Region, based on the non-central t-
distribution, with n−1 degrees of freedom, and non-centrality parameter ∆: Power = pt(CVLO,n−1,∆)
+ (1-pt(CVHI ,n − 1,∆))

5. Continue increasing n until Power exceeds some specified value (typically 0.80 or higher).

Example 4.4: Male Rock and Roll Marathon Speeds

Suppose we would like to be able to detect a difference between µA and µ0 of 0.25 with power of π = 0.8
when the test is conducted at α = 0.05. In this case, recall σ = 1.058. Start with n = 3.
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Figure 4.4: Central and non-Central t-distributions for n=10, 30, 70, 150, µ0 − µA = 0.25, and σ = 1.058

t.025,3−1 = 4.303 ∆ =
0.25

1.058/
√

3
=

√
3

0.25

1.058
= 0.409

π = P (t3−1,0.409 ≤ −4.303) + P (t3−1,0.409 ≥ 4.303) = .0577

Keep increasing n, which affects the critical t-values (making them smaller in absolute value) and in-
creasing ∆, thus increasing the power of the test, until π ≥ 0.80. It ends up that we would need a sample of
n = 143 to meet the power requirement. The target difference is very small (0.25) relative to the standard
deviation (1.058) which is why such a large sample would be needed. A plot of the central and non-central
t-distributions for n=10, 30, 70, and 150 is given in Figure 4.4. The vertical bars give the critical values for
the α = 0.05 level test.

R Output

## Output

> (power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta)))

[1] 0.05772603

> cbind(n, power)

n power

[1,] 143 0.8013787
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∇

4.3 Inferences Concerning the Population Median

The population median represents the 50th percentile of the distribution. For each sampled observation,
there is a 0.5 probability that it is larger (or smaller) than the median. The number of observations of a
random sample of size n that are above (or below) the median is binomial with n trials, and probability
of success π = 0.5. Let Bα/2,n be the smallest number such that P

(

Y ≤ Bα/2,n|Y ∼ Bin(n, 0.5)
)

≤ α/2.
Then the probability that the number of sample observations falling above or below the median will lie in
the range

(

Lα/2 = Bα/2,n + 1, Uα/2 = n − Bα/2,n

)

will be greater than or equal to 1 − α. This leads to a

(1 − α)100% Confidence Interval for the population median to be the range encompassed by the (Lα/2)
th

ordered observation to the (Uα/2)
th ordered observation.

A large-sample approximation based on the normal distribution involves taking the range encompassed by
the observations within ranks (n/2)±n1/2. This is a result of the standard error of Y being

√

n(0.5)(1 − 0.5),
and using mean plus/minus 2 standard errors for approximate 95% confidence.

Example 4.5: Movie Average Shot Lengths

Barry Sands has compiled a population of 11001 films and their average shot length (ASL, in seconds).
The distribution of ASL is highly skewed to the right, with a population median of 6.4 (the mean is 7.74).
A histogram of the ASL’s is given in Figure 4.5, it has been truncated at 100 (due to distortion if the full
distribution is given), with 8 cases falling between 100 and 1000. The thick vertical line is the population
median.

Consider samples of n = 20. For the Bin(20, 0.5) distribution, the following cumulative probabilities are
obtained.

P (Y ≤ 4) = .0059 P (Y ≤ 5) = .0207 P (Y ≤ 6) = .0577

⇒ Bα/2,n = 5 Lα/2 = 5 + 1 = 6 Uα/2 = 20 − 5 = 15

Thus, once we order the the 20 sampled films, we would take the range encompassed by the 6th through
the 15th films.

The following random sample (ordered) was obtained in R.

> (ASL.sample.order <- sort(ASL.sample)) ## Sample values sorted

[1] 3.80 3.80 4.42 4.42 4.67 5.13 5.56 5.80 5.81 6.36 6.56 6.80

[13] 7.00 7.10 7.80 9.47 9.50 9.60 9.80 13.17

> cbind(ASL.sample.order[6],ASL.sample.order[15]) ## 6th and 15th selected

[,1] [,2]

[1,] 5.13 7.8
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Figure 4.5: Average Shot Length (ASL) for a population of 11001 films.

For this sample, we obtain the 95% Confidence Interval: (5.13, 7.80), which does contain the population
median (6.4). We now obtain 10000 random samples of size n = 20, and count the number that contain 6.4.
Note that due to the “discreteness” of the distribution, α = 2(.0207) = .0414, so we expect slightly more
than 95% of the intervals to contain 6.4. Based on the 10000 random samples, 9629 (96.29%) contain the
population mean.

Had we used the large-sample approximation here, which is questionable, with n = 20, we would have
n/2 = 10, and

√
n = 4.47, and L.025 ≈ 10 − 4.47 = 5.53 = 5 and U.025 ≈ 10 + 4.47 = 15. We would still be

selecting the 6th and 15th ordered values.

R Output

## Output

> pbinom(0:20,20,0.5)

[1] 9.536743e-07 2.002716e-05 2.012253e-04 1.288414e-03 5.908966e-03

[6] 2.069473e-02 5.765915e-02 1.315880e-01 2.517223e-01 4.119015e-01

[11] 5.880985e-01 7.482777e-01 8.684120e-01 9.423409e-01 9.793053e-01

[16] 9.940910e-01 9.987116e-01 9.997988e-01 9.999800e-01 9.999990e-01

[21] 1.000000e+00

> (ASL.sample.order <- sort(ASL.sample)) ## Sample values sorted

[1] 3.80 3.80 4.42 4.42 4.67 5.13 5.56 5.80 5.81 6.36 6.56 6.80

[13] 7.00 7.10 7.80 9.47 9.50 9.60 9.80 13.17

> cbind(ASL.sample.order[6],ASL.sample.order[15]) ## 6th and 15th selected

[,1] [,2]

[1,] 5.13 7.8
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> sum(med.ci[,1] <= med.pop & med.ci[,2] >= med.pop) / num.sim

[1] 0.9629

∇

For a hypothesis test of whether the population median is some particular value (as with the mean, this
is rare except in paired data experiments), we can use the sign test. The test makes use of the count of
the number of observations exceeding the null value of the median being a binomial random variable with
n trials, and probability of success π = 0.5 under the null hypothesis H0 : M = M0. There can be 2-tailed
or Upper/Lower tailed alternatives. In each case, let Bobs be the count of the number of observations above
M0.

2-tailed tests: H0 : M = M0 HA : M 6= M0 T.S. : Bobs R.R. : Bobs ≤ Bα/2,n or Bobs ≥ n−Bα/2,n

Upper tailed tests: H0 : M ≤ M0 HA : M > M0 T.S. : Bobs R.R. : Bobs ≥ n − Bα,n

Lower tailed tests: H0 : M ≥ M0 HA : M < M0 T.S. : Bobs R.R. : Bobs ≤ Bα,n

For large-samples, the approximate normality of the Binomial can be used, and under the null hypothesis,
the number of observations exceeding M0 is approximately normal with mean n/2 and standard deviation
√

n(0.5)(1− 0.5) = 0.5
√

n. Then we can obtain a z-statistic for the tests.

T.S. : zobs =
Bobs − (n/2)

0.5
√

n
R.R.(2) : |zobs| ≥ zα/2 R.R.(U) : zobs ≥ zα R.R.(L) : zobs ≤ z1−α = −zα

Example 4.6: Movie Average Shot Lengths

Suppose we wanted to test whether the population median average shot length (ASL),M , differs from
M0 = 5 seconds (for some reason). Based on the sample of n = 20 films obtained previously, we have the
following ASL values.

> (ASL.sample.order <- sort(ASL.sample))

[1] 3.80 3.80 4.42 4.42 4.67 5.13 5.56 5.80 5.81 6.36 6.56 6.80

[13] 7.00 7.10 7.80 9.47 9.50 9.60 9.80 13.17

The test statistic is Bobs = 15. Depending on whether the goal is a 2-tailed or 1-tailed test we have that
P (Y ≤ 5) = .0207 and P (Y ≤ 6) = .0577 for Y ∼ Bin(n = 20, π = .5). Thus, for a 2-tailed test, reject the
null H0 : M = M0 for a 2-tailed test (with α = 0.05), if Bobs ≤ 5 or if Bobs ≥ 20 − 5 = 15. Because the
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probability that Y ≤ 6 exceeds α = 0.05, the Upper tail rejection region would be R.R. : Bobs ≥ 15 and the
Lower tail rejection region would be R.R. : Bobs ≤ 5. Note that the 2-sided P -value is P = 2P (Y ≥ 15|Y ∼
Bin(20, 0.5)) = 2P (Y ≤ 5) = 2(.0207) = .0414.

The large-sample z-statistic would be computed as follows.

zobs =
15 − (20/2)

0.5
√

20
=

5

2.236
= 2.236 2-tailed P -value: P = 2P (Z ≥ 2.236) = 2(.0127) = .0254

The reason for the discrepancy between the P -values is the discreteness of the binomial and the continuity
of the normal approximation. Some authors suggest the following continuity correction. The subtracting
of the 0.5 is to get all the area over 15 for binomial, since 15 is above its expected value. This results in
virtually the exact same P -value. As n gets large, the correction makes little difference.

zobs =
15 − (20/2) − 0.5

0.5
√

20
=

4.5

2.236
= 2.013 2-tailed P -value: P = 2P (Z ≥ 2.013) = 2(.0221) = .0442

4.4 The Bootstrap

In many applications, individual measurements are not normally distributed and the sample size is not large
enough to justify the use of the Central Limit Theorem. Further, in many practical settings, the sampling
distribution of an estimator is unknown (such as the coefficient of variation). The bootstrap makes use
of the sample that is obtained (and is assumed to be representative of the population of measurements)
to approximate the sampling distribution of the estimator of interest. The classic reference is Efron and
Tibshirani (1993) [20], and for an introduction to Mathematical Statistics based on resampling methods, see
Chihara and Hesterberg (2011) [14].

The process involves resampling from the sample data, with replacement, many times and computing
the estimate for each resample, and saving the values. The samples are each of size n. Note that when
estimating the sampling distribution of the sample mean, the mean of the resampled means will be very
close to the sample mean of the original sample. That implies that the bootstrap will not directly estimate
the mean of the sampling distribution (which is the population mean). The spread, bias, and skewness of the
bootstrap distribution do reflect those of the target sampling distribution, where bias refers to the difference
between the mean of the bootstrap distribution and the population mean.

4.4.1 Bootstrap Inferences Concerning the Population Mean

When trying to estimate a population mean (particularly with nonnormal data with a small sample size), a
bootstrap prediction interval for the population mean µ can be obtained from the central (1−α)100% values
of the bootstrap sample estimates. This is a very simple approach, as all that is needed to be computed and
saved are the sample means from each of the resamples (see e.g. Chihara and Hesterberg (2011), [14] Section
5.3). Once the means are obtained, the α/2 and 1−α/2 quantiles are identified. Note that this interval will
not typically be symmetric around the sample mean, unless the sample data are highly symmetric.
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Example 4.7: Movie Average Shot Lengths

Suppose we wish to estimate the population mean of movie average shot lengths (ASL). The distribution
is highly skewed, refer back to Figure 4.5. We first take a sample of n = 25 films, then draw B = 10000
random resamples with replacement from the 25 sampled films, and compute the sample mean for each
resample, labeled y∗

i for the ith resample. Finally we obtain the 2.5%-ile and 97.5%-ile from the resample
means, for an interval that we can be approximately 95% confident will contain µ.

R Output

## Output

> ASL.sample1

[1] 4.70 31.91 4.68 4.10 13.00 3.29 3.30 4.58 19.70 5.77 14.50 5.97

[13] 14.00 7.30 5.90 3.67 5.50 13.20 4.08 5.70 4.04 4.46 5.00 4.33

[25] 2.30

> round(boot1.out, 4)

N mu sigma n ybar s

[1,] 11001 7.7394 12.7654 25 7.7992 6.6888

> round(boot1a.out, 4)

Samples Mean 2.5% 97.5% SD t-Lower t-Upper P(<t-L) P(>t-U)

2.5% 10000 7.7998 5.58 10.5992 1.2919 5.1334 10.4662 0.0049 0.0308

The sample mean for the original sample is y = 7.7992 which exceeds the population mean µ = 7.7394,
although different samples could be below, close to, or above µ due to sampling error. The mean of the
B = 10000 resample means is y∗ = 7.7998, which is very close to y = 7.7992, but not as close to µ, as
would be expected due to the sampling process of the bootstrap. The approximate 95% prediction interval
for µ is (5.5800, 10.5992) which does include µ = 7.7394. The standard deviation of the resample means
(1.2919) is referred to as the bootstrap standard error. Note that the prediction interval is not of the form
y∗ ± t.025,25−1sy∗, which is of the following form, where t.025,24 = 2.064.

7.7998± 2.064(1.2919) ≡ 7.7998± 2.6665 ≡ (5.1333, 10.4663)

Of the 10000 sample means, 0.49% of the sample means fall below the lower bound 5.1333, and 3.08% fall
above the upper bound 10.4663. The “t-type” interval goes outside both of the lower and upper bounds of
the bootstrap interval. The lower bound is 2.218 bootstrap standard errors below the mean of the resample
means, and the upper bound is 1.910 standard errors above it. In some cases the asymmetry will be larger.

∇

This approach of obtaining an approximate Confidence Interval for a parameter works well for many
types of estimators/parameters. It is particularly useful when the bootstrap sample estimators have an
approximately continuous distribution. When the distribution of bootstrap sample estimators have a discrete
sampling distribution, the method does not work well. Consider estimating the population median in the
average shot length example. Once we have our sample of n = 25 films, the median is the “middle” ASL
of the 25 (13th) ordered films. When we take bootstrap samples, the median will always be one of the 25
ASL’s in the original sample. Thus, there are only 25 possible values the sample median that each resample
can take on.
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A second approach that is specific to estimating a population mean makes use of a t-type statistic
computed for each resample. This is referred to as Bootstrap t Confidence Intervals, (see e.g. Chihara
and Hesterberg (2011), [14] Section 7.5). In this method, once the original sample of size n is taken, obtain the
sample mean y and standard deviation s. Then for each of B resamples, compute the mean y∗

i and standard
deviation s∗i , where i represents the ith resample. Then compute a t-type statistic for each resample, making
use of the original sample mean as follows.

t∗i =
y∗

i − y

s∗i /
√

n
=

√
n

(

y∗
i − y

s∗i

)

i = 1, . . . , B

Once the B values of t∗i are computed, obtain the α/2 quantile and the (1−α/2) quantiles, say (Q∗
L, Q∗

U).
Note that Q∗

L will be negative and Q∗
U will be positive, and not necessarily of the same magnitude. The

(1 − α)100% Confidence Interval for µ will be of the following form.

Lower Bound: y − Q∗
U

s√
n

Upper Bound: y − Q∗
L

s√
n

Example 4.8: Movie Average Shot Lengths

We apply this method to the same sample and resamples used previously.

R Output

## Output

mu sigma ybar s Q_L* Q_U* mu_L mu_U

7.7394 12.7654 7.7992 6.6888 -3.4285 1.5824 5.6824 12.3857

A histogram of the t∗ values and the t24 density are given in Figure 4.6. The distribution of the t∗ values
is skewed left, with Q∗

L and Q∗
U being -3.4285 and 1.5824, respectively for α = 0.05. The original sample

mean and standard deviation are 7.7992 and 6.6888 respectively leading to the following 95% Confidence
Interval for µ.

(

7.7992− 1.5824
6.6888√

25
, 7.7992− (−3.4285)

6.6888√
25

)

≡ (7.7992− 2.1169, 7.7992+ 4.5865) ≡ (5.6823, 12.3857)

Note that the interval is not symmetric about y, it adds a larger term for the upper end than the term
it subtracts for the lower end. This reflects the fact that the data are right-skewed. The bootstrap estimate
of the bias is the difference from the average of the resample means and the overall sample mean: y∗ − y =
0.0006. This bias is very small relative to the standard error of the bootstrap estimator: .0006/1.2919=.00046.
The 95% Confidence Interval using just the original sample mean, standard deviation, and the t-distribution
is given for comparison.

7.7992± 2.064
6.6888√

25
≡ 7.7992± 2.7611 ≡ (5.0381, 10.5603)
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Figure 4.6: Histogram of t∗ values and t24 Density - ASL Data

∇

Example 4.9: Average Shot Lengths - Comparing the Three Methods

Finally, 1000 random samples were taken from the ASL data. The two Bootstrap methods were per-
formed on 1000 resamples from each (original) random sample and their 95% Confidence Intervals were
obtained, as were the 1000 t-based intervals from the (original) samples. The first bootstrap method (middle
95% of the resample means) contained µ = 7.7394 in 851 of the 1000 original samples (85.1% coverage). The
second bootstrap method (based on constructed t-statistics around the sample mean) contained µ in 906
of the 1000 original samples (90.6% coverage). The normal based t-interval contained µ in 864 of the 1000
original samples (86.4%). All three performed below the nominal 95% level. This is due to the very large
amount of skew in the data (largest ASL is 1000, while the population mean is less than 8), as well as the
relatively small sample size (n = 25).

R Output

### Output

> round(boot3.out, 4)

Boot Method 1 Boot Method2 Normal t

[1,] 0.851 0.906 0.864



4.5. R CODE FOR CHAPTER 4 101

∇

4.5 R Code for Chapter 4

### Chapter 4

## Figure 4.1 - Plot Rejection Regions for t-test

t <- seq(-4,4,.01)

ft <- dt(t,15)

LB2 <- qt(.025,15)

UB2 <- qt(.975,15)

UB1 <- qt(.95,15)

LB1 <- qt(.05,15)

par(mfrow=c(1,3))

plot(t,ft,type="l",main="2-Tailed Rejection Region")

abline(v=c(LB2,UB2))

polygon(c(t[t <= LB2],LB2),c(ft[t <= LB2],ft[t == -4]),col="black")

polygon(c(t[t >= UB2],UB2),c(ft[t >= UB2],ft[t == 4]),col="black")

plot(t,ft,type="l",main="Upper Tailed Rejection Region")

abline(v=UB1)

polygon(c(t[t >= UB1],UB1),c(ft[t >= UB1],ft[t == 4]),col="black")

plot(t,ft,type="l",main="Lower Tailed Rejection Region")

abline(v=LB1)

polygon(c(t[t <= LB1],LB1),c(ft[t <= LB1],ft[t == -4]),col="black")

rm(list=ls(all=TRUE))

### Example 4.1

### Read data and set up data frame

nhl <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv")

attach(nhl); names(nhl)

### Compute BMI

N <- NROW(nhl)

bmi.nhl <- 703 * Weight / (Height^2)

set.seed(98765)

num.sim <- 10000

n.sample <- 12

samp.mean <- rep(0, num.sim)

samp.sd <- rep(0, num.sim)

mu.bmi <- mean(bmi.nhl)

sd.bmi <- sd(bmi.nhl) * sqrt((N-1)/N)

std.err.bmi <- sd.bmi/sqrt(n.sample)

for (i in 1:num.sim) {

sample <- sample(1:N, n.sample, replace=FALSE)

samp.mean[i] <- mean(bmi.nhl[sample])

samp.sd[i] <- sd(bmi.nhl[sample])

}

cbind(samp.mean[1], samp.sd[1])
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z_050 <- qnorm(.95); z_025 <- qnorm(.975); z_005 <- qnorm(.995)

cover10a <- sum(samp.mean >= mu.bmi - z_050*std.err.bmi &

samp.mean <= mu.bmi + z_050*std.err.bmi) / num.sim

cover05a <- sum(samp.mean >= mu.bmi - z_025*std.err.bmi &

samp.mean <= mu.bmi + z_025*std.err.bmi) / num.sim

cover01a <- sum(samp.mean >= mu.bmi - z_005*std.err.bmi &

samp.mean <= mu.bmi + z_005*std.err.bmi) / num.sim

samp.se <- samp.sd / sqrt(n.sample)

cover10b <- sum(samp.mean >= mu.bmi - z_050*samp.se &

samp.mean <= mu.bmi + z_050*samp.se) / num.sim

cover05b <- sum(samp.mean >= mu.bmi - z_025*samp.se &

samp.mean <= mu.bmi + z_025*samp.se) / num.sim

cover01b <- sum(samp.mean >= mu.bmi - z_005*samp.se &

samp.mean <= mu.bmi + z_005*samp.se) / num.sim

t_050 <- qt(.95,11); t_025 <- qt(.975,11); t_005 <- qt(.995,11)

cover10c <- sum(samp.mean >= mu.bmi - t_050*samp.se &

samp.mean <= mu.bmi + t_050*samp.se) / num.sim

cover05c <- sum(samp.mean >= mu.bmi - t_025*samp.se &

samp.mean <= mu.bmi + t_025*samp.se) / num.sim

cover01c <- sum(samp.mean >= mu.bmi - t_005*samp.se &

samp.mean <= mu.bmi + t_005*samp.se) / num.sim

cover.out <- rbind(cbind(cover10a, cover05a, cover01a),

cbind(cover10b, cover05b, cover01b),

cbind(cover10c, cover05c, cover01c))

rownames(cover.out) <- c("Z - True SE",

"Z - Estimated SE", "t - Estimated SE")

colnames(cover.out) <- c("90% Confidence", "95% Confidence", "99% Confidence")

round(cover.out,4)

rm(list=ls(all=TRUE))

### Example 4.2

E <- 0.20

sigma <- 1.058

alpha <- 0.05

n <- 1

E.t <- E+1

# Keep increasing $n$ until E.t < E

while (E.t >= E) {

n <- n+1

E.t <- qt(1-alpha/2,n-1)*sigma/sqrt(n)

}

cbind(n, E.t)

rm(list=ls(all=TRUE))

### Example 4.3

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

male.mph <- mph[Gender == "M"]

N <- length(male.mph)

## Figure 4.2

mu0 <- mean(male.mph)

sigma <- sd(male.mph)

set.seed(13579)

num.sim <- 10000

num.samp <- 40
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cv.lo <- qt(.025,num.samp-1)

cv.hi <- qt(.975,num.samp-1)

t.stat0 <- rep(0, num.sim)

p.value0 <- rep(0, num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.samp, replace=FALSE)

ybar <- mean(male.mph[sample])

s <- sd(male.mph[sample])

t.stat0[i] <- (ybar - mu0) / (s / sqrt(num.samp))

p.value0[i] <- 2*(1-pt(abs(t.stat0[i]),num.samp-1))

}

rejrate0.emp <- sum(p.value0 <= 0.05) / num.sim

par(mfrow=c(1,2))

hist(t.stat0, breaks=50, freq=FALSE, main="t-stat Under H0")

xt <- seq(-4,4,.01)

lines(xt, dt(xt,num.samp-1))

abline(v=cv.lo,lwd=2)

abline(v=cv.hi,lwd=2)

hist(p.value0, breaks=50, freq=FALSE, main="P-value Under H0")

xp <- seq(0,1,0.01)

lines(xp,dbeta(xp,1,1))

## End of Figure 4.2

mu01 <- 6.0

Delta1 <- (mu0 - mu01) / (sigma/sqrt(num.samp)) ## Old mu_0 is new mu_A

power1 <- pt(cv.lo, num.samp-1, Delta1) + (1-pt(cv.hi, num.samp-1, Delta1))

mu02 <- 6.5

Delta2 <- (mu0 - mu02) / (sigma/sqrt(num.samp)) ## Old mu_0 is new mu_A

power2 <- pt(cv.lo, num.samp-1, Delta2) + (1-pt(cv.hi, num.samp-1, Delta2))

set.seed(1234)

t.stat1 <- rep(0, num.sim)

p.value1 <- rep(0, num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.samp, replace=FALSE)

ybar <- mean(male.mph[sample])

s <- sd(male.mph[sample])

t.stat1[i] <- (ybar - mu01) / (s / sqrt(num.samp))

p.value1[i] <- 2*(1-pt(abs(t.stat1[i]),num.samp-1))

}

rejrate1.emp <- sum(t.stat1 <= cv.lo | t.stat1 >= cv.hi) / num.sim

## Figure 4.3

par(mfrow=c(1,1))

hist(t.stat1, breaks=50, freq=FALSE, main="t-stat Under H0:mu=6")

xt <- seq(-4,6,.01)

lines(xt, dt(xt,num.samp-1,Delta1))

abline(v=cv.lo,lwd=2)

abline(v=cv.hi,lwd=2)

## End of Figure 4.3

set.seed(5678)

t.stat2 <- rep(0, num.sim)

p.value2 <- rep(0, num.sim)

for (i in 1:num.sim) {

sample <- sample(1:N, num.samp, replace=FALSE)

ybar <- mean(male.mph[sample])

s <- sd(male.mph[sample])

t.stat2[i] <- (ybar - mu02) / (s / sqrt(num.samp))

p.value2[i] <- 2*(1-pt(abs(t.stat2[i]),num.samp-1))
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}

rejrate2.emp <- sum(t.stat2 <= cv.lo | t.stat2 >= cv.hi) / num.sim

power.out <- rbind(cbind(0, 0.05, rejrate0.emp),

cbind(Delta1, power1, rejrate1.emp),

cbind(Delta2, power2, rejrate2.emp))

rownames(power.out) <- c("mu0=6.33", "mu0=6.00", "mu0=6.50")

colnames(power.out) <- c("Delta", "Theoretical Power", "Empirical Power")

round(power.out, 4)

rm(list=ls(all=TRUE))

### Example 4.4

n <- 3

alpha <- 0.05

mu_diff <- 0.25

sigma <- 1.058

Delta <- mu_diff/(sigma/sqrt(n))

CV_LO <- qt(alpha/2,n-1)

CV_HI <- qt(1-alpha/2,n-1)

(power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta)))

while (power <= 0.80) {

n <- n+1

Delta <- mu_diff/(sigma/sqrt(n))

CV_LO <- qt(alpha/2,n-1)

CV_HI <- qt(1-alpha/2,n-1)

power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta))

}

cbind(n, power)

## Figure 4.4

par(mfrow=c(2,2))

t <- seq(-6,6,0.01)

mu_diff <- 0.25

sigma <- 1.058

for (n in c(10, 30, 70, 150)) {

Delta <- mu_diff/(sigma/sqrt(n))

plot(t,dt(t,n-1),type="l",main=paste("Central and Non-Central t, n=",n))

lines(t,dt(t,n-1,Delta),lty=2)

abline(v=qt(.025,n-1))

abline(v=qt(.975,n-1))

}

rm(list=ls(all=TRUE))

### Example 4.5

avshotlen <- read.csv(

"http://www.stat.ufl.edu/~winner/data/movie_avshotlength.csv")

attach(avshotlen); names(avshotlen)

mean(ASL)

median(ASL)

sum(ASL > 100)

## Figure 4.5

par(mfrow=c(1,1))

hist(ASL[ASL < 100], breaks=100)

abline(v=median(ASL),lwd=2)
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pbinom(0:20,20,0.5)

set.seed(4321)

N <- length(ASL)

sample1 <- sample(1:N, 20, replace=FALSE)

ASL.sample <- ASL[sample1]

(ASL.sample.order <- sort(ASL.sample)) ## Sample values sorted

cbind(ASL.sample.order[6],ASL.sample.order[15]) ## 6th and 15th selected

set.seed(7654)

num.sim <- 10000

num.samp <- 100

med.ci <- matrix(rep(0, 2*num.sim),ncol=2)

for (i in 1:num.sim) {

sample <- sample(1:N, 20, replace=FALSE)

med.ci[i,1] <- sort(ASL[sample])[6]

med.ci[i,2] <- sort(ASL[sample])[15]

}

med.pop <- median(ASL)

sum(med.ci[,1] <= med.pop & med.ci[,2] >= med.pop) / num.sim

rm(list=ls(all=TRUE))

### Example 4.7

avshotlen <- read.csv(

"http://www.stat.ufl.edu/~winner/data/movie_avshotlength.csv")

attach(avshotlen); names(avshotlen)

N <- length(ASL)

mu <- mean(ASL)

sigma <- sd(ASL)

## Obtain the original random sample of n=25

set.seed(34567)

samp.size <- 25

sample1 <- sample(1:N,samp.size,replace=F)

ASL.sample1 <- ASL[sample1]

ASL.sample1

boot1.out <- cbind(N, mu, sigma, samp.size,

mean(ASL.sample1), sd(ASL.sample1))

colnames(boot1.out) <- c("N", "mu", "sigma", "n", "ybar", "s")

round(boot1.out, 4)

## Figure 4.6

par(mfrow=c(1,1))

qqnorm(ASL.sample1); qqline(ASL.sample1)

shapiro.test(ASL.sample1)

### Method 1 - Chihara/Hesterberg Section 5.3, pp. 113-114

set.seed(24680)

num.boot.inner <- 10000

ASL.mean <- rep(0,num.boot.inner)

for (i2 in 1:num.boot.inner) {

x <- sample(ASL.sample1, samp.size, replace=T)

ASL.mean[i2] <- mean(x)

}

q.mean.025 <- quantile(ASL.mean,.025)

q.mean.975 <- quantile(ASL.mean,.975)

mean.mean <- mean(ASL.mean)

sd.mean <- sd(ASL.mean)

LBt.mean <- mean(ASL.mean) - qt(.975,samp.size-1)*sd(ASL.mean)

UBt.mean <- mean(ASL.mean) + qt(.975,samp.size-1)*sd(ASL.mean)

range.lo.mean <-sum(ASL.mean < mean(ASL.mean) -
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qt(.975,samp.size-1)*sd(ASL.mean)) / num.boot.inner

range.hi.mean <- sum(ASL.mean > mean(ASL.mean) +

qt(.975,samp.size-1)*sd(ASL.mean)) / num.boot.inner

boot1a.out <- cbind(num.boot.inner, mean.mean, q.mean.025, q.mean.975,

sd.mean, LBt.mean, UBt.mean, range.lo.mean, range.hi.mean)

colnames(boot1a.out) <- c("Samples", "Mean", "2.5%", "97.5%",

"SD", "t-Lower", "t-Upper", "P(<t-L)", "P(>t-U)")

round(boot1a.out, 4)

rm(list=ls(all=TRUE))

### Example 4.8

### Part 1

avshotlen <- read.csv(

"http://www.stat.ufl.edu/~winner/data/movie_avshotlength.csv")

attach(avshotlen); names(avshotlen)

N <- length(ASL)

mu <- mean(ASL)

sigma <- sd(ASL)

## Obtain the original random sample of n=25

set.seed(34567)

samp.size <- 25

sample1 <- sample(1:N,samp.size,replace=F)

ASL.sample1 <- ASL[sample1]

### Method 2 - Chihara/Hesterberg Section 7.5, pp. 195-198

# ASL.t computes and saves t*

set.seed(24680)

ybar.sample1 <- mean(ASL.sample1)

s.sample1 <- sd(ASL.sample1)

num.boot.inner <- 10000

ASL.t <- rep(0,num.boot.inner)

ASL.mean <- rep(0,num.boot.inner)

for (i2 in 1:num.boot.inner) {

x <- sample(ASL.sample1, samp.size, replace=T)

ASL.t[i2] <- (mean(x) - ybar.sample1) / (sd(x) / sqrt(samp.size))

ASL.mean[i2] <- mean(x)

}

Q_L <- quantile(ASL.t,0.025)

Q_U <- quantile(ASL.t,0.975)

mu_L <- ybar.sample1 - Q_U*s.sample1/sqrt(samp.size)

mu_U <- ybar.sample1 - Q_L*s.sample1/sqrt(samp.size)

boot2.out <- cbind(mu, sigma, ybar.sample1, s.sample1, Q_L, Q_U, mu_L, mu_U)

colnames(boot2.out) <- c("mu", "sigma", "ybar", "s", "Q_L*", "Q_U*",

"mu_L", "mu_U")

round(boot2.out, 4)

## Figure 4.7

par(mfrow=c(1,1))

hist(ASL.t,breaks=80,freq=F,

main=expression(paste("Histogram of ",t^"*"," and ",t[24]," Density")))

t.seq <- seq(-4,4,.01)

lines(t.seq,dt(t.seq,samp.size-1))

abline(v=c(Q_L,Q_U),lwd=2)
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rm(list=ls(all=TRUE))

### Part 2

avshotlen <- read.csv(

"http://www.stat.ufl.edu/~winner/data/movie_avshotlength.csv")

attach(avshotlen); names(avshotlen)

N <- length(ASL)

mu <- mean(ASL)

sigma <- sd(ASL)

## Initialize mean/sd and CI holders - 1000 outer (original) samples

set.seed(13579)

num.boot.outer <- 1000

ASL.mean.sd <- matrix(rep(0,2*num.boot.outer),ncol=2)

ASL.boot1 <- matrix(rep(0,2*num.boot.outer),ncol=2)

ASL.boot2 <- matrix(rep(0,2*num.boot.outer),ncol=2)

ASL.tnorm <- matrix(rep(0,2*num.boot.outer),ncol=2)

samp.size <- 25

sqrt.n <- sqrt(samp.size)

t.24 <- qt(c(.025,.975),samp.size-1)

### Begin outer loop

for (i1 in 1:num.boot.outer) {

sample1 <- sample(1:N,samp.size,replace=F)

ASL.sample1 <- ASL[sample1] ### Original Samples

ASL.mean.sd[i1,1] <- mean(ASL.sample1) ### Save mean in column 1

ASL.mean.sd[i1,2] <- sd(ASL.sample1) ### Save sd in column 2

### Begin inner (bootstrap) loop

num.boot.inner <- 1000

ASL.mean <- rep(0,num.boot.inner)

ASL.t <- rep(0,num.boot.inner)

for (i2 in 1:num.boot.inner) {

x <- sample(ASL.sample1, samp.size, replace=T)

ASL.mean[i2] <- mean(x)

ASL.t[i2] <- (mean(x) - ASL.mean.sd[i1,1]) /

(sd(x) /sqrt.n)

} ### Close inner loop

ASL.boot1[i1,] <- quantile(ASL.mean,c(.025,.975))

ASL.boot2[i1,] <- ASL.mean.sd[i1,1] -

quantile(ASL.t,c(.975,.025)) * ASL.mean.sd[i1,2]/sqrt.n

ASL.tnorm[i1,] <- ASL.mean.sd[i1,1] + t.24 *

ASL.mean.sd[i1,2]/sqrt.n

} ### Close outer loop

## Obtain coverage probabilities

cov.bm1 <- sum(ASL.boot1[,1] <= mu & ASL.boot1[,2] >= mu)/num.boot.outer

cov.bm2 <- sum(ASL.boot2[,1] <= mu & ASL.boot2[,2] >= mu)/num.boot.outer

cov.tnorm <- sum(ASL.tnorm[,1] <= mu & ASL.tnorm[,2] >= mu)/num.boot.outer

boot3.out <- cbind(cov.bm1, cov.bm2, cov.tnorm)

colnames(boot3.out) <- c("Boot Method 1", "Boot Method2", "Normal t")

round(boot3.out, 4)

rm(list=ls(all=TRUE))
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Chapter 5

Comparing Two Populations’ Means
and Medians

While estimating the mean or median of a population is important, many more applications involve compar-
ing two or more treatments or populations. There are two commonly used designs: independent samples
and paired samples. Independent samples are used in controlled experiments when a sample of exper-
imental units is obtained, and randomly assigned to one of two treatments or conditions. That is, each
unit receives only one of the two treatments. These are often referred to as Completely Randomized or
Parallel Groups or Between Subjects designs in various fields of study. Paired samples can involve the
same experimental unit receiving each treatment, or units being matched based on external criteria, then
being randomly assigned to the two treatments within pairs. These are often referred to as Randomized
Block or Crossover or Within Subjects designs.

In observational studies, independent samples can be taken from two existing populations, or elements
within two populations can be matched based on external criteria and observed. In each case, the goal is to
make inferences concerning the difference between the two means or medians based on sample data.

5.1 Independent Samples

In the case of independent samples, assume we sample n1 units or subjects in treatment 1 which has a
population mean response µ1 and population standard deviation σ1. Further, a sample of n2 elements from
treatment 2 is obtained where the population mean is µ2 and standard deviation is σ2. Measurements within
and between samples are independent. Regardless of the distributions of the individual measurements, we
have the following results based on linear functions of random variables, in terms of the means of the two
random samples. The notation used is Y1j is the jth unit (replicate) from sample 1, and Y2j is the jth unit
(replicate) from sample 2. In the case of independent samples, these two random variables are independent.

Y 1 =

∑n1

j=1 Y1j

n1
=

n1
∑

j=1

(

1

n1

)

Y1j ⇒ E{Y 1} = µ1 V {Y 1} =
σ2

1

n1
E{Y 2} = µ2 V {Y 2} =

σ2
2

n2
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E{Y 1 − Y 2} = E{Y 1} − E{Y 2} = µ1 − µ2

V {Y 1 − Y 2} = σ2
Y 1−Y 2

= V {Y 1} + V {Y 2} − 2COV{Y 1, Y 2} =
σ2

1

n1
+

σ2
2

n2
+ 0 =

σ2
1

n1
+

σ2
2

n2

SE{Y 1 − Y 2} = σY 1−Y 2
=

√

σ2
1

n1
+

σ2
2

n2

If the data are normally distributed, Y 1 − Y 2 is also normally distributed. If the data are not normally
distributed, Y 1 − Y 2 will be approximately normally distributed in large samples. As in the case of a single
mean, how large of samples are needed depends on the shape of the underlying distributions.

The problem arises again that the variances will be unknown and must be estimated. For large sample
sizes n1 and n2, we have the following approximation for the sampling distribution of the following quantity,
where the sample variances replace the true population variances.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2
1

n1
+

S2
2

n2

·∼ N(0, 1)

⇒ P





(

Y 1 − Y 2

)

+ z1−α/2

√

S2
1

n1
+

S2
2

n2
≤ µ1 − µ2 ≤

(

Y 1 − Y 2

)

+ zα/2

√

S2
1

n1
+

S2
2

n2



 ≈ 1 − α

Example 5.1: NHL and EPL Players’ BMI

Body Mass Indices for all National Hockey League (NHL) and English Premier League (EPL) football
players for the 2013/4 season were obtained. Identifying the NHL as league 1 and EPL as league 2 we have
the following population parameters.

N1 = 717 µ1 = 26.500 σ1 = 1.454 N2 = 526 µ2 = 23.019 σ2 = 1.711

A plot of the two population histograms, along with normal densities is given in Figure 5.1. Both
distributions are well approximated by the normal distribution, with the NHL having a substantially higher
mean and EPL having a slightly higher standard deviation.

We take 100000 independent random samples of sizes n1 = n2 = 20 from the two populations, each time
computing and saving y1, s1, y2, s2. A histogram of the 100000 sample mean differences and the superimposed
Normal density with mean µ1 − µ2 = 3.481 and standard error 0.502 (calculation given below) is shown in
Figure 5.2. The mean of the 100000 mean differences y1 − y2 is 3.482 with standard deviation (standard
error) 0.493. Both are very close to their theoretical values (as they should be). Then we compute the
following quantity (and interval), counting the number of samples for which it contains µ1 − µ2, and its
average estimated variance (squared standard error).
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Histogram of NHL BMI and N(26.50,1.45) Density
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Histogram of EPL BMI and N(23.02,1.71) Density
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Figure 5.1: Distributions of NHL and EPL players Body Mass Index

Histogram of Mean Differences and N(3.48,0.50) Density
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Figure 5.2: 100000 sample mean differences (n1 = n2 = 20) for NHL and EPL BMI values and Normal
Density
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(y1 − y2) ± 1.96

√

s2
1

20
+

s2
2

20
µ1 − µ2 = 26.500− 23.019 = 3.481

SE
{

Y 1 − Y 2

}

=

√

σ2
1

n1
+

σ2
2

n2
=

√

1.4542

20
+

1.7112

20
= 0.502

The mean of the 10000 sample mean differences is 3.479 compared to the theoretical mean difference of
3.481. The standard deviation of the sample mean differences is 0.493, compared to the theoretical standard
error of 0.502.

Of the intervals constructed from each sample mean difference and its estimated standard error (using
s1, s2 in place of σ1, σ2), the interval contains the true mean difference (3.481) for 94.698% of the samples, very
close to the nominal 95% coverage rate. If we replace z.025 = 1.96 with the more appropriate t.025,n1+n2−2 =
t.025,38 = 2.0244, the coverage rate increases to 95.395%. Note that virtually all software packages will
automatically use t in place of z, however, there are various statistical methods that always use the z case.

The average of the estimated variance of y1 − y2: s2
1/n1 + s2

2/n2 is 0.2527, while its theoretical value
is σ2

1/n1 + σ2
2/n2 = 0.2521. Note that the variance of the estimated difference is unbiased, not so for the

standard error.

R Output

### Output

> round(md.out, 3)

mu1 mu2 sigma1 sigma2 n mu1-mu2 SE{Yb1-Yb2} Mean(yb1-yb2) SD(yb1-yb2) cover(z) cover(t)

[1,] 26.5 23.019 1.454 1.711 20 3.481 0.502 3.479 0.493 0.947 0.954

∇

This logic leads to a large-sample test and Confidence Interval regarding µ1−µ2 once estimates y1, s1, y2, s2

have been observed in an experiment or observational study. The Confidence Interval and test are given be-
low. Typically, zα/2 is replaced with tα/2,ν, where ν is the degrees of freedom, which depends on assumptions
involving the variances (see below).

Large Sample (1 − α)100% CI for µ1 − µ2: (y1 − y2) ± zα/2

√

s2
1

n1
+

s2
2

n2

2-tail: H0 : µ1−µ2 = ∆0 HA : µ1−µ2 6= ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)
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Upper tail: H0 : µ1−µ2 ≤ ∆0 HA : µ1−µ2 > ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower tail: H0 : µ1−µ2 ≥ ∆0 HA : µ1−µ2 < ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : zobs ≤ zα P = P (Z ≤ zobs)

Example 5.2: Gender Classification from Physical Measurements

A study in forensics used measurements of the length and breadth of the scapula from samples of 95
male and 96 female Thai adults (Peckmann, Scott, Meek, Mahakkanukrauh (2017), [42]). The measurements
were length and breadth of glenoid cavity (LGC and BGC, in mm), respectively. Summary data for the two
samples for BGC are given below.

nm = 95 ym = 27.87 sm = 2.04 nf = 96 yf = 23.77 sf = 1.85

ym − yf = 27.87− 23.77 = 4.10 ŜE{Y m − Y f} =

√

2.042

95
+

1.852

96
= 0.282

A 95% Confidence Interval for the population mean difference, µm − µf is given below.

(

ym − yf

)

± z.025

√

s2
1

n1
+

s2
2

n2
≡ 4.10± 1.960(0.282) ≡ 4.10± 0.553 ≡ (3.55, 4.65)

The interval is very far away from 0, making us very confident that the population mean is higher for
males than females. To test whether the population means differ (which they clearly do from the Confidence
Interval), we conduct the following 2-tailed test with α = 0.05.

H0 : µm−µf = 0 HA : µm−µf 6= 0 T.S. : zobs =
4.10− 0

0.282
= 14.54 R.R. : |zobs| ≥ 1.960 P = 2P (Z ≥ 14.54) ≈ 0

∇

5.2 Small–Sample Tests

In this section we cover small–sample tests without going through the detail given for the large–sample
tests. In each case, we will be testing whether or not the means (or medians) of two distributions are equal.
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There are two considerations when choosing the appropriate test: (1) Are the population distributions of
measurements approximately normal? and (2) Was the study conducted as an independent samples (parallel
groups) or paired samples (crossover) design? The appropriate test for each situation is given in Table 5.1.
We will describe each test with the general procedure and an example.

The two tests based on non–normal data are called nonparametric tests and are based on ranks, as
opposed to the actual measurements. When distributions are skewed, samples can contain measurements
that are extreme (usually large). These extreme measurements can cause problems for methods based on
means and standard deviations, but will have less effect on procedures based on ranks.

Design Type
Parallel Groups Crossover

Normally Distributed Data 2–Sample t–test Paired t–test
Non–Normally Distributed Data Wilcoxon Rank Sum test Wilcoxon Signed–Rank Test

(Mann–Whitney U–Test)

Table 5.1: Statistical Tests for small–sample 2 group situations

5.2.1 Independent Samples (Completely Randomized Designs)

Completely Randomized Designs are designs where the samples from the two populations are independent.
That is, subjects are either assigned at random to one of two treatment groups (possibly active drug or
placebo), or possibly selected at random from one of two populations (as in Example 5.1, where we had NHL
and EPL players and in Example 5.2 where they measured males and females). In the case where the two
populations of measurements are normally distributed, the 2–sample t–test is used. Note that it also works
well for reasonably large sample sizes when the measurements are not normally distributed. This procedure
is very similar to the large–sample test from the previous section, where only the critical values for the
rejection region changes. In the case where the populations of measurements are not approximately normal,
the Wilcoxon Rank–Sum test (or, equivalently the Mann–Whitney U–test) is commonly used. These tests
are based on comparing the average ranks across the two groups when the measurements are ranked from
smallest to largest, across groups.

2–Sample Student’s t–test for Normally Distributed Data

This procedure is similar to the large–sample test, except the critical values for the rejection regions and
Confidence Intervals are based on the t–distribution with ν = n1+n2−2 degrees of freedom and the variances
are “pooled” (see below). We will assume the two population variances are equal in the 2–sample t–test. If
they are not, simple adjustments can be made to obtain an appropriate test, which will be given below. We
then ‘pool’ the 2 sample variances to get an estimate of the common variance σ2 = σ2

1 = σ2
2 . This estimate,

that we will call s2
p is calculated as follows:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0
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2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).

3. T.S.: tobs = (y1−y2)
√

s2
p

(

1

n1
+ 1

n2

)

4. R.R.: |tobs| > tα/2,n1+n2−2 or tobs > tα,n1+n2−2 or tobs < −tα,n1+n2−2 (which R.R. depends on which
alternative hypothesis you are using).

5. p-value: 2P (tn1+n2−2 > |tobs|) or P (tn1+n2−2 > tobs) or P (tn1+n2−2 < tobs) (again, depending on
which alternative you are using).

Example 5.3: Comparison of Two Instructional Methods

A study was conducted (Rusanganwa (2013) [44]) to compare two instructional methods: multimedia
(treatment 1) and traditional (treatment 2) for teaching physics to undergraduate students in Rwanda.
Subjects were assigned at random to the two treatments. Each subject received only one of the two methods.
The numbers of subjects who completed the courses and took two exams were n1 = 13 for the multimedia
course and n2 = 19 for the traditional course. The primary response was the post-course score on an
examination. We will conduct the test H0 : µ1 − µ2 = 0 vs HA : µ1 − µ2 6= 0, where the null hypothesis is
no difference in the effects of the two methods. The summary statistics are given below.

n1 = 13 y1 = 11.10 s1 = 3.47 n2 = 19 y2 = 8.35 s2 = 2.45

First, compute s2
p, the pooled variance:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(13 − 1)(3.47)2 + (19 − 1)(2.45)2

13 + 19 − 2
=

252.54

30
= 8.42 (sp = 2.90)

Now conduct the (2-sided) test as described above with α = 0.05 significance level:

• H0 : µ1 − µ2 = 0

• HA : µ1 − µ2 6= 0

• T.S.: tobs = (y1−y2)
√

s2
p

(

1

n1
+ 1

n2

)

= (11.10−8.35)
√

8.42( 1
13

+ 1
19 )

= 2.75
1.04

= 2.633

• R.R.: |tobs| ≥ tα/2,n1+n2−2 = t.05/2,13+19−2 = t.025,30 = 2.042

• P -value: 2P (t30 ≥ |tobs|) = 2P (t30 ≥ 2.633) = 0.0132

Based on this test, reject H0 (for any α ≥ .0132), and conclude that the population mean post course scores
differ under these two conditions. The 95% Confidence Interval for µ1−µ2 is 2.75±2.042(1.04) ≡ (0.62, 4.88)
which does not contain 0.

Below we use generated samples that have the same means and standard deviation and use t.test
function in R to conduct the 2-sample t-test.

R Commands and Output
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## Commands

rp <- read.csv("http://www.stat.ufl.edu/~winner/data/rwanda_physics.csv")

attach(rp); names(rp)

t.test(score ~ trt.y, var.equal=T) # t-test with single y-var and trt id

## Output

> t.test(score ~ trt.y, var.equal=T)

Two Sample t-test

data: score by trt.y

t = 2.6323, df = 30, p-value = 0.01327

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.6163295 4.8826179

sample estimates:

mean in group 1 mean in group 2

11.100000 8.350526

∇

When the population variances are not equal, there is no justification for pooling the sample vari-
ances to better estimate the common variance σ2. In this case the estimated standard error of Y 1 − Y 2 is
√

s2
1/n1 + s2

2/n2. An adjustment is made to the degrees of freedom for an approximation to a t-distribution
of the t-statistic.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2
1

n1
+

S2
2

n2

·∼ tν ν =

[

S2
1

n1
+

S2
2

n2

]2

[

(S2
1
/n1)2

n1−1
+

(S2
2
/n2)2

n2−1

]

The test is referred to as Welch’s Test, and the degrees of freedom Satterthwaite’s Approximation.
Statistical software packages automatically compute the approximate degrees of freedom. The approximation
extends to more complex models as well. Once the samples are obtained, and the sample means and standard
deviations are computed, the (1 − α)100% Confidence Interval for µ1 − µ2 is computed as follows.

(y1 − y2) ± tα/2,ν

√

s2
1

n1
+

s2
2

n2
ν =

[

s2
1

n1
+

s2
2

n2

]2

[

(s2
1
/n1)2

n1−1
+

(s2
2
/n2)2

n2−1

]

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0

2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).
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Figure 5.3: Abdominal drainage in breast reconstruction surgery, DIEP procedure with and without abdom-
inal suture quilting.

3. T.S.: tobs =
(y1−y2)
√

s2
1

n1
+

s2
2

n2

4. R.R.: |tobs| ≥ tα/2,ν or tobs ≥ tα,ν or tobs ≤ −tα,ν (which R.R. depends on which alternative hypothesis
you are using).

5. p-value: 2P (tν ≥ |tobs|) or P (tν ≥ tobs) or P (tν ≤ tobs) (again, depending on which alternative you
are using).

Example 5.4: Abdominal Quilting to Reduce Drainage in Breast Reconstruction Surgery

A study considered the effect of abdominal suture quilting on abdominal drainage during breast recon-
struction surgery (Liang, et al, (2016), [34]). A group of n1 = 27 subjects (controls) received the standard
DIEP procedure, while a group of n2 = 26 subjects (treatment) received the DIEP procedure along with the
suture quilting. The response measured was the amount of abdominal drainage during the surgery (in ml).
The summary data are given below, note that the sample standard deviations are substantially different,
and these are relatively large sample sizes. Side-by-side box plots are given in Figure 5.3.

n1 = 27 y1 = 527.78 s1 = 322.07 n2 = 26 y2 = 238.31 s2 = 242.66

The estimated mean difference, standard error, and degrees of freedom are computed below.
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y1 − y2 = 527.78− 238.31 = 289.47 ŜE{Y 1 − Y 2} =

√

322.072

27
+

242.662

26
= 78.14

ν =

[

322.072

27 + 242.662

26

]2

[

(322.072/27)2

27−1
+ (242.662/26)2

26−1

] = 48.25 t.025,48.25 = 2.010

The 95% Confidence Interval for µ1 − µ2 and test statistic and P -value for testing H0 : µ1 − µ2 = 0
versus HA : µ1 − µ2 6= 0 are given below. There is strong evidence that the suture quilting reduces blood
loss during surgery.

95% CI for µ1 − µ2: 289.47± 2.010(78.14) ≡ 289.47± 157.06 ≡ (132.41, 446.53)

T.S.: tobs =
289.47

78.14
= 3.705 P (t48.25 ≥ 3.705) = .0005

R Commands and Output

## Commands

quilt <- read.csv("http://www.stat.ufl.edu/~winner/data/breast_diep.csv")

attach(quilt); names(quilt)

trt.f <- factor(trt)

levels(trt.f) <- c("Control", "Treatment")

t.test(totvol ~ trt.f, var.equal=F)

## Output

> t.test(totvol ~ trt, var.equal=F)

Welch Two Sample t-test

data: totvol by trt

t = 3.7043, df = 48.25, p-value = 0.0005452

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

132.3707 446.5695

sample estimates:

mean in group 1 mean in group 2

527.7778 238.3077

∇
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Wilcoxon Rank-Sum Test for Non-Normally Distributed Data

The idea behind this test is as follows. Take samples of n1 measurements from population 1 and n2 measure-
ments from population 2. Rank the n1+n2 measurements from 1 (smallest) to n1+n2 (largest), adjusting for
ties by averaging the ranks the measurements would have received if they were different. Then compute T1,
the rank sum for measurements from population 1, and T2, the rank sum for measurements from population
2. This test is mathematically equivalent to the Mann–Whitney U–test. To test for differences between the
two population distributions, we use the following procedure, where to be able to use the commonly used
table on the class webpage, n1 ≥ n2. Before describing the procedure, define the following quantities.

TTotal = T1 + T2 = 1 + 2 + · · ·+ (n1 + n2) =
(n1 + n2) (n1 + n2 + 1)

2

Tmin
1 = 1+2+ · · ·+n1 =

n1 (n1 + 1)

2
Tmin

2 = 1+2+ · · ·+n2 =
n2 (n2 + 1)

2
Tmax

2 = TTotal−Tmin
1

1. H0 : The two population medians are equal (M1 = M2)

2. HA : The medians are not equal (M1 6= M2)

3. T.S.: T = T2 (The rank sum for the group with smaller sample size)

4. R.R.: T ≤ T0 or T ≥ Tmax
2 −

(

T0 − Tmin
2

)

, where values of T0 given in tables in many statistics texts

and on the web for various levels of α and sample sizes.

For one-sided tests to show that the distribution of population 1 is shifted to the right or left of population
2, use the following procedures (again, using with n1 ≥ n2).

1. H0 : The median for population 1 is less than or equal the median for population 2 (M1 ≤ M2)

2. HA : The median for population 1 is larger than the median for population 2 (M1 > M2)

3. T.S.: T = T2

4. R.R.: T ≤ T0, where values of T0 are given in tables in many statistics texts and on the web for various
levels of α and various sample sizes.

1. H0 : The median for population 1 is greater than or equal the median for population 2 (M1 ≥ M2)

2. HA : The median for population 1 is smaller than the median for population 2 (M1 < M2)

3. T.S.: T = T2

4. R.R.: T ≥ Tmax
2 −

(

T0 − Tmin
2

)

, where values of T0 are given in tables in many statistics texts and

on the web for various levels of α and various sample sizes.

Example 5.5: Apple Procyanidin B-2 for Hair Growth

A study was conducted to determine whether procyanidin B-2 from apples is effective in hair growth
(Kamimura, Takahishi, and Watanabe (2000), [32]). Based on a small trial, with n1 = 19 treatment subjects
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Figure 5.4: Change in total hairs - procyanidin B-2 from apples study

and n2 = 10 control subjects, Table 5.2 gives the 6 month change in total hairs, along with their ranks from
smallest (most negative) to largest. Note that n1 + n2 = 19 + 10 = 29. Normal probability plots are given
in Figure 5.4, there is evidence of outlying cases in each group.

TTotal = T1 + T2 = 1 + 2 + · · ·+ 29 =
29(30)

2
= 435 Tmin

1 = 1 + 2 + · · ·+ 19 =
19(20)

2
= 190

Tmin
2 = 1 + 2 + · · ·+ 10 =

10(11)

2
= 55 Tmax

2 = 435 − 190 = 245

For a 2-tailed test with α = 0.05, based on sample sizes of n1 = 19 and n2 = 10, the lower critical value
is T0 = 107 (see class webpage). The upper critical value is 245− (107− 55) = 245− 52 = 193. Thus, reject
the null hypothesis of equal medians (no differences in effects) if the rank sum for treatment 2 (control, with
the smaller sample size) is below 107 or above 193. Since 86 is (well) below 107, conclude the medians differ
(and that Mc < Mt). If this had been conducted as a 1-tailed test (alternative being higher median for
treatment group), the critical value would have been T0 = 113.

R Commands and Output

## Commands

apphair <- read.table("http://www.stat.ufl.edu/~winner/data/apple_hair.dat",

header=F, col.names=c("hair.trt","total0","total6","totaldiff",
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Trt TotalDif Rank Trt TotalDif Rank
1 0.3 8 2 3.5 13
1 1.4 10 2 5 17
1 3 12 2 7.3 20.5
1 3.7 14 2 18.3 29
1 -1.5 4 2 14.5 28
1 -2 3 2 6.7 19
1 0 7 2 9 25
1 4.8 16 2 -0.7 5.5
1 2.4 11 2 7.8 22
1 -11.3 1 2 -4 2

2 6 18
2 4.5 15
2 8 23
2 11.4 26
2 1 9
2 7.3 20.5
2 8.5 24
2 -0.7 5.5
2 13.5 27

Total Tc = 86 Tt = 349

Average Tc/nc = 8.60 Tt/nt = 18.37

Table 5.2: Total Growth measurements (and ranks) for Procyanidin B-2 from Apple Hair Growth Experiment

"term0", "term6", "termdiff"))

attach(apphair)

wilcox.test(totaldiff ~ hair.trt)

## Output

> wilcox.test(totaldiff ~ hair.trt)

Wilcoxon rank sum test with continuity correction

data: totaldiff by hair.trt

W = 31, p-value = 0.003565

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(0.3, 1.4, 3, 3.7, -1.5, -2, 0, 4.8, :

cannot compute exact p-value with ties

Note that W represents the difference between the Rank Sum for each group and its minimum (low
average rank group) or maximum (high average rank group) possible value. Making use of the notation
above, W is defined below.

W = min
(

T2 − Tmin
2 , Tmax

2 − T2

)

= min(86 − 55 = 31, 245− 86 = 159) = 31
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∇

For large samples, it’s difficult to find tables that contain the critical values (this example pushed the
limits, in fact). The rank sums are approximately normal in large samples, so a normal approximation can
be used. Let T be the rank sum for group 1 (the test is symmetric, so the statistic will have the same
absolute value, no matter which group gets labeled as 1). The expected value and standard deviation of T
under the null hypothesis M1 = M2 and the test statistic are given here.

n. = n1 + n2 T = T1 µT =
n1(n. + 1)

2
σT =

√

n1n2(n. + 1)

12
zobs =

T − µT

σT

The critical values for the Rejection Region are based on whether the test is 2-tailed or upper tailed and
α, as in other large-sample z-tests.

HA : M1 6= M2 R.R.|zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|) HA : M1 > M2 R.R.zobs ≥ zα P = P (Z ≥ zobs)

Example 5.5: Apple Procyanidin B-2 for Hair Growth

To use the large-sample approximation, let the treatment group be treatment 1 (again, the conclusions
do not depend on this for a 2-tailed test).

n1 = 19 n2 = 10 n. = 29 T = 349 µT =
19(30)

2
= 285 σT =

√

19(10)(30)

12
= 21.79

zobs =
349 − 285

21.79
= 2.937 P = 2P (Z ≥ 2.937) = .0033

The rank sum for the treatment group is much larger than we would have expected under the null
hypothesis of no treatment effect.

∇

5.2.2 Paired Sample Designs

In paired samples (aka crossover or within subjects) designs, subjects receive each treatment, thus acting
as their own control. They may also have been matched based on some characteristics. Procedures based
on these designs take this into account, and are based in determining differences between treatments after
“removing” variability in the subjects (or pairs). When it is possible to conduct them, paired sample designs
are more powerful than independent sample designs in terms of being able to detect a difference (reject H0)
when differences truly exist (HA is true), for a fixed sample size and when measurements within subjects or
pairs are positively correlated.
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Paired t–test for Normally Distributed Data

In paired sample designs, each subject (or pair) receives each treatment. In the case of two treatments
being compared, we compute the difference in the two measurements within each subject (or pair), and test
whether or not the population mean difference is 0. When the differences are normally distributed, we use
the paired t–test to determine if differences exist in the mean response for the two treatments. Then this is
simply a 1-sample problem on the differences.

Let Y1 be the score in condition 1 for a randomly selected subject, and Y2 be the score in condition 2
for the subject. Let D = Y1 − Y2 be the difference. Further, suppose the following assumptions and their
corresponding results. Note that the differences across subjects (or pairs) are considered to be independent.

E{Y1} = µ1 V {Y1} = σ2
1 E{Y2} = µ2 V {Y2} = σ2

2 COV{Y1, Y2} = σ12

⇒ E{D} = µ1 − µ2 = µD V {D} = σ2
D = σ2

1 + σ2
2 − 2σ12

D =

∑n
i=1 Di

n
E{D} = µD V {D} = σ2

D
=

σ2
D

n
SE{D} = σD =

σD√
n

For large n: D
·∼ N

(

µD, SE{D} =
σD√

n

)

Normality holds for any sample size if the individual measurements (or the differences) are normally
distributed.

It should be noted that in the paired case n1 = n2 by definition. That is, there will always be equal sized
samples when the experiment is conducted properly. There will be n = n1 = n2 differences, even though
there were 2n = n1 + n2 measurements made. From the n differences obtained in a sample, the mean and
standard deviation are obtained, and will labeled as d and sd.

d =

∑n
i=1 di

n
s2
d =

∑n
i=1(di − d)2

n − 1
sd =

√

s2
d ŜE{D} = sD =

sd√
n

A (1 − α)100% Confidence Interval for the population mean difference µD is given below.

d ± tα/2,n−1ŜE{D} ≡ d ± tα/2,n−1
sd√
n

The test is conducted as follows.

1. H0 : µ1 − µ2 = µD = 0



124 CHAPTER 5. COMPARING TWO POPULATIONS’ MEANS AND MEDIANS

2. HA : µD 6= 0 or HA : µD > 0 or HA : µD < 0 (which alternative is appropriate should be clear from
the setting).

3. T.S.: tobs = d
ŜE{D} = d

(

sd√
n

)

4. R.R.: |tobs| ≥ tα/2,n−1 or tobs ≥ tα,n−1 or tobs ≤ −tα,n−1 (which R.R. depends on which alternative
hypothesis you are using).

5. p-value: 2P (tn−1 ≥ |tobs|) or P (tn−1 ≥ tobs) or P (tn−1 ≤ tobs) (again, depending on which alternative
you are using).

Example 5.6: Comparison of Two Analytic Methods for Determining Wine Isotope

A study was conducted to compare two analytic methods for determining 87Sr/86Sr isotope ratios in
wine samples (Durante, et al (2015), [19]). These are used in geographic tracing of wine. The two methods
are microwave (method 1) and low temperature (method 2). The data, and the differences (microwave -
lowtemp) are given in Table 5.3.

sample id microwave lowtemp diff(m-l)

1 0.70866 0.70861 0.000050000
2 0.708762 0.708792 -0.00003000
3 0.708725 0.708734 -0.00000900
4 0.708668 0.708662 0.000006000
5 0.708675 0.70867 0.000005000
6 0.708702 0.708713 -0.00001100
7 0.708647 0.708661 -0.00001400
8 0.708677 0.708667 0.000010000
9 0.709145 0.709176 -0.00003100
10 0.709017 0.709024 -0.00000700
11 0.70882 0.708814 0.000006000
12 0.709402 0.709364 0.000038000
13 0.709374 0.709378 -0.00000400
14 0.709508 0.709517 -0.00000900
15 0.70907 0.709063 0.000007000
16 0.709061 0.709079 -0.00001800
17 0.709096 0.709039 0.000057000
18 0.70872 0.7087 0.000020000

Mean 0.708929 0.708926 0.000003667
SD 0.000287 0.000288 0.000024646

Table 5.3: 87SR/86SR Isotope ratios for 18 wine samples by Microwave and Low Temperature Methods

As there are n = 18 differences, the degrees of freedom are n − 1 = 17.The 95% Confidence Interval for
µD is computed below, where t.025,17 = 2.110. First, the mean and standard deviation of the differences are
multiplied by 100000 (remove first 5 0s after decimal) to reduce the risk of calculation error. This is legitimate

as the mean and standard deviation are of the same units. This leads to d
∗

= 0.3667 and s∗d = 2.46466.

0.3667± 2.110
2.4646√

18
≡ 0.3667± 2.110(0.5809) ≡ 0.3667± 1.2257 ≡ (−0.8590, 1.5924)
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In the original units the interval is of the form of (-.00000859,.000015924). Since the interval contains
0, there is no evidence that one method tends to score higher (or lower) than the other on average.

The test of whether there is a difference in the true mean determinations between the two methods (with
α = 0.05) is conducted by completing the steps outlined below.

1. H0 : µ1 − µ2 = µD = 0

2. HA : µD 6= 0

3. T.S.: tobs = 0.3667
(

2.4646√
18

) = 0.3667
0.5809 = 0.631

4. R.R.: tobs > tα/2,n−1 = t.025,17 = 2.110

5. P -value: 2P (t17 ≥ 0.631) = .5364

There is definitely no evidence that the two methods differ in terms of determinations of wine isotope ratios.

R Commands and Output

## Commands

wine1 <- read.csv("http://www.stat.ufl.edu/~winner/data/wine_isotope.csv")

attach(wine1); names(wine1)

## t.test Function

t.test(microwave, lowtemp, paired=TRUE)

## Output

> round(wine.out, 6)

ybar1 s1 ybar2 s2 cor(y1,y2)

[1,] 0.708929 0.000287 0.708926 0.000288 0.996329

> round(diff.out,9)

mean SD Std Err t P(>|t|) LB UB

[1,] 3.667e-06 2.4646e-05 5.809e-06 0.6311987 0.5363058 -8.589e-06 1.5923e-05

> t.test(microwave, lowtemp, paired=TRUE)

Paired t-test

data: microwave and lowtemp

t = 0.6312, df = 17, p-value = 0.5363

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.589364e-06 1.592270e-05

sample estimates:

mean of the differences

3.666667e-06

∇
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Wilcoxon Signed–Rank Test for Paired Data

A nonparametric test that is often conducted in paired sample designs is the Wilcoxon Signed-Rank test.
Like the paired t-test, the signed-rank test takes into account that the two treatments are being assigned to
the same subject (or pair). The test is based on the difference in the measurements within each subject (pair).
Any subjects (pairs) with differences of 0 (measurements are equal under both treatments) are removed and
the sample size is reduced. The test statistic is computed as follows.

1. For each pair, subtract measurement 2 from measurement 1.

2. Take the absolute value of each of the differences, and rank from 1 (smallest) to n (largest), adjusting
for ties by averaging the ranks they would have had if not tied.

3. Compute T+, the rank sum for the positive differences from step 1, and T−, the rank sum for the
negative differences.

To test whether or not the population distributions are identical, use the following procedure:

1. H0 : The two population distributions have equal Medians (M1 = M2)

2. HA : The Medians Differ (M1 6= M2)

3. T.S.: T = min(T+, T−)

4. R.R.: T ≤ T0, where T0 is a function of n and α and given in tables in many statistics texts and on
the web.

For a one-sided test, if you wish to show that the distribution of population 1 is shifted to the right of
population 2 (M1 > M2), the procedure is as follows:

1. H0 : The two population distributions have equal Medians (M1 = M2)

2. HA : Distribution 1 is shifted to the right of distribution 2 (M1 > M2)

3. T.S.: T = T−

4. R.R.: T ≤ T0, where T0 is a function of n and α and given in tables in many statistics texts and on
the web.

Note that if the goal is to test with the alternative M1 < M2, use the above procedure with T+ replacing
T−. The idea behind this test is to determine whether the differences tend to be positive (M1 > M2) or
negative (M1 < M2), where differences are ‘weighted’ by their magnitude.

Example 5.7: Water Consumption by Cats under Still and Flowing Sources

A small pilot study was conducted to compare the daily amount of water consumed (mL) by cats when
presented with still or flowing water (Pachel and Neilson (2010) [41]). Each of n = 9 cats was observed 2
days each under each condition, and the mean for each condition was computed for each cat. Data are given
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Cat (i) still flowing di=still-flowing |di| rank(|di|)
1 157.5 164.5 -7 7 2
2 84.5 51.5 33 33 6
3 134.0 250.0 -116 116 9
4 74.0 139.0 -65 65 7
5 108.0 113.0 -5 5 1
6 107.5 124.5 -17 17 4
7 106.0 95.5 10.5 10.5 3
8 163.0 70.5 92.5 92.5 8
9 54.0 30.5 23.5 23.5 5

Table 5.4: Average daily water consumed by cats in still and flowing conditions

in Table 5.4, along with ranks. We will test whether there is evidence that the true medians differ (even
though this is clearly a very small sample).

Based on Table 5.4, T+ (the sum of the ranks for positive differences) and T− (the sum of the ranks of
the negative differences), as well as the test statistic T , are computed as follows.

T+ = 6 + 3 + 8 + 5 = 22 T− = 2 + 9 + 7 + 1 + 4 = 23 T = min(T+, T−) = min(22, 23) = 22

Note that short of there having been a tie, this is the closest T+ and T− could be. Using the previously
given steps, the test for differences in the medians of the true distributions for the 2 water conditions is given
below.

1. H0 : The two population medians (M1 = M2)

2. HA : One distribution is shifted to the right of the other (M1 6= M2)

3. T.S.: T = min(T+, T−) = 22

4. R.R.: T ≤ T0, where T0 = 5 is based on 2-sided alternative , α = 0.05, and n = 9.

Since T = 22 does not fall in the rejection region, fail to reject H0, and fail to conclude that the medians
differ. Note that the P -value is thus larger than 0.05, since we fail to reject H0 (in fact it is 1).

R Commands and Output

## Commands

still <- c(157.5, 84.5, 134, 74, 108, 107.5, 106, 163, 54)

flowing <- c(164.5, 51.5, 250, 139, 113, 124.5, 95.5, 70.5, 30.5)

wilcox.test(still, flowing, paired=TRUE)

## Output

> wilcox.test(still, flowing, paired=TRUE)

Wilcoxon signed rank test

data: still and flowing

V = 22, p-value = 1

alternative hypothesis: true location shift is not equal to 0
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∇

In large-samples, the rank-sums T+ and T− have approximately normal sampling distributions. By

definition, T+ + T− = 1 + · · · + n = n(n+1)
2 . Under the null hypothesis H0 : M1 = M2, the mean and

variance for T+ and T− are given below.

µT =
n(n + 1)

4
σT =

√

n(n + 1)(2n + 1)

24
zobs =

T − µT

σT

The usual rules for rejection regions and P -values apply. If the alternative is HA : M1 > M2 use T = T+

and reject H0 if zobs ≥ zα. If the alternative is HA : M1 < M2 use T = T− and reject H0 if zobs ≥ zα. For
HA : M1 6= M2, use either T+ or T−, and reject if |zobs| ≥ zα/2.

Example 5.8: Efficiency Comparison of Recreational and Professional Bettors

An economic study was conducted, comparing recreational and professional bettors’ efficiencies (Bruce,
Johnson, and Peirson (2012), [10]). They considered race attendees as Recreational bettors and remote (on-
line) bettors as Professional bettors. The authors had aggregate returns (amount won divided by amount
bet) data for both groups on n = 2057 races. The difference (remote - attendee) was obtained for each race.
There were 963 negative differences (attendees outperformed remote bettors) and 1094 positive differences.
The rank sum information is given below.

T+ = 1167023.5 T− = 949629.5 T+ + T− = 2116653 = 1 + · · ·+ 2057 µT =
2057(2058)

4
= 1058326.5

σT =

√

2057(2057 + 1)(2(2057) + 1)

24
= 26941.34 zobs =

1167023.5− 1058326.5

26941.34
= 4.03

There is strong evidence of a difference in the two groups. Note the authors also present the mean and
the standard deviation of the differences. The 95% Confidence Interval for µD is (.0287,.0671), an advantage
in aggregate return of about 2.9% to 6.7%.

yr = 0.8659 ya = 0.8180 d = 0.0479 sd = 0.4448
sd√
n

=
0.4448√

2057
= 0.0098

0.0479± 1.96(0.0098) ≡ (0.0287, 0.0671)

∇

5.3 Power and Sample Size Considerations

In this section, issues of power and sample size are considered in the 2-Sample Location problem. Power
refers to the probability of rejecting the null hypothesis. When H0 is true, it should be α, and when the
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alternative is true, it will depend on the magnitude of the difference, the variability and the sample sizes.
Once power has been considered empirically, sample size computations will be made based on distributional
results.

5.3.1 Empirical Study of Power

To compare the power of the independent sample t-test and the Wilcoxon Rank-Sum test, consider the
populations of NHL/EPL players’ BMI and the Female and Male marathon runner’s speeds. The BMI
distributions were approximately normal, while the marathon speeds were right skewed.

Example 5.9: Small-Sample Inference Comparing BMI for NHL and EPL Players

The means and standard deviations of the BMI levels for NHL and EPL players are given below,
along with the mean and variance of the sampling distribution of Y n − Y e. Note that as each distribution
is approximately normal, its sampling distribution will be very close to a normal distribution, even with
relatively small samples. Further, the variances are not equal, although they are not too far apart. Refer
back to Figure 5.2 for a histogram of 100000 random samples’ mean differences of n1 = n2 = 20.

BMI: µn = 26.50 σn = 1.45 µe = 23.02 σe = 1.71 E{Y n − Y e} = 26.50− 23.02 = 3.48

V {Y n − Y e} =
1.452

nn
+

1.712

ne

We compare the coverage rates of small sample Confidence Intervals based on equal variance and unequal
variance assumptions, as well as their widths for samples of nn = ne = 10. The unequal variance case will
always be wider, as the sample mean difference and estimated standard error will be the same as the equal
variance case, but will have fewer degrees of freedom. Due to the equivalence of the 2-tailed test and
Confidence Interval for testing H0 : µn − µe = 0, the empirical power of the two methods are observed as
well. The process is conducted as follows.

1. Sample 10 players from NHL and 10 players from EPL

2. Compute yn, sn , ye, se

3. Compute the sample mean difference yn − ye and its estimated standard error ŜE{Y n − Y e} =
√

s2
n

10 +
s2

e

10

4. Compute the approximate degrees of freedom for the unequal variance case (Satterthwaite’s approxi-
mation)

5. Obtain the 95% Confidence Intervals for µn − µe

6. Determine whether the Confidence Intervals contain 3.48 (true value) and whether they contain 0
(Testing µn − µe = 0)

7. Obtain the width of the intervals
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The equal variance Confidence Intervals contained µn −µe = 3.48 in 95.18% of the samples, the unequal
variance CI’s covered in 95.37% of the samples. Based on equal sample sizes, (and will typically always be
the case) the unequal case will always have wider intervals and thus higher coverage rates at the cost of being
wider. The average width of the equal variance CI’s was 2.9235 versus 2.9539 for the unequal case. The
unequal case was only about 1% wider on average due to how similar the population standard deviations
are. The equal variance case rejected H0 : µn−µe = 0 in favor of HA : µn−µe 6= 0 in 99.01% of the samples,
while the unequal variance case did so in 98.89%. Neither ever rejected with a negative t-statistic. The
mean difference was very large relative to the standard deviations for the two leagues, so it’s not surprising
to have such high power.

R Output

## Output

> round(bmisim.out1, 2)

mu_nhl mu_epl mu_nhl-mu_epl sigma_nhl sigma_epl n_nhl n_epl SE{Ybar_n-Ybar_e)

[1,] 26.5 23.02 3.48 1.45 1.71 10 10 0.71

> round(bmisim.out2, 4)

EV Cover UV Cover EV Width UV Width EV Diff > 0 UV Diff > 0

[1,] 0.9518 0.9537 2.9235 2.9539 0.9901 0.9889

∇

Example 5.10: Small-Sample Inference for Female and Male Marathon Speeds

Comparisons among Female and Male marathon speeds are now made. Unlike the NHL/EPL Body
Mass Indices, these speeds are not approximately normally distributed, but are rather skewed to the right,
refer to Figure 3.5. The population means and standard deviations are given below, along with the mean
and standard error of the sampling distribution of the sample mean Y f − Y m.

µf = 5.840 σf = 0.831 µm = 6.337 σm = 1.058

E{Y f − Y m} = −0.497 SE{Y f − Y m} =

√

0.8312

nf
+

1.0582

nm

We will consider fairly small samples, nf = nm = 6, and first repeat the comparisons made in BMI
example, and further compare the t-tests with the Wilcoxon Rank-Sum test in terms of power for testing
H0 : µf − µm ≥ 0 vs HA : µf − µm < 0. The equal variance Confidence Interval covered µf − µm = −0.497
in 94.85% of samples, the unequal case covered in 95.36%, so even with these small samples, and the skewed
distributions, the t-based Confidence Intervals performed well. In terms of concluding HA : µf − µm < 0,
the equal variance t-test correctly rejected H0 in 20.73% of samples, the unequal variance t-test in 19.67%,
and the Wilcoxon Rank-Sum test in 18.91%.

R Output
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## Output

> round(rrsim.out1, 2)

mu_f mu_m mu_f-mu_m sigma_f sigma_m n_f n_m SE{Ybar_f-Ybar_m)

[1,] 5.84 6.34 -0.5 0.83 1.06 6 6 0.55

> round(rrsim.out2, 4)

EV Cover UV Cover EV Reject UV Reject Rank-Sum Reject

[1,] 0.9485 0.9536 0.2072 0.1967 0.1891

∇

5.3.2 Power Computations

To obtain the sample sizes needed to detect an important difference in means, the non-central t-distribution
can be used in a similar manner to what was done for the one-sample problem. The only difference is that
instead of looking for an important difference from some pre-specified null mean, we are interested in the
difference between two population means. First, consider the case of independent samples. This is generally
done under the assumption of equal variances.

H0 : µ1 − µ2 = 0 HA : µ1 − µ2 = (µ1 − µ2)A 6= 0 ∆ =
(µ1 − µ2)A
√

σ2
(

2
n

)

t =
Y 1 − Y 2
√

S2
p

(

2
n

)

∼ t2(n−1),∆

If σ is known (or well approximated), researchers can choose an important difference (µ1 − µ2)A, and
determine the sample size that gives a reasonable power π to detect it based on a test with significance
level α. In other situations, an important effect size δ = (µ1 − µ2)A /σ can be obtained, which measures
the difference in means in standard deviation units. Once the important effect size is chosen, beginning
with small n, the power π is determined and the process continues until the desired power is obtained. The
process works as follows for a 2-tailed test.

1. Determine important effect size δ = (µ1 − µ2)A /σ and set the significance level α and desired power
π.

2. Starting with (say) n1 = n2 = n = 2, obtain the degrees of freedom 2(n − 1) and critical value
tα/2,2(n−1).

3. Compute the non-centrality parameter ∆ = δ√
2/n

.

4. Obtain πn: the probability the non-central t is greater than tα/2,2(n−1) or less than −tα/2,2(n−1).

5. If πn exceeds the desired π, stop. Otherwise, increment n by 1 and repeat the process.

In the case of 1-tailed tests, the Rejection Region is in only 1-tail, with area α and only one of the tail
area probabilities is computed.
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Example 5.11: Power Calculation for Comparison of Female and Male Marathon Speeds

Using numbers similar to those observed in the populations of marathon runners, suppose we want to
be able to detect a difference (µf − µm)A = −0.5 and that σf = σm = σ = 0.94 (we are just averaging
the true standard deviations for computational purposes). We then obtain the following results. Start with
nf = nm = n = 6, since the power was so low (approximately 0.20) for the lower-tailed t-test in Example
5.10.

δ =
−0.50

0.94
= −0.532 ∆6 =

−0.532
√

2/6
= −0.921 df = 2(6 − 1) = 10 − t.05,10 = −1.812

For the lower-tailed test HA : µf − µm < 0, for these sample sizes, reject the null of no difference if
tobs ≤ −1.812. Now find the probability under the non-central t-density with 2(6−1) = 10 degrees of freedom
and non-centrality parameter -0.921 that is below -1.812. The power turns out to be 0.216 (see R output
below). Using the R functions qt for quantiles and pt for lower tail probabilities (cumulative distribution
function), the relevant probabilities (powers) can be obtained. Samples of size nf = nm = 45 would be
needed for the power to reach 0.8.

R Output

## Output

> round(power.out1,3)

alpha pi* n df (mu1-mu2)_A sigma delta Delta -t(.05,df) power

[1,] 0.05 0.8 6 10 -0.5 0.94 -0.532 -0.921 -1.812 0.216

> cbind(n.out, power.out)

n.out power.out

[1,] 7 0.2402697

[2,] 8 0.2636261

...

[38,] 44 0.7968277

[39,] 45 0.8047651

Had this been a 2-tailed test with HA : µf − µm 6= 0, the Rejection Region would be |tobs| ≥ tα/2,2(n−1).
Below are the R Commands and Output that computes the power for the 2-tailed test (it only contains the
initial calculation, the loop part is similar to the lower-tail test). Samples of n = 57 females and males would
be needed for the power to reach 0.80.

R Output

## Output

> round(power.out2,3)

alpha pi* n df (mu1-mu2)_A sigma delta Delta t(.025,df) power

[1,] 0.05 0.8 6 10 -0.5 0.94 -0.532 -0.921 2.228 0.133

> cbind(n.out, power.out)

n.out power.out

[1,] 7 0.1505426

...



5.4. METHODS BASED ON RESAMPLING 133

[50,] 56 0.7967349

[51,] 57 0.8037961

∇

In terms of the paired t-test, when testing H0 : µD = 0 vs HA : µD 6= 0, there may be a specific difference
µDA that would like to be detected with a specified power π. This is very similar to the 1-sample problem
in the previous chapter. Define the following terms, where µDA is the mean difference under HA and σD is
the standard deviation of the differences.

tobs =
d

sd/
√

n
=

√
n

d

sd
δ =

µDA

σD
∆ =

√
nδ

Again δ is the effect size and ∆ is the non-centrality parameter. The degrees of freedom for the paired
t-test is n − 1. The process generalizes directly from the independent samples method described above.

Example 5.12: Water Consumption by Cats under Still and Flowing Sources

In the pilot study of cats drinking flowing versus still water, the standard deviation of the differences
was approximately 60 ml. Suppose the researchers would like to detect a true mean difference of µDA = 30
mL with power π = 0.75. In this setting δ = 30/60 = 0.5 and ∆ =

√
n(0.5). Beginning with the authors’

original sample of n = 9, we obtain the power then iterate until π ≥ 0.75. The R program and output are
given below, for n = 9, π = 0.263. A sample of n = 30 would be needed to reach π = 0.75.

R Output

## Output

> round(power.out3,3)

alpha pi* n df (mu1-mu2)_A sigma delta Delta t(.025,df) power

[1,] 0.05 0.75 9 8 -0.5 0.94 0.5 1.5 2.306 0.263

> cbind(n.out, power.out)

n.out power.out

[1,] 10 0.2931756

...

[20,] 29 0.7386963

[21,] 30 0.7539647

∇

5.4 Methods Based on Resampling

In this section, two methods for comparing two means are considered. These are the Bootstrap and
Randomization/Permutation Tests.
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5.4.1 The Bootstrap

The bootstrap method is the same principle as in the one-sample case. In terms of independent samples,
take resamples within each group with replacement, then take the difference between the two group means
in each subsample. This will be illustrated below. In terms of paired samples, the one-sample methods are
used on the observed paired differences from the original sample.

For the Bootstrap t Intervals, for each resample, compute y∗
1i, s

∗
1i, y

∗
2i, s

∗
2i for the ith resample, and

compute t∗i as below, where n1, y1, s1, n2, y2, s2 are the sizes, means, and standard deviations of the original
samples.

t∗i =
(y∗

1i − y∗
2i) − (y1 − y2)

√

s∗2
1i

n1
+

s∗2
2i

n2

i = 1, . . . , B

Once the B t∗i statistics are obtained the α/2 and 1 − α/2 quantiles are obtained and labeled Q∗
L and

Q∗
U , respectively. The (1 − α)100% Bootstrap t CI for µ1 − µ2 is of the following form.

(y1 − y2) − Q∗
U

√

s2
1

n1
+

s2
2

n2
, (y1 − y2) − Q∗

L

√

s2
1

n1
+

s2
2

n2

Example 5.13: Anthropometric Measurements of Lahoul and Kulu Kanets in Punjab

A study sampled 30 Lahoul Kanet adults and 60 Kulu Kanet adults, making various physical measure-
ments (Holland (1902) [26]). The author reported on 7 characteristics among each subject. Consider the
variable cubit (cm), given in Table 5.5. The summary statistics from the samples are given below.

nL = 30 yL = 44.657 sL = 2.056 nK = 60 yK = 45.298 sK = 1.692 yL − yK = −0.641

We take 10000 resamples of 30 Lahoul and 60 Kulu Kanets, obtaining the means for each group and
the difference. Then, obtaining the bootstrap mean and standard error for the differences, along with the
bootstrap percentile intervals from the 2.5 and 97.5 percentiles of the resampled mean differences. The
mean of the 10000 mean differences is -0.645, the bootstrap standard error is 0.430, and the 95% bootstrap
percentile Confidence Interval is (-1.483, 0.192). A histogram of the resample mean differences and a normal
probability plot are given in Figure 5.5.

R Output

## Output

> round(boot.out1, 3)

ybar_L ybar_K yb_L-yb_K s_L s_K Mean(MeanDiff) SD(MD) Q.025(MD) Q.975(MD)

44.657 45.298 -0.642 2.056 1.692 -0.645 0.43 -1.483 0.192



5.4. METHODS BASED ON RESAMPLING 135

Lahoul Lahoul Kulu Kulu Kulu Kulu

45.2 44.3 44.8 46.6 44.9 43.2
46.9 46.6 45.7 43.3 46.1 45.7
44.7 42.4 44.4 44.9 47.5 46.4
46.3 42.7 45.8 44.6 44.9 49.3
43.4 44.9 44.6 45.3 49.2 46.1
43.3 42.3 44.3 44.6 43.7 44.7
39.6 43.5 45.4 47.8 46.0 45.1
45.6 42.9 44.3 44.0 43.7 43.4
43.6 46.8 44.8 47.8 45.4 45.6
44.2 46.2 43.2 47.8 45.0 47.7
47.4 43.9 46.5 44.9 42.8 50.3
48.2 46.8 45.0 45.1 47.1 42.1
45.0 43.3 46.8 44.3 45.7 46.2
45.4 42.5 41.9 45.5 45.2 44.1
42.9 48.9 44.9 43.8 42.5 45.6

Table 5.5: Cubit lengths (cm) for samples of 30 Lahoul Kanets and 60 Kulu Kanets
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Figure 5.5: Histogram and Normal Probability Plot for Bootstrap Resample Mean Differences (Lahout -
Kulu)
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For the 95% Bootstrap t Confidence Interval, the .025 quantile of t∗ is Q∗
L = −1.762 and the .975 quantile

is Q∗
U = 1.794 and the resulting 95% Confidence Interval is (-1.421, 0.123).

R Output

## Output

> round(boot.out2, 3)

ybar_L ybar_K yb_L-yb_K s_L s_K n_L n_K SE{diff} Q_L Q_U LB UB

44.657 45.298 -0.642 2.056 1.692 30 60 0.434 -1.762 1.794 -1.421 0.123

∇

5.4.2 Randomization/Permutation Tests

Randomization/Permutation tests consider the observed responses as being made up of a treatment/population
mean and a random error term. That is, Yij = µi + εij, i = 1, 2; j = 1, . . . , nij. The random error term is
unique to the experimental unit that it corresponds to, and could be due to any number of factors. If there
are no differences in the treatment/population means (µ1 = µ2), then all of the observed values could have
come from either treatment/population on any number of randomizations by the experimenter or nature.
The process of randomization and permutation tests is as follows for the independent sample t-test.

1. Compute a statistic from the original data that measures a discrepancy between the sample data and
the null hypothesis, such as y1 − y2.

2. Generate many permutations (N) of the original samples to the two groups and compute and save the
statistic for each permutation.

3. Count the number of permutations for which the statistic is as or more extreme than the original
sample’s value.

4. The P -value is (Count+1)/(N+1) the proportion of the statistics as or more extreme than the original
(including the original).

Example 5.14: Cubit Lengths of Lahout and Kulu Kanets

To illustrate the test, consider the lengths of the cubits of the Lahout and Kulu Kanets. In Example
5.14, the mean difference from the original samples was yL − yK = −0.641. Suppose there is no difference
in the two cultures’ tendencies to generate different cubit lengths and they are due to randomness among
individuals who “nature” randomized to the cultures. Then consider 9999 permutations of these 90 cubit
lengths to the nL Lahouts and nK Kulus. Of N = 9999 permutation samples, 1207 were as large as the
observed difference in absolute value, for a P -value of (1207+1)/(9999+1) = .1208. Thus, there is no evidence
to reject the null hypothesis that µL = µK . A histogram of the permutation mean differences with a vertical
line at the observed mean difference is given in Figure 5.6.

R Output
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Randomization Distribution for Cubit Length
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Figure 5.6: Randomization Distribution for Lahout and Kulu Kanet cubit measurements

## Output

> round(perm.out1, 4)

ybar_L ybar_K Test Stat Extreme Perms P-value

[1,] 44.6567 45.2983 -0.6417 1182 0.1183

∇

For paired samples, if there is no difference in the means of the two treatments, then the 2 observed
measurements on each unit or pair could have just as easily appeared under either of the two treatments.
The process for the Randomization/Permutation test goes as follows.

1. Compute a statistic from the original data that measures a discrepancy between the sample data and
the null hypothesis, such as d.

2. Generate many permutations (N) of the signs of the observed differences, where for each unit, its
sign is changed with probability 0.5 (in effect switching the observed scores for the two treatments).

Compute and save the mean difference d
∗
.

3. Count the number of permutations for which the statistic is as or more extreme than the original
sample’s value.

4. The P -value is (Count+1)/(N+1) the proportion of the statistics as or more extreme than the original
(including the original).
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Example 5.15: Home Field Advantage in English Premier League Football (2012)

The English Premier League has 20 football clubs. Each club plays the remaining 19 clubs twice each
season (once at home, once away). If clubs are labeled in alphabetical order from 1:20, then let y1jk = Hj−Ak

j < k be the score differential (Home-Away) when club j played at home versus club k. Further, let
y2jk = Aj − Hk j < k be the score differential (Away-Home) when club j played away versus club k. Then:

djk = y1jk − y2jk = (Hj − Ak) − (Aj − Hk) = (Hj + Hk) − (Aj + Ak)

That is, djk represents the total home versus away differential for the two matches played between clubs

j and k. There are

(

20
2

)

= 190 pairs of clubs. If there is no home field differential, then µD = 0. Here we

conduct a 2-tailed permutation test for a home field differential. There is overwhelming evidence of a home
field advantage. None of the permutation means is close to the observed mean d = 0.6368. A histogram of
the randomization distribution and observed mean differential (vertical line) is given in Figure 5.7.

R Output

## Output

> round(perm.out2, 4)

n Observed TS # Exceed 1-tail # Exceed 2-tail 1-tailed P-value 2-tailed P-value

[1,] 190 0.6368 0 0 1e-04 1e-04

∇

5.5 R Code for Chapter 5

### Chapter 5

### Example 5.1

bmi.sim <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_nba_ebl_bmi.csv")

attach(bmi.sim); names(bmi.sim)

N.nhl <- 717 # # of NHL players

N.epl <- 526 # # of EPL players

bmi.nhl <- NHL_BMI[1:N.nhl]

bmi.epl <- EPL_BMI[1:N.epl]

(mu.nhl <- mean(bmi.nhl)); (sigma.nhl <- sd(bmi.nhl)*sqrt((N.nhl-1)/N.nhl))

(mu.epl <- mean(bmi.epl)); (sigma.epl <- sd(bmi.epl)*sqrt((N.epl-1)/N.epl))

## Figure 5.1

par(mfrow=c(2,1))

hist(bmi.nhl, breaks=30, xlim=c(18,32), freq=F,

main="Histogram of NHL BMI and N(26.50,1.45) Density")

bmi.x <- seq(18,32,.01)

lines(bmi.x, dnorm(bmi.x, mu.nhl, sigma.nhl))
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Randomization Distribution for EPL 2012 Home Field Advantage

Mean Home−Away

F
r
e
q
u
e
n
c
y

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Figure 5.7: Randomization Distribution for Home-Away Mean Differential - EPL 2012

hist(bmi.epl, breaks=30, xlim=c(18,32), freq=F,

main="Histogram of EPL BMI and N(23.02,1.71) Density")

lines(bmi.x, dnorm(bmi.x, mu.epl, sigma.epl))

### Take 100000 Independent samples of n1=n2=20 and obtain ybar1-ybar2

num.sim <- 100000

n.nhl <- 20

n.epl <- 20

(mu.meandiff <- mu.nhl - mu.epl)

(sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl))

set.seed(6677)

ybar.s.nhl <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.epl <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(bmi.nhl,n.nhl,replace=F)

y2 <- sample(bmi.epl,n.nhl,replace=F)

ybar.s.nhl[i,1] <- mean(y1)

ybar.s.nhl[i,2] <- sd(y1)

ybar.s.epl[i,1] <- mean(y2)

ybar.s.epl[i,2] <- sd(y2)

}

meandiff <- ybar.s.nhl[,1] - ybar.s.epl[,1]

mean.md <- mean(meandiff)

sd.md <- sd(meandiff)

se.meandiff <- sqrt(ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)

mean.var.md <- mean(se.meandiff^2)

sigma.meandiff^2

diff.lo.z <- meandiff + qnorm(.025,0,1) * se.meandiff

diff.hi.z <- meandiff + qnorm(.975,0,1) * se.meandiff

cov.z <- sum(diff.lo.z <= mu.meandiff & diff.hi.z >= mu.meandiff) / num.sim
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diff.lo.t <- meandiff + qt(.025,n.nhl+n.epl-2) * se.meandiff

diff.hi.t <- meandiff + qt(.975,n.nhl+n.epl-2) * se.meandiff

cov.t <- sum(diff.lo.t <= mu.meandiff & diff.hi.t >= mu.meandiff) / num.sim

md.out <- cbind(mu.nhl, mu.epl, sigma.nhl, sigma.epl, n.nhl, mu.nhl-mu.epl,

sigma.meandiff, mean.md, sd.md, cov.z, cov.t)

colnames(md.out) <- c("mu1","mu2","sigma1","sigma2","n","mu1-mu2",

"SE{Yb1-Yb2}", "Mean(yb1-yb2)", "SD(yb1-yb2)",

"cover(z)","cover(t)")

round(md.out, 3)

## Figure 5.2

par(mfrow=c(1,1))

hist(meandiff, breaks=100, xlim=c(min(meandiff)-0.01, max(meandiff)+0.01),

freq=F, main="Histogram of Mean Differences and N(3.48,0.50) Density")

diff.x <- seq(min(meandiff)-0.01, max(meandiff)+0.01,length.out=1000)

lines(diff.x, dnorm(diff.x, mu.meandiff, sigma.meandiff))

## End of Figure 5.2

rm(list=ls(all=TRUE))

### Example 5.3

rp <- read.csv("http://www.stat.ufl.edu/~winner/data/rwanda_physics.csv")

attach(rp); names(rp)

t.test(score ~ trt.y, var.equal=T) # t-test with single y-var and trt id

rm(list=ls(all=TRUE))

### Example 5.4

quilt <- read.csv("http://www.stat.ufl.edu/~winner/data/breast_diep.csv")

attach(quilt); names(quilt)

trt.f <- factor(trt)

levels(trt.f) <- c("Control", "Treatment")

## Figure 5.3

par(mfrow=c(1,1))

plot(totvol ~ trt.f, xlab="Experimental Group",

main="Side-by-Side Box Plots - Breast Surgery Study")

## End Figure 5.3

t.test(totvol ~ trt.f, var.equal=F)

rm(list=ls(all=TRUE))

### Example 5.5

apphair <- read.table("http://www.stat.ufl.edu/~winner/data/apple_hair.dat",

header=F, col.names=c("hair.trt","total0","total6","totaldiff",

"term0", "term6", "termdiff"))

attach(apphair)

hair.trt.f <- factor(hair.trt, levels=1:2, labels=c("placebo", "PC2"))

## Figure 5.4

plot(totaldiff ~ hair.trt.f)

par(mfrow=c(1,2))

qqnorm(totaldiff[hair.trt==1],main="Control")

qqline(totaldiff[hair.trt==1])

qqnorm(totaldiff[hair.trt==2],main="Treatment")
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qqline(totaldiff[hair.trt==2])

wilcox.test(totaldiff ~ hair.trt)

rm(list=ls(all=TRUE))

### Example 5.6

wine1 <- read.csv("http://www.stat.ufl.edu/~winner/data/wine_isotope.csv")

attach(wine1); names(wine1)

wine.out <- cbind(mean(microwave), sd(microwave), mean(lowtemp), sd(lowtemp),

cor(microwave,lowtemp))

colnames(wine.out) <- c("ybar1", "s1", "ybar2", "s2", "cor(y1,y2)")

round(wine.out, 6)

## Brute Force Computations

diff <- microwave - lowtemp ## Obtain differences

n.diff <- length(diff) ## Obtain n of diffs

mean.diff <- mean(diff) ## Obtain mean of diffs

sd.diff <- sd(diff) ## Obtain SD of diffs

se.diff <- sd.diff/sqrt(length(diff)) ## Obtain Std Error of mean

t.diff <- mean.diff/se.diff ## t-statistic

pt.diff <- 2*(1-pt(abs(t.diff),n.diff-1))## P-value

t.025 <- qt(.975,n.diff-1) ## Critical t-value

muD.LO <- mean.diff-t.025*se.diff ## Lower Bound CI

muD.HI <- mean.diff+t.025*se.diff ## Upper Bound CI

diff.out <- cbind(mean.diff, sd.diff, se.diff, t.diff, pt.diff, muD.LO,

muD.HI)

colnames(diff.out) <- c("mean","SD","Std Err", "t", "P(>|t|)","LB","UB")

round(diff.out,9)

## t.test Function

t.test(microwave, lowtemp, paired=TRUE)

rm(list=ls(all=TRUE))

### Example 5.7

still <- c(157.5, 84.5, 134, 74, 108, 107.5, 106, 163, 54)

flowing <- c(164.5, 51.5, 250, 139, 113, 124.5, 95.5, 70.5, 30.5)

wilcox.test(still, flowing, paired=TRUE)

rm(list=ls(all=TRUE))

### Example 5.9

bmi.sim <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_nba_ebl_bmi.csv")

attach(bmi.sim); names(bmi.sim)

## Obtain populations and mu and sigma for each

N.nhl <- 717 # # of NHL players

N.epl <- 526 # # of EPL players

bmi.nhl <- NHL_BMI[1:N.nhl]

bmi.epl <- EPL_BMI[1:N.epl]

mu.nhl <- mean(bmi.nhl); sigma.nhl <- sd(bmi.nhl)

mu.epl <- mean(bmi.epl); sigma.epl <- sd(bmi.epl)

## Set up and run samples and ybar and s arrays

num.sim <- 100000

n.nhl <- 10

n.epl <- 10

mu.meandiff <- mu.nhl - mu.epl

sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl)

bmisim.out1 <- cbind(mu.nhl, mu.epl, mu.meandiff, sigma.nhl, sigma.epl,

n.nhl, n.epl, sigma.meandiff)

colnames(bmisim.out1) <- c("mu_nhl", "mu_epl", "mu_nhl-mu_epl",
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"sigma_nhl", "sigma_epl", "n_nhl", "n_epl", "SE{Ybar_n-Ybar_e)")

round(bmisim.out1, 2)

set.seed(1122)

ybar.s.nhl <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.epl <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(bmi.nhl,n.nhl,replace=F)

y2 <- sample(bmi.epl,n.nhl,replace=F)

ybar.s.nhl[i,1] <- mean(y1)

ybar.s.nhl[i,2] <- sd(y1)

ybar.s.epl[i,1] <- mean(y2)

ybar.s.epl[i,2] <- sd(y2)

}

## End of sampling

## Generate sample mean differences SEs and CIs

## ev=equal variances, uv=unequal variances

meandiff <- ybar.s.nhl[,1] - ybar.s.epl[,1]

se.meandiff <- sqrt(ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)

df.uv1 <- (ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)^2

df.uv2 <- ((ybar.s.nhl[,2]^2/n.nhl)^2/(n.nhl-1)) +

((ybar.s.epl[,2]^2/n.epl)^2/(n.epl-1))

df.uv <- df.uv1 / df.uv2

df.ev <- n.nhl + n.epl - 2

meandiff.LB.ev <- meandiff + qt(.025,df.ev) * se.meandiff

meandiff.UB.ev <- meandiff + qt(.975,df.ev) * se.meandiff

meandiff.LB.uv <- meandiff + qt(.025,df.uv) * se.meandiff

meandiff.UB.uv <- meandiff + qt(.975,df.uv) * se.meandiff

## Obtain Coverage rates, widths, power (H0:mu1-mu2=0)

cov.ev <- sum(meandiff.LB.ev <= mu.meandiff &

meandiff.UB.ev >= mu.meandiff) / num.sim

cov.uv <- sum(meandiff.LB.uv <= mu.meandiff &

meandiff.UB.uv >= mu.meandiff) / num.sim

width.ev <- mean(meandiff.UB.ev-meandiff.LB.ev)

width.uv <- mean(meandiff.UB.uv-meandiff.LB.uv)

ci.ev.gt0 <- sum(meandiff.LB.ev >= 0) / num.sim

ci.uv.gt0 <- sum(meandiff.LB.uv >= 0) / num.sim

ci.ev.lt0 <- sum(meandiff.UB.ev <= 0) / num.sim

ci.uv.lt0 <- sum(meandiff.UB.uv <= 0) / num.sim

bmisim.out2 <- cbind(cov.ev, cov.uv, width.ev, width.uv, ci.ev.gt0, ci.uv.gt0)

colnames(bmisim.out2) <- c("EV Cover", "UV Cover", "EV Width",

"UV Width", "EV Diff > 0", "UV Diff > 0")

round(bmisim.out2, 4)

rm(list=ls(all=TRUE))

### Example 5.10

## Read data from website and attach data frame and obtain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

f.mph <- mph[Gender=="F"]

m.mph <- mph[Gender=="M"]

mu.f <- mean(f.mph); sigma.f <- sd(f.mph)

mu.m <- mean(m.mph); sigma.m <- sd(m.mph)

num.sim <- 100000

n.f <- 6; n.m <- 6

mu.meandiff <- mu.f - mu.m

sigma.meandiff <- sqrt(sigma.f^2/n.f + sigma.m^2/n.m)

rrsim.out1 <- cbind(mu.f, mu.m, mu.meandiff, sigma.f, sigma.m,

n.f, n.m, sigma.meandiff)
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colnames(rrsim.out1) <- c("mu_f", "mu_m", "mu_f-mu_m",

"sigma_f", "sigma_m", "n_f", "n_m", "SE{Ybar_f-Ybar_m)")

round(rrsim.out1, 2)

set.seed(3344)

ybar.s.f <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.m <- matrix(rep(0,2*num.sim),ncol=2)

ranksum.fm <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(f.mph,n.f,replace=F)

y2 <- sample(m.mph,n.m,replace=F)

ybar.s.f[i,1] <- mean(y1)

ybar.s.f[i,2] <- sd(y1)

ybar.s.m[i,1] <- mean(y2)

ybar.s.m[i,2] <- sd(y2)

ranksum.fm [i,1] <- sum(rank(c(y1,y2))[1:n.f])

ranksum.fm [i,2] <- sum(rank(c(y1,y2))[(n.f+1):(n.f+n.m)])

}

meandiff <- ybar.s.f[,1] - ybar.s.m[,1]

se.meandiff <- sqrt(ybar.s.f[,2]^2/n.f + ybar.s.m[,2]^2/n.m)

df.uv1 <- (ybar.s.f[,2]^2/n.f + ybar.s.m[,2]^2/n.m)^2

df.uv2 <- ((ybar.s.f[,2]^2/n.f)^2/(n.f-1)) +

((ybar.s.m[,2]^2/n.m)^2/(n.m-1))

df.uv <- df.uv1 / df.uv2

df.ev <- n.f + n.m - 2

meandiff.LB.ev <- meandiff + qt(.025,df.ev) * se.meandiff

meandiff.UB.ev <- meandiff + qt(.975,df.ev) * se.meandiff

meandiff.LB.uv <- meandiff + qt(.025,df.uv) * se.meandiff

meandiff.UB.uv <- meandiff + qt(.975,df.uv) * se.meandiff

## Obtain Coverage rates, widths, power (H0:mu1-mu2=0 HA:mu1-mu2<0)

cov.ev <- sum(meandiff.LB.ev <= mu.meandiff &

meandiff.UB.ev >= mu.meandiff) / num.sim

cov.uv <- sum(meandiff.LB.uv <= mu.meandiff &

meandiff.UB.uv >= mu.meandiff) / num.sim

width.ev <- mean(meandiff.UB.ev-meandiff.LB.ev)

width.uv <- mean(meandiff.UB.uv-meandiff.LB.uv)

t.uv.ev <- meandiff / se.meandiff

rr.t.uv <- qt(.05,df.uv)

rr.t.ev <- qt(.05,df.ev)

rr.t1.w <- 28 ## From Wilcoxon Rank-sum w/ n1=n2=6

reject.ev <- sum(t.uv.ev <= rr.t.ev) / num.sim

reject.uv <- sum(t.uv.ev <= rr.t.uv) / num.sim

reject.wrs <- sum(ranksum.fm[,1] <= rr.t1.w) / num.sim

rrsim.out2 <- cbind(cov.ev, cov.uv, reject.ev, reject.uv, reject.wrs)

colnames(rrsim.out2) <- c("EV Cover", "UV Cover", "EV Reject",

"UV Reject", "Rank-Sum Reject")

round(rrsim.out2, 4)

rm(list=ls(all=TRUE))

### Example 5.11

## Set parameters, alpha, chosen power, for starting sample size (n0)

m1_m2_A <- -0.50

sigma <- 0.94

n0 <- 6

df <- 2 * (n0-1)

alpha <- 0.05

power.star <- 0.80

delta <- m1_m2_A / sigma

Delta <- delta / sqrt(2/n0)

crit_val <- qt(.05, df)
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power.lt <- pt(crit_val, df, Delta)

power.out1 <- cbind(alpha, power.star, n0, df, m1_m2_A, sigma, delta, Delta,

crit_val, power.lt)

colnames(power.out1) <- c("alpha", "pi*", "n", "df", "(mu1-mu2)_A", "sigma",

"delta", "Delta", "-t(.05,df)", "power")

round(power.out1,3)

## Set up holders for power and sample size and row and sample size start values

power.out <- numeric()

n.out <- numeric()

i <- 0

n <- n0

## Loop until power exceeds chosen power

while (power.lt < power.star) {

i <- i+1

n <- n+1

crit_val <- qt(alpha,2*(n-1))

power.lt <- pt(crit_val,2*(n-1),delta/sqrt(2/n))

power.out[i] <- power.lt

n.out[i] <- n

}

## Print Sample sizes and corresponding powers

cbind(n.out, power.out)

####### 2-Tailed Test

## Set parameters, alpha, chosen power, for starting sample size (n0)

m1_m2_A <- -0.50

sigma <- 0.94

n0 <- 6

df <- 2 * (n0-1)

alpha <- 0.05

power.star <- 0.80

delta <- m1_m2_A / sigma

Delta <- delta / sqrt(2/n0)

crit_val_lo <- qt(.05/2, df)

crit_val_hi <- qt(1-.05/2, df)

power.2t <- pt(crit_val_lo, df, Delta) +

1-pt(crit_val_hi, df, Delta)

power.out2 <- cbind(alpha, power.star, n0, df, m1_m2_A, sigma, delta, Delta,

crit_val_hi, power.2t)

colnames(power.out2) <- c("alpha", "pi*", "n", "df", "(mu1-mu2)_A", "sigma",

"delta", "Delta", "t(.025,df)", "power")

round(power.out2,3)

rm(list=ls(all=TRUE))

### Example 5.12

mu_DA <- 30

sigma_D <- 60

n0 <- 9

df <- n0 - 1

alpha <- .05

power.star <- 0.75

delta <- mu_DA / sigma_D

Delta <- sqrt(n0) * delta

crit_val_lo <- qt(alpha/2, df)

crit_val_hi <- qt(1-alpha/2, df)

power.2t <- pt(crit_val_lo, df, Delta) +

(1-pt(crit_val_hi, df, Delta))

power.out3 <- cbind(alpha, power.star, n0, df, m1_m2_A, sigma, delta, Delta,
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crit_val_hi, power.2t)

colnames(power.out3) <- c("alpha", "pi*", "n", "df", "(mu1-mu2)_A", "sigma",

"delta", "Delta", "t(.025,df)", "power")

round(power.out3,3)

power.out <- numeric()

n.out <- numeric()

i <- 0

n <- n0

## Loop until power exceeds chosen power

while (power.2t < power.star) {

i <- i+1

n <- n+1

crit_val_lo <- qt(.05/2,n-1)

crit_val_hi <- qt(1-.05/2,n-1)

power.2t <- pt(crit_val_lo,n-1,sqrt(n)*delta) +

(1-pt(crit_val_hi,n-1,sqrt(n)*delta))

power.out[i] <- power.2t

n.out[i] <- n

}

## Print Sample sizes and corresponding powers

cbind(n.out, power.out)

rm(list=ls(all=TRUE))

### Example 5.13

## Part 1

kanet <- read.fwf("http://www.stat.ufl.edu/~winner/data/kanet.dat",

width=c(18,2,rep(8,7)), col.names=c("name","kgroup","age","stature",

"armspan","sitheight","knlheight","cubit","leftfoot"))

attach(kanet)

cubit

cubit.mean <- as.vector(tapply(cubit,kgroup,mean))

cubit.sd <- as.vector(tapply(cubit,kgroup,sd))

L.cubit <- cubit[kgroup==1]

K.cubit <- cubit[kgroup==2]

set.seed(97531)

num.boot <- 10000

boot.ybar1 <- rep(0,num.boot)

boot.ybar2 <- rep(0,num.boot)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

for (i in 1:num.boot) {

y1 <- sample(L.cubit, n.L, replace=T)

y2 <- sample(K.cubit, n.K, replace=T)

boot.ybar1[i] <- mean(y1); boot.ybar2[i] <- mean(y2)

}

meandiff <- boot.ybar1-boot.ybar2

boot.out1 <- cbind(cubit.mean[1], cubit.mean[2], cubit.mean[1]-cubit.mean[2],

cubit.sd[1], cubit.sd[2], mean(meandiff), sd(meandiff), quantile(meandiff,.025),

quantile(meandiff,.975))

colnames(boot.out1) <- c("ybar_L", "ybar_K", "yb_L-yb_K", "s_L", "s_K",

"Mean(MeanDiff)", "SD(MD)", "Q.025(MD)", "Q.975(MD)")

round(boot.out1, 3)

## Figure 5.5

par(mfrow=c(1,2))

hist(meandiff,breaks=30)

abline(v=(mean(L.cubit)-mean(K.cubit)),lwd=2)

qqnorm(meandiff); qqline(meandiff)
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## Part 2

## Bootstrap t CIs - Chihara and Hesterberg, Sec.7.5, p.198-200

set.seed(97531)

num.boot <- 10000

boot.ybar.s.L <- matrix(rep(0,2*num.boot),ncol=2)

boot.ybar.s.K <- matrix(rep(0,2*num.boot),ncol=2)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

mean.L <- mean(L.cubit)

mean.K <- mean(K.cubit)

sd.L <- sd(L.cubit)

sd.K <- sd(K.cubit)

SE.diff <- sqrt((sd.L^2/n.L) + (sd.K^2/n.K))

for (i in 1:num.boot) {

y1 <- sample(L.cubit, n.L, replace=T)

y2 <- sample(K.cubit, n.K, replace=T)

boot.ybar.s.L[i,1] <- mean(y1); boot.ybar.s.K[i,1] <- mean(y2)

boot.ybar.s.L[i,2] <- sd(y1); boot.ybar.s.K[i,2] <- sd(y2)

}

t.star <- ((boot.ybar.s.L[,1]-boot.ybar.s.K[,1])-(mean.L-mean.K)) /

sqrt((boot.ybar.s.L[,2]^2/n.L)+(boot.ybar.s.K[,2]^2/n.L))

Q_L <- quantile(t.star, 0.025)

Q_U <- quantile(t.star, 0.975)

boot.LB <- (mean.L - mean.K) - Q_U * SE.diff

boot.UB <- (mean.L - mean.K) - Q_L * SE.diff

boot.out2 <- cbind(mean.L, mean.K, mean.L - mean.K, sd.L, sd.K, n.L, n.K, SE.diff,

Q_L, Q_U, boot.LB, boot.UB)

colnames(boot.out2) <- c("ybar_L", "ybar_K", "yb_L-yb_K", "s_L", "s_K", "n_L", "n_K",

"SE{diff}", "Q_L", "Q_U", "LB", "UB")

round(boot.out2, 3)

rm(list=ls(all=TRUE))

### Example 5.14

kanet <- read.fwf("http://www.stat.ufl.edu/~winner/data/kanet.dat",

width=c(18,2,rep(8,7)), col.names=c("name","kgroup","age","stature",

"armspan","sitheight","knlheight","cubit","leftfoot"))

attach(kanet)

L.cubit <- cubit[kgroup==1]

K.cubit <- cubit[kgroup==2]

TS.obs <- mean(L.cubit) - mean(K.cubit)

## Set up and obtain Permutation Samples

set.seed(24680)

num.perm <- 9999

TS <- rep(0,num.perm)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

n.LK <- n.L + n.K

for (i in 1:num.perm) {

perm <- sample(1:n.LK,n.LK,replace=F) # Permutation of 1:90

ybar1 <- mean(cubit[perm[1:n.L]]) # First 30 assigned L

ybar2 <- mean(cubit[perm[(n.L+1):n.LK]]) # Last 60 assigned K

TS[i] <- ybar1 - ybar2

}

## Count # permutations where |TS| >= |TS.obs| and obtain 2-tail P-value

num.exceed <- sum(abs(TS) >= abs(TS.obs))

p.val.2tail <- (num.exceed+1) / (num.perm+1)

perm.out1 <- cbind(mean(L.cubit), mean(K.cubit), TS.obs, num.exceed, p.val.2tail)



5.5. R CODE FOR CHAPTER 5 147

colnames(perm.out1) <- c("ybar_L", "ybar_K", "Test Stat", "Extreme Perms", "P-value")

round(perm.out1, 4)

## Figure 5.6

par(mfrow=c(1,1))

hist(TS,breaks=30, xlab="MeanL - MeanK",

main="Randomization Distribution for Cubit Length")

abline(v=TS.obs,lwd=2)

rm(list=ls(all=TRUE))

### Example 5.15

epl2012 <- read.csv("http://www.stat.ufl.edu/~winner/data/epl_2012_home_perm.csv",

header=T)

attach(epl2012); names(epl2012)

### Obtain Sample Size and Test Statistic (Average of d.jk)

n <- length(d.jk)

TS.obs <- mean(d.jk)

### Choose the number of samples and initialize TS, and set seed

N <- 9999; TS <- rep(0,N); set.seed(86420)

### Loop through samples and compute each TS

for (i in 1:N) {

ds.jk <- d.jk # Initialize d*.jk = d.jk

u <- runif(n)-0.5 # Generate n U(-0.5,0.5)s

u.s <- sign(u) # -1 if u.s < 0, +1 if u.s > 0

ds.jk <- u.s * ds.jk

TS[i] <- mean(ds.jk) # Compute Test Statistic for this sample

}

summary(TS)

num.exceed1 <- sum(TS >= TS.obs) # Count for 1-sided (Upper Tail) P-value

num.exceed2 <- sum(abs(TS) >= abs(TS.obs)) # Count for 2-sided P-value

p.val.1sided <- (num.exceed1 + 1)/(N+1) # 1-sided p-value

p.val.2sided <- (num.exceed2 + 1)/(N+1) # 2-sided p-value

perm.out2 <- cbind(n, TS.obs, num.exceed1, num.exceed2, p.val.1sided, p.val.2sided)

colnames(perm.out2) <- c("n", "Observed TS", "# Exceed 1-tail", "# Exceed 2-tail",

"1-tailed P-value", "2-tailed P-value")

round(perm.out2, 4)

### Draw histogram of distribution of TS, with vertical line at TS.obs

##Figure 5.7

hist(TS,breaks=seq(-.7,.7,.02), xlab="Mean Home-Away",

main="Randomization Distribution for EPL 2012 Home Field Advantage")

abline(v=TS.obs,lwd=2)

rm(list=ls(all=TRUE))
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Chapter 6

Estimating and Testing Variances

When making inferences regarding means, even if the data themselves are not normal, the sampling dis-
tribution of Y is approximately normal for reasonably large samples. When making inferences regarding
variances, the normality assumption is more stringent, and if data are not normally distributed, robust
methods are used (see Levene’s test below). First, we consider estimation and testing a single variance, then
comparing two variances, and finally comparing k ≥ 2 variances.

6.1 Estimation and Testing for a Single Variance

When the data are normal (and independent), then a multiple of the sample variance follows a Chi-square
distribution with n − 1 degrees of freedom. That is, we have the following results.

Y1, ..., Yn ∼ N(µ, σ) ⇒ (n − 1)S2

σ2
∼ χ2

n−1 ⇒ P

(

χ2
1−α/2,n−1 ≤

(n − 1)S2

σ2
≤ χ2

α/2,n−1

)

= 1 − α

This leads to a rule for a (1 − α)100% Confidence Interval for σ2 (and thus for σ), as well as a test of
whether σ2 is equal to some null value σ2

0 . Consider a Confidence Interval, then a test, where S2 is a random
variable (sample variance), and s2 is a particular value from an observed sample.

1− α = P

(

χ2
1−α/2,n−1 ≤

(n − 1)S2

σ2
≤ χ2

α/2,n−1

)

= P

(

(n − 1)S2

χ2
1−α/2,n−1

≥ σ2 ≥ (n − 1)S2

χ2
α/2,n−1

)

⇒ (1 − α)100% Confidence Interval for σ2:

[

(n − 1)s2

χ2
α/2,n−1

,
(n − 1)s2

χ2
1−α/2,n−1

]
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Figure 6.1: Chi-Square Distribution with 15 degrees of freedom

2-Tailed test: H0 : σ2 = σ2
0 HA : σ2 6= σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR :
{

X2
obs ≤ χ2

1−α/2,n−1

}

∪
{

X2
obs ≥ χ2

α/2,n−1

}

P = 2 min
[

P
(

χ2
n−1 ≤ X2

obs

)

, P
(

χ2
n−1 ≥ X2

obs

)]

Upper-Tail test: H0 : σ2 ≤ σ2
0 HA : σ2 > σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR : X2
obs ≥ χ2

α,n−1 P = P
(

χ2
n−1 ≥ X2

obs

)

Lower-Tail test: H0 : σ2 ≥ σ2
0 HA : σ2 < σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR : X2
obs ≤ χ2

1−α,n−1 P = P
(

χ2
n−1 ≤ X2

obs

)

Clearly, as in the case of a single mean, most practical situations will involve estimation rather than
testing unless there is some focal null value σ2

0 of interest. A plot of the Chi-Square distribution with 15
degrees of freedom along with χ2

.975,15 = 6.262 and χ2
.025,15 = 27.488 is given in Figure 6.1.
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Figure 6.2: Histogram of Scaled Variance and Chi-Square(15) Density - NHL BMI data

Example 6.1: NHL Body Mass Indices

For the NHL body mass index measurements, the population mean and variance are 26.500 and 1.4542 =
2.114, respectively. Then 10000 random samples of size n = 16 are obtained and s2 is computed for each
sample. The 95% Confidence Interval for σ2 is calculated for each sample. A histogram of the quantity
(n− 1)s2/σ2 is given in Figure 6.2. There are fewer values under the peak and more in the tails than would
be expected if BMI’s were exactly normally distributed. The first sample of the 10000 samples yielded a
sample variance of s2 = 1.916. This leads to the 95% Confidence Interval computed below.

n = 16 s2 = 1.916 χ2
.975,15 = 6.262 χ2

.025,15 = 27.488

[

15(1.916)

27.488
,
15(1.916)

6.262

]

≡ [1.046, 4.590]

Despite the not so wonderful Chi-Square approximation in Figure 6.2, the coverage rate of the 10000
Confidence Intervals is 92.6%, not so far from the nominal 95%.

R Output

## Output

> cbind(stddev[1], stddev[1]^2)

[,1] [,2]

[1,] 1.384297 1.916278
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> round(var.out1, 3)

sigma^2 n df Mean(X2) Var(X2) chisq(.025,15) chisq(.975,15) cover prob

[1,] 2.113 16 15 15.026 36.737 6.262 27.488 0.926

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical 6.262 11.037 14.339 18.245 27.488

Empirical 5.681 10.555 14.174 18.553 29.159

∇

6.2 Comparing Two Variances

In this section, we consider two tests. The first, based on data being normally distributed is the F -test.
The second, which does not assume normality is a Jacknife test. There are other tests that extend to more
than two groups, considered in the next section, that can also be used to compare two groups.

6.2.1 F -Test

When there are two populations, and there are independent samples, inference is made regarding the ratio
σ2

1/σ2
2. When the populations of measurements are normally distributed, the following results are obtained.

Yi1, . . . , Yini ∼ N (µi, σi) i = 1, 2 Wi =
(ni − 1)S2

i

σ2
i

∼ χ2
ni−1

W1/(n1 − 1)

W2/(n2 − 1)
=

S2
1/S2

2

σ2
1/σ2

2

∼ Fn1−1,n2−1

This leads to the following probability statements and a Confidence Interval and test for σ2
1/σ2

2.

1−α = P

(

F1−α/2,n1−1,n2−1 ≤ S2
1/S2

2

σ2
1/σ2

2

≤ Fα/2,n1−1,n2−1

)

= P

(

S2
1/S2

2

F1−α/2,n1−1,n2−1
≥ σ2

1

σ2
2

≥ S2
1/S2

2

Fα/2,n1−1,n2−1

)

Once samples are taken and s1 and s2 are calculated, a Confidence Interval and a test of whether σ2
1 = σ2

2

can be obtained.

(1 − α)100% CI for
σ2

1

σ2
2

:

[

s2
1/s2

2

Fα/2,n1−1,n2−1
,

s2
1/s2

2

F1−α/2,n1−1,n2−1

]

F1−α/2,n1−1,n2−1 =
1

Fα/2,n2−1,n1−1

2-Tailed test: H0 : σ2
1 = σ2

2 HA : σ2
1 6= σ2

2 TS : Fobs =
s2
1

s2
2
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Figure 6.3: F -distribution with ν1 = ν2 = 24

RR :
{

Fobs ≤ F1−α/2,n1−1,n2−1

}

∪
{

Fobs ≥ Fα/2,n1−1,n2−1

}

P = 2 min [P (Fn1−1,n2−1 ≤ Fobs) , P (Fn1−1,n2−1 ≥ Fobs)]

Upper Tailed test: H0 : σ2
1 ≤ σ2

2 HA : σ2
1 > σ2

2 TS : Fobs =
s2
1

s2
2

RR : {Fobs ≥ Fα,n1−1,n2−1} P = P (Fn1−1,n2−1 ≥ Fobs)

Lower Tailed test: H0 : σ2
1 ≥ σ2

2 HA : σ2
1 < σ2

2 TS : Fobs =
s2
1

s2
2

RR : {Fobs ≤ F1−α,n1−1,n2−1} P = P (Fn1−1,n2−1 ≤ Fobs)

A plot of the F -distribution with 24 numerator and 24 denominator degrees of freedom, along with
F.975,24,24 = 0.441 and F.025,24,24 = 2.269 is given in Figure 6.3.

Example 6.2: Female and Male Rock and Roll Marathon Speeds

Although the distributions are right-skewed, we will construct 10000 95% Confidence Intervals for σ2
f/σ2

m,

and tests of H0 : σ2
f = σ2

m. As was seen previously, σf = 0.831, σm = 1.058, and thus σ2
f/σ2

m = 0.617.
Despite the non-normality of the distributions, the 95% Confidence Intervals covered 0.617 in 94.87% of the
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samples. The F -test rejected the null hypothesis in 21.96% of the samples (less than F.975 in 21.85%, and
greater than F.025 in in 0.11%). In the first sample, we have the following results.

nf = nm = 25 F.975,24,24 = 0.441 F.025,24,24 = 2.269 sf = 0.748 sm = 1.277
s2
f

s2
m

= 0.343

95% Confidence Interval:

[

0.343

2.269
,
0.343

0.441

]

≡ [0.151, 0.778] TS : Fobs = 0.343

For the first of the 10000 samples, the Confidence Interval contains the true variance ratio, and the test
rejects the null hypothesis that the variances are equal (Fobs = 0.343 < F.975,25,24 = 0.441). The quantiles

given below are the empirical quantiles of
(

s2
f/s2

m

)

/0.617, which match up very well with the theoretical

quantiles of the F24,24 distribution.

R Output

## Output

> round(var.out2, 4)

sigma_F^2 sigma_M^2 Var Ratio Cover Rej Lo Rej Hi Rej Tot

[1,] 0.6906 1.1187 0.6173 0.9487 0.2185 0.0011 0.2196

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical 0.441 0.757 1.000 1.321 2.269

Empirical 0.432 0.746 0.997 1.340 2.245

∇

Example 6.3: Physical Properties of Rocks from 3 Locations in Iran

A study compared Anhydrite rock properties at 3 locations in Iran (Mehrgini, et al (2016), [38]). There
were 8 samples at each site. Data have been generated to preserve the means, standard deviations, minimums,
and maximums for the locations and are given in Table 6.1.

Obtain a 95% Confidence Interval for the variance ratio (Ghotvand/Chamsir) and test whether their
population variances are equal (sg = 45.15, sc = 30.25, ng = nc = 8).

s2
g

s2
c

=
45.152

30.252
= 2.228 F.975,7,7 = 0.200 F.025,7,7 = 4.995

95% CI for
σ2

g

σ2
c
:

[

2.228

4.995
,
2.228

0.200

]

≡ [0.446, 11.140] TS : Fobs = 2.228 RR : {Fobs ≤ 0.200}∪{Fobs ≥ 4.995}
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Ghotvand Chamshir Khersan
2800.0 2851.0 2790.0
2803.6 2879.8 2796.4
2811.0 2854.2 2817.0
2825.6 2862.1 2853.6
2847.7 2861.1 2804.4
2857.4 2918.4 2832.0
2906.7 2873.4 2854.5
2916.0 2932.0 2860.0

Table 6.1: Density of Rock Samples (kg/m3) from 3 Locations in Iran

There is insufficient evidence to conclude that the population variances differ for these two locations
(these are very small samples). The R commands and output are given below.

R Commands and Output

## Commands

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

## Using var.test directly on y.g and y.c

var.test(y.g, y.c)

## Output

> round(F.out,3)

F-stat F(.975) F(.025) P-value Lower Upper

[1,] 2.231 0.2 4.995 0.312 0.447 11.142

>

> var.test(y.g, y.c)

F test to compare two variances

data: y.g and y.c

F = 2.2306, num df = 7, denom df = 7, p-value = 0.3118

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.4465729 11.1416011

sample estimates:

ratio of variances

2.230591

∇

6.2.2 Jacknife Test

Various methods exist for testing equal variances when data are nonnormal. In particular Levene’s Test
is widely used and built in to many (if not all) statistical packages. Levene’s test will be described in the
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next section on comparing 2 or more groups. A Jacknife based test is a nonparametric test for dispersion
that does not assume equal medians (see e.g. Hollander and Wolfe (1999) [27], Section 5.2). The algorithm
works as follows.

1. Compute s2
1 and s2

2 based on the full samples.

2. Drop observations 1-at-a-time and compute y1(j), s
2
1(j), y2(j), s

2
2(j) for i = 1, 2 j = 1, . . . , ni where the

(j) represents that the jth observation was removed.

3. Compute ln
(

s2
i

)

and ln
(

s2
i(j)

)

for each observation j and sample i.

4. Compute Di(j) = ni ln
(

s2
i

)

− (ni − 1) ln
(

s2
i(j)

)

i = 1, 2; j = 1, . . . , ni

5. Compute Di and S2
Di =

∑ni

j=1

(

Di(j) − Di

)2
/(ni(ni − 1))

6. Compute zD =
(

D1 − D2

)

/
√

S2
D1 + S2

D2

7. Compare zD with the critical values of the standard normal distribution (or when n1 and n2 small,
the tn1+n2−2 distribution).

Example 6.4: Physical Properties of Rocks from 3 Locations in Iran

We apply the jacknife method to the rock density data from Example 6.3. The zD statistic is 1.021 with
P -values based on Z of .3074 and based on t14 of .3247. There is no evidence of a difference in population
variances for the two locations. The P -values are very similar to that from the F -test.

R Output

## Output

> round(cbind(var1.jack, var2.jack),2)

var1.jack var2.jack

[1,] 2145.38 949.25

[2,] 2353.96 770.72

[3,] 1676.90 1060.43

[4,] 2378.16 1005.37

[5,] 2299.44 1012.00

[6,] 2036.28 1066.28

[7,] 1445.38 531.36

[8,] 1975.66 917.07

> round(jk.out, 4)

Dbar_1 Dbar_2 S2_D1 S2_D2 z P(z) P(t)

[1,] 7.7107 6.9687 0.1904 0.338 1.0207 0.3074 0.3247

∇



6.3. COMPARING K ≥ 2 VARIANCES 157

6.3 Comparing k ≥ 2 Variances

Methods for comparing 2 or more variances include Bartlett’s Test, Hartley’s Fmax Test, Levene’s
Test, and an extension of the Jacknife Test. A comparison of various testing procedures is given in Lim
and Loh (1996) [35]. The first two tests are theoretically based on normal distributions, while Levene’s
and the Jacknife tests are robust to nonnormal distributions. Hartley’s test requires equal sample sizes.
Bartlett’s test is very general in terms of applicability to different modeling situations.

6.3.1 Bartlett’s Test

There are k estimated variances s2
1, . . . , s

2
k, and associated with the ith variance estimate is a degrees of

freedom νi. Obtain a pooled estimate of the common variance under H0 : σ2
1 = · · · = σ2

k and conduct the
test as follows for this particular case of comparing k population variances.

νi = ni − 1 ν. =

k
∑

i=1

νi s2 =

∑k
i=1 νis

2
i

ν.
C = 1 +

1

3(k − 1)

[(

k
∑

i=1

1

νi

)

−
(

1

ν.

)

]

TS : X2
B =

1

C

[

ν. ln
(

s2
)

−
k
∑

i=1

νi ln
(

s2
i

)

]

RR : X2
B ≥ χ2

α,k−1 P = P
(

χ2
k−1 ≥ X2

B

)

Bartlett’s test can be used in many different applications for comparing variances, for instance it can
be used to test whether variances differ when linear regression models are being fit separately for different
groups. The theoretical foundation of the method is that the distributions are normal.

Example 6.5: Physical Properties of Rocks from 3 Locations in Iran

We extend the comparison of two regions to comparing all three regions. We find that there is no
evidence to reject H0 : σ2

g = σ2
c = σ2

k, with a P -value of .398.

ng = nc = nk = 8 νg = νc = νk = 7 ν. = 21 s2
g = 2038.894 s2

c = 914.060 s2
k = 783.676

s2 =
7(2038.894)+ 7(914.060)+ 7(783.676)

21
= 1245.543 C = 1+

1

3(3 − 1)

[(

1

7
+

1

7
+

1

7

)

− 1

21

]

= 1.0653

21 ln(1245.543)−(7 ln(2038.894)+ 7 ln(914.060) + 7 ln(783.676)) = 1.9595 TS : X2
B =

(

1

1.0653

)

(1.9595) = 1.843

RR : X2
B ≥ χ2

.05,3−1 = 5.991 P = P
(

χ2
2 ≥ 1.843

)

= .398
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R Commands and Output

## Commands

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

n.g <- length(y.g); n.c <- length(y.c); n.k <- length(y.k)

## Using bartlett.test directly on y.g, y.c, and y.k

## Combine y.g, y.c, y.k into a single variable

y <- c(y.g, y.c, y.k)

## Create a variable that contains the locations of elements

loc.y <- c(rep(1,n.g),rep(2,n.c),rep(3,n.k))

bartlett.test(y ~ loc.y)

## Output

> bartlett.test(y ~ loc.y)

Bartlett test of homogeneity of variances

data: y by loc.y

Bartlett’s K-squared = 1.8425, df = 2, p-value = 0.398

∇

6.3.2 Hartley’s Fmax Test

This test is very easy to implement, but is based on normally distributed data, equal sample sizes, and
requires a special table. The table is available on the class website. Critical values are obtained for α = 0.05
or 0.01, the sample variance degrees of freedom within groups (n− 1) and the number of groups k. The test
statistic is simply the ratio of the largest to smallest sample variance among the groups. When k = 2, it is
equivalent to the F -test covered previously.

Example 6.6: Physical Properties of Rocks from 3 Locations in Iran

Based on α = 0.05, k = 3, and n − 1 = 8 − 1 = 7, we find the critical value is 6.94, so we reject
H0 : σ2

g = σ2
c = σ2

k if the ratio of the largest to smallest sample variance exceeds 6.94. For this example,
Fmax = 2038.894/783.676 = 2.60. Again, there is no evidence that the population variances of rock densities
differ among the 3 locations.

∇

6.3.3 Levene’s Test

Levene’s test is not based on data being normally distributed and is robust to outliers. The test makes use
of the Analysis of Variance (see Chapter 7) on absolute deviations from the group median, and is described
below where n. = n1 + · · ·+ nk.
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zij = |yij − ỹi| i = 1, . . . , k; j = 1, . . . , ni ỹi = median (yi1, . . . , yini) zi. =

∑ni

j=1 zij

ni
z.. =

∑k
i=1

∑ni

j=1 zij

n.

TS : FL =

∑k
i=1 ni (zi. − z..)

2
/(k − 1)

∑k
i=1

∑ni

j=1 (zij − zi.)
2
/(n. − k)

RR : FL ≥ Fα,k−1,n.−k P = P (Fk−1,n.−k) ≥ FL

Note that while variances are based on squared deviations from the mean, Levene’s test is based on
absolute deviations from the median. Some versions do use the mean in place of the median.

Example 6.7: Physical Properties of Rocks from 3 Locations in Iran

The computations needed for Levene’s test are given in Table 6.2 for the Iran rock density data. There
are k = 3 groups (locations) and n. = 8 + 8 + 8 = 24 total observations. Again, we find no evidence of
population variances being different.

z.. =
35.95 + 21.9 + 24.0375

3
= 27.296

k
∑

i=1

ni (zi. − z..)
2

= 8
[

(35.95− 27.296)2 + (21.9− 27.296)2 + (24.0375− 27.296)2
]

= 917.01

k
∑

i=1

ni
∑

j=1

(zij − zi.)
2 = 4632.42 + 3574.04 + 881.02 = 9087.48

TS : FL =
917.01/(3− 1)

9087.48/(24− 3)
=

458.505

432.737
= 1.060 RR : FL ≥ F.05,2,21 = 3.4668 P = P (F2,21 ≥ 1.090) = .3644

R Commands and Output

## Commands

## Using levene.test directly on y.g, y.c, and y.k

## Combine y.g, y.c, y.k into a single variable

y <- c(y.g, y.c, y.k)

## Create a variable that contains the locations of elements

loc.y <- c(rep(1,n.g),rep(2,n.c),rep(3,n.k))

loc.y <- factor(loc.y)

install.packages("car")
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id(j) Ghotvand(i = 1) Chamshir(i = 2) Khersan(i = 3) z1j z2j z3j

1 2800 2851 2790 36.65 16.75 34.5
2 2803.6 2879.8 2796.4 33.05 12.05 28.1
3 2811 2854.2 2817 25.65 13.55 7.5
4 2825.6 2862.1 2853.6 11.05 5.65 29.1
5 2847.7 2861.1 2804.4 11.05 6.65 20.1
6 2857.4 2918.4 2832 20.75 50.65 7.5
7 2906.7 2873.4 2854.5 70.05 5.65 30
8 2916 2932 2860 79.35 64.25 35.5

Median 2836.65 2867.75 2824.5 29.35 12.8 28.6

Mean 2846 2879 2825.988 35.95 21.9 24.0375
SumSq 14272.26 6398.42 5485.729 4632.42 3574.04 881.0187

Variance 2038.894 914.06 783.6755 661.7743 510.5771 125.8598

Table 6.2: Density of Rock Samples (kg/m3) from 3 Locations in Iran - Calculations for Levene’s test

library(car)

leveneTest(y, loc.y, "median")

## Output

> round(levene.out,4)

F-stat DF1 DF2 F(.05) P-value

[1,] 1.0595 2 21 3.4668 0.3644

> leveneTest(y, loc.y, "median")

Levene’s Test for Homogeneity of Variance (center = "median")

Df F value Pr(>F)

group 2 1.0595 0.3644

21

6.3.4 Jacknife Test

This extends the 2-sample Jacknife test to k ≥ 2 groups. Similar notation is used, where for each group
(j = 1, . . . , k), the sample mean and variance is obtained with each observation deleted one-at-a-time and
used to compute an F -statistic in a manner similar to Levene’s test. Let s2

1, . . . , s
2
k be the sample variances

for the full samples for the k groups. The test is conducted as follows.

yi(j) =

∑

j′ 6=j yij′

ni − 1
s2
i(j) =

∑

j′ 6=j

(

yij′ − yi(j)

)2

ni − 2
Dij = ni ln

(

s2
i

)

−(ni−1) ln
(

s2
i(j)

)

i = 1, . . . , k; j = 1, . . . , ni

Di. =

∑ni

j=1 Dij

ni
i = 1, . . . , k D.. =

∑k
i=1

∑ni

j=1 Dij

n.

TS : FJ =

∑k
i=1 ni

(

Di. − D..

)2
/(k − 1)

∑k
i=1

∑ni

j=1

(

Dij − Di.

)2
/(n. − k)

RR : FJ ≥ Fα,k−1,n.−k P = P (Fk−1,n.−k) ≥ FJ



6.4. R CODE FOR CHAPTER 6 161

The test statistic is FJ = 1.3558 with a P -value of .2794. This result is consistent with the other
methods.

R Output

## Output

> round(F.J.out, 4)

F-stat df1 df2 F(.05) P-value

[1,] 1.3558 2 21 3.4668 0.2794

∇

6.4 R Code for Chapter 6

### Chapter 6

### Figure 6.1

## Chi-square Distribution

y <- seq(0,40,.01)

df <- 15

fy <- dchisq(y, df)

X2.LO <- qchisq(.025, df)

X2.HI <- qchisq(.975, df)

plot(y,fy,type="l", xlim=c(0,40),

xlab="x", ylab="f(x)",

## main=expression(paste(chi^2,"(",nu,"=15) Distribution")))

main=("Chi-Square Distribution with 15 Degrees of Freedom"))

abline(v=X2.LO, lwd=2)

abline(v=X2.HI, lwd=2)

text(3, 0.06, substitute(chi[.975]^2==X2.LO,

list(X2.LO=round(X2.LO,3))), cex=0.9)

text(30, 0.06, substitute(chi[.025]^2==X2.HI,

list(X2.HI=round(X2.HI,3))), cex=0.9)

rm(list=ls(all=TRUE))

### Example 6.1

nhl_ht_wt <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_ht_wt.csv",

header=T)

attach(nhl_ht_wt); names(nhl_ht_wt)

set.seed(54321)

bmi <- 703*Weight/(Height^2) ### Create bmi from Height and Weight

N.bmi <- length(bmi) ### Population size

mu.bmi <- mean(bmi) ### Population mean

sigma.bmi <- sd(bmi)*sqrt((N.bmi-1)/N.bmi) ### Population SD (Uses N as denominator, not N-1)

ybar <- numeric(10000); stddev <- numeric(10000) # Create vectors to save sample means, SDs

for (i in 1:10000) {

y <- sample(bmi, 16) ### Sample n=16 bmi w/out replacement

ybar[i] <- mean(y)



162 CHAPTER 6. ESTIMATING AND TESTING VARIANCES

stddev[i] <- sd(y)

}

cbind(stddev[1], stddev[1]^2)

X2 <- (16-1)*(stddev/sigma.bmi)^2

# mean(ybar); sd(ybar)

q.emp <- quantile(X2,c(.025,.25,.5,.75,.975))

q.the <- qchisq(c(.025,.25,.5,.75,.975),16-1)

cover <- sum(X2>=qchisq(.025,15) & X2<=qchisq(.975,15)) / length(X2)

var.out1 <- cbind(sigma.bmi^2, 16, 16-1, mean(X2), var(X2), qchisq(.025,15), qchisq(.975,15), cover)

colnames(var.out1) <- cbind("sigma^2", "n", "df", "Mean(X2)", "Var(X2)", "chisq(.025,15)",

"chisq(.975,15)", "cover prob")

round(var.out1, 3)

q.out <- rbind(q.the, q.emp)

rownames(q.out) <- c("Theoretical", "Empirical")

colnames(q.out) <- c("10%", "25%", "50", "75%", "90%")

round(q.out, 3)

## Figure 6.2

yx2lim <- 1.1*10000*max(dchisq(0:100,16-1))

hist(X2[X2 <= 100],breaks=0:100, ylim=c(0,yx2lim),

main=expression(paste("Sampling Distribution of ",X^2," - BMI Data")))

lines(0:100,1*10000*dchisq(0:100,16-1))

rm(list=ls(all=TRUE))

### Figure 6.3

### F-distribution

y <- seq(0,5,.01)

df1 <- 24; df2 <- 24

fy <- df(y, df1, df2)

F.LO <- qf(.025, df1, df2)

F.HI <- qf(.975, df1, df2)

plot(y,fy,type="l", xlim=c(0,5),

xlab="x", ylab="f(x)",

## main=expression(paste(chi^2,"(",nu,"=15) Distribution")))

main=("F Distribution with 24,24 Degrees of Freedom"))

abline(v=F.LO, lwd=2)

abline(v=F.HI, lwd=2)

text(0.05, 0.2, substitute(F[.975]==F.LO,

list(F.LO=round(F.LO,3))), cex=0.9)

text(2.5, 0.2, substitute(F[.025]^2==F.HI,

list(F.HI=round(F.HI,3))), cex=0.9)

rm(list=ls(all=TRUE))

### Example 6.2

rr.mar <- read.csv("http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv",

header=T)

attach(rr.mar); names(rr.mar)

f.mph <- mph[Gender=="F"] ### Subsets Females from population

m.mph <- mph[Gender=="M"] ### Subsets Males from population

f.mu <- mean(f.mph)

f.sigma <- sd(f.mph)

m.mu <- mean(m.mph)

m.sigma <- sd(m.mph)

var.ratio <- (f.sigma/m.sigma)^2
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## Begin sampling

set.seed(45678)

ybar.f <- numeric(10000); sd.f <- numeric(10000)

ybar.m <- numeric(10000); sd.m <- numeric(10000)

for (i in 1:10000) {

y.f <- sample(f.mph, 25)

y.m <- sample(m.mph, 25)

ybar.f[i] <- mean(y.f); sd.f[i] <- sd(y.f)

ybar.m[i] <- mean(y.m); sd.m[i] <- sd(y.m)

}

cbind(sd.f[1], sd.m[1])

F.fm <- ((sd.f**2)/(f.sigma**2))/((sd.m**2)/(m.sigma**2))

q.emp <- quantile(F.fm,c(.025,.25,.5,.75,.975))

q.the <- qf(c(.025,.25,.5,.75,.975),25-1,25-1)

CI.LO <- (sd.f/sd.m)^2/qf(.975,24,24)

CI.HI <- (sd.f/sd.m)^2/qf(.025,24,24)

cover <- sum(CI.LO <= var.ratio & CI.HI >= var.ratio) / 10000

F.stat <- (sd.f/sd.m)^2

rej.LO <- sum(F.stat <= qf(.025,24,24)) / 10000

rej.HI <- sum(F.stat >= qf(.975,24,24)) / 10000

var.out2 <- cbind(f.sigma^2, m.sigma^2, var.ratio, cover, rej.LO, rej.HI, rej.LO+rej.HI)

colnames(var.out2) <- c("sigma_F^2", "sigma_M^2", "Var Ratio", "Cover", "Rej Lo",

"Rej Hi", "Rej Tot")

round(var.out2, 4)

q.out <- rbind(q.the, q.emp)

rownames(q.out) <- c("Theoretical", "Empirical")

colnames(q.out) <- c("10%", "25%", "50", "75%", "90%")

round(q.out, 3)

rm(list=ls(all=TRUE))

### Example 6.3

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

## Brute Force

n.g <- length(y.g); n.c <- length(y.c)

s2.g <- var(y.g); s2.c <- var(y.c)

F.025 <- qf(.975,n.g-1,n.c-1)

F.975 <- qf(.025,n.g-1,n.c-1)

F.obs <- s2.g / s2.c

F.LB <- F.obs / F.025

F.UB <- F.obs / F.975

F.P <- 2\min(pf(F.obs,n.g-1,n.c-1),1-pf(F.obs,n.g-1,n.c-1))

F.out <- cbind(F.obs, F.975, F.025, F.P, F.LB, F.UB)

colnames(F.out) <- c("F-stat", "F(.975)", "F(.025)","P-value", "Lower", "Upper")

round(F.out,3)

## Using var.test directly on y.g and y.c

var.test(y.g, y.c)

rm(list=ls(all=TRUE))

### Example 6.4

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

n1 <- length(y.g) ## Sample size for group 1

n2 <- length(y.c) ## Sample size for group 2
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var1 <- var(y.g) ## Sample variance for group 1

var2 <- var(y.c) ## Sample variance for group 2

var1.jack <- rep(0,n1) ## Holder for jacknifed variances for grp 1

var2.jack <- rep(0,n2) ## Holder for jacknifed variances for grp 2

for (i1 in 1:n1) var1.jack[i1] <- var(y.g[-i1]) ## Jacknifed var1

for (i2 in 1:n2) var2.jack[i2] <- var(y.c[-i2]) ## Jacknifed var2

round(cbind(var1.jack, var2.jack),2)

D1 <- n1*log(var1) - (n1-1)*log(var1.jack) ## D1 stat for each rock

D2 <- n2*log(var2) - (n2-1)*log(var2.jack) ## D2 stat for each rock

D1.mean <- mean(D1)

D2.mean <- mean(D2)

D1.var_n <- var(D1)/n1

D2.var_n <- var(D2)/n2

z.D <- (D1.mean-D2.mean) / sqrt(D1.var_n+D2.var_n)

p.z <- 2*(1-pnorm(abs(z.D),0,1))

p.t <- 2*(1-pt(abs(z.D),n1+n2-2))

jk.out <- cbind(D1.mean, D2.mean, D1.var_n, D2.var_n, z.D, p.z, p.t)

colnames(jk.out) <- c("Dbar_1", "Dbar_2", "S2_D1", "S2_D2", "z", "P(z)", "P(t)")

round(jk.out, 4)

rm(list=ls(all=TRUE))

### Example 6.5

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

## Brute Force

num.groups <- 3

n.g <- length(y.g); n.c <- length(y.c); n.k <- length(y.k)

(s2.g <- var(y.g)); (s2.c <- var(y.c)); (s2.k <- var(y.k))

df.g <- n.g-1; df.c <- n.c-1; df.k <- n.k-1

(s2 <- (df.g*s2.g + df.c*s2.c + df.k*s2.k) / (df.g + df.c + df.k))

df <- df.g + df.c + df.k

(C.bart <- 1 + (1/(3*(num.groups-1))) * ((1/df.g + 1/df.c + 1/df.k) - 1/df))

X2.bart <- (1/C.bart)*(df*log(s2) -

(df.g*log(s2.g) + df.c*log(s2.c) + df.k*log(s2.k)))

X2.05 <- qchisq(.95,num.groups-1)

X2.p <- 1 - pchisq(X2.bart, num.groups-1)

bart.out <- cbind(X2.bart, num.groups-1, X2.05, X2.p)

colnames(bart.out) <- c("X2-stat", "DF", "X2(.05)", "P-value")

round(bart.out,3)

## Using bartlett.test directly on y.g, y.c, and y.k

## Combine y.g, y.c, y.k into a single variable

y <- c(y.g, y.c, y.k)

## Create a variable that contains the locations of elements

loc.y <- c(rep(1,n.g),rep(2,n.c),rep(3,n.k))

bartlett.test(y ~ loc.y)

rm(list=ls(all=TRUE))

### Example 6.7

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

## Brute Force

num.groups <- 3

n.g <- length(y.g); n.c <- length(y.c); n.k <- length(y.k)

med.g <- median(y.g); med.c <- median(y.c); med.k <- median(y.k)
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z.g <- abs(y.g-med.g); z.c <- abs(y.c-med.c); z.k <- abs(y.k-med.k)

mean.z.g <- mean(z.g); mean.z.c <- mean(z.c); mean.z.k <- mean(z.k)

mean.z <- (n.g*mean.z.g + n.c*mean.z.c + n.k*mean.z.k) / (n.g+n.c+n.k)

ssz.between <- n.g*(mean.z.g-mean.z)^2 + n.c*(mean.z.c-mean.z)^2 +

n.k*(mean.z.k-mean.z)^2

ssz.within <- sum((z.g-mean.z.g)^2) + sum((z.c-mean.z.c)^2) +

sum((z.k-mean.z.k)^2)

df.between <- num.groups-1

df.within <- (n.g+n.c+n.k) - num.groups

F.L <- (ssz.between/df.between) / (ssz.within/df.within)

F.05 <- qf(.95,df.between,df.within)

F.p <- 1-pf(F.L,df.between,df.within)

levene.out <- cbind(F.L,df.between,df.within,F.05,F.p)

colnames(levene.out) <- c("F-stat", "DF1","DF2", "F(.05)", "P-value")

round(levene.out,4)

## Using levene.test directly on y.g, y.c, and y.k

## Combine y.g, y.c, y.k into a single variable

y <- c(y.g, y.c, y.k)

## Create a variable that contains the locations of elements

loc.y <- c(rep(1,n.g),rep(2,n.c),rep(3,n.k))

loc.y <- factor(loc.y)

install.packages("car")

library(car)

leveneTest(y, loc.y, "median")

rm(list=ls(all=TRUE))

### Example 6.8

y.g <- c(2811.0, 2857.4, 2906.7, 2847.7, 2825.6, 2803.6, 2916.0, 2800.0)

y.c <- c(2854.2, 2918.4, 2873.4, 2861.1, 2862.1, 2879.8, 2932.0, 2851.0)

y.k <- c(2817.0, 2832.0, 2854.5, 2804.4, 2853.6, 2796.4, 2860.0, 2790.0)

n1 <- length(y.g) ## Sample size for group 1

n2 <- length(y.c) ## Sample size for group 2

n3 <- length(y.k) ## Sample size for group 3

n.all <- n1 + n2 + n3

num.grp <- 3

var1 <- var(y.g) ## Sample variance for group 1

var2 <- var(y.c) ## Sample variance for group 2

var3 <- var(y.k) ## Sample variance for group 3

var1.jack <- rep(0,n1) ## Holder for jacknifed variances for grp 1

var2.jack <- rep(0,n2) ## Holder for jacknifed variances for grp 2

var3.jack <- rep(0,n3) ## Holder for jacknifed variances for grp 3

for (i1 in 1:n1) var1.jack[i1] <- var(y.g[-i1]) ## Jacknifed var1

for (i2 in 1:n2) var2.jack[i2] <- var(y.c[-i2]) ## Jacknifed var2

for (i3 in 1:n3) var3.jack[i3] <- var(y.k[-i3]) ## Jacknifed var3

round(cbind(var1.jack, var2.jack, var3.jack),2)

D1 <- n1*log(var1) - (n1-1)*log(var1.jack) ## D1 stat for each rock

D2 <- n2*log(var2) - (n2-1)*log(var2.jack) ## D2 stat for each rock

D3 <- n3*log(var3) - (n3-1)*log(var3.jack) ## D3 stat for each rock

D1.mean <- mean(D1)

D2.mean <- mean(D2)

D3.mean <- mean(D3)

D.mean <- (n1*D1.mean + n2*D2.mean + n3*D3.mean) / (n.all)

df1 <- num.grp-1; df2 <- n.all-num.grp

SS1 <- n1*(D1.mean-D.mean)^2 + n2*(D2.mean-D.mean)^2 + n3*(D3.mean-D.mean)^2

SS2 <- sum((D1-D1.mean)^2) + sum((D2-D2.mean)^2) + sum((D3-D3.mean)^2)

F.J <- (SS1/df1) / (SS2/df2)

F.J.RR <- qf(.95,df1,df2)

F.J.p <- 1-pf(F.J,df1,df2)

F.J.out <- cbind(F.J,df1,df2,F.J.RR,F.J.p)

colnames(F.J.out) <- c("F-stat","df1","df2","F(.05)","P-value")
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round(F.J.out, 4)

rm(list=ls(all=TRUE))



Chapter 7

Experimental Design and the Analysis
of Variance

Chapter 5 covered methods to make comparisons between the means of a numeric response variable for two
treatments or groups. The cases were considered where the experiment was conducted as an independent
samples (aka parallel groups, between subjects) design, as well as a paired (aka crossover, within subjects)
design. Procedures were covered that assume normally distributed data, as well as nonparametric methods
that can be used when data are not normally distributed.

This chapter will introduce methods that can be used to compare more than two groups (that is, when
the explanatory variable has more than two levels). In this chapter, we will refer to explanatory variable as
a factor, and their levels as treatments. The following situations will be covered.

• 1–Factor, Independent Samples Designs (Completely Randomized Design)

• 1– Treatment Factor, Paired Designs (Randomized Block Design, Latin Square)

In all situations, there will be a numeric response variable, and at least one categorical (or possibly
numeric, with several levels) independent variable. The goal will always be to compare mean (or median)
responses among several populations. When all factor levels for a factor are included in the experiment, the
factor is said to be fixed. When a sample of a larger population of factor levels are included, the factor is
said to be random. Only fixed effects designs are considered here.

7.1 Completely Randomized Design (CRD) For Independent Sam-

ples

In the Completely Randomized Design, there is one factor that is controlled. This factor has k levels (which
are often treatment groups), and ni units are measured for the ith level of the factor. Observed responses

167
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are defined as yij, representing the measurement on the jth experimental unit (subject), receiving the ith

treatment. We will write this in model form based on random responses as follows where the factor is fixed
(all levels of interest are included in the experiment).

Yij = µ + αi + εij = µi + εij i = 1, . . . , k; j = 1, . . . , ni

Here, µ is the overall mean measurement across all treatments, αi is the effect of the ith treatment (µi =
µ + αi), and εij is a random error component that has mean 0 and variance σ2. This εij allows for the
fact that there will be variation among the measurements of different subjects (units) receiving the same
treatment. A common parameterization that has nice properties is to assume

∑

niαi = 0.

Of interest to the experimenter is whether or not there is a treatment effect, that is do any of the
levels of the treatment provide higher (lower) mean response than other levels. This can be hypothesized
symbolically as H0 : α1 = α2 = · · · = αk = 0 (no treatment effect) against the alternative HA : Not all αi =
0 (treatment effects exist). Note that if α1 = α2 = · · · = αk = 0 then µ1 = · · · = µk.

As with the case where there are two treatments to compare, tests based on the assumption that the k
populations are normal (mound–shaped) will be used, either assuming equal or unequal variances. Also, an
alternative test (based on ranks) that does not assume that the k populations are normal is used to compare
poulation medians.

7.1.1 Tests Based on Normally Distributed Data

When the underlying populations of measurements that are to be compared are approximately normal,
with equal variances, the F –test is appropriate. To conduct this test, partition the total variation in the
sample data to variation within and among treatments. This partitioning is referred to as the Analysis
of Variance and is an important tool in many statistical procedures. First, define the following items,
based on random outcomes Yij where i indexes treatment and j represents the replicate number, with ni

observations for treatment i and n. = n1 + · · ·+ nk.

Yij ∼ N (µi, σ) ⇒ E
{

Y 2
ij

}

= µ2
i + σ2

Y i. =

∑ni

j=1 Yij

ni
Y i. ∼ N

(

µi,
σ√
ni

)

⇒ E
{

Y
2

i.

}

= µ2
i +

σ2

ni

Y .. =

∑k
i=1

∑ni

j=1 Yij

n.
=

∑k
i=1 niY i.

n.

Total (Corrected) Sum of Squares: TSS =

k
∑

i=1

ni
∑

j=1

(

Yij − Y ..

)2
dfTotal = n. − 1

Between Treatment Sum of Squares: SST =

k
∑

i=1

ni
∑

j=1

(

Y i. − Y ..

)2
=

k
∑

i=1

ni

(

Y i. − Y ..

)2
dfT = k − 1
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Within Treatment (Error) Sum of Squares: SSE =

k
∑

i=1

ni
∑

j=1

(

Yij − Y i.

)2
=

k
∑

i=1

(ni − 1)S2
i dfE = n. − k

Under the null hypothesis of no treatment effects (µ1 = · · · = µk = µ), or equivalently (τ1 = · · · = τk = 0)
the following results are obtained, where MST and MSE are mean squares for treatments and error,
respectively.

E {SST} = E

{

k
∑

i=1

ni

(

Y i. − Y ..

)2

}

= E

{

k
∑

i=1

ni

(

Y
2
i. − Y

2
..

)

}

=

=

k
∑

i=1

ni

[(

µ2 +
σ2

ni

)

−
(

µ2 +
σ2

n.

)]

= (k − 1)σ2 ⇒ E {MST} = E

{

SST

k − 1

}

= σ2

E {SSE} = E

{

k
∑

i=1

ni
∑

k=1

(

Yij − Y i.

)2

}

= E

{

k
∑

i=1

(ni − 1)S2
i

}

= (n.−k)σ2 ⇒ E {MSE} = E

{

SSE

n. − k

}

= σ2

Under the null hypothesis of no treatment effects, E {MST} = E {MSE} = σ2 and the ratio MST/MSE
follows the F -distribution with k − 1 numerator and n. − k denominator degrees of freedom. When the null
is not true and not all αi = 0, then the ratio follows the non-central F -distribution with parameter λ given
below.

MST

MSE
∼ Fν1,ν2,λ λ =

∑k
i=1 niα

2
i

σ2
ν1 = k − 1 ν2 = n. − k

Once samples have been obtained and the yij are observed, the F -test is conducted as follows.

yi. =

∑ni

j=1 yij

ni

si =

√

∑ni

j=1(yij − yi.)
2

ni − 1

n. = n1 + · · ·+ nk

y.. =

∑k
i=1

∑ni

j=1 yij

n.

TSS =

k
∑

i=1

ni
∑

j=1

(yij − y..)
2
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SST =

k
∑

i=1

ni (yi. − y..)
2

SSE =

k
∑

i=1

(ni − 1)s2
i

Here, yi. and si are the mean and standard deviation of measurements in the ith treatment group, and
y.. and n. are the overall mean and total number of all measurements. TSS is the total variability in the data
(ignoring treatments), SST measures the variability in the sample means among the treatments (weighted
by the sample sizes), and SSE measures the variability within the treatments.

Note that the goal is to determine whether or not the population means differ. If they do, we would
expect SST to be large, since that sum of squares is measuring differences in the sample means. A test for
treatment effects is conducted after constructing an Analysis of Variance table, as shown in Table 7.1. In
that table, there are sums of squares for treatments (SST ), for error (SSE), and total (TSS). Also, there
are degrees of freedom, which represent the number of “independent” terms in the sum of squares. Then, the
mean squares, are sums of squares divided by their degrees of freedom. Finally, the F –statistic is computed
as F = MST/MSE. This will serve as the test statistic. Note that MSE is an extension of the pooled
variance computed in Chapter 5 for two groups, and often it is written as MSE = s2.

ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

TREATMENTS SST =
∑k

i=1 ni (yi. − y..)
2

k − 1 MST = SST
k−1 F = MST

MSE

ERROR SSE =
∑k

i=1 (ni − 1) s2
i n. − k MSE = SSE

n.−k

TOTAL TSS =
∑k

i=1

∑ni

j=1 (yij − y..)
2

n. − 1

Table 7.1: The Analysis of Variance Table for the Completely Randomized (Parallel Groups) Design

The formal method of testing this hypothesis is as follows.

1. H0 : α1 = · · · = αk = 0 (µ1 = · · · = µk) (No treatment effect)

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE

4. R.R.: Fobs ≥ Fα,k−1,n.−k

5. p-value: P (Fk−1,n.−k ≥ Fobs)

Example 7.1: Body Mass Indices of NHL, NBA, and EPL, Players
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Figure 7.1: Histograms of NHL, NBA, and EPL Body Mass Indices

Consider an extension of the Body Mass Index analysis to include National Basketball Association
players. The populations are NHL (i = 1), NBA (i = 2), and EPL (i = 3). Histograms for the three
populations are given in Figure 7.1. The population sizes, means, and standard deviations are given below.

N1 = 707 N2 = 505 N3 = 526 µ1 = 26.50 µ2 = 24.74 µ3 = 23.02 σ1 = 1.45 σ2 = 1.72 σ3 = 1.71

While the population standard deviations (and thus variances) are not all equal, a “pooled” variance is
used for computational purposes. Also, µ and αi are computed.

σ2 =
717

(

1.452
)

+ 505
(

1.722
)

+ 526
(

1.712
)2

717 + 505 + 526
= 2.60 µ =

717(26.50)+ 505(24.74)+ 526(23.02)

717 + 505 + 526
= 24.94

α1 = 26.50− 24.94 = 1.56 α2 = 24.74− 24.94 = −0.20 α3 = 23.02− 24.94 = −1.92

Note that these αi are obtained under the assumption
∑

Niαi = 0. If samples of sizes n1 = n2 = n3 = 4
and n1 = n2 = n3 = 12 are taken, the following F -distributions for the ratio MST/MSE are obtained.

ni = 4 :
MST

MSE
∼ Fν1,ν2,λ1

λ1 =
4
(

1.562 + (−0.20)2 + (−1.92)2
)

2.60
= 9.48 ν1 = 3−1 = 2 ν2 = 12−3 = 9
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Figure 7.2: Central and non-central F -distributions for Body Mass Index example

ni = 12 :
MST

MSE
∼ Fν1,ν2,λ2

λ2 =
12
(

1.562 + (−0.20)2 + (−1.92)2
)

2.60
= 28.43 ν1 = 3−1 = 2 ν2 = 36−3 = 33

When n1 = n2 = n3 = 4, the critical value for testing H0 : α1 = α2 = α3 = 0 at α = 0.05 significance
level is F.05,2,9 = 4.256. The power of the F -test under this configuration is π1 = .636. When n1 = n2 =
n3 = 12, the critical value for testing H0 : α1 = α2 = α3 = 0 at α = 0.05 significance level is F.05,2,33 = 3.285.
The power of the F -test under this configuration is π2 = .997. The central F -densities and the non-central
F -densities with λ1 = 9.48 and λ2 = 28.43 for the denominator degrees of freedom of 9 and 33 are given in
Figure 7.2.

Based on 100000 random sample of size ni = 4 from each league, the F -test rejected the null hypothesis
of no league differences in 63.4% of the samples. With samples of size ni = 12, 99.7% of the F -tests
rejected the null hypothesis. Despite the fact that the populations of measurements are not exactly normally
distributed with equal variances, the test performs as expected. Computations for the first samples of size
n1 = n2 = n3 = 12 are given below.

y1. = 26.666 y2. = 24.986 y3. = 22.449 y.. = 24.701 s1 = 1.968 s2 = 1.762 s3 = 1.149

SST = 12
[

(26.666− 24.701)2 + (24.986− 24.701)2 + (22.449− 24.701)2
]

= 108.167
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dfT = 3 − 1 = 2 MST =
108.167

2
= 54.084

SSE = (12− 1)
[

1.9682 + 1.7622 + 1.1492
]

= 91.277 dfE = 3(12) − 3 = 33 MSE =
91.277

33
= 2.766

H0 : µ1 = µ2 = µ3 TS : Fobs =
54.084

2.766
= 19.55 RR : Fobs ≥ 3.285 P = P (F2,33 ≥ 19.55) < .0001

R Output

### Output

> round(ftest.out, 4)

df_T df_E F(>05) P(F_obs>F(.05))

[1,] 2 33 3.2849 0.9942

> F[1]

[1] 19.55004

> cbind(ybar1[1], ybar2[1], ybar3[1], ybar[1], sd1[1], sd2[1], sd3[1])

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 26.66637 24.98606 22.44932 24.70058 1.968428 1.762007 1.148883

∇

Example 7.2: Comparison of 5 Mosquito Repellents

A study compared k = 5 mosquito repellent patches on fabric for soldiers in military operations (Bhat-
nagar and Mehta (2007), [8]). The 5 treatments were: Odomos (1), Deltamethrin (2), Cyfluthrin (3),
Deltamethrin+Odomos (4), and Cyfluthrin+Odomos (5), with ni = 30 subjects per treatment, and a to-
tal of n. = 150 measurements. The response observed was the “Per Man-Hour Mosquito Catch.” Sample
statistics are given in Table 7.2, and the Analysis of Variance is given in Table 7.3. Data that have been
generated to match the means and standard deviations are plotted in Figure 7.3. The overall mean (long
line) and individual treatment means (short lines) are included.

Treatment ni yi. si

Odomos (1) 30 7.900 3.367
Deltamethrin (2) 30 8.133 3.461
Cyfluthrin (3) 30 8.033 3.011
D+O(4) 30 6.333 3.122
C+O (5) 30 5.367 3.068

Table 7.2: Sample statistics for Mosquito Repellent study

1. H0 : α1 = α2 = α3 = α4 = α5 = 0 (µ1 = µ2 = µ3 = µ4 = µ5) (No treatment effect)
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ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square Fobs F.05 P

TREATMENTS 4 184.650 46.163 4.478 2.434 .0019
ERROR 145 1494.680 10.308

TOTAL 149 1679.334

Table 7.3: The Analysis of Variance table for the Mosquito Repellent study
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Figure 7.3: Mosquito catch by repellent treatment - data generated to match treatment means and standard
deviations
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2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE = 4.478

4. R.R.: Fobs > Fα,k−1,n−k = F0.05,4,145 = 2.434

5. P -value: P (Fk−1,n.−k ≥ Fobs) = P (F4,145 ≥ 4.478) = .0019

The following R output gives the Analysis of Variance and the F -test.

R Output

### Output

> round(aov.out, 4)

df SS MS F F(.05) P(>F)

Treatment 4 184.6501 46.1625 4.4782 2.4341 0.0019

Error 145 1494.6843 10.3082 NA NA NA

Total 149 1679.3345 NA NA NA NA

The following R commands use the aov function to obtain the Analysis of Variance based on the raw
data (not summary statistics).

R Commands and Output

## Commands

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod <- aov(y.mosq ~ trt.mosq)

summary(mosq.mod)

## Output

> summary(mosq.mod)

Df Sum Sq Mean Sq F value Pr(>F)

trt.mosq 4 184.6 46.16 4.48 0.00192 **

Residuals 145 1494.1 10.30

Since the F -statistic is sufficiently large, conclude that the means differ, then the following methods are
used to make comparisons among treatments.

∇

Comparisons among Treatment Means

Assuming that it has been concluded that treatment means differ, we generally would like to know which
means are significantly different. This is generally done by making contrasts among treatments. Special
cases of contrasts include pre–planned or all pairwise comparisons between pairs of treatments.
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A contrast is a linear function of treatment means, where the coefficients sum to 0. A contrast among
population means can be estimated with the same contrast among sample means, and inferences can be made
based on the sampling distribution of the contrast. Let C be the contrast among the population means, and
Ĉ be its estimator based on means of the independent random samples.

C = a1µ1 + · · ·+ akµk =
k
∑

i=1

aiµi where
k
∑

i=1

ai = 0 Ĉ = a1Y 1. + · · ·+ akY k. =
k
∑

i=1

aiY i

V {Ĉ} = σ2

[

a2
1

n1
+ · · ·+ a2

k

nk

]

= σ2
k
∑

i=1

a2
i

ni

When the sample sizes are balanced (all ni are equal), the formula for the variance clearly simplifies.
Contrasts are specific to particular research questions, so the general rules for tests and Confidence Intervals
are given here, followed by an application to the Mosquito Repellent study. Since the coefficients sum to 0,
we are virtually always testing H0 : C = 0 in practice.

Once samples are obtained, obtain ĉ, the contrast based on the observed sample means among the
treatments.

ĉ = a1y1. + · · ·+ akyk. =

k
∑

i=1

aiyi. ŜE{Ĉ} =

√

√

√

√MSE

k
∑

i=1

a2
i

ni

Testing whether a contrast is equal to 0 and obtaining a (1−α)100% Confidence Interval for C are done
as follow.

H0 : C = 0 HA : C 6= 0 TS : tC =
ĉ

ŜE{Ĉ}
RR : |tC| ≥ tα/2,n.−k P = 2P (tn.−k ≥ |tC|)

(1 − α)100% Confidence Interval for C : ĉ ± tα/2,n.−kŜE{Ĉ}

The test can be conducted as upper or lower-tailed with obvious adjustments. An alternative approach
is to compute the sums of squares for the contrast SSC, and use an F -test, comparing its Mean Square to
MSE.

SSC =
(ĉ)

2

∑k
i=1

a2
i

ni

dfC = 1 MSC =
SSC

1
= SSC

H0 : C = 0 HA : C 6= 0 TS : FC =
MSC

MSE
RR : FC ≥ Fα,1,n.−k P = P (F1,n.−k ≥ FC)
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Example 7.3: Comparison of 5 Mosquito Repellents

Suppose the researchers are interested in comparing the two treatments that use Deltamethrin (2 and
4) with the two treatments that use Cyfluthrin (3 and 5). Then, the following calculations are made.

C1 = (µ2 + µ4) − (µ3 + µ5) a1 = 0 a2 = a4 = 1 a3 = a5 = −1 ni = 30 MSE = 10.308

y2. = 8.133 y4. = 6.333 y3. = 8.033 y5. = 5.367 ĉ1 = (8.133 + 6.333)− (8.033 + 5.367) = 1.066

ŜE{Ĉ1} =

√

10.308

(

02 + 12 + (−1)2 + 12 + (−1)2

30

)

= 1.172

For a test (α = 0.05) of H0 : C1 = 0, the test statistic, rejection region and P -value, along with a 95%
Confidence Interval for C are given below.

TS : tC1
=

1.066

1.172
= 0.910 RR : |tC1

| ≥ t.025,145 = 1.976 P = 2P (t145 ≥ |0.910|) = .364

95% CI for C : 1.066± 1.976(1.172) ≡ 1.066± 2.316 ≡ (−1.250, 3.382)

There is no evidence of any difference between the effects of these two types of repellents. Next, we
conduct the F -test, knowing in advance that its conclusion and P -value will be equivalent to 2-tailed t-test
performed above (the only difference due to rounding is in third decimal place).

SSC1 =
1.0662

4
30

= 8.523 = MSC1 TS : FC1
=

8.523

10.308
= 0.827 RR : FC1

≥ F.05,1,145 = 3.906

P = P (F1,145 ≥ 0.827) = .365

For a second contrast (C2), without going through all calculations, consider comparing Deltamethrin
and Cyfluthrin (each without Odomos: 2 and 3) with Deltamethrin and Cyfluthrin (each with Odomos: 4
and 5). This involves: a1 = 0, a2 = a3 = 1, a4 = a5 = −1. Note that the standard error of the contrast will
be exactly the same as that for contrast ĉ1.

ĉ2 = 4.466 TS : tC2
=

4.466

1.172
= 3.811 P = 2P (t145 ≥ |3.811|) = .0002 95% CI: 4.466±2.316 ≡ (2.150, 6.782)

There is evidence that the combined mean is higher without Odomos than with Odomos. Since low
values are better (mosquito contacts), Odomos as an additive to the two chemicals (individually) is better
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than no additive to the two chemicals individually. The F -test is given below. The R output that follows
extends the calculations made in Example 7.2.

SSC2 =
4.4662

4
30

= 149.59 = MSC2 TS : FC2
=

149.59

10.308
= 14.51 P = P (F1,145 ≥ 14.51) = .0005

R Output

## Output

> round(contrast.out, 4)

Estimate Std Err t 2P(>|t|) LB UB Sum Sq F P(>F)

[1,] 1.066 1.1724 0.9093 0.3647 -1.2511 3.3831 8.5227 0.8268 0.3647

> round(contrast.out, 4)

Estimate Std Err t 2P(>|t|) LB UB Sum Sq F P(>F)

[1,] 4.466 1.1724 3.8094 2e-04 2.1489 6.7831 149.5887 14.5117 2e-04

∇

A special class of contrasts are orthogonal contrasts. Two contrasts are orthogonal if the sum of the
products of their ai coefficients, divided by the sample sizes ni, is 0. This concept is shown below.

C1 =

k
∑

i=1

a1iµi C2 =

k
∑

i=1

a2iµi C1 and C2 are orthogonal if

k
∑

i=1

a1ia2i

ni
= 0

Note that if the sample sizes are all equal (balanced design), this simplifies to
∑k

i=1 a1ia2i = 0. The two
contrasts in Example 7.3 are orthogonal (check this). If there are k treatments, and k−1 degrees of freedom
for Treatments, any k − 1 pairwise orthogonal contrasts’ sums of squares will add up to the Treatment
sum of squares. That is, SST can be decomposed into the sums of squares for the k − 1 contrasts. The
decomposition is not unique, there may be various sets of orthogonal contrasts.

Example 7.4: Comparison of 5 Mosquito Repellents

Consider these two other contrasts.

• (D versus C without O) vs (D versus C with Odomos): C3 = (µ2 − µ3)−(µ4 − µ5) = µ2−µ3 −µ4 +µ5

• Odomos only versus the four other treatments: C4 = 4µ1 − µ2 − µ3 − µ4 − µ5

Table 7.4 gives the contrast coefficients for these four contrasts. For all six pairs,
∑k

i=1 ajiaj′i = 0,
j 6= j′. Also given are the estimates, standard errors, t-tests, 95% Confidence Intervals, Sums of Squares
and F -statistics.
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Treatment (i) C1 (j = 1) C2 (j = 2) C3 (j = 3) C4 (j = 4) yi.

1 0 0 0 4 7.900
2 1 1 1 -1 8.133
3 -1 1 -1 -1 8.033
4 1 -1 -1 -1 6.333
5 -1 -1 1 -1 5.367

ĉj 1.066 4.466 -0.866 3.734

ŜE{Ĉj} 1.172 1.172 1.172 2.621
tCj 0.909 3.809 -0.739 1.424

P -value .3642 .0002 .4613 .1565
95% CI (-1.251,3.383) (2.149,6.783) (-3.183,1.451) (-1.447,8.915)

SSCj 8.523 149.589 5.625 20.914
FCj 0.827 14.512 0.546 2.029

Table 7.4: Orthogonal Contrasts for the Mosquito Repellent study

From Table 7.3, see that the Treatment sum of squares is SST = 184.650. As these four contrasts are
pairwise orthogonal, their sums of squares add up to SST : 8.523 + 149.589 + 5.625 + 20.914 = 184.650.
Note that virtually all of the differences among the treatments (based on this set of contrasts) is contrast
2, comparing the average of D and C without O versus the average of D and C with O. The commands for
Contrasts 3 and 4 are identical as that for Example 7.3 (with changes to the as), and are not included here.

∇

As the number of potential contrasts increases (as when k gets large), the chances of making false
rejections of null hypotheses increases. Also, inferential methods are based on a priori contrasts being
studied. A very conservative but widely used method for making simultaneous contrasts is Scheffe’s method.

Scheffe’s Method for All Possible Contrasts

This method makes use of the fact that all contrast sums of squares are smaller than the between
treatments sum of squares (SST ), since for any k − 1 orthogonal contrasts, their sums of squares add up to
SST . Thus, if any given contrast’s sum of squares is large enough to reject H0 : τ1 = · · · = τk = 0, when
SSC replaces, SST in the F -test, that contrast is significantly different from 0 at the chosen significance
level, which will be labeled αE for the experimentwise error rate. This is the probability of making at
least one incorrect conclusion with respect to the null hypotheses among all possible contrasts. The forms
of the tests and the simultaneous (1 − αE) 100% Confidence Intervals for any set of contrasts are given here.

C =

k
∑

i=1

aiµi H0 : C = 0 HA : C 6= 0 Reject H0 if : |ĉ| ≥ ŜE{Ĉ}
√

(k − 1)FαE,k−1,n.−k

Simultaneous (1 − αE) 100% Confidence Intervals: ĉ ± ŜE{Ĉ}
√

(k − 1)FαE,k−1,n.−k

Note that if the test rejects H0 : C = 0, the corresponding Confidence Interval will be entirely positive
or negative. If the test fails to reject H0, the interval will contain 0.
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Example 7.5: Scheffe’s Method for Mosquito Repellent Contrasts

Considering the 4 contrasts described previously, the estimated standard errors were 1.172 for contrasts
1, 2, and 3, was 2.621 for contrast 4. Recall that k = 5 treatments were compared and the critical F -value
for the Analysis of Variance was F.05,5−1,150−5 = F.05,4,145 = 2.434. For contrasts 1-3, the critical value and
simultaneous Confidence Intervals are of the form given below.

Conclude C 6= 0 if: |ĉ| ≥ 1.172
√

(5 − 1)2.434 = 3.657 Simultaneous 95% CI’s: ĉ ± 3.657

Only contrast 2, with ĉ2 = 4.466 meets that criteria. For contrast 4, the critical value is 2.621
√

(5 − 1)2.434 =
8.178 and that contrast, ĉ4 = 3.734 does not exceed the critical value.

∇

Special cases of contrasts are pairwise comparisons among treatments. We will first consider making
simultaneous comparisons for each “active” treatment with a control, and then how to make all possible
comparisons. The methods are very similar.

Dunnett Method for Comparing Treatments With a Control

In many situations, researchers would like to compare each treatment with the control (when there is a
natural control group). Here, the goal is to make all comparisons of treatment groups versus control (k − 1,
in all) with an overall confidence level of (1 − αE) 100%, where αE is the experimentwise error rate.
This is the probability of making at least one incorrect conclusion with respect to the null hypotheses among
the k − 1 comparisons when all of the null hypotheses are true.

If the control group is labeled as treatment 1, the goal is to make inferences concerning µi − µ1 for
i = 2, . . . , k. Special tables, containing Dunnett’s critical values are available on the powerpoint slides
corresponding to this chapter and values can also be obtained in certain packages in R. The key components
are: (1) the number of comparisons (k − 1), (2) the error degrees of freedom ν = (n. − k) for the CRD, and
(3) whether the test is 1- or 2-sided. In testing whether the individual treatments differ from the control,
the tests can be 2-sided or 1-sided (if 1-sided, the direction must be chosen before observing the sample
data). Note that these are similar to 2-sample t-tests with the exception that k−1 tests are being conducted
simultaneously.

The tests (and simultaneous Confidence Intervals) are conducted making use of the following quantities.

2-sided: D2-sided = dαE/2,k−1,ν

√

MSE

(

1

ni
+

1

n1

)

1-sided: D1-sided1 = dαE,k−1,ν

√

MSE

(

1

ni
+

1

n1

)

For 2-sided tests, conclude that treatment i mean is significantly different from the control mean if
|yi. − y1.| ≥ D2-sided.

For 1-sided (Trt > Control) tests, conclude that treatment i mean is significantly higher than the control
if yi. − y1. ≥ D1-sided.
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For 1-sided (Trt < Control) tests, conclude that treatment i mean is significantly lower than the control
if yi. − y1. ≤ −D1-sided.

Simultaneous Confidence Intervals can also be computed, and give the same conclusions as the corre-
sponding tests.

2-sided: (yi. − y1.) ± D2-sided

Upper 1-sided:
[

(yi. − y1.) − D1-sided,∞
]

Lower 1-sided:
[

−∞, (yi. − y1.) + D1-sided
]

Based on each confidence interval, it can be determined whether the treatment differs from the control
by determining whether or not 0 is included in the interval.

Example 7.6: Comparisons of 4 Mosquito Repellents with a Control

Treating Odomos as the control condition, k−1 = 5−1 = 4 and ν = n.−k = 150−5 = 145, the 2-tailed
critical value is 2.468 (for αE = 0.05 and df = 150). The 1-tailed critical value is 2.178. The standard error
for the difference between means i and 1 for each treatment, as well as the form of the Confidence Intervals,
are given below.

ŜE{Y i. − Y 1.} =

√

MSE

(

1

ni
+

1

n1

)

=

√

10.308

(

1

30
+

1

30

)

= 0.829 D2-sided = 2.468(0.829) = 2.046

95% CI for µi − µ1: (yi. − y1.) ± 2.46(0.829) ≡ (yi. − y1.) ± 2.046

y2. − y1. = 8.133− 7.900 = 0.233 y3. − y1. = 8.033− 7.900 = 0.133

y4. − y1. = 6.333− 7.900 = −1.567 y5. − y1. = 5.367− 7.900 = −2.533

µ2 − µ1 : 0.233± 2.046 ≡ (−1.813, 2.279) µ3 − µ1 : 0.133± 2.046 ≡ (−1.913, 2.179)

µ4 − µ1 : −1.567 ± 2.046 ≡ (−3.613, 0.479) µ5 − µ1 : −2.533± 2.046 ≡ (−4.579,−0.483)

Based on the 2-sided Confidence Intervals, only treatment 5 is significantly different from the “control”
treatment. The form of the tests for (lower) 1-tailed tests showing reduction of mosquito contacts would be
as follows, where D1-sided = 2.178(0.829) = 1.806.

Conclude HA : µi − µ1 < 0 if yi. − y1. ≤ −D1-sided = −1.806

The same conclusions hold as did for the 2-tailed Confidence Intervals (this will not generally be the
case).
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The R commands below make use of the multcomp package and extend the program from Example
7.4.

R Commands and Output

## Commands

trt.mosq <- factor(trt.mosq)

mosq.mod1 <- aov(y ~ trt.mosq)

anova(mosq.mod1)

library(multcomp)

mosq.dunnett <- glht(mosq.mod1, linfct=mcp(trt.mosq="Dunnett"))

summary(mosq.dunnett)

confint(mosq.dunnett)

## Output

> summary(mosq.dunnett)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = y ~ trt.mosq)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

2 - 1 == 0 0.233 0.829 0.281 0.99579

3 - 1 == 0 0.133 0.829 0.160 0.99953

4 - 1 == 0 -1.567 0.829 -1.890 0.18449

5 - 1 == 0 -2.533 0.829 -3.056 0.00971 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Adjusted p values reported -- single-step method)

> confint(mosq.dunnett)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = y ~ trt.mosq)

Quantile = 2.4695

95\% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

2 - 1 == 0 0.2330 -1.8142 2.2802

3 - 1 == 0 0.1330 -1.9142 2.1802

4 - 1 == 0 -1.5670 -3.6142 0.4802

5 - 1 == 0 -2.5330 -4.5802 -0.4858

∇

Bonferroni Method of Multiple Comparisons

The Bonferroni method is used in many situations and is based on the following premise: If there are c
comparisons to be made simultaneously, and desire to be (1 − αE) 100% confident that all are correct, each
comparison should be made at a higher level of confidence (lower probability of type I error). If individual
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comparisons are made at αI = αE/c level of significance, there is an overall error rate no larger than αE.
This method is conservative and can run into difficulties (low power) as the number of comparisons gets
very large. The general procedures for simultaneous tests and Confidence Intervals are as follow in terms of
comparing pairs of treatment means.

Define: Bii′ = tαE/(2c),νŜE{Y i. − Y i′.} = tαE/(2c),ν

√

MSE

(

1

ni
+

1

ni′

)

i < i′

Conclude µi 6= µi′ if |yi. − yi′ | ≥ Bii′ Simultaneous (1 − αE) 100% CI’s for µi −µi′ : (yi. −yi′.)±Bii′

where tαE/(2c),ν, with ν being the error degrees of freedom, ν = n. − k for the Completely Randomized
Design, is obtained from the Bonferroni t–table (see chapter powerpoint slides) or from statistical packages
or EXCEL.

Tukey Method for All Pairwise Comparisons

Various methods have been developed to handle all possible comparisons and keep the overall error
rate at αE, including the widely reported Bonferroni procedure described above. Another commonly used
procedure is Tukey’s Honest Significant Difference method, which is more powerful than the Bonferroni
method (but more limited in its applicability). Statistical computer packages can make these comparisons
automatically. Tukey’s method can be used for tests and confidence intervals for all pairs of treatment

means simultaneously. If there are k treatments, their will be k(k−1)
2 such tests or intervals. The general

forms, allowing for different sample sizes for treatments i and i′ are as follow (the unequal sample size
case is referred to as the “Tukey-Kramer” method). The procedure makes use of the Studentized Range
Distribution with critical values, qαE ,k,ν, indexed by the number of treatments (k) and error degrees of
freedom ν = n. − k for the Completely Randomized Design. The R functions qtukey and ptukey in R
give quantiles and probabilities for the distribution. A table of critical values for αE = 0.05 is given in this
chapter’s powerpoint slides.

Define: HSDii′ =
qαE,k,ν

2
ŜE{Y i. − Y i′.} =

qαE,k,ν

2

√

MSE

(

1

ni
+

1

ni′

)

i < i′

Conclude µi 6= µi′ if |yi. − yi′.| ≥ HSDii′ Simultaneous (1 − αE) 100% CI’s for µi−µi′ : (yi. − yi′.)±HSDii′

When the sample sizes are equal (ni = ni′), the formula for HSDii′ can be simplified as follows.

HSDii′ = qαE,k,ν

√

MSE

(

1

ni

)

i < i′

Example 7.7: Comparison of 5 Mosquito Repellents

The Bonferroni and Tukey methods are used to obtain simultaneous 95% CI’s for each difference in mean
mosquito contacts. The general form for the Bonferroni simultaneous 95% CI’s (with c = 5(4)/2 = 10 and
ν = 150 − 4 = 145)) is given below. Recall that MSE = 10.308 and ni = 30 for each treatment.

Bii′ = t.05/(2(10)),145

√

10.38

(

1

30
+

1

30

)

= 2.851(0.829) = 2.363 Simultaneous 95% CIs: (yi. − yi′.)±2.363
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For Tukey’s method, the confidence intervals are of the following form.

HSDii′ = q0.05,5,145

√

10.308

(

1

30

)

= 3.907(0.586) = 2.290 Simultaneous 95% CIs: (yi. − yi′.) ± 2.290

The corresponding confidence intervals are given in Table 7.5.

Simultaneous 95% CI’s
Comparison yi. − yi′. Bonferroni Tukey

1 vs 2 7.900− 8.133 = −0.233 (−2.596, 2.130) (−2.523, 2.057)
1 vs 3 7.900− 8.033 = −0.133 (−2.496, 2, 230) (−2.423, 2.157)
1 vs 4 7.900− 6.333 = 1.567 (−0.796, 3.930) (−0.723, 3.857)
1 vs 5 7.900− 5.367 = 2.533 (0.170, 4.896) (0.243, 4.823)
2 vs 3 8.133− 8.033 = 0.100 (−2.263, 2.463) (−2.190, 2.390)
2 vs 4 8.133− 6.333 = 1.800 (−0.563, 4.163) (−0.490, 4.090)
2 vs 5 8.133− 5.367 = 2.766 (0.403, 5.129) (0.476, 5.056)
3 vs 4 8.033− 6.333 = 1.700 (−0.663, 4.063) (−0.590, 3.990)
3 vs 5 8.033− 5.367 = 2.666 (0.303, 5.029) (0.376, 4.956)
4 vs 5 6.333− 5.367 = 0.966 (−1.397, 3.329) (−1.324, 3.256)

Table 7.5: Bonferroni and Tukey multiple comparisons for the mosquito repellent study

Based on the intervals in Table 7.5, it can be concluded that treatments 1 (Odomos) and 5 (Cyfluthrin +
Odomos) are significantly different, as are treatments 2 (Deltamethrin) and 5, and treatments 3 (Cyfluthrin)
and 5.

While it is easy to write a function in R to conduct the Bonferroni method, there does not appear an
easy “follow up” to the ANOVA. There is an easy one for Tukey’s honest significant difference method, the
TukeyHSD function. Note that R takes the mean with the higher subscript minus the mean with the lower
subscript.

R Commands and Output

## Commands

### Tukey follow-up to 1-Way ANOVA

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod1 <- aov(y.mosq ~ trt.mosq)

anova(mosq.mod1)

TukeyHSD(mosq.mod1, "trt.mosq")

### Output

> TukeyHSD(mosq.mod1, "trt.mosq")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = y ~ trt.mosq)
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$trt.mosq

diff lwr upr p adj

2-1 0.233 -2.056985 2.5229848 0.9986197

3-1 0.133 -2.156985 2.4229848 0.9998497

4-1 -1.567 -3.856985 0.7229848 0.3272067

5-1 -2.533 -4.822985 -0.2430152 0.0221285

3-2 -0.100 -2.389985 2.1899848 0.9999517

4-2 -1.800 -4.089985 0.4899848 0.1965250

5-2 -2.766 -5.055985 -0.4760152 0.0093768

4-3 -1.700 -3.989985 0.5899848 0.2474716

5-3 -2.666 -4.955985 -0.3760152 0.0136760

5-4 -0.966 -3.255985 1.3239848 0.7710691

> bon.ci(0.05, y.mosq, trt.mosq)

Trt i Trt i’ Diff Lower Bound Upper Bound p adjusted

[1,] 1 2 -0.232 -2.595 2.130 1.000

[2,] 1 3 -0.132 -2.495 2.231 1.000

[3,] 1 4 1.567 -0.795 3.930 0.606

[4,] 1 5 2.534 0.171 4.896 0.027

[5,] 2 3 0.100 -2.262 2.463 1.000

[6,] 2 4 1.800 -0.563 4.162 0.315

[7,] 2 5 2.766 0.403 5.129 0.011

[8,] 3 4 1.699 -0.663 4.062 0.421

[9,] 3 5 2.666 0.303 5.028 0.016

[10,] 4 5 0.966 -1.396 3.329 1.000

∇

Unequal Variances - Welch’s Test

When the variances are unequal among the populations, Welch’s test, considered in the 2-sample case in
Chapter 5 can be extended to k > 2 groups. The test involves making an adjustment to a weighted between
treatments sum of squares, and the error degrees of freedom, for an approximate F -test for differences among
the treatment means. Let ni be the sample size for treatment i, yi. be the sample mean, and si be the sample
standard deviation.

wi =
ni

s2
i

w. =

k
∑

i=1

wi F ∗ =
1

k − 1







k
∑

i=1

wiy
2
i. −

(

∑k
i=1 wiyi.

)2

w.







CW =

k
∑

i=1

[

1

ni − 1

(

1 − wi

w.

)2
]

mW =

[

1 +
2(k − 2)

k2 − 1
CW

]−1

νW =

[

3

k2 − 1
CW

]−1

⇒ FW = mW F ∗ ·∼ Fk−1,νW

The null hypothesis of no treatment effects is rejected if FW ≥ Fα,k−1,νW .
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When the variances are not all equal, one approach to making all pairwise comparisons is the Games-
Howell procedure. It combines Tukey’s method based on critical values from the studentized range distri-
bution with Satterthwaite’s approximation for degrees of freedom among pairs of treatment means.

νii′ =

[

s2
i

ni
+

s2

i′

ni′

]2

[

(s2
i
/ni)2

ni−1 +
(s2

i′
/ni′)

2

ni′−1

]

GHii′ =
qαE,k,νii′√

2
ŜE{Y i. − Y i′.} =

qαE,k,νii′√
2

√

s2
i

ni
+

s2
i′

ni′

Conclude µi 6= µi′ if |yi − yi′ | ≥ GHii′ Simultaneous (1 − αE) 100% CI’s for µi−µi′ : (yi. − yi′.)±GHii′

Example 7.8: Geographical Differences in Sea Lion Barking Acoustics

A study compared sea lion barking acoustics for k = 7 locations in Australia (Ahonen, et al. (2014), [4]).
The summary data, as well as calculations needed to compute Welch’s F -statistic are given in Table 7.6.
The authors reported data for 10 acoustic variables, we consider duration (ms). There were 7-10 sea lions
at the various locations, and each was observed for 20 barks. No random sea lion effects were considered
for the model, had they been, this could be analyzed as a nested design. Bartlett’s test for equal variances
(computations not shown here) gives a very large chi-square statistic X2

B = 348.4 with 7 − 1 = 6 degrees of
freedom. There is strong evidence of unequal variances among the locations.

Colony (i) ni yi. si wi wiyi. wiy
2
i. CWi

Lewis Island (1) 200 55 19 0.5540 30.4709 1675.9003 0.003297
Liguanea Island (2) 160 62 30 0.1778 11.0222 683.3778 0.005546

Olive Island (3) 200 69 17 0.6920 47.7509 3294.8097 0.002923
Blefuscu Island (4) 200 51 14 1.0204 52.0408 2654.0816 0.002124
Lilliput Island (5) 160 61 44 0.0826 5.0413 307.5207 0.005938

North Fisherman Island (6) 140 73 25 0.2240 16.3520 1193.6960 0.006131
Beagle Island (7) 180 77 33 0.1653 12.7273 980.0000 0.004971

Sum 1240 #N/A #N/A 2.9162 175.4054 10789.3860 0.03093

Table 7.6: Sea Lion barking acoustic duration data and calculations for Welch’s F -test

F ∗ =
1

7 − 1

[

10789.3860− (175.4054)2

2.9162

]

= 39.832 CW = 0.03093 mW =

[

1 +
2(7 − 2)

72 − 1
(0.03093)

]−1

= 0.9936

νW =

[

3

72 − 1
(0.03093)

]−1

= 517.3

TS : FW = 0.9936(39.832) = 39.577 RR : FW ≥ F.05,6,517.3 = 2.116 P = P (F6,517.3 ≥ 39.577) = .0000
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The following R commands conduct Bartlett’s test and Welch’s test directly on data that was generated
to match the location means and SDs and allowed no negative responses.

R Commands and Output

## Commands

sb <- read.csv("http://www.stat.ufl.edu/~winner/data/sealion_bark.csv")

attach(sb); names(sb)

location <- factor(location)

bartlett.test(duration ~ location)

oneway.test(duration ~ location, var.equal=F)

### Output

> bartlett.test(duration ~ location)

Bartlett test of homogeneity of variances

data: duration by location

Bartlett’s K-squared = 348.4, df = 6, p-value < 2.2e-16

> oneway.test(duration ~ location, var.equal=F)

One-way analysis of means (not assuming equal variances)

data: duration and location

F = 39.562, num df = 6.00, denom df = 517.29, p-value < 2.2e-16

The calculation for comparing the first two locations (Lewis and Liguanea Islands) is given here. R
Commands for all 7(6)/2=21 pairs is given below.

y1. − y2. = 55− 62 = −7 ŜE
{

Y 1. − Y 2.

}

=

√

192

200
+

302

160
=

√
7.43 = 2.726

ν12 =

[

192

200 + 302

160

]2

[

(192/200)2

200−1 + (302/160)2

160−1

] =
7.432

0.2154
= 256.33

q.05,7,256.33√
2

=
4.203√

2
= 2.972

95% CI for µ1 − µ2 : −7 ± 2.972(2.726) ≡ −7 ± 8.10 ≡ (−15.10, 1.10)

R Output

## Output

> (loc_mean <- as.vector(tapply(duration,location,mean)))

[1] 55.00015 62.00025 68.99985 51.00020 61.00006 72.99957 76.99972

> (loc_var <- as.vector(tapply(duration,location,var)))

[1] 361.0088 899.9931 289.0005 196.0056 1935.9785 625.0147 1088.9722

> (loc_n <- as.vector(tapply(duration,location,length)))

[1] 200 160 200 200 160 140 180

> round(gh.out,3)

Trt i Trt j Diff SE DF Lower Bound Upper Bound
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[1,] 1 2 -7.000 2.726 256.329 -15.101 1.101

[2,] 1 3 -14.000 1.803 393.175 -19.343 -8.657

[3,] 1 4 4.000 1.669 365.893 -0.948 8.948

[4,] 1 5 -6.000 3.729 206.309 -17.103 5.104

[5,] 1 6 -17.999 2.504 246.031 -25.443 -10.556

[6,] 1 7 -22.000 2.803 279.378 -30.323 -13.676

[7,] 2 3 -7.000 2.659 238.603 -14.906 0.907

[8,] 2 4 11.000 2.570 214.040 3.350 18.650

[9,] 2 5 1.000 4.210 280.561 -11.503 13.504

[10,] 2 6 -10.999 3.176 297.314 -20.429 -1.570

[11,] 2 7 -14.999 3.417 337.824 -25.135 -4.864

[12,] 3 4 18.000 1.557 383.887 13.384 22.615

[13,] 3 5 8.000 3.680 196.999 -2.964 18.964

[14,] 3 6 -4.000 2.431 226.937 -11.232 3.232

[15,] 3 7 -8.000 2.738 261.311 -16.135 0.135

[16,] 4 5 -10.000 3.617 184.831 -20.781 0.782

[17,] 4 6 -21.999 2.333 199.993 -28.949 -15.049

[18,] 4 7 -26.000 2.651 236.117 -33.885 -18.114

[19,] 5 6 -12.000 4.070 257.826 -24.094 0.095

[20,] 5 7 -16.000 4.260 292.740 -28.648 -3.351

[21,] 6 7 -4.000 3.243 317.798 -13.622 5.622

∇

7.1.2 Test Based on Non–Normal Data

A nonparametric test for the Completely Randomized Design (CRD), where each experimental unit receives
only one treatment, is the Kruskal-Wallis Test. The idea behind the test is similar to that of the Wilcoxon
Rank Sum test. The main difference is that instead of comparing 2 population distributions, we are comparing
k ≥ 2 distributions. Sample measurements are ranked from 1 (smallest) to n. = n1 + · · ·+nk (largest), with
ties being replaced with the means of the ranks the tied subjects would have received had they not tied.
For each treatment, the sum of the ranks of the sample measurements are computed, and labeled Ti. The
sample size from the ith treatment is ni, and the total sample size is n. = n1 + · · ·+ nk.

The hypothesis we wish to test is whether the k population distributions are identical (or that all medians
are equal) against the alternative that some distribution(s) is (are) shifted to the right of other(s). This is
similar to the hypothesis of no treatment effect that we tested in the previous section. The test is conducted
as follows.

1. H0 : The k population distributions are identical (M1 = M2 = · · · = Mk)

2. HA : Not all k distributions are identical (Not all Mi are equal)

3. T.S.: H = 12
n.(n.+1)

∑k
i=1

T 2
i

ni
− 3(n. + 1).

4. R.R.: H > χ2
α,k−1

5. P -value: P
(

χ2
k−1 ≥ H

)

If we do reject H0, and conclude treatment differences exist, we could run the Wilcoxon Rank Sum
test on all pairs of treatments, adjusting the individual α levels by taking αE/c where c is the number of
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comparisons, so that the overall test (on all pairs) has a significance level of αE. This is an example of the
Bonferroni procedure.

An alternative approach is to use the rank sums from the Kruskal-Wallis test directly. If the Kruskal-
Wallis test does not reject the null hypothesis, stop and do not make any pairwise comparisons. Otherwise,
compare the differences in the rank averages as follows, where qαE,k,∞ is the critical value from the studentized
range distribution with k groups and degrees of freedom equal to infinity.

Conclude Medians differ if: |T i − T i′ | ≥
qαE,k,∞√

2

√

n. (n. + 1)

12

(

1

ni
+

1

ni′

)

Example 7.9: Mechanical Properties and Anthocyanins Extractability of Grape Berries

A study was conducted to compare k = 6 treatments based on sugar content of berries with respect
to various physical and mechanical properties (Zouid, et al (2013), [54]. The six treatments were sugar
equivalents (g/L) of 176.5, 192.6, 209.3, 225.0, 242.1, and 258.5. One response observed was anthocyanin
extractability (in percent). Data have been generated to match the authors means and standard deviation,
with ni = 15 replicates per treatment. Data and ranks are given in Table 7.7.

j Trt1 Trt2 Trt3 Trt4 Trt5 Trt6 Rank1 Rank2 Rank3 Rank4 Rank5 Rank6
1 91.1514 90.4136 92.7392 94.7763 94.4086 94.5816 14 8 31 74 63 66
2 91.2250 92.9450 94.5272 94.6568 94.0188 94.6527 15 35 65 68 57 67
3 91.2764 91.4339 92.3321 94.7164 95.7081 93.3328 16 18 27 71 84 43
4 90.2144 91.8134 93.3022 93.3512 94.1216 93.1514 7 20 41 44 59 38
5 90.0281 89.1463 91.8391 93.7673 93.7188 94.5271 5 2 21 51 50 64
6 89.5134 93.2797 93.6013 91.9625 96.6605 95.0653 3 40 47 22 89 77
7 91.4120 93.8751 92.0830 92.0927 94.8797 94.1368 17 55 24 25 75 60
8 94.2134 90.6342 95.5857 92.8051 95.2221 96.9886 61 10 83 33 78 90
9 92.0028 96.2767 93.5188 92.5493 93.8019 95.8473 23 87 46 30 53 85
10 93.9741 95.4191 93.1780 90.9968 95.4145 96.6470 56 82 39 13 81 88
11 90.1335 94.7650 94.7178 94.3609 95.3483 93.1055 6 73 72 62 80 37
12 89.6315 90.9415 90.9408 93.7884 92.4709 93.8121 4 12 11 52 29 54
13 90.5289 92.8002 93.4466 93.3178 92.8295 94.7117 9 32 45 42 34 70
14 92.1393 94.0834 92.9888 95.3392 94.6859 95.0527 26 58 36 79 69 76
15 88.6058 91.7731 93.6493 92.3693 96.0107 93.6875 1 19 48 28 86 49

Mean 91.07 92.64 93.23 93.39 94.62 94.62 17.53 36.73 42.40 46.27 65.80 64.27
SD 1.56 2.01 1.18 1.25 1.16 1.18 #N/A #N/A #N/A #N/A #N/A #N/A

Sum #N/A #N/A #N/A #N/A #N/A #N/A 263 551 636 694 987 964

Table 7.7: Anthocyanin Extraction of Berries for k = 6 sugar contents

The Kruskal-Wallis test is conducted to determine whether the extraction distributions are significantly
different among the six groups. The test is conducted at the α = 0.05 significance level.

1. H0 : The 6 population medians are identical (M1 = · · · = M6)

2. HA : Not all 6 medians are identical (Not all Mi are equal)
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3. T.S.: H = 12
n.(n.+1)

∑k
i=1

T 2
i

ni
− 3(n. + 1) = 12

90(91)

(

(263)2

15 + (551)2

15 + (636)2

15 + (694)2

15 + (987)2

15 + (964)2

15

)

−
3(91) = 308.90− 273 = 35.90.

4. R.R.: H ≥ χ2
α,k−1 = χ2

.05,5 = 11.071

5. P –value: P (χ2
5 ≥ 35.90) = .0000

Reject H0, and conclude differences exist. Based on the high rank sums for the two highest sugar content
treatments, they appear to have higher anthocyanin extractability than the other treatments. The critical
value for comparing mean ranks is computed below, with q.05,6,∞ = 4.030.

qαE,∞√
2

√

n. (n. + 1)

12

(

1

ni
+

1

ni′

)

=
4.030√

2

√

90 (91)

12

(

1

15
+

1

15

)

= 2.850
√

91 = 27.19

Treatments 4, 5, and 6 have significantly higher medians than treatment 1, and treatments 5 and 6 have
significantly higher medians than treatment 2.

R Commands and Output

## Commands

bt <- read.csv("http://www.stat.ufl.edu/~winner/data/berry_texture.csv")

attach(bt); names(bt)

sugar <- factor(sugar)

kruskal.test(anthExt ~ sugar)

## Output

> kruskal.test(anthExt ~ sugar)

Kruskal-Wallis rank sum test

data: anthExt by sugar

Kruskal-Wallis chi-squared = 35.9, df = 5, p-value = 9.944e-07

∇

7.2 Randomized Block Design (RBD) For Studies Based on Matched

Units

In crossover designs (aka within subjects designs), each unit or subject receives each treatment. In these
cases, units are referred to as blocks. In other studies, units or subjects may be matched based on external
criteria. The notation for the Randomized Block Design (RBD) is very similar to that of the CRD, with a
additional elements. The model we are assuming here is written as follows.

Yij = µ + αi + βj + εij = µi + βj + εij i = 1, . . . , k; j = 1, . . . , b
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Here, µ represents the overall mean measurement, αi is the (fixed) effect of the ith treatment, βj is the
(typically random) effect of the jth block, and εij is a random error component that can be thought of as the
variation in measurements if the same experimental unit received the same treatment repeatedly. Note that
just as before, µi represents the mean measurement for the ith treatment (across all blocks). The general
situation will consist of an experiment with k treatments being received by each of b blocks. Blocks can be
fixed or random, typically they are random.

7.2.1 Test Based on Normally Distributed Data

When the (random) block effects (βj) and random error terms (εij) are independent and normally distributed,
an F –test is conducted that is similar to that described for the Completely Randomized Design, but with
an extra source of variation. If blocks are fixed, the analysis is the same. The notation used is as follows.

yi. =

∑b
j=1 yij

b

y.j =

∑k
i=1 yij

k
n. = b · k

y.. =

∑k
i=1

∑b
j=1 yij

bk

TSS =

k
∑

i=1

b
∑

j=1

(yij − y..)
2

SST =

k
∑

i=1

b (yi. − y..)
2

SSB =

b
∑

j=1

k
(

y.j − y..

)2

SSE =

k
∑

i=1

b
∑

j=1

(

yij − yi. − y.j + y..

)2

Note that the Analysis of Variance simply has added items representing the block means
(

y.j

)

and variation
among the block means (SSB). We can further think of this as decomposing the total variation into
differences among the treatment means (SST ), differences among the block means (SSB), and random
variation not explained by either differences among treatment or block means (SSE). Also, note that
SSE = TSS − SST − SSB.

Once again, the main purpose for conducting this type of experiment is to detect differences among
the treatment means (treatment effects). The test is very similar to that of the CRD, with only minor
adjustments. We often are not interested in testing for differences among blocks, since we expect there to be
differences among them (that’s why the design was set up this way), and they were just a random sample
from a population of such experimental units. However, in some cases, estimating the unit to unit (subject
to subject) variance component is of interest. The testing procedure can be described as follows.

1. H0 : α1 = · · · = αk = 0 (µ1 = · · · = µk) (No treatment effect)
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ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

TREATMENTS SST k − 1 MST = SST
k−1

F = MST
MSE

BLOCKS SSB b − 1 MSB = SSB
b−1

ERROR SSE (b − 1)(k − 1) MSE = SSE
(b−1)(k−1)

TOTAL TSS bk − 1

Table 7.8: The Analysis of Variance Table for the Randomized Block Design

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE

4. R.R.: Fobs ≥ Fα,k−1,(b−1)(k−1)

5. p-value: P (Fk−1,(b−1)(k−1) ≥ Fobs)

The procedures to make comparisons among means are very similar to the methods used for the CRD. In
each formula described previously for Scheffe’s, Dunnett’s, Bonferroni’s, and Tukey’s methods, ni is replaced
by b, when making comparisons among treatment means, and ν = (b − 1)(k − 1) is the error degrees of
freedom.

The Relative Efficiency of conducting the Randomized Block Design, as opposed to the Completely
Randomized Design is:

RE(RB, CR) =
MSECR

MSERB
=

(b − 1)MSB + b(t − 1)MSE

(bt − 1)MSE
.

This represents the number of times as many replicates would be needed for each treatment in a CRD
to obtain as precise of estimates of differences between two treatment means as were obtained by using b
experimental units per treatment in the RBD. It measures reduction in experimental error due to using the
block design.

Example 7.10: Comparison of 3 Methods for Estimating Value of Wood Logs

A study compared 3 methods of assessing the lumber value of logs (Lin and Wang (2012), [36]). The
k = 3 treatments the authors compared was the actual sawmill value of the log, a value based on a heuristic
programming algorithm, and a value based on a dynamic programming algorithm. Each “treatment” was
measured on b = 30 logs (acting as the blocks). The goal was to compare the 3 treatments at valuating the
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logs. Data are given in Table 7.9. A crude interaction plot is given in Figure 7.4, which plots the valuation
versus log ID, with seperate lines for the three methods.

Log ID Actual Heuristic Dynamic LogMean

1 17.67 20.83 21.03 19.8433
2 31.76 35.05 34.24 33.6833
3 30.77 33.60 34.87 33.0800
4 40.27 42.52 42.89 41.8933
5 33.51 35.06 36.48 35.0167
6 23.07 25.37 26.34 24.9267
7 21.33 21.95 23.00 22.0933
8 26.28 28.07 28.69 27.6800
9 28.89 31.94 32.49 31.1067
10 18.46 19.14 21.76 19.7867
11 35.61 38.18 39.87 37.8867
12 23.15 25.67 27.22 25.3467
13 18.03 19.58 20.70 19.4367
14 28.22 30.89 30.05 29.7200
15 20.33 21.36 21.62 21.1033
16 12.42 13.01 14.02 13.1500
17 21.90 24.52 25.06 23.8267
18 36.16 38.12 38.86 37.7133
19 13.73 14.74 15.12 14.5300
20 15.74 17.96 18.00 17.2333
21 19.22 20.69 20.83 20.2467
22 17.12 19.12 19.31 18.5167
23 15.21 16.42 16.63 16.0867
24 22.03 23.58 24.24 23.2833
25 31.22 32.66 32.90 32.2600
26 25.69 28.39 28.81 27.6300
27 29.25 31.63 30.72 30.5333
28 32.77 33.29 35.87 33.9767
29 31.88 34.79 34.82 33.8300
30 24.54 26.23 26.54 25.7700

Trt Mean 24.8743 26.8120 27.4327 26.3730

Table 7.9: Log Values for 3 Methods of Valuation

TSS = (17.67− 26.3730)2 + · · ·+ (26.54− 26.3730)2 = 5170.073 df = 30(3) − 1 = 89

SST = 30
[

(24.8743− 26.3730)2 + (26.8120− 26.3730)2 + (27.4327− 26.3730)2
]

= 106.8536 dfT = 3−1 = 2

SSB = 3
[

(19.8433− 26.3730)2 + · · ·+ (25.7700− 26.3730)2
]

= 5042.772 dfB = 30 − 1 = 29

SSE = (17.67− 19.8433− 24.8743 + 26.3730)2 + · · ·+ (26.54− 25.7700− 26.4327 + 26.3730)2 =

5170.073− 106.8536− 5042.772 = 20.448 dfE = (30 − 1)(3 − 1) = 58

We can now test for treatment effects, and if necessary use Tukey’s method to make pairwise comparisons
among the three methods (αE = 0.05 significance level).

1. H0 : α1 = α2 = α3 = 0 (µ1 = µ2 = µ3) (No differences among valuation method means)
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Figure 7.4: Plot of valuation versus log ID, with separate lines for valuation method

ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fobs

TREATMENTS 106.854 2 53.427 151.546

BLOCKS 5042.772 29 173.889

ERROR 20.448 58 0.353

TOTAL 5170.073 89

Table 7.10: Analysis of Variance table for log valuation data (RBD)
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2. HA : Not all αi are 0 (Valuation differences exist)

3. T.S. Fobs = MST
MSE

= 151.546

4. R.R.: Fobs ≥ Fα,k−1,(b−1)(k−1) = F0.05,2,58 = 3.156

5. P -value: P (F2,58 ≥ Fobs) = P (F2,58 ≥ 151.546) = 0.0000

Tukey’s method to is used determine which valuations differ significantly. Recall that for Tukey’s method,
simultaneous confidence intervals of the form given below are computed, with k being the number of treat-
ments (k=3), b being the number of blocks, and ni the number of measurements per valuation method
(ni = b = 30).

(yi. − yi′.)± qα,k,(b−1)(k−1)

√

MSE

(

1

ni

)

=⇒ (yi. − yi′.)±3.402

√

0.353

(

1

30

)

=⇒ (yi. − yi′.)±0.369

The corresponding simultaneous 95% confidence intervals and conclusions are given in Table 7.11. Conclude

Comparison yi. − yi′. CI Conclusion

Actual vs Heuristic 24.874− 26.812 = −1.938 (−2.307,−1.569) µA < µH

Actual vs Dynamic 24.874− 27.433 = −2.559 (−2.928,−2.190) µA < µD

Heuristic vs Dynamic 26.812− 27.433 = −0.621 (−0.990,−0.252) µH < µD

Table 7.11: Tukey’s simultaneous 95% CI’s for wood log valuation data (RBD)

that Actual sawmill valuation is significantly lower than Heuristic, which is significantly lower than Dynamic.

The relative efficiency of using this design as opposed to a Completely Randomized Design is obtained
below

RE(RB, CR) =
MSECR

MSERB
=

(30 − 1)(173.889)+ 30(3− 1)(0.353)

(30(3)− 1)(0.353)
=

5063.96

31.42
= 161

A total of 161(30)=4830 wood logs per treatment would be needed to have as precise of comparisons
between treatment means if this had been conducted as a CRD (independent samples design). Blocking was
very effective in this study.

Note that to run this in R, it is necessary to have a separate row for each observation, along with a
treatment ID and block ID.

R Commands and Output

## Commands

saw <- read.csv("http://www.stat.ufl.edu/~winner/data/sawmill1.csv")

attach(saw); names(saw)

lumTrt <- factor(lumTrt)

lumBlk <- factor(lumBlk)
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levels(lumTrt) <- c("Actual", "Heuristic", "Dynamic")

saw.mod1 <- aov(lumVal ~ lumTrt + lumBlk)

anova(saw.mod1)

TukeyHSD(saw.mod1, "lumTrt")

interaction.plot(lumBlk, lumTrt, lumVal)

## Output

> anova(saw.mod1)

Analysis of Variance Table

Response: lumVal

Df Sum Sq Mean Sq F value Pr(>F)

lumTrt 2 106.8 53.424 151.53 < 2.2e-16 ***

lumBlk 29 5042.8 173.889 493.21 < 2.2e-16 ***

Residuals 58 20.4 0.353

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> TukeyHSD(saw.mod1, "lumTrt")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lumVal ~ lumTrt + lumBlk)

$lumTrt

diff lwr upr p adj

Heuristic-Actual 1.9376667 1.5689056 2.3064277 0.000000

Dynamic-Actual 2.5583333 2.1895723 2.9270944 0.000000

Dynamic-Heuristic 0.6206667 0.2519056 0.9894277 0.000449

7.2.2 Test Based on Non-Normal Data

A nonparametric procedure that can be used to analyze data from the Randomized Block Design (RBD),
where each subject or block receives each treatment is Friedman’s Test. The idea behind Friedman’s Test
is to rank the measurements corresponding to the k treatments within each block. Then the rank sum
corresponding to each treatment is obtained. This test can also be used when the data consists of preferences
(ranks) by raters among k competing items.

Once the measurements are ranked within each block from 1 (smallest) to k (largest), and the rank sums
T1, T2, . . . , Tk are computed for each treatment, the test is conducted as follows (assume b blocks are used
in the experiment).

1. H0 : The k population distributions have equal medians (M1 = M2 = · · · = Mk)

2. HA : Not all k distributions have identical medians (Not all Mi are equal)

3. T.S.: Fr = 12
bk(k+1)

∑k
i=1 T 2

i − 3b(k + 1).

4. R.R.: Fr ≥ χ2
α,k−1.

5. P –value:P
(

χ2
k−1 ≥ Fr

)

Either k (the number of treatments) or b (the number of blocks) should be larger than 5 for this test to be
appropriate.
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When there are ties among treatments within blocks, an adjusted statistic can be computed (Hollander
and Wolfe (1999), [27]).

F ′
r =

12
∑k

i=1

(

Ti − T
)2

bk(k + 1) − 1
k−1

∑b
j=1

[

∑k
i=1 t3ij − k

]

where tij is the size of the ith group in jth block. When there are no ties within blocks, all group sizes
within blocks are 1, and the last term in the denominator is 0, and F ′

r = Fr.

If we reject H0, and conclude treatment effects exist, we can conduct Wilcoxon’s Signed–Rank Test on
all pairs of treatments (adjusting αI for the number of comparisons being made, as in Bonferroni’s method),
to determine which pairs differ significantly.

Example 7.11: Comparison of 3 Methods for Estimating Volume of Wood Logs

A study compared 3 methods of measuring lumber volume of logs (Lin and Wang (2012), [36]). The
k = 3 treatments the authors compared was the actual sawmill volume of the log, a volume based on heuristic
programming algorithm, and a volume based on a dynamic programming algorithm. Each “treatment” was
measured on b = 30 logs (acting as the blocks). The goal was to compare the 3 treatments at valuating the
logs. Data are given in Table 7.12. We will test for treatment effects using Friedman’s test (α = 0.05).

1. H0 : The 3 distributions of volumes have equal medians for the three methods (M1 = M2 = M3)

2. HA : The 3 distributions of volumes do not have equal medians (Not all Mi are equal)

3. T.S.: Fr = 12
bk(k+1)

∑k
i=1 T 2

i −3b(k+1) = 12
30(3)(4)

[(42.0)2+(63.5)2+(74.5)2]−3(30)(4) = 378.22−360 =
18.22.

4. R.R.: Fr ≥ χ2
α,k−1 = χ2

.05,2 = 5.99.

5. P -value: P
(

χ2
2 ≥ 18.22

)

= .0001

We reject H0, and conclude that volume assessment method differences exist. Based on the rank sums,
it appears that the Actual method provides lower volume assessments than the Heuristic and Dynamic
methods. Note that there are ties in 9 of the 30 blocks. To obtain the adjusted Friedman’s test statistic,
make the following computations.

T = 60

b
∑

j=1

[

k
∑

i=1

t3ij − k

]

= 21(13 + 13 + 13 − 3) + 9(13 + 23 + 03 − 3) = 21(0) + 9(6) = 54

F ′
r =

12
[

(42.0− 60)2 + (63.5 − 60)2 + (74.5− 60)2
]

30(3)(4) − 1
3−1(54)

=
6558

333
= 19.694
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LogID Actual Heuristic Dynamic Rank1 Rank2 Rank3

1 0.090 0.092 0.093 1 2 3
2 0.123 0.121 0.121 3 1.5 1.5
3 0.135 0.140 0.141 1 2 3
4 0.152 0.156 0.153 1 3 2
5 0.126 0.131 0.133 1 2 3
6 0.101 0.105 0.107 1 2 3
7 0.091 0.092 0.093 1 2 3
8 0.115 0.117 0.120 1 2 3
9 0.121 0.123 0.129 1 2 3
10 0.094 0.092 0.093 3 1 2
11 0.174 0.175 0.173 2 3 1
12 0.139 0.139 0.140 1.5 1.5 3
13 0.135 0.135 0.145 1.5 1.5 3
14 0.153 0.154 0.156 1 2 3
15 0.123 0.118 0.118 3 1.5 1.5
16 0.092 0.100 0.099 1 3 2
17 0.146 0.143 0.141 3 2 1
18 0.163 0.162 0.168 2 1 3
19 0.096 0.100 0.100 1 2.5 2.5
20 0.092 0.096 0.097 1 2 3
21 0.127 0.128 0.135 1 2 3
22 0.120 0.132 0.131 1 3 2
23 0.111 0.117 0.116 1 3 2
24 0.138 0.135 0.145 2 1 3
25 0.176 0.183 0.182 1 3 2
26 0.096 0.102 0.102 1 2.5 2.5
27 0.115 0.116 0.116 1 2.5 2.5
28 0.137 0.140 0.141 1 2 3
29 0.110 0.116 0.116 1 2.5 2.5
30 0.103 0.110 0.110 1 2.5 2.5

Sum #N/A #N/A #N/A 42 63.5 74.5

Table 7.12: Volume assessments of wood logs and ranks by 3 Methods - RBD
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Based on the pairwise Wilcoxon signed-rank tests given in the R output below, there are c = k(k−1)/2 =
3 comparisons and the Bonferroni adjusted P -values are the minimum of 1 and and c times the individual
P -values. Thus, for the comparison between Actual and Heuristic, Padj = min(1, 3(.002063)) = .0062;

for Actual versus Dynamic, Padj = min(1, 3(9.51e − 05)) = .0003; and for Heuristic versus Dynamic,

Padj = min(1, 3(.05147)) = .1544. Both Heuristic and Dynamic have significantly higher medians than

Actual, Heuristic and Dynamic are not significantly different.

R Commands and Output

## Commands

saw <- read.csv("http://www.stat.ufl.edu/~winner/data/sawmill1.csv")

attach(saw); names(saw)

lumTrt <- factor(lumTrt)

lumBlk <- factor(lumBlk)

friedman.test(lumVol ~ lumTrt | lumBlk)

actual <- lumVol[lumTrt==1]

heuristic <- lumVol[lumTrt==2]

dynamic <- lumVol[lumTrt==3]

wilcox.test(actual, heuristic, paired=T)

wilcox.test(actual, dynamic, paired=T)

wilcox.test(heuristic, dynamic, paired=T)

## Output

> friedman.test(lumVol ~ lumTrt | lumBlk)

Friedman rank sum test

data: lumVol and lumTrt and lumBlk

Friedman chi-squared = 19.694, df = 2, p-value = 5.291e-05

> wilcox.test(actual, heuristic, paired=T)

Wilcoxon signed rank test with continuity correction

data: actual and heuristic

V = 67.5, p-value = 0.002063

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(actual, dynamic, paired=T)

Wilcoxon signed rank test with continuity correction

data: actual and dynamic

V = 42.5, p-value = 9.51e-05

alternative hypothesis: true location shift is not equal to 0

> wilcox.test(heuristic, dynamic, paired=T)

Wilcoxon signed rank test with continuity correction

data: heuristic and dynamic

V = 74, p-value = 0.05147

alternative hypothesis: true location shift is not equal to 0

7.3 Latin Square Designs

The Latin Square Design is an extension of the Randomized Block Design to include two blocking factors,
each with the same number of levels as the primary treatment factor. A classic example is to compare 4
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brands of automobile tires (treatment factor) using 4 cars as one blocking factor (random) and tire position
on car as the second blocking factor (fixed). The experimental design can be set up as in Table 7.13. Due
to there being three factors (treatments, row, and columns) needing three index letters (i, j, k), t is used as
the number of treatments.

Tire Position
Car 1 2 3 4
1 A B C D
2 B C D A
3 C D A B
4 D A B C

Table 7.13: Latin Square Design (4 Treatments)

The 4 test cars would be randomized to the 4 labels (1,2,3,4); the 4 tire positions (Right Front, Left
Front, Right Rear, Left Rear) would be randomized to the 4 labels, and the 4 brands would be randomized
to the 4 labels (A,B,C,D). In practice, this experiment would be replicated in multiple squares (sets of 4
cars each). The model and Analysis of Variance can be obtained as follows for the case of an experiment
consisting of one latin square with t treatments and n. = t2 observations.

Y k
ij = µ + αk + βi + γj + εij

where αk is the effect of treatment k, βi is the effect of row i, and γj is the effect of column j. Note that we
only use two subscripts, as each observation is indexed by its row and column, the superscript identifies the
treatment. To obtain the analysis of variance, we obtain the row means (yi.), the column means (y.j), the
treatment means (yk), and the overall mean (y..). Then, the following sums of squares and the Analysis of
Variance are given in Table 7.14.

TSS =

t
∑

i=1

t
∑

j=1

(

yk
ij − y..

)2

SST = t
t
∑

k=1

(yk − y..)
2

SSR = t

t
∑

i=1

(yi. − y..)
2

SSC = t

t
∑

i=1

(

y.j − y..

)2

SSE = TSS − SST − SSR − SSC

Once again, the main purpose for conducting this type of experiment is to detect differences among the
treatment means (treatment effects). The test is very similar to that of the CRD and RBD, with only minor
adjustments. We are rarely interested in testing for differences among either blocking factor, since we expect
there to be differences among them (that’s why the experiment is designed this way). The treatments are
the items chosen specifically to be compared in the experiment. The testing procedure can be described as
follows.

1. H0 : α1 = · · · = αt = 0 (No treatment effect)
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ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

TREATMENTS SST t − 1 MST = SST
t−1

F = MST
MSE

ROWS SSR t − 1 MSR = SSR
t−1

COLUMNS SSC t − 1 MSC = SSC
t−1

ERROR SSE (t − 1)(t − 2) MSE = SSE
(t−1)(t−2)

TOTAL TSS t2 − 1

Table 7.14: The Analysis of Variance Table for the Latin Square Design

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE

4. R.R.: Fobs ≥ Fα,t−1,(t−1)(t−2)

5. p-value: P
(

Ft−1,(t−1)(t−2) ≥ Fobs

)

The procedures to make comparisons among means are also very similar to the methods used for the
CRD and the RBD. In each formula described previously for Dunnett’s, Bonferroni’s, and Tukey’s methods,
ni in the CRD and b in the RBD are replaced with t, when making comparisons among treatment means,
and ν = (t − 1)(t − 2).

When t is small, multiple squares can be run, allowing for more error degrees of freedom. The same or
new row/column block levels can be used. For instance in the car tire example, 8 or 12 (or any multiple of
4) cars could be used, while the tire positions would remain the same.

The Relative Efficiency of conducting the Latin Square Design, as opposed to the Completely Ran-
domized Design is:

RE(LS, CR) =
MSECR

MSELS
=

MSR + MSC + (t − 1)MSE

(t + 1)MSE

This represents the number of times as many replicates would be needed for each treatment in a CRD
to obtain as precise of estimates of differences between two treatment means as we were able to obtain by
using t experimental units per treatment in the Latin Square.

Example 7.12: Dye Decolorisation in Copper Alginate
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An experiment was conducted to compare t = 3 CuSO4 molar concentrations (.075, .150, 0.225) with
respect to dye decolorisation (Teerapatsakul, et al (2008), [49]). The row blocking factor was alginate type
(percentage of alginate from 2 vendors (100:0, 50:50, and 0:100)). The column blocking factor was alginate
concentration (1.5, 3.0, 4.5). The experiment was conducted as a 3x3 latin square. The design and data are
given in Table 7.15.

Alginate Concentration
Alginate Type 1 2 3 Row Mean

1 A 53.9 B 63.7 C 58.2 58.60
2 B 50.3 C 52.8 A 57.4 53.50
3 C 53.0 A 45.8 B 46.1 48.30

Column Mean 52.40 54.10 53.90 53.47

Treatment Mean A 52.37 B 53.37 C 54.67

Table 7.15: Dye decolorisation (%) in Copper Alginate

Total SS: TSS = (53.9− 53.4667)2 + · · ·+ (46.1− 53.4667)2 = 266.52 df = 32 − 1 = 8

Treatment SS: SST = 3
[

(52.3667− 53.4667)2 + (53.3667− 53.4667)2 + (54.667− 53.4667)2
]

= 7.98

dfT = 3 − 1 = 2 MST = 3.99

Row SS: SSR = 3
[

(58.60− 53.4667)2 + (53.50− 53.4667)2 + (48.30− 53.4667)2
]

= 159.14

dfR = 3 − 1 = 2 MSR = 79.57

Column SS: SSC = 3
[

(52.40− 53.4667)2 + (54.10− 53.4667)2 + (53.90− 53.4667)2
]

= 5.18

dfC = 3 − 1 = 2 MSC = 2.59

Error SS: SSE = 266.52− 7.98− 159.14− 5.18 = 94.22 dfE = (3 − 1)(3 − 2) = 2 MSE = 47.11

The F -statistic used for testing for CuSO4 concentration effects is FT = 3.99/47.11 = 0.0847, with
critical F -value of F2,2,.05 = 19 and P -value=.9219. There is no evidence of CuSO4 concentration effects on
dye decolorisation. The relative efficiency of this design is 1.36.

RE(LS, CR) =
79.57 + 2.59 + (3 − 1)47.11

(3 + 1)47.11
= 1.36

∇

7.4 R Code for Chapter 7

### Chapter 7

### Example 7.1
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bmi.sim <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_nba_ebl_bmi.csv")

attach(bmi.sim); names(bmi.sim)

set.seed(13579)

N <- rep(0,3)

N[1] <- 717

N[2] <- 505

N[3] <- 526

NHL_BMI <- NHL_BMI[1:N[1]]

NBA_BMI <- NBA_BMI[1:N[2]]

EPL_BMI <- EPL_BMI[1:N[3]]

## Figure 7.1

par(mfrow=c(3,1))

hist(NHL_BMI,breaks=25,xlim=c(18,34))

hist(NBA_BMI,breaks=25,xlim=c(18,34))

hist(EPL_BMI,breaks=25,xlim=c(18,34))

par(mfrow=c(1,1))

## End Figure 7.1

# Obtain population means and SDs by league

sigma <- rep(0,3)

sigma[1] <- sd(NHL_BMI) * sqrt((N[1]-1)/N[1])

sigma[2] <- sd(NBA_BMI) * sqrt((N[2]-1)/N[2])

sigma[3] <- sd(EPL_BMI) * sqrt((N[3]-1)/N[3])

mu <- rep(0,3)

mu[1] <- mean(NHL_BMI)

mu[2] <- mean(NBA_BMI)

mu[3] <- mean(EPL_BMI)

sigma2.all <- sum(N * sigma^2) / sum(N)

mu.all <- sum(N * mu) / sum(N)

cbind(sigma2.all, mu.all)

# Set sample sizes and obtain number of groups=t

sampsz <- rep(3,0)

sampsz[1] <- 12

sampsz[2] <- 12

sampsz[3] <- 12

sumssz <- sum(sampsz)

num.trt <- length(sampsz)

# Power when n_i=4, n_i=12

(power.4 <- 1-pf(qf(.95,2,9),2,9,9.48))

(power.12 <- 1-pf(qf(.95,2,33),2,33,28.43))

# Set up the number of samples and holders for sample means and SDs

N.sim <- 100000

set.seed(6529)

ybar1 <- numeric(N.sim)

sd1 <- numeric(N.sim)

ybar2 <- numeric(N.sim)

sd2 <- numeric(N.sim)

ybar3 <- numeric(N.sim)

sd3 <- numeric(N.sim)

ybar <- numeric(N.sim)

# Loop through the samples

for (i in 1:N.sim) {

samp1 <- sample(1:N[1],sampsz[1],replace=F)

samp2 <- sample(1:N[2],sampsz[2],replace=F)

samp3 <- sample(1:N[3],sampsz[3],replace=F)

y1 <- NHL_BMI[samp1]

y2 <- NBA_BMI[samp2]

y3 <- EPL_BMI[samp3]
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ybar1[i] <- mean(y1); sd1[i] <- sd(y1)

ybar2[i] <- mean(y2); sd2[i] <- sd(y2)

ybar3[i] <- mean(y3); sd3[i] <- sd(y3)

ybar[i] <- (mean(y1)+mean(y2)+mean(y3))/num.trt

}

# Obtain the ANOVA, F-test, Proportion of Samples Rejecting

SST <- sampsz[1]*(ybar1-ybar)^2 + sampsz[2]*(ybar2-ybar)^2 +

sampsz[3]*(ybar3-ybar)^2

SSE <- (sampsz[1]-1)*sd1^2 + (sampsz[2]-1)*sd2^2 + (sampsz[3]-1)*sd3^2

MST <- SST/(num.trt-1)

MSE <- SSE/(sumssz-num.trt)

F <- MST/MSE

f.alpha <- qf(.95,num.trt-1,sumssz-num.trt)

reject <- sum(F >= f.alpha)/N.sim

ftest.out <- cbind(num.trt-1,sumssz-num.trt, f.alpha, reject)

colnames(ftest.out) <- c("df_T", "df_E", "F(>05)", "P(F_obs>F(.05))")

round(ftest.out, 4)

F[1]

cbind(ybar1[1], ybar2[1], ybar3[1], ybar[1], sd1[1], sd2[1], sd3[1])

### Figure 7.2

## F and non-central F

## n_i=4

x <- seq(0,10,.01)

f.c <- df(x,2,9)

f.nc <- df(x,2,9,9.48)

par(mfrow=c(2,1))

plot(x,f.c,type="l",

main="Central and Non-Central F-Densities - BMI Example, n=4")

lines(x,f.nc,lty=2)

legend(6,0.9,c("Central F", "Non-central F"),lty=c(1,2))

abline(v=qf(.95,2,9))

text(qf(.95,2,9)-1,0.4,"Fail to Reject H0",cex=0.7)

text(qf(.95,2,9)+1,0.4,"Reject H0",cex=0.7)

### n_i=12

x <- seq(0,10,.01)

f.c <- df(x,2,33)

f.nc <- df(x,2,33,28.42)

plot(x,f.c,type="l",

main="Central and Non-Central F-Densities - BMI Example, n=12")

lines(x,f.nc,lty=2)

legend(6,0.9,c("Central F", "Non-central F"),lty=c(1,2))

abline(v=qf(.95,2,33))

text(qf(.95,2,33)-1,0.4,"Fail to Reject H0",cex=0.7)

text(qf(.95,2,33)+1,0.4,"Reject H0",cex=0.7)

### End of Figure 7.2

rm(list=ls(all=TRUE))

### Example 7.2

### Summary Stats

k <- 5

n <- rep(30, k)

ybar <- c(7.900, 8.133, 8.033, 6.333, 5.367)

sd <- c(3.367, 3.461, 3.011, 3.122, 3.068)
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ybar.all <- sum(n*ybar) / sum(n)

### ANOVA Computations from Summary Stats

SST <- sum(n * (ybar-ybar.all)^2)

SSE <- sum((n-1) * sd^2)

dfT <- k-1

dfE <- sum(n)-k

TSS <- SST + SSE

dfTOT <- sum(n)-1

MST <- SST/dfT

MSE <- SSE/dfE

F_obs <- MST/MSE

F.05 <- qf(.95,dfT,dfE)

F_p <- 1-pf(F_obs,dfT,dfE)

df <- rbind(dfT, dfE, dfT+dfE)

SS <- rbind(SST, SSE, TSS)

MS <- rbind(MST, MSE, NA)

F <- rbind(F_obs, NA, NA)

F.a <- rbind(F.05, NA, NA)

F.p <- rbind(F_p, NA, NA)

aov.out <- cbind(df, SS, MS, F, F.a, F.p)

rownames(aov.out) <- c("Treatment", "Error", "Total")

colnames(aov.out) <- c("df", "SS", "MS", "F", "F(.05)", "P(>F)")

round(aov.out, 4)

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod <- aov(y.mosq ~ trt.mosq)

summary(mosq.mod)

rm(list=ls(all=TRUE))

### Example 7.3

### Summary Stats

k <- 5

n <- rep(30, k)

ybar <- c(7.900, 8.133, 8.033, 6.333, 5.367)

sd <- c(3.367, 3.461, 3.011, 3.122, 3.068)

ybar.all <- sum(n*ybar) / sum(n)

### ANOVA Computations from Summary Stats

SST <- sum(n * (ybar-ybar.all)^2)

SSE <- sum((n-1) * sd^2)

dfT <- k-1

dfE <- sum(n)-k

TSS <- SST + SSE

dfTOT <- sum(n)-1

MST <- SST/dfT

MSE <- SSE/dfE

F_obs <- MST/MSE

F.05 <- qf(.95,dfT,dfE)

F_p <- 1-pf(F_obs,dfT,dfE)

df <- rbind(dfT, dfE, dfT+dfE)

SS <- rbind(SST, SSE, TSS)

MS <- rbind(MST, MSE, NA)

F <- rbind(F_obs, NA, NA)

F.a <- rbind(F.05, NA, NA)

F.p <- rbind(F_p, NA, NA)

aov.out <- cbind(df, SS, MS, F, F.a, F.p)

rownames(aov.out) <- c("Treatment", "Error", "Total")

colnames(aov.out) <- c("df", "SS", "MS", "F", "F(.05)", "P(>F)")
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round(aov.out, 4)

### Example 7.4

### Contrasts

LC1 <- c(0, 1, -1, 1, -1)

c1 <- sum(LC1*ybar)

se.c1 <- sqrt(MSE*(sum(LC1^2/n)))

t.C1 <- c1/se.c1

t.C1.p <- 2 * (1-pt(abs(t.C1),dfE))

C1.CI <- c1 + qt(c(.025,.975),dfE) * se.c1

SSC1 <- c1^2 / sum(LC1^2/n)

F.C1 <- SSC1 / MSE

F.C1.p <- 1 - pf(F.C1,1,dfE)

contrast.out <- cbind(c1, se.c1, t.C1, t.C1.p, C1.CI[1], C1.CI[2],

SSC1, F.C1, F.C1.p)

colnames(contrast.out) <- c("Estimate", "Std Err", "t", "2P(>|t|)",

"LB", "UB", "Sum Sq", "F", "P(>F)")

round(contrast.out, 4)

LC2 <- c(0, 1, 1, -1, -1)

c2 <- sum(LC2*ybar)

se.c2 <- sqrt(MSE*(sum(LC2^2/n)))

t.C2 <- c2/se.c2

t.C2.p <- 2 * (1-pt(abs(t.C2),dfE))

C2.CI <- c2 + qt(c(.025,.975),dfE) * se.c2

SSC2 <- c2^2 / sum(LC2^2/n)

F.C2 <- SSC2 / MSE

F.C2.p <- 1 - pf(F.C2,1,dfE)

contrast.out <- cbind(c2, se.c2, t.C2, t.C2.p, C2.CI[1], C2.CI[2],

SSC2, F.C2, F.C2.p)

colnames(contrast.out) <- c("Estimate", "Std Err", "t", "2P(>|t|)",

"LB", "UB", "Sum Sq", "F", "P(>F)")

round(contrast.out, 4)

rm(list=ls(all=TRUE))

### Example 7.5

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

## Figure 7.3 (New)

# win.graph(height=5.5, width=7.0)

par(mfrow=c(1,1))

plot(y.mosq ~ trt.mosq, main="Mosquito Contact by Repellent",

xlim=c(0,6), pch=16)

lines(c(0.5, 5.5), c(mean(y.mosq),mean(y.mosq)), lwd=2)

for (i in 1:length(unique(trt.mosq))) {

lines(c(i-0.2,i+0.2),

c(mean(y.mosq[trt.mosq==i]),mean(y.mosq[trt.mosq==i])),

lwd=2)

}

## End of Figure 7.3

trt.mosq <- factor(trt.mosq)

mosq.mod1 <- aov(y ~ trt.mosq)

anova(mosq.mod1)

# install.packages("multcomp")

library(multcomp)

mosq.dunnett <- glht(mosq.mod1, linfct=mcp(trt.mosq="Dunnett"))

summary(mosq.dunnett)
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confint(mosq.dunnett)

rm(list=ls(all=TRUE))

### Example 7.6

### Summary Stats

k <- 5

n <- rep(30, k)

ybar <- c(7.900, 8.133, 8.033, 6.333, 5.367)

sd <- c(3.367, 3.461, 3.011, 3.122, 3.068)

### Tukey follow-up to 1-Way ANOVA

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod1 <- aov(y.mosq ~ trt.mosq)

anova(mosq.mod1)

TukeyHSD(mosq.mod1, "trt.mosq")

### Bonferroni method

bon.ci <- function(alpha_E, y, trt.y) {

ybar <- as.vector(tapply(y, trt.y, mean)) # Obtain Trt Means

sd <- as.vector(tapply(y, trt.y, sd)) # Obtain Trt SDs

n <- as.vector(tapply(y, trt.y, length)) # Obtain Trt n’s

k <- length(ybar) # Obtain k = # trts

c <- k*(k-1)/2 # Obtain c = # comparisons

SSE <- sum((n-1)*sd^2) # Error Sum of Squares

dfE <- sum(n)-k # Error df

MSE <- SSE/dfE # Error Mean Square

bon.t <- qt(1-alpha_E/(2*c),dfE) # Critical value

bon.out <- matrix(rep(0,6*c),ncol=6) # Matrix to hold results

bon.row <- 0

## Loop through all i, i’ and compute B_{ii’} and CI’s

for(i1 in 1:(k-1)) {

for (i2 in (i1+1):k) {

bon.row <- bon.row + 1

bon.out[bon.row,1] <- i1

bon.out[bon.row,2] <- i2

bon.out[bon.row,3] <- ybar[i1] - ybar[i2]

bon.out[bon.row,4] <-

(ybar[i1] - ybar[i2]) - bon.t*sqrt(MSE*(1/n[i1] + 1/n[i2]))

bon.out[bon.row,5] <-

(ybar[i1] - ybar[i2]) + bon.t*sqrt(MSE*(1/n[i1] + 1/n[i2]))

t <- (ybar[i1] - ybar[i2]) / sqrt(MSE*(1/n[i1] + 1/n[i2]))

bon.out[bon.row,6] <- min(1, c*2*(1-pt(abs(t),dfE)))

}}

colnames(bon.out) <- c("Trt i","Trt i’","Diff","Lower Bound","Upper Bound",

"p adjusted")

round(bon.out,3)

}

bon.ci(0.05, y.mosq, trt.mosq)

rm(list=ls(all=TRUE))

### Example 7.7

sb <- read.csv("http://www.stat.ufl.edu/~winner/data/sealion_bark.csv")

attach(sb); names(sb)

location <- factor(location)

bartlett.test(duration ~ location)
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oneway.test(duration ~ location, var.equal=F)

(loc_mean <- as.vector(tapply(duration,location,mean))) ## Vector of means

(loc_var <- as.vector(tapply(duration,location,var))) ## Vector of vars

(loc_n <- as.vector(tapply(duration,location,length))) ## Vector of ns

### Games-Howell method

k <- length(loc_n)

gh.out <- matrix(rep(0,7*k*(k-1)/2),ncol=7)

gh.row <- 0

for(i1 in 1:(k-1)) {

for (i2 in (i1+1):k) {

gh.row <- gh.row + 1

gh.out[gh.row,1] <- i1

gh.out[gh.row,2] <- i2

gh.out[gh.row,3] <- loc_mean[i1] - loc_mean[i2]

diff_mean_var <- loc_var[i1]/loc_n[i1]+loc_var[i2]/loc_n[i2]

gh.out[gh.row,4] <- sqrt(diff_mean_var)

diff_df <- diff_mean_var^2 /

( ((loc_var[i1]/loc_n[i1])^2/(loc_n[i1]-1)) +

((loc_var[i2]/loc_n[i2])^2/(loc_n[i2]-1)) )

gh.out[gh.row,5] <- diff_df

gh.q <- qtukey(.95,k,diff_df)

gh.out[gh.row,6] <-

(loc_mean[i1] - loc_mean[i2]) - (gh.q/sqrt(2)) * sqrt(diff_mean_var)

gh.out[gh.row,7] <-

(loc_mean[i1] - loc_mean[i2]) + (gh.q/sqrt(2)) * sqrt(diff_mean_var)

}}

colnames(gh.out) <- c("Trt i","Trt j","Diff","SE", "DF",

"Lower Bound","Upper Bound")

round(gh.out,3)

rm(list=ls(all=TRUE))

### Example 7.8

bt <- read.csv("http://www.stat.ufl.edu/~winner/data/berry_texture.csv")

attach(bt); names(bt)

sugar <- factor(sugar)

kruskal.test(anthExt ~ sugar)

rm(list=ls(all=TRUE))

### Example 7.9

saw <- read.csv("http://www.stat.ufl.edu/~winner/data/sawmill1.csv")

attach(saw); names(saw)

lumTrt <- factor(lumTrt)

lumBlk <- factor(lumBlk)

levels(lumTrt) <- c("Actual", "Heuristic", "Dynamic")

saw.mod1 <- aov(lumVal ~ lumTrt + lumBlk)

anova(saw.mod1)

TukeyHSD(saw.mod1, "lumTrt")

## Figure 7.4

interaction.plot(lumBlk, lumTrt, lumVal)

rm(list=ls(all=TRUE))

### Example 7.10

saw <- read.csv("http://www.stat.ufl.edu/~winner/data/sawmill1.csv")
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attach(saw); names(saw)

lumTrt <- factor(lumTrt)

lumBlk <- factor(lumBlk)

friedman.test(lumVol ~ lumTrt | lumBlk)

actual <- lumVol[lumTrt==1]

heuristic <- lumVol[lumTrt==2]

dynamic <- lumVol[lumTrt==3]

wilcox.test(actual, heuristic, paired=T)

wilcox.test(actual, dynamic, paired=T)

wilcox.test(heuristic, dynamic, paired=T)

rm(list=ls(all=TRUE))
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Chapter 8

Categorical Data Analysis

Recall that variables can be categorical or numeric. The past four chapters dealt with making inferences for
quantitative responses. In this chapter, methods commonly used to analyze data when the response variable
is categorical are introduced. First, consider estimating and testing proportions corresponding to a single
binomial (2 possible outcomes) or multinomial (k > 2 possible outcomes) variable. Then, cases of testing
for associations among two or more categorical variables are covered.

8.1 Inference Concerning a Single Variable

A single variable can have two levels, and counts are modeled by the Binomial distribution, or it can have
k > 2 levels and counts are modeled by the Multinomial distribution. Note that the Binomial is a special
case of the Multinomial, however there are many methods that apply strictly to binary outcomes.

8.1.1 Variables with Two Possible Outcomes

In the case of a binary variable, the goal is typically to estimate the true underlying probability of success,
π. The sample proportion π̂ = Y/n from a binomial experiment with n trials and Y successes has a sampling
distribution with mean π and standard error

√

π(1 − π)/n. In large samples, the sampling distribution is
approximately normal. One commonly used rule of thumb is that nπ ≥ 5 and n(1−π) ≥ 5. When estimating
π, the estimated standard error must be used, where π is replaced with π̂. Note that the standard error is
maximized for a given n when π = 1 − π = 0.5, so a conservative case uses π = 0.5 in the standard error.
The large-sample (1 − α)100% Confidence Interval for π and the sample size needed for a given margin of
error, E, are given below.

(1 − α)100%CI for π : π̂ ± zα/2

√

π̂ (1 − π̂)

n
E = zα/2

√

π (1 − π)

n
⇒ n =

z2
α/2π(1 − π)

E2

211
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In small samples, the large-sample normal approximation does poorly in terms of coverage rates for π.
It has been seen that making an adjustment to the success count and the sample size performs well. This is
referred to as the Wilson-Agresti-Coull method. Let y be the observed number of successes in the n trials,
then the Confidence Interval is obtained as follows. Note that since z.025 = 1.96 ≈ 2, for a 95% Confidence
Interval, this can be thought of as adding 2 Successes and 2 Failures to the observed data (Agresti and Coull
(1998), [2]).

ỹ = y + 0.5z2
α/2 ñ = n + z2

α/2 π̃ =
ỹ

ñ
(1 − α)100%CI for π : π̃ ± zα/2

√

π̃ (1 − π̃)

ñ

Example 8.1: Estimating Shaquille O’Neal’s Free Throw Success Probability

During Shaquille O’Neal’s NBA regular season career, he took 11252 free throws, successfully making
5935, so that π = 5935/11252 = .5275. Stringing out his within game free throw attempts into a sequence
of 1s and 0s, and taking 100000 random samples of size n = 10, the coverage rates for the two methods are
88.5% for the “traditional” large-sample method and 94.8% for the Wilson-Agresti-Coull method. For the
small-sample case, the adjustment performs very well. When the samples are of size n = 30, the coverage
rates are 93.2% and 95.9%, respectively. For samples of size n = 100, they are 94.3% and 95.3%, respectively.

R Output

## Output

> round(ft.out, 4)

pi pi-hat cover pi-tilde cover pi-hat mean width pi-tilde mean width

n=10 0.5275 0.8836 0.9455 0.5842 0.5120

n=30 0.5275 0.9321 0.9588 0.3510 0.3319

n=100 0.5275 0.9436 0.9538 0.1946 0.1911

For the first sample of size n = 10, y = 7 free throws were successes and the following calculations are
used to obtain the 95% Confidence Intervals for π.

π̂ =
7

10
= 0.7 ŜE{π̂} =

√

0.7 (1 − 0.7)

10
= 0.145 0.70± 1.96(0.145) ≡ 0.70± 0.284 ≡ (0.416, 0.984)

ỹ = 7 + 0.5(1.96)2 = 8.92 ñ = 10 + (1.96)2 = 13.84 π̃ =
8.92

13.84
= 0.645

√

0.645 (1 − 0.645)

13.84
= 0.129

0.645± 1.96(0.129) ≡ 0.645± 0.253 ≡ (0.392, 0.898)

Both intervals contain π = 0.5275.

∇
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A Large-sample test of whether π = π0 can also be conducted. For instance, a test may be whether
a majority of people favor a political candidate or referendum, or whether a defective rate is below some
tolerance level.

2-tailed test: H0 : π = π0 HA : π 6= π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Upper-tailed test: H0 : π ≤ π0 HA : π > π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower-tailed test: H0 : π ≥ π0 HA : π < π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≤ −zα P = P (Z ≤ zobs)

An exact test can be conducted by use of the binomial distribution and statistical packages by obtaining
the exact probability that the count could be more extreme than the observed count y under the null
hypothesis. See the examples below.

Example 8.2: NBA Point Spread and Over/Under Outcomes for 2014-2015 Regular Season

For each NBA game there is a “point spread” for bettors to wager on. If the home team is favored to
win the game by 5 points, it must win by 6 or more points to “cover the spread,” if it loses the game or wins
by less than 5 points, the home team loses the bet, and if it wins by 5 points, the best is a tie or “push.”
For the 2014-2015 regular season games, the home team covered the spread in 588 games, failed to cover the
spread in 615 games, and “tied” the spread in 27 games. We treat these games as a sample of the infinite
population of games that could be played among NBA teams, and eliminate the 27 “pushes.” The test is
whether the true underlying probability that the home team covers is 0.50. Otherwise bettors could have an
advantage over bookmakers. H0 : π = 0.50 versus HA : π 6= 0.50.

y = 588 n = 615 + 588 = 1203 π̂ =
588

1203
= 0.4888 SE {π̂}H0

=

√

0.5(1 − 0.5)

1203
= 0.0144

zobs =
0.4888− 0.5

0.0144
= −0.78 P = 2P (Z ≥ 0.78) = 2(0.2177) = 0.4354

There is no evidence of a “bias” (positive or negative) in terms of the home team performance against the
spread. An exact test is given here. Under the null hypothesis, the expected value of Y is nπ0 = 1203(0.5) =
601.5. The observed y is 588, which is 13.5 below its expected value. Had y been 615, it would have been
13.5 above its expected value. The exact 2-tailed P -value is obtained as follows.

P = P (Y ≤ 588|Y ∼ Bin(1203, 0.5)) + P (Y ≥ 615|Y ∼ Bin(1203, 0.5)) = 0.22675 + 0.22675 = .4535
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A similar test can be done for the “Over/Under” bet. Bookmakers set a total score for the two teams,
and if the combined points exceed this line the Over wins, if it falls short, the Under wins, and if it ties, it
is a “Push.” For the Over/Under bet for that season, Under won 633 times, Over won 583 times, and there
were 14 Pushes. Again, we eliminate the Pushes, and test H0 : π = 0.50 versus HA : π 6= 0.50, where π is
the probability Over wins.

y = 583 n = 633 + 583 = 1216 π̂ =
583

1216
= 0.4794 SE {π̂}H0

=

√

0.5(1 − 0.5)

1216
= 0.0143

zobs =
0.4794− 0.5

0.0143
= −1.44 P = 2P (Z ≥ 1.44) = 2(.0749) = 0.1498

Again there is no evidence of a bias. An exact P -value is obtained below.

P = P (Y ≤ 583|Y ∼ Bin(1216, 0.5)) + P (Y ≥ 633|Y ∼ Bin(1216, 0.5)) = 0.07997 + 0.07997 = 0.1599

R Output

### Output

> round(cov.out, 4)

pi(H0) y n pihat SE{H0} Z P(Z) P(Exact) SE{pihat} Lower Upper

[1,] 0.5 588 1203 0.4888 0.0144 -0.7785 0.4363 0.4535 0.0144 0.4605 0.517

> ### Exact Tests

> binom.test(Y.Cov,n.Cov,p=0.5,alternative="two.sided")

Exact binomial test

data: Y.Cov and n.Cov

number of successes = 588, number of trials = 1203, p-value = 0.4535

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4601721 0.5174390

sample estimates:

probability of success

0.4887781

∇

8.1.2 Variables with k > 2 Possible Outcomes

A Multinomial experiment is an extension of the Binomial experiment with the caveat that each of n trials
can end in one of k possible outcomes or categories. The probability of outcome i is πi, and the count of the
number of trials falling in category i is yi. The following restrictions must hold.

π1 + · · ·+ πk = 1 y1 + · · ·+ yk = n
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Category (i) πi0 Expected # Observed # X2

Black (1) 1/6 344 306 4.198
White (2) 1/6 344 338 0.105
Red (3) 1/6 344 432 22.512
Yellow (4) 1/6 344 348 0.047
Blue (5) 1/6 344 331 0.491
Green (6) 1/6 344 309 3.561

Total 1 2064 2064 30.913

Table 8.1: Numbers of e-mails received by shirt color - Internet personal ad experiment

Note that for the Binomial case, we have previously labeled y1 = y and y2 = n − y where category 1
represents “Success” and category 2 represents “Failure.” The probability of the experiment resulting in the
observed counts (y1, . . . , yk) is as follows.

p (y1, . . . , yk) =
n!

y1! · · ·yk!
πy1

1 · · ·πyk

k π1 + · · ·+ πk = 1 y1 + · · ·+ yk = n πi ≥ 0 yi ≥ 0

A test can be conducted for H0 : π1 = π10, . . . , πk = πk0, for some specified set of k probabilities
π10, . . . , πk0 that sum to 1. Again this simply extends the binomial test of H0 : π = π0. Once the observed
counts y1, . . . , yk are obtained, the test is conducted as follows, where Ei is the expected count for category
i under the null hypothesis (πi = πi0) and observed sample size (n).

Ei = nπi0 TS : X2
obs =

k
∑

i=1

(yi − Ei)
2

Ei
RR : X2

obs ≥ χ2
α,k−1 P = P

(

χ2
k−1 ≥ X2

obs

)

Example 8.3: Color Preferences in Physical Attraction

An experiment was conducted to determine whether there is evidence of differences in attraction to
various colors (Gueguen and Jacob (2013), [24]). Women registered on an internet personal ad site were
photographed in shirts of k = 6 colors: red, black, white, yellow, blue, and green which were shown on the
web site. The total numbers of e-mails received from the various shirt colors were obtained and given in
Table 8.1. The authors tested the hypothesis that the k = 6 colors would be equally responded to in the
general population. That is H0 : π1 = · · · = π6 = 1/6. There were a total of n = 2064 e-mail messages
received during the study period. The test statistic is X2

obs = 30.912 with k − 1 = 6 − 1 = 5 degrees of
freedom. The critical Chi-square value is χ2

.05,5 = 11.071, and the P -value for the test is .0000. There is
strong evidence for differences among the preferences of the colors.

R Commands and Output

### Commands

### Default probs are 1/#categories

chisq.test(c(306,338,432,348,331,309),p=c(1/6,1/6,1/6,1/6,1/6,1/6))

### Output
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y p(y) Expected # Observed # X2

0 .3937 226.74 229 0.0225
1 .3670 211.39 211 0.0007
2 .1711 98.54 93 0.3115
3 .0532 30.62 35 0.6265

≥ 4 .0151 8.71 8 0.0579

Total 1 576 576 1.0191

Table 8.2: Probability Distribution for Number of bombs hitting within 576 areas on a grid in the south of
London during World War II

> chisq.test(c(306,338,432,348,331,309),p=c(1/6,1/6,1/6,1/6,1/6,1/6))

Chi-squared test for given probabilities

data: c(306, 338, 432, 348, 331, 309)

X-squared = 30.913, df = 5, p-value = 9.746e-06

∇

This test is often used when testing whether data come from a particular family of probability distribu-
tions.

• A family of distributions (e.g. Poisson, Negative Binomial, Normal, Gamma, Beta) is considered for
the data.

• Data are sampled and used to estimate the m parameter(s) of the distribution.

• The data are placed in k mutually exclusive and exhaustive ranges of values.

• The observed counts ni and the expected counts under the hypothesized distribution are obtained
(expected counts should be ≥ 5)

• The chi-square statistic is computed and has k − 1 − m degrees of freedom under the null hypothesis.

Example 8.4: Bombings in London During World War II

A widely reported application of the Poisson Distribution involves the counts of the number of bombs
hitting among 576 areas of 0.5km2 in south London during WWII (Clarke (1946), [15], also reported in
Feller (1950), [22]). There were a total of 537 bombs hit with a mean of 537/576 = .9323. Table 8.2 gives
the counts, and their expected counts (576p(y)) under the Poisson distribution with λ = 0.9323 for the
occurrences of 0 bombs, 1 bomb, ..., ≥ 4 bombs.

For a test of whether these data are modeled by a Poisson distribution with mean 0.9323, the test
statistic is X2

obs = 1.0191 with degrees of freedom k − 1−m = 5− 1− 1 = 3. The critical value for α = 0.05
is χ2

.05,3 = 7.815, and the P -value is P
(

χ2
3 ≥ 1.0191

)

= .7966.

R Output
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Range Observed # Expected # X2

0-4.75 74 81.142 0.629
4.75-5.25 157 136.891 2.954
5.25-5.75 235 221.927 0.770
5.75-6.25 251 271.450 1.541
6.25-6.75 256 261.602 0.120
6.75-7.25 201 205.546 0.101
7.25-7.75 138 135.332 0.053
7.75-8.25 79 76.350 0.092
8.25-8.75 32 37.593 0.832
8.75-9.25 18 16.404 0.155
9.25-∞ 13 9.763 1.073

Total 1454 1454 8.319

Table 8.3: Goodness-of-fit test for Male Rock and Roll marathon speeds as Gamma distribution

### Output

> (mean.bomb <- 537/576)

[1] 0.9322917

> (exp.bomb <- sum(obs.bomb)*c(p0,p1,p2,p3,p4))

[1] 226.742723 211.390351 98.538731 30.622279 8.705916

> round(bomb.out, 4)

X2 stat DF X2(.05) P-value

[1,] 1.0176 3 7.8147 0.797

∇

Example 8.5: Male Rock and Roll Marathon Velocities

Previously the parameters of the Gamma distribution to model male Rock and Roll marathon speeds
were estimated by the method of moments as α = 35.896 and β = 5.665, treating these speeds as a sample
from a conceptual population. Note that other methods of estimation involve maximizing the likelihood
function and minimizing the chi-square goodness of fit statistic. The range of velocities is broken into the
following k = 11 categories: (0, 4.75], (4.75, 5.25], . . . , (8.75, 9.25], (9.25,∞). Table 8.3 gives the observed
and expected counts, and computations for the chi-square goodness-of-fit test. The degrees of freedom are
11-1-2=8, with critical chi-square value of χ2

.05,8 = 15.507 and P -value P
(

χ2
8 ≥ 8.319

)

= .4029.

R Output

### Output

> round(X2.out,4)

alpha beta Test Stat DF X2(.05) P-value

[1,] 35.8964 5.6646 8.3191 8 15.5073 0.4029

> round(cbind(cell.top,n.cells,tot.n.cells,exp.cells,X2.ab.cell),3)

cell.top n.cells tot.n.cells exp.cells X2.ab.cell

[1,] 4.75 74 74 81.142 0.629

[2,] 5.25 157 231 136.891 2.954

[3,] 5.75 235 466 221.927 0.770

[4,] 6.25 251 717 271.450 1.541
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[5,] 6.75 256 973 261.602 0.120

[6,] 7.25 201 1174 205.546 0.101

[7,] 7.75 138 1312 135.332 0.053

[8,] 8.25 79 1391 76.350 0.092

[9,] 8.75 32 1423 37.593 0.832

[10,] 9.25 18 1441 16.404 0.155

[11,] 9999999.00 13 1454 9.763 1.073

∇

8.2 Introduction to Tests for Association for Two Categorical Vari-

ables

The data are generally counts of individuals or units, and are given in the form of an r × c contingency
table. Throughout these notes, the rows of the table will represent the r levels of the explanatory variable,
and the columns will represent the c levels of the response variable. The numbers within the table are
the counts of the numbers of individuals falling in that cell’s combination of levels of the explanatory and
response variables. The general set–up of an r × c contingency table is given in Table 8.4.

Response Variable
1 2 · · · c

1 n11 n12 · · · n1c n1.

Explanatory 2 n21 n22 · · · n2c n2.

Variable
...

...
...

. . .
...

...
r nr1 nr2 · · · nrc nr.

n.1 n.2 · · · n.c n..

Table 8.4: An r × c Contingency Table

Recall that categorical variables can be nominal or ordinal. Nominal variables have levels that have no
inherent ordering, such as gender (male, female) or hair color (black, blonde, brown, red). Ordinal variables
have levels that do have a distinct ordering such as reviewer’s assessment of a movie (negative opinion, mixed
opinion, positive opinion).

In this chapter, the following cases are covered.

• 2 × 2 tables (both variables have two levels)

• Both variables are nominal.

• Both variables are ordinal.

• Explanatory variable is nominal, response variable is ordinal.

• Tables are nominal or ordinal ratings of the same objects by two raters.
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8.3 2 × 2 Tables

There are many situations where both the independent and dependent variables have two levels. One example
is efficacy studies for drugs, where subjects are assigned at random to active drug or placebo (explanatory
variable) and the outcome measure is whether or not the patient is cured (response variable). A second
example is epidemiological studies where disease state is observed (response variable), as well as exposure to
risk factor (explanatory variable). Drug efficacy studies are generally conducted as randomized clinical trials,
while epidemiological studies are generally conducted in cohort (prospective) and case–control (retrospective)
settings.

For this particular case, we will generalize the explanatory variable’s levels to exposed (E) and not
exposed (E), and the response variable’s levels as disease (D) and no disease (D). These interpretations can
be applied in either of the two settings described above and can be generalized to virtually any application.
The data for this case will be of the form of Table 8.5.

Disease State
D (Present) D (Absent) Total

Exposure E (Present) n11 = y1 n12 = n1 − y1 n1. = n1

State E (Absent) n21 = y2 n22 = n2 − y2 n2. = n2

Total n.1 = y1 + y2 n.2 = (n1 − y1) + (n2 − y2) n.. = n1 + n2

Table 8.5: A 2 × 2 Contingency Table

In the case of drug efficacy studies, the exposure state can be thought of as the drug the subject is
randomly assigned to. Exposure could imply that a subject was given the active drug, while non–exposure
could imply having received placebo. In either type study, there are three measures of association commonly
estimated and reported. These are the absolute risk (aka difference in proportions), the relative risk and
the odds ratio.

These methods are also used when the explanatory variable has more than two levels, and the response
variable has two levels. The methods described below are computed within pairs of levels of the explanatory
variables, with one level forming the “baseline” group in comparisons.

8.3.1 Difference in Proportions: π1 − π2

In many studies, the goal is to compare the Success probabilities for two groups. These studies can be based
on large samples or small samples, and can be based on independent or paired samples.

For the large sample case, based on independent samples, the estimators π̂1 = Y1/n1 and π̂2 = Y2/n2

for the two groups are independent and have sampling distributions that are approximately normal. The
relevant results are given below.

E {π̂1 − π̂2} = π1−π2 SE {π̂1 − π̂2} =

√

π1 (1 − π1)

n1
+

π2 (1 − π2)

n2
ŜE {π̂1 − π̂2} =

√

π̂1 (1 − π̂1)

n1
+

π̂2 (1 − π̂2)

n2
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(1−α)100% CI for π1−π2 : (π̂1 − π̂2)±zα/2ŜE {π̂1 − π̂2} ≡ (π̂1 − π̂2)±zα/2

√

π̂1 (1 − π̂1)

n1
+

π̂2 (1 − π̂2)

n2

In terms of testing the hypothesis H0 : π1 − π2 = 0, an adjustment is made to the standard error of
π̂1 − π̂2. In this case the overall combined proportion of successes is obtained and used in the “pooled”
standard error.

π̂ =
y1 + y2

n1 + n2
ŜEp {π̂1 − π̂2} =

√

π̂ (1 − π̂)

[

1

n1
+

1

n2

]

The test statistic for testing H0 : π1 − π2 = 0 is given below with the usual rules for rejection regions
and P -values for 2-tailed and 1-tailed tests.

TS : zobs =
π̂1 − π̂2

ŜEp {π̂1 − π̂2}
=

π̂1 − π̂2
√

π̂ (1 − π̂)
[

1
n1

+ 1
n2

]

Example 8.6: Risk Taking After Large Financial Losses

An Australian natural experiment considered the effect of large losses on subsequent risk taking behavior
(Page, Savage, and Torgler (2014), [40]). The study included a sample of n1 = 94 people who had been
affected by the flood in Brisbane during 2011 and a sample of n2 = 107 people who had not been affected.
The subjects in the experiment were given the choice between a certain $10 and a scratch card valued at
$10, but with a maximum prize of $500,000. The scratch card is considered the “high risk” choice. Of the
affected participants, y1 = 75 chose the scratch card, of the unaffected, y2 = 53 chose the scratch card.

π̂1 =
75

94
= .7979 π̂2 =

53

107
= 0.4953 π̂1 − π̂2 = .7979− .4953 = .3026 π̂ =

75 + 53

94 + 107
=

128

201
= 0.6368

ŜE {π̂1 − π̂2} =

√

.7979(.2021)

94
+

.4953(.5047)

107
= .0637 .3026±1.96(.0637) ≡ .3026±.1248 ≡ (.1778, .4274)

ŜEp {π̂1 − π̂2} =

√

.6368(.3632)

[

1

94
+

1

107

]

= .0680 zobs =
.3026

.0680
= 4.451 P = 2P (Z ≥ 4.451) ≈ 0

This provides empirical evidence consistent with prospect theory that states that people adopt risk
taking attitudes after losses.

R Commands and Output
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### Commands

y1 <- 75; n1 <- 94 ## Successes and Total for Group 1 (Affected by Flood)

y2 <- 53; n2 <- 107 ## Successes and Total for Group 2 (Unaffected)

pihat.1 <- y1/n1

pihat.2 <- y2/n2

pihat <- (y1+y2)/(n1+n2)

se.pihat.12 <- sqrt((pihat.1*(1-pihat.1)/n1)+(pihat.2*(1-pihat.2)/n2))

se.pihat.12p <- sqrt(pihat*(1-pihat)*(1/n1+1/n2))

z025 <- qnorm(.975,0,1)

pi12.ci <- (pihat.1-pihat.2) + c(-z025,z025)*se.pihat.12 # 95%CI for pi1-pi2

pi12.z <- (pihat.1-pihat.2)/se.pihat.12p # Z_obs for H0:pi1-pi2=0

pi12.p <- 2 * (1-pnorm(abs(pi12.z))) # 2-sided P-value

pi12.out <- cbind(y1, y2, n1, n2, pihat.1, pihat.2, pihat, se.pihat.12, pi12.ci[1],

pi12.ci[2], se.pihat.12p, pi12.z, pi12.p)

colnames(pi12.out) <- c("y1", "y2", "n1", "n2", "pihat1", "pihat2", "pooled",

"SE{Diff}", "Lower", "Upper", "SE{(H0)}", "Z", "P-value")

round(pi12.out, 4)

prop.test(c(y1,y2),c(n1,n2),correct=F)

### Output

> round(pi12.out, 4)

y1 y2 n1 n2 pihat1 pihat2 pooled SE{Diff} Lower Upper SE{(H0)} Z P-value

[1,] 75 53 94 107 0.7979 0.4953 0.6368 0.0637 0.1778 0.4273 0.068 4.4502 0

>

> prop.test(c(y1,y2),c(n1,n2),correct=F)

2-sample test for equality of proportions without continuity correction

data: c(y1, y2) out of c(n1, n2)

X-squared = 19.804, df = 1, p-value = 8.58e-06

alternative hypothesis: two.sided

95 percent confidence interval:

0.1777846 0.4273059

sample estimates:

prop 1 prop 2

0.7978723 0.4953271

Note that R presents the “Z-test” as a chi-square test (with 1 degree of freedom), z2
obs = 4.45022 = 19.804.

The P -values are identical for a 2-tailed test.

∇

8.3.2 Relative Risk and Odds Ratio

Two other measures that can be used to compare two proportions are the Relative Risk and the Odds
Ratio. These are generally reported in medical and epidemiology studies, particularly when the probabilities
are small. Relative risk is a ratio of the two probabilities. In epidemiology studies it is the ratio of the
probability of obtaining the disease among those exposed to some risk factor to the probability of obtaining
disease among those not exposed.
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Relative Risk: RR =
P (D|E)

P (D|E)
=

π1

π2

Based on this definition:

• A relative risk greater than 1.0 implies the exposed group have a higher probability of contracting
disease than the unexposed group.

• A relative risk less than 1.0 implies that the exposed group has a lower chance of contracting disease
than unexposed group (we might expect this to be the case in drug efficacy studies).

• A relative risk of 1.0 implies that the risk of disease is the same in both exposure groups (no association
between exposure state and disease state).

Note that the Relative Risk is a population parameter that must be estimated based on sample data. We
will be able to calculate confidence intervals for the relative risk, allowing inferences to be made concerning
this population parameter, based on the range of values of RR within the (1 − α)100% confidence interval.
The procedure to compute a (1 − α)100% confidence interval for the population relative risk is as follows.

1. Obtain the sample proportions of exposed and unexposed subjects who contract disease. These values
are: π̂E = π̂1 = y1

n1
and π̂E = π̂2 = y2

n2
, respectively.

2. Compute the estimated relative risk: R̂R = π̂E

π̂
E

= π̂1

π̂2
.

3. Compute vRR = (1−π̂E)
y1

+
(1−π̂

E
)

y2
= 1−π̂1

y1
+ 1−π̂2

y2
This is the estimated variance of log

(

R̂R
)

.

4. The confidence interval can be computed as:
(

R̂Re−zα/2

√
vRR , R̂Rezα/2

√
vRR

)

.

Example 8.7: Pamidronate for Skeletal Events in Myeloma Patients

An efficacy study was conducted for the drug pamidronate in patients with stage III multiple myeloma
and at least one lytic lesion (Berenson, et al.,(1996), [7]). In this randomized clinical trial, patients were
assigned at random to receive either pamidronate (E) or placebo (E). One endpoint reported was the
occurrence of any skeletal events after 9 cycles of treatment (D) or non–occurrence (D). The results are
given in Table 8.6. We will use the data to compute a 95% confidence interval for the relative risk of suffering
skeletal events (in a time period of this length) for patients on pamidronate relative to patients not on the
drug.

Occurrence of Skeletal Event

Yes (D) No (D)
Treatment Pamidronate (E) 47 149 196

Group Placebo (E) 74 107 181
121 256 377

Table 8.6: Observed cell counts for pamidronate data
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First, obtain the proportions of patients suffering skeletal events among those receiving the active drug,
and among those receiving the placebo

π̂E =
n11

n1.
=

y1

n1
=

47

196
= 0.240 π̂E =

n21

n2.
=

y2

n2
=

74

181
= 0.409

Then compute the estimated relative risk (R̂R) and the estimated variance of its natural log (v).

R̂R =
π̂E

π̂E

=
.240

.409
= 0.587 vRR =

(1 − π̂E)

n11
+

(1 − π̂E)

n21
=

(1 − .240)

47
+

(1 − .409)

74
= .016 + .008 = .024

Finally, compute a 95% confidence interval for the population relative risk (recall that z.025 = 1.96).

(

R̂Re−z.05/2

√
vRR , R̂Rez.05/2

√
vRR

)

≡
(

0.587e−1.96
√

.024, 0.587e1.96
√

.024
)

≡ (0.587(0.738), 0.587(1.355)) ≡ (0.433, 0.795)

Thus, we can be confident that the relative risk of suffering a skeletal event (in this time period) for patients on
pamidronate (relative to patients not on pamidronate) is between 0.433 and 0.795. Since this entire interval
is below 1.0, there is evidence that pamidronate is effective at reducing the risk of skeletal events. Further,

an estimate is obtained that pamidronate changes the risk by
(

R̂R − 1
)

100% = (0.587−1)100% = −41.3%.

∇

The Odds Ratio is the ratio of odds of success for the two groups. First define the odds of an event
occurring. If π is the probability that an event occurs, the odds o that it occurs is o = π/(1 − π). The
odds can be interpreted as the number of times the event will occur for every time it will not occur if the
process were repeated many times. For example, if you toss a coin, the probability it lands heads is π = 0.5.
The corresponding odds of a head are o = 0.5/(1− 0.5) = 1.0. Thus if you toss a coin many the times, the
odds of a head are 1.0 (or 1-to-1 if you’ve ever been to a horse or dog track). Note that while odds are not
probabilities, they are very much related to them: high probabilities are associated with high odds, and low
probabilities are associated with low odds. In fact, for events with very low probabilities, the odds are very
close to the probability of the event.

The ratio of the two odds is called the odds ratio. The odds ratio (OR) is similar to the relative risk,
and is virtually equivalent to it when the prevalence of the disease (P (D)) is low. The odds ratio is computed
as follows.

OR =
odds of disease given exposed

odds of disease given unexposed
=

odds of exposure given diseased

odds of exposure given not diseased
=

n11/n21

n12/n22
=

n11n22

n12n21

The odds ratio is similar to relative risk in the sense that it is a population parameter that must be estimated,
as well as the interpretations associated with it in terms of whether its value is above, below, or equal to 1.0.

• If the odds ratio is greater than 1.0, the odds (and thus probability) of disease is higher among exposed
(group 1) than unexposed (group 2).

• If the odds ratio is less than 1.0, the odds (and thus probability) of disease is lower among exposed
(group 1) than unexposed (group 2).
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• If the odds ratio is 1.0, the odds (and thus probability) of disease is the same for both groups (no
association between exposure to risk factor and disease state).

The procedure to compute a (1 − α)100% confidence interval for the population odds ratio is as follows.

1. Obtain the estimated odds ratio: ÔR = n11n22

n12n21
.

2. Compute vOR = 1
n11

+ 1
n12

+ 1
n21

+ 1
n22

(this is the variance of log
(

ÔR
)

).

3. The confidence interval can be computed as:
(

ÔRe−zα/2

√
vOR , ÔRezα/2

√
vOR

)

.

Example 8.8: Case-Control Study of Lip Cancer

An epidemiological case-control study was reported, with cases being 537 people diagnosed with lip
cancer (D) and controls being made up of 500 people without lip cancer (D) where all were patients at the
Mayo Clinic (Broders (1920), [9]). One risk factor measured was whether or not the subject had smoked
a pipe (pipe smoker E, non-pipe smoker E). Table 8.7 gives the numbers of subjects falling in each lip
cancer/pipe smoking combination. We would like to compute a 95% confidence interval for the population
odds ratio, and determine whether or not pipe smoking is associated with higher (or possibly lower) odds
(and probability) of contracting lip cancer.

Occurrence of Lip Cancer

Yes (D) No (D)
Pipe Smoking Yes (E) 339 149 488

Status No (E) 198 351 549
537 500 1037

Table 8.7: Observed cell counts for lip cancer/pipe smoking data

We compute the confidence interval as described above, again recalling that zα/2 = z0.025 = 1.96:

1. ÔR = n11n22

n12n21
= 339(351)

149(198) = 4.03.

2. vOR = 1
n11

+ 1
n12

+ 1
n21

+ 1
n22

= 1
339

+ 1
149

+ 1
198

+ 1
351

= 0.0176

3. 95% CI:
(

ÔRe−zα/2

√
vOR , ÔRezα/2

√
vOR

)

=
(

4.03e−1.96
√

.0176, 4.03e1.96
√

.0176
)

= (3.11, 5.23).

We can be 95% confident that the population odds ratio is between 3.11 and 5.23. That is the odds
of contracting lip cancer is between 3.1 and 5.2 times higher among pipe smokers than non–pipe smokers.
Note that in making the inference that pipe smoking causes lip cancer, it would need to demonstrated this
association is present after controlling for other potential risk factors. Methods for controlling for other
factors include the Mantel-Haenszel test given below.

∇
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To understand why inference for the Relative Risk and Odds Ratio are based on the log of the measures
as opposed to the estimate itself, consider the following example.

Example 8.9: Seat Belt Violations Among Traffic Stops by Gender

For the Charlotte, NC traffic stop data, there were Nm = 46294 traffic stops of male drivers and
Nf = 33590 stops of female drivers. Among male drivers, there were 437 seat belt violations; among female
drivers, there were 194. For this population, the following parameters are obtained.

πm =
437

46294
= .00944 πf =

194

33590
= .00578 RR =

.00944

.00578
= 1.6344 OR =

.00944/(1− .00944)

.00578(1− .00578)
= 1.6405

A set of 10000 samples were obtained with sample sizes nm = nf = 4000, where estimated Relative

Risks
(

R̂R
)

, Odds Ratios
(

ÔR
)

, and the estimated standard errors of their logs were computed and saved.

Histograms of R̂R, ÔR, log
(

R̂R
)

and log
(

ÔR
)

given in Figure 8.1. Clearly, the “log” versions have

sampling distributions that are approximately normal, while the untransformed versions do not. That is the
basis for computing the Confidence Intervals as shown previously.

(1 − α)100% CI for log(RR) : log
(

R̂R
)

± zα/2
√

vRR ≡ (A, B) (1 − α)100% CI for RR :
(

eA, eB
)

The same logic applies for the Odds Ratio. Based on the 10000 samples, the Confidence Interval for the
Relative Risk covered 1.6344 in 96.4% of the samples. The Odds Ratio (1.6405) was covered in 96.4% of the
samples.

R Output

## Output

> round(RROR.out, 4)

pi.m pi.f RR.mf OR.mf RR.cov OR.cov

[1,] 0.0094 0.0058 1.6344 1.6405 0.9636 0.9636

∇

8.3.3 Small–Sample Inference — Fisher’s Exact Test

The tests for association described previously all assume that the samples are sufficiently large so that the
estimators have sampling distributions that are approximately normal. However, in many instances studies
are based on small samples. This may arise due to cost or ethical reasons. A test due to R.A. Fisher,
Fisher’s exact test, is widely used in this particular situation. The logic of the test goes as follows.
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Figure 8.1: Seat Belt Violations Proportions by Gender: Relative Risk, Odds Ratio, log(RR), log(OR)

Take a sample with n1. people (or experimental units) that are from group 1 and n2. that are from
group 2. Further observe n.1 individuals that are “Successes,” of which n11 were from group 1. The question
is, conditional on the number from group 1 and the number of Successes, what is the probability that as
many or more (fewer) of the events could have been from group 1 (under the assumption that there is no
difference in the population). The test makes use of the hypergeometric distribution, and results in
computing a probability of as strong or stronger evidence in favor of the alternative hypothesis than was
observed (P -value). For a 1-tailed test H0 : π1 ≤ π2 versus HA : π1 > π2, the P -value is obtained as follows.

P =

min(n1.,n.1)
∑

n=n11

(

n1.

n

)(

n2.

n.1−n

)

(

n..

n.1

)

(

a

b

)

=
a!

b!(a− b)!
a ≥ b

For a 1-tailed test H0 : π1 ≥ π2 versus HA : π1 < π2, the P -value is obtained as follows.

P =

n11
∑

n=min(0,n.1−n2.)

(

n1.

n

)(

n2.

n.1−n

)

(

n..

n.1

)

For a 2-sided test, all cases where the absolute value of the difference in proportions is as large or larger
than the observed difference are used in the calculation of the P -value.

Example 8.10: Early Use of Antiseptic in Amputations
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A study was reported on the effects of antiseptic treatment among amputations in a British surgical
hospital (Lister (1870), [37]). Tragically for Dr. Lister, he lived before Fisher, so he felt unable to make
an inference based on statistical methodology, although he saw the effect was certainly there. Fisher’s
exact test can be used to make the inference. The study had two groups: one group based on amputation
without antiseptic (years 1864-1866), and a group based on amputation with antiseptic (years 1867-1869).
All surgeries were in the same hospital. We will consider the patients with antiseptic as the exposed (group
1). The endpoint reported was death (apparently due to the surgery and disease that was associated with
it). The results are given in Table 8.8.

Surgical Outcome
Death No Death

Treatment Antiseptic (E) 6 34 40
Group Control (E) 16 19 35

22 53 75

Table 8.8: Observed cell counts for antiseptic data

Note that this study is based on historical, as opposed to concurrent controls. There were 40 patients
exposed to the antiseptic and 22 deaths, of which 6 were treated with antiseptic, and 16 in the untreated
group. Now if the treatment is effective, it should reduce deaths, so we have to ask what is the probability
that 6 or fewer of the 22 deaths could have been in the antiseptic group, given there were 40 patients in that
group. More extreme cases would have been 0 deaths in group 1 (all 22 in group 2), up through 5 deaths
in group 1 (17 in group 2). For a lower-tailed test (showing antiseptic reduces risk of death), the P -value is
computed as follows.

(

40
6

)(

35
16

)

(

75
22

) +

(

40
5

)(

35
17

)

(

75
22

) + · · ·+
(

40
0

)(

35
22

)

(

75
22

) = .0037

That is, under the assumption of no treatment effect, the probability that based on a sample of this size,
and this number of deaths, it is very unlikely that the sample results would have been this strong or stronger
in favor of the antiseptic group. If we conduct the test with α = 0.05, the p–value (.0037) is smaller than α,
and we conclude that the antiseptic was associated with a lower probability of death.

For a 2-tailed test, the following additional computations are needed.

π̂1−π̂2 =
6

40
−16

35
= −.3071 n11 = 17 ⇒ n21 = 5 ⇒ π̂1−π̂2 = .2821 n11 = 18 ⇒ n21 = 4 ⇒ π̂1−π̂2 = .3357

⇒ P = .0037 +

(

40
18

)(

35
4

)

(

75
22

) + · · ·+
(

40
22

)(

35
0

)

(

75
22

) = .0037 + .0013 = .0050

R Commands and Output

## Commands

(lister <- matrix(c(6,34,16,19),byrow=T,ncol=2))

fisher.test(lister,alt="less")
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fisher.test(lister,alt="two.sided")

## Output

> (lister <- matrix(c(6,34,16,19),byrow=T,ncol=2))

[,1] [,2]

[1,] 6 34

[2,] 16 19

> fisher.test(lister,alt="less")

Fisher’s Exact Test for Count Data

data: lister

p-value = 0.003685

alternative hypothesis: true odds ratio is less than 1

95 percent confidence interval:

0.0000000 0.5927603

sample estimates:

odds ratio

0.2142773

> fisher.test(lister,alt="two.sided")

Fisher’s Exact Test for Count Data

data: lister

p-value = 0.005018

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.05825328 0.69559373

sample estimates:

odds ratio

0.2142773

∇

8.3.4 McNemar’s Test for Paired Designs

When the same units are being observed under both experimental treatments (or units have been matched
based on some criteria), McNemar’s test can be used to test for treatment effects. The relevant subjects
(pairs) are the ones who respond differently under the two conditions. Counts will appear as in Table 8.9.

Trt 2 Outcome
Present Absent

Trt 1 Present n11 n12 n1.

Outcome Absent n21 n22 n2.

n.1 n.2 n..

Table 8.9: Notation for McNemar’s Test

Note that n11 is the number of units that have the outcome characteristic present under both treat-
ments, while n22 is the number having the outcome characteristic absent under both treatments. None of
these subjects offer any information regarding the difference in treatment effects. The units that provide
information are the n12 cases that have the outcome present under treatment 1, and absent under treatment
2; and the n21 units that have the outcome absent under treatment 1, and present under treatment 2. Note
that treatment 1 and treatment 2 can also be “Before” and “After” treatment, or any two conditions.

A large-sample test for treatment effects can be conducted as follows.
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• H0 : Pr(Outcome Present|Trt 1)=Pr(Outcome Present|Trt 2) ⇒ No Trt effect

• HA : The probabilities differ (Trt effects - This can be 1-sided also)

• TS : zobs = n12−n21√
n12+n21

• RR : |zobs| ≥ zα/2 (For 2-sided test)

• P -value: 2P (Z ≥ |zobs|) (For 2-sided test)

Often this test is reported as a chi-square test. The statistic is the square of the z-statistic above, and its
treated as a chi-square random variable with one degree of freedom. The 2-sided z-test, and the chi-square
test are mathematically equivalent.

An exact test is based on the binomial distribution. Under the null hypothesis of no treatment effect,
the count n12 is distributed binomial with n = n12 + n21 and π = 0.5. The P -value is computed as follows.

H0 : π1 = π2 HA : π1 6= π2 P = 2 min[P (Y ≤ n12) , P (Y ≥ n12)] Y ∼ Bin (n = n12 + n21, π = 0.5)

If trying to demonstrate that π1 > π2, we would expect n12 > n21 and P = P (Y ≥ n12). If the goal is
to demonstrate that π1 < π2 , we would expect n12 < n21 and P = P (Y ≤ n12).

Example 8.11: Framing of Risky Outcomes

In one of many studies testing prospect theory, subjects were asked to make two decisions regarding
risky gambles (Kahneman and Tversky (1984), [31]). The decision choices are given below.

• Decision 1: Choose between (A): a sure gain of $240 and (B): a 25% chance of winning $1000 and 75%
chance of winning $0.

• Decision 2: Choose between (C): a sure loss of $750 and (D): a 75% chance of losing $1000 and a 25%
chance of losing $0.

The results are given below. Decision 1 is a Positive frame, Decision 2 is Negative. Choices A and C are
“sure thing” selections, B and D are “risky.”

• In 16 subjects, both sure things (A and C) were chosen.

• In 110 subjects, the Positive sure thing (A) and Negative risky bet (D) were chosen.

• In 4 subjects, the Positive risky bet (B) and Negative sure thing (C) were chosen.

• In 20 subjects, both risky bets (B and D) were chosen.

The data are summarized in Table 8.10.

We can test whether the tendency to choose between a sure thing and risky bet depends on whether the
choice is framed positive (gain) or negative (loss) based on McNemar’s test, since both outcomes are being
observed on the same subjects.
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Negative Frame
Sure Thing Risky Bet

Positive Sure Thing 16 110 126
Frame Risky Bet 4 20 24

20 130 150

Table 8.10: Positive and Negative frames and subjects’ selections between sure thing and risky bet

• H0 : No differences in tendency to choose between sure thing and risky bet under the two frames

• HA : The probabilities differ

• TS : zobs = 110−4√
110+4

= 106
10.6771 = 9.9278

• RR : |zobs| ≥ z.025 = 1.96 (For 2-sided test, with α = 0.05)

• P -value: 2P (Z ≥ 9.9278) ≈ 0 (For 2-sided test)

Thus, we conclude that the tendencies differ. People tend to choose the sure thing when posed as a gain,
and the risky bet when posed as a loss. The exact P -value is set-up below.

P = 2P (Y ≥ 110|Y ∼ Bin(n = 114, π = 0.5)) ≈ 0

R Commands and Output

## Commands

(bet <- matrix(c(16,110,4,20),byrow=T,,ncol=2))

mcnemar.test(bet,correct=F)

z.stat <- (bet[1,2]-bet[2,1])/sqrt(bet[1,2]+bet[2,1])

z.p <- 2*(1-pnorm(abs(z.stat),0,1))

binom.p <- 2*(1-pbinom(max(bet[1,2],bet[2,1])-1,bet[1,2]+bet[2,1],0.5))

bet.out <- cbind(bet[1,2], bet[2,1], z.stat, z.stat^2, z.p, binom.p)

colnames(bet.out) <- c("n12=+R/-S", "n21=+S/-R", "z", "z^2", "P(z)", "P(exact)")

round(bet.out, 4)

### Output

> (bet <- matrix(c(16,110,4,20),byrow=T,,ncol=2))

[,1] [,2]

[1,] 16 110

[2,] 4 20

>

>> mcnemar.test(bet,correct=F)

McNemar’s Chi-squared test

data: bet

McNemar’s chi-squared = 98.561, df = 1, p-value < 2.2e-16

> round(bet.out, 4)

n12=+R/-S n21=+S/-R z z^2 P(z) P(exact)

[1,] 110 4 9.9278 98.5614 0 0
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The chi-square statistic from mcnemar.test is the square of the z-statistic. They give identical P -values
for a 2-tailed test.

∇

8.3.5 Mantel–Haenszel Estimate for Stratified Samples

In some situations, the subjects in the study may come from one of several populations (strata). For instance,
an efficacy study may have been run at multiple centers, and there may be some “center” effect that is related
to the response. Another example is if race is related to the outcomes, and we may wish to adjust for race
by computing odds ratios separately for each race, then combine them.

This is a situation where we would like to determine if there is an association between the explanatory
and response variables, after controlling for a second explanatory variable. If there are k populations, then
we can arrange the data (in a different notation than in the previous sections) as displayed in Table 8.11.
Note that for each table, ni is the sample size for that strata (ni = Ai + Bi + Ci + Di).

Strata 1 Strata k

Outcome Outcome
Success Failure) Total Success Failure Total

Group 1 A1 B1 . . . 1 Ak Bk

2 C1 D1 . . . 2 Ck Dk

Total n1 nk

Table 8.11: Contingency Tables for Mantel–Haenszel Estimator

The estimator of the odds ratio is computed as:

ORMH =
R

S
=

∑k
i=1 Ri

∑k
i=1 Si

=

∑k
i=1 AiDi/ni

∑k
i=1 BiCi/ni

One estimate of the variance of the log of ORMH is:

v = V̂ (ln(ORMH)) =
1

S2

k
∑

i=1

S2
i

(

1

Ai
+

1

Bi
+

1

Ci
+

1

Di

)

As with the odds ratio, we can obtain a 95% CI for the population odds ratio as:

(ORMHe−1.96
√

v, ORMHe1.96
√

v)

.

Example 8.12: Relationship Between Smoking and Death

A large study relating smoking habits and death rates reported that cigarette smoking was related to
higher death rate (Hammond and Horn, (1954), [25]). Men were classified as regular cigarette smokers (E)
and noncigarette smokers (E). The nonsmokers had never smoked cigarettes regularly. There were a total



232 CHAPTER 8. CATEGORICAL DATA ANALYSIS

of 187,766 men who were successfully traced from the early 1952 start of study through October 31,1953.
Of that group, 4854 (2.6%) had died.

A second variable that would clearly be related to death was age. In this study, all men were 50–69
at entry. The investigators then broke these ages down into four strata (50–54,55–59,60–64,65–69). The
overall outcomes (disregarding age) are given in Table 8.12. Note that the overall odds ratio is OR =
(3002(78092))/(104820(1852)) = 1.21.

Occurrence of Death

Yes (D) No (D)
Cigarette Smoking Yes (E) 3002 104280 107822

Status No (E) 1852 78092 79944
4854 182912 187766

Table 8.12: Observed cell counts for cigarette smoking/death data

The data, stratified by age group, are given in Table 8.13. Also, the odds ratios, proportion deaths
(P (D)), and proportion smokers (P (E)) are given.

Age Group (i) Ai Bi Ci Di ni Ri Si OR P (D) P (E)

50–54 (1) 647 39990 204 20132 60973 213.6 133.8 1.60 .0140 .6665
55–59 (2) 857 32894 394 21671 55816 332.7 232.2 1.43 .0224 .6047
60–64 (3) 855 20739 488 19790 41872 404.1 241.7 1.67 .0321 .5157
65–69 (4) 643 11197 766 16499 29105 364.5 294.7 1.24 .0484 .4068

Table 8.13: Observed cell counts and odds ratio calculations (by age group) for cigarette smoking/death
data

Note that the odds ratio is higher within each group than it is for the overall group. This is referred to
as Simpson’s Paradox. In this case it can be explained as follows:

• Mortality increases with age from 1.40% for 50–54 to 4.84% for 65–69.

• As age increases, the proportion of smokers decreases from 66.65% to 40.68%

• A higher proportion of nonsmokers are in the higher risk (age) groups than are smokers. Thus, the
nonsmokers are at a “disadvantage” because more of them are in the higher age groups (many smokers
in the population have already died before reaching that age group).

This leads to an estimate of the odds ratio adjusted for age. That is what the Mantel–Haenszel estimator
provides. It is computed as described above.

R =

4
∑

i=1

Ri = 213.6 + 332.7 + 404.1 + 364.5 = 1314.9 S =

4
∑

i=1

Si = 133.8 + 232.2 + 241.7 + 294.7 = 902.4

ORMH =
R

S
=

1314.9

902.4
= 1.46
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The estimated variance of ln(ORMH) is 0.00095 (trust me). Then the following 95%CI for the odds ratio in
the population of males in the age group 50–69 (adjusted for age) is obtained.

(ORMHe−1.96
√

v, ORMHe1.96
√

v) ≡ (1.46e−1.96
√

.00095, 1.46e1.96
√

.00095) ≡ (1.37, 1.55).

We can be very confident that the odds of death (during the length of time of the study – 20 months) is
between 37% and 55% higher for smokers than nonsmokers, after controlling for age (among males in the
50–69 age group).

R Commands and Output

### Commands

### Enter data by COLUMNS within strata

(smoke <- array(c(647,204,39990,20132, 857,394,32894,21671,

855,488,20739,19790, 643,766,11197,16499),dim=c(2,2,4)))

mantelhaen.test(smoke,exact=F,correct=F,alternative="two.sided")

### Output

> mantelhaen.test(smoke,exact=F,correct=F,alternative="two.sided")

Mantel-Haenszel chi-squared test without continuity correction

data: smoke

Mantel-Haenszel X-squared = 151.03, df = 1, p-value < 2.2e-16

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.372101 1.547602

sample estimates:

common odds ratio

1.457212

∇

8.4 Nominal Explanatory and Response Variables

In cases where both the explanatory and response variables are nominal, the most commonly used method
of testing for association between the variables is the Pearson Chi–Squared Test. In these situations,
we are interested if the probability distributions of the response variable are the same at each level of the
explanatory variable.

As we have seen before, the data represent counts, and appear as in Table 8.4. The nij values are referred
to as the observed counts. If the variables are independent (not associated), then the population probability
distributions for the response variable will be identical within each level of the explanatory variable, as in
Table 8.14.

The special case of 2×2 tables has already been covered. Now generalize to r groups (treatments) and c
possible outcomes. To perform Pearson’s Chi–square test, compute the expected values for each cell count
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Response Variable
1 2 · · · c

1 p1 p2 · · · pc 1.0
Explanatory 2 p1 p2 · · · pc 1.0

Variable
...

...
...

. . .
...

...
r p1 p2 · · · pc 1.0

Table 8.14: Probability distributions of response variable within levels of explanatory variable under condition
of no association between the two variables.

under the hypothesis of independence, and obtain a statistic based on discrepancies between the observed
and expected values.

observed = nij expected = Eij =
ni.n.j

n..

The expected values represent how many individuals would have fallen in cell (i, j) if the probability distri-
butions of the response variable were the same for each level of the explanatory (grouping) variable. They
apply the marginal proportion of cases in column j, n.j/n.. to the number of units in row i, ni.. The test is
conducted as follows:

1. H0 : No association between the explanatory and response variables (see Table 8.14).

2. HA : Explanatory and response variables are associated

3. T.S.: X2
obs =

∑

all cells
(observed−expected)2

expected
=
∑

i,j
(nij−Eij)2

Eij

4. RR: X2
obs > χ2

α,(r−1)(c−1)

5. P –value: P (χ2
(r−1)(c−1) ≥ X2

obs)

If the chi-square test rejects the null hypothesis, standardized (adjusted) residuals can be used to
determine which cells are the “cause” of the association between the variables. These are like Z-statistics.
Generally, standardized residuals larger than 2 or 3 in absolute values are considered to be evidence against
independence in that cell.

Rij =
nij − Eij

√

Eij

(

1 − ni.

n..

)(

1 − n.j

n..

)

Example 8.13: Jury Decisions in Product Liability Cases

An experiment was conducted regarding jurors’ decisions to award plaintiffs in product liability trials
(Culp and Pollage (2002) [17]). The observed and expected values are given in Table 8.15. There were r = 5
treatments and c = 2 outcomes (award in favor of plaintiff, or not). The five conditions were as follows (all
conditions included the jurors hearing the facts of the case).
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1. Judge’s instruction on strict liability and lawyer’s oral arguments

2. Judge’s instruction on negligence and lawyer’s oral arguments

3. No judge’s instruction or lawyer’s oral arguments (Control)

4. Judge’s instruction on strict liability but no lawyer’s oral arguments

5. Judge’s instruction on negligence but no lawyer’s oral arguments

Jury Condition (i) Award No Award Total
Strict Liability/Oral Argument (1) 15 (21.80) 43 (36.20) 58
Negligence/Oral Argument (2) 18 (17.66) 29 (29.34) 47
Control (3) 7 (14.66) 32 (24.34) 39
Strict Liability/No Oral Argument (4) 37 (28.19) 38 (46.81) 75
Negligence/No Oral Argument (5) 38 (32.70) 49 (54.30) 87
Total 115 191 306

Table 8.15: Observed (expected) values of numbers of jurors voting to award or not award plaintiff in product
liability trial)

Overall, the proportion of jurors voting to award the plaintiff is 115/206 = .3758, and the proportion
voting no award is .6242. These proportions are applied to the row totals to obtain the expected counts
under the hypothesis of no association between juror condition and voting outcome.

E11 =

(

115

306

)

(58) = 21.80 E12 =

(

191

306

)

(58) = 36.20 · · ·E51 =

(

115

306

)

(87) = 32.70 E52 =

(

191

306

)

(87) = 54.30

The test of whether there is an association between jury condition and vote outcome is conducted below.

H0:Jury condition and voting outcome are independent vs HA: Jury condition and voting outcome are
associated.

TS : X2
obs =

5
∑

i=1

2
∑

j=1

(nij − Eij)
2

Eij
=

(15 − 21.80)2

21.80
+ · · ·+ (49 − 54.30)2

54.30
= 2.121 + · · ·+ 0.517 = 15.609

RR : X2
obs ≥ χ2

.05,(5−1)(2−1) = 9.488 P = P
(

χ2
4 ≥ 15.609

)

= .0036

The standardized residuals for the control treatment (Jury Condition 3) are −2.71 for Award and +2.71
for No Award, while those for Jury Condition 4 are +2.42 and −2.42, respectively. While these do not
exceed 3 in absolute value, they are well above 2. Fewer jurors in the Control Group voted to award the
plaintiff than expected under independence, and more voted to award the plaintiff in Jury Condition 4. The
calculations for the Control Group are given below.

R31 =
7 − 14.66

√

14.66(1− 39/306)(1− 115/306)
=

−7.66

2.83
= −2.71 R32 =

32 − 24.34
√

24.34(1− 39/306)(1− 191/306)
=

7.66

2.83
= 2.71

R Commands and Output
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## Commands

pla <- read.csv("http://www.stat.ufl.edu/~winner/data/productliability_award.csv")

attach(pla); names(pla)

(jury_award <- table(jury,award))

X2_ja <- chisq.test(jury_award, correct=F)

X2_ja

X2_ja$stdres

## Output

> (jury_award <- table(jury,award))

award

jury 0 1

1 43 15

2 29 18

3 32 7

4 38 37

5 49 38

> X2_ja

Pearson’s Chi-squared test

data: jury_award

X-squared = 15.608, df = 4, p-value = 0.003592

> X2_ja$stdres

award

jury 0 1

1 2.0470036 -2.0470036

2 -0.1101878 0.1101878

3 2.7100635 -2.7100635

4 -2.4184629 2.4184629

5 -1.3878162 1.3878162

∇

8.5 Ordinal Explanatory and Response Variables

In situations where both the explanatory and response variables are ordinal, we would like to take advantage
of the fact that the levels of the variables have distinct orderings. We can ask questions such as: Do
individuals with high levels of the explanatory variable tend to have high (low) levels of the corresponding
response variable. For instance, suppose that the explanatory variable is dose, with increasing (possibly
numeric) levels of amount of drug given to a subject, and the response variable is an ordinal measure
(possibly subjective) of degree of improvement. Then, we may be interested in seeing if as dose increases,
the degree of improvement increases (this is called a dose–response relationship).

Various measures have been developed for this type of experimental setting. Most are based on concor-
dant and discordant pairs. Concordant pairs involve pairs where one unit scores higher on both variables
than the other unit. Discordant pairs are pairs where one unit scores higher on one variable, but lower on
the other variable, than the other unit.

In cases where there is a positive association between the two variables, we would expect more
concordant than discordant pairs. That is, there should be many units that score high on both variables,
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and many that score low on both, with fewer units scoring high one variable and low on the other. On the
other hand, if there is a negative association, we would expect more discordant pairs than concordant
pairs. That is, units will tend to score high on one variable, but lower on the other.

Two commonly reported measures of ordinal association are gamma and Kendall’s τb. Both of these
measures lie between −1 and 1. Negative values correspond to negative association, and positive values
correspond to positive association. These types of association were described previously. A value of 0
implies no association between the two variables. Here, we give the formulas for the point estimates, their
standard errors are better left to computers to handle. Tests of hypothesis and confidence intervals for the
population measure are easily obtained from large–samples.

The point estimators for gamma and Kendall’s τb are given below, where C is the number of concordant
pairs and D is the number of discordant pairs.

γ̂ =
C − D

C + D
τ̂b =

C − D

0.5
√

(n2
.. −

∑

n2
i.)(n

2
.. −

∑

n2
.j)

To conduct a large–sample test of whether or not the population parameter is 0 (that is, a test of
association between the explanatory and response variables), we complete the following steps:

1. H0 : γ = 0 (No association)

2. HA : γ 6= 0 (Association exists)

3. T.S.: zobs = γ̂

ŜE{γ̂}

4. R.R.: |zobs| ≥ zα/2

5. p–value:2P (z ≥ |zobs|)

For a test concerning Kendall’s τb, replace γ with τb. For a (1 − α)100% CI for the population parameter,
simply compute the following (this time we use τb).

τ̂b ± zα/2ŜE{τ̂b}

Example 8.14: Jurors’ Vote on Capital Trial

A study considered jurors’ first vote in a capital trial and their view of the defendant’s level of remorse
(Eisenberg, Garvey, and Wells, 2001, [21]). The variables are described below.

• Level of defendant’s remorse was classified by the answer to: How well does ‘sorry’ describe the
defendant? with levels: Not at all, Not so well, Fairly well, Very Well.

• The juror’s first vote was classified as: Life Imprisonment, Undecided between Life and Death, Death
Penalty.
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Juror’s First Vote
Remorse Life Undecided Death Total
Not at all 12 6 56 74
Not so well 15 7 32 54
Fairly well 12 7 9 28
Very well 16 2 8 26

Total 55 22 105 182

Table 8.16: Numbers of subjects within each defendant’s remorse and juror’s first vote status combination

Observed counts are given in Table 8.16.

Concordant pairs are pairs where one subject scores higher on each variable than the other subject.
Thus, all subjects in the “Very well” remorse group who voted “Death” are concordant with all subjects who
had a lower remorse score and voted for “Life” or “Undecided.” Similarly, all subjects in the “Not so well”
remorse group and voted “Undecided” are concordant with all subjects in the “Not at all” remorse group
and voted for “Life.” The total number of concordant pairs (C) is:

C = 8(12 + 6 + 15 + 7 + 12 + 7) + 2(12 + 15 + 12) + 9(12 + 6 + 15 + 7) + 7(12 + 15) + 32(12 + 6) + 7(12) =

472 + 78 + 360 + 189 + 576 + 84 = 1759

Discordant pairs are pairs where one subject scores higher on one variable, but lower on the other variable
than the other subject. Thus, all subjects in the “Very well” remorse group who voted “Life” are discordant
with all subjects who had a lower remorse score and voted for “Undecided” or “Death.” Similarly, all subjects
in the “Not so well” remorse group and voted “Undecided” are discordant with all subjects in the “Not at
all” remorse group and voted for “Death.” Thus, the total number of discordant pairs (D) is:

D = 16(56 + 6 + 32 + 7 + 9 + 7) + 2(56 + 32 + 9) + 12(56 + 6 + 32 + 7) + 7(56 + 32) + 15(56 + 6) + 7(56) =

1872 + 194 + 1212 + 616 + 930 + 392 = 5216

Notice that there are more discordant pairs than concordant pairs. This is consistent with tougher judgments
for defendants displaying lower levels of remorse.

γ̂ =
C − D

C + D
=

1759− 5216

1759 + 5216
=

−3457

6975
= −0.496

τ̂b =
C − D

0.5
√

(n2
.. −

∑

n2
i.)(n

2
.. −

∑

n2
.j)

=
1759− 5216

0.5
√

[1822 − (742 + 542 + 282 + 262)] [1822 − (552 + 222 + 1052)]

−3457

0.5
√

(23272)(18590)
=

−3457

10400
= −0.332

R Commands and Output
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## Commands

rd1 <- read.csv("http://www.stat.ufl.edu/~winner/data/remorse_death.csv")

attach(rd1); names(rd1)

install.packages("vcdExtra")

library(vcdExtra)

(rd.table <- table(remorse,jurVote))

GKgamma(rd.table)

cor.test(remorse,jurVote, method="kendall")

## Output

> (rd.table <- table(remorse,jurVote))

jurVote

remorse 1 2 3

1 12 6 56

2 15 7 32

3 12 7 9

4 16 2 8

> GKgamma(rd.table)

gamma : -0.496

std. error : 0.083

CI : -0.659 -0.332

> cor.test(remorse,jurVote, method="kendall")

Kendall’s rank correlation tau

data: remorse and jurVote

z = -5.0313, p-value = 4.873e-07

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

-0.332409

The 95% Confidence Interval for the population value of γ is well away from 0, and the test for Kendall’s
τB rejects the null hypothesis of no association. There is strong evidence for a negative association between
defendant’s remorse and juror’s vote.

∇

8.6 Nominal Explanatory and Ordinal Response Variable

In the case where the explanatory variable is nominal and the response variable is ordinal, the Kruskal–
Wallis Test can be used, which was described in Chapter 7.

1. H0 : The probability distributions of the ordinal response variable are the same for each level of the
explanatory variable (treatment group). (No association)

2. HA : The probability distributions of the response variable are the not same for each level of the
explanatory variable. (Association).

3. T.S.: H = 12
n..(n..+1)

∑r
i=1

T 2
i

ni.
− 3(n.. + 1)
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4. R.R.: H > χ2
α,r−1

5. P -value: P (χ2
r−1 ≥ H)

The adjustment made for ties is given below. In this setting, there will generally be many ties.

H ′ =
H

[

1 −
∑

(t3
j
−tj)

n3
..−n..

] tj ≡ number of observations in the jth group of tied ranks

Example 8.15: Soccer Game Outcomes Among European Premier Leagues - 2013/2014
Season

Soccer (football) games in premier leagues can end in one of three ordinal ways for the home team
(Lose, Draw, Win). Treating the regular season games for the r = 5 leagues: England, France, Germany,
Italy, and Spain as samples from conceptual populations of all possible games that could be played, the
Kruskal-Wallis test is applied to determine whether the distributions differ. Table 8.17 contains the numbers
of each outcome categories, the ranks, and the rank sums for each national league.

Game Outcome
League (ni.) Lose Draw Win Sum (Ti)

England (n1. = 380) 123 78 179 343978.5
France (n2. = 380) 104 109 167 345573.0

Germany (n3. = 306) 97 64 145 278539.5
Italy (n4. = 380) 109 90 181 352081.5
Spain (n5. = 380) 115 86 179 347878.5

# Matches 548 427 851
Ranks 1–548 549–975 976–1826

Avg. Rank 274.5 762 1401

Table 8.17: Data and ranks for European Premier League Game Outcomes (n.. = 1826)

To obtain T1, the rank sum for England, note that 123 of the games received the rank of 274.5 (the rank
assigned to each loss), 78 received the rank of 762, and 179 received the rank of 1401.

T1 = 123(274.5)+78(762)+179(1401) = 343978.5 · · · T5 = 115(274.5)+86(762)+179(1401) = 347878.5

Here, we will test whether (HA) or not (H0) the distributions of game outcomes differ among the five
leagues. The test statistic is computed as follows.

H =
12

n..(n.. + 1)

r
∑

i=1

T 2
i

ni
− 3(n.. + 1) =

12

1826(1827)

(

(343978.5)2

380
+

(345573.0)2

380
+

(278539.5)2

306
+

(352081.5)2

380
+

(347878.5)2

380

)

− 3(1827) =
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12

1826(1827)
(311371601.2+314264995.6+253543310.7+326214164.8+318472238.8)−5481 = 5481.366−5481 = 0.366

There are many ties, so the adjustment is computed as follows.

t1 = 548 t2 = 427 t3 = 851

3
∑

j=1

(

t3j − tj
)

= 858714300 n3
.. − n.. = 6088386150

H ′ =
0.366

1 − 858714300
6088386150

=
0.366

0.859
= 0.426 RR : H ′ ≥ χ2

.05,5−1 = 9.488 P = P
(

χ2
4 ≥ 0.426

)

= .9803

There is no evidence of differences among the leagues.

R Commands and Output

## Commands

euro13 <- read.csv("http://www.stat.ufl.edu/~winner/data/europesoccer2013.csv")

attach(euro13); names(euro13)

home.result <- ifelse(DiffGoal<0,0,ifelse(DiffGoal==0,1,2)) ## Assign 0 for loss, 1 for Tie, 2 for Win

League <- factor(League)

kruskal.test(home.result ~ League)

## Output

> kruskal.test(home.result ~ League)

Kruskal-Wallis rank sum test

data: home.result by League

Kruskal-Wallis chi-squared = 0.42598, df = 4, p-value = 0.9803

∇

8.7 Assessing Agreement Among Raters

As mentioned in Chapter 1, in many situations the response being measured is an assessment made by an
investigator. For instance, in food or beverage tasting experiments, the response may be quality (color,
taste, texture, smoothness), which would involve rating a product along some sort of Likert (ordinal) scale.
Various varieties of soy sauce’s color may be rated by judges on an ordinal scale of Light Brown, Brown,
Intense Brown, Black. Unfortunately measurements such as these are much more subjective than mechanical
measures such as viscosity or salt content. In many instances, a pair (or more) of raters may be used, and
the level of their agreement is to be determined.

A measure of agreement that was developed in psychiatric diagnosis is Cohen’s κ. It measures the
proportion of agreement beyond chance agreement. It can take on negative values when the agreement is
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worse than expected by chance, and the largest value it can take is 1.0, which occurs when there is perfect
agreement. Suppose there are k categories. Let pij be the proportion of items rated as category i by rater
1 and category j by rater 2. Further, let pi. be the marginal proportion for category i by rater 1 and p.j be
the marginal proportion for category j by rater 2 (see Table 8.18 below for a numeric example). Then the
observed agreement, pobs, and the expected (by chance) agreement, pexp, are computed as follows, as well
as Cohen’s κ.

pobs = p11 + · · ·+ pkk =

k
∑

i=1

pii pexp = p1.p.1 + · · ·+ pk.p.k =

k
∑

i=1

pi.p.i

κ̂ =
pobs − pexp

1 − pexp

The standard error of κ̂ is messy to compute, but can be obtained by various software packages.

While κ only detects disagreement, a modification, called weighted κ distinguishes among levels of
disagreement when categories are ordered. That is, raters who disagree by one category are in stronger
agreement than raters who differ by several categories. Weighted κ can use any weighting scheme, a very
common one is to use is as follows.

wij = 1 − (i − j)2

(k − 1)2
pw
obs =

k
∑

i=1

k
∑

i=1

wijpij pw
exp =

k
∑

i=1

k
∑

i=1

wijpi.p.j

κ̂w =
pw
obs − pw

exp

1 − pw
exp

Example 8.16: Agreement Among Professional Movie Reviewers

A study compared the level of agreement among popular movie critics (Agresti and Winner, 1997, [3]).
The pairwise levels of agreement among 8 critics (Gene Siskel, Roger Ebert, Michael Medved, Jeffrey Lyons,
Rex Reed, Peter Travers, Joel Siegel, and Gene Shalit) were computed. In this example, we will focus on
Siskel and Ebert. There were 160 movies that both critics reviewed during the study period, the results are
given in Table 8.18, which is written as a 3×3 contingency table. The ratings are from the trade publication
Variety which evaluated critics’ reviews as Con (low), Mixed (medium), and Pro (high).

If their ratings were independent (that is, knowledge of Siskel’s rating gives no information as to Ebert’s
rating on the same movie), we would expect the following probabilities along the main diagonal (where the
critics agree):

p11 = P (Con|Siskel) · P (Con|Ebert) = (.281)(.263) = .074

p22 = P (Mixed|Siskel) · P (Mixed|Ebert) = (.200)(.188) = .038

p33 = P (Pro|Siskel) · P (Pro|Ebert) = (.281)(.263) = .285

So, even if their ratings were independent, we would expect the proportion of movies that they would agree
on by chance to be pc = .074 + .038 + .285 = .397. That is, we would expect them to agree about 40% of
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Siskel Ebert Rating
Rating Con Mixed Pro Total

24 8 13 45
Con (.150) (.050) (.081) (.281)

(.074) (.053) (.155) —
8 13 11 32

Mixed (.050) (.081) (.069) (.200)
(.053) (.038) (.110) —

10 9 64 83
Pro (.063) (.056) (.400) (.519)

(.136) (.098) (.285) —
Total 42 30 88 160

.263 .188 .550 1.00

Table 8.18: Ratings on n = 160 movies by Gene Siskel and Roger Ebert – raw counts, observed proportions,
and proportions expected under chance

the time, based on their marginal distributions. In fact, the observed proportion of movies for which they
agree on is po = .150 + .081 + .400 = .631, so they agree on about 63% of the movies. We can now compute
Cohen’s κ:

κ =
observed agreement – chance agreement

1 – chance agreement
=

.631− .397

1 − .397
=

.234

.603
= .388

This would be considered a moderate level of agreement. The sample difference between the observed
agreement and the agreement expected under independence is 39% of the maximum possible difference.

R Commands and Output

### Commands

(siskel_ebert <- matrix(c(24,8,13,8,13,11,10,9,64),byrow=T,ncol=3))

install.packages("psych")

library(psych)

cohen.kappa(siskel_ebert)

### Output

> cohen.kappa(siskel_ebert)

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries

lower estimate upper

unweighted kappa 0.27 0.39 0.51

weighted kappa 0.32 0.46 0.60

Number of subjects = 160

∇
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8.8 R Code for Chapter 8

### Chapter 8

## Example 8.1

shaq_ft <- read.csv("http://www.stat.ufl.edu/~winner/data/shaqoneal_gamestats.csv")

attach(shaq_ft); names(shaq_ft)

N.game <- length(FTA)

N.FT <- sum(FTA)

FT_01 <- rep(0,N.FT)

FT_count <- 0

for (i in 1:N.game) {

if (FTA[i] > 0) {

FT_01[(FT_count+1):(FT_count+FT[i])] <- 1

FT_count <- FT_count + FTA[i]

}

}

FT_pi <- sum(FT)/sum(FTA)

num.samp <- 100000

n.samp <- c(10, 30, 100)

set.seed(24680)

FT.y <- matrix(rep(0,3*num.samp), ncol=3)

CI1 <- matrix(rep(0,6*num.samp),ncol=6)

CI2 <- matrix(rep(0,6*num.samp),ncol=6)

z025 <- qnorm(.975,0,1)

for(i1 in 1:3) {

for (i2 in 1:num.samp) {

FT.y[i2,i1] <- sum(sample(FT_01, n.samp[i1], replace=F))

FT.pihat <- FT.y[i2,i1]/n.samp[i1]

CI1[i2,((i1-1)*2+1):((i1-1)*2+2)] <- FT.pihat +

c(-1,1) * z025 * sqrt(FT.pihat*(1-FT.pihat)/n.samp[i1])

FT.y.tilde <- FT.y[i2,i1] + 0.5*z025^2

FT.n.tilde <- n.samp[i1] + z025^2

FT.pitil <- FT.y.tilde / FT.n.tilde

CI2[i2,((i1-1)*2+1):((i1-1)*2+2)] <- (FT.pitil) +

c(-1,1) * z025 * sqrt(FT.pitil*(1-FT.pitil)/FT.n.tilde)

}}

wald1 <- sum(CI1[,1] <= FT_pi & CI1[,2] >= FT_pi) / num.samp

wald2 <- sum(CI1[,3] <= FT_pi & CI1[,4] >= FT_pi) / num.samp

wald3 <- sum(CI1[,5] <= FT_pi & CI1[,6] >= FT_pi) / num.samp

wac1 <- sum(CI2[,1] <= FT_pi & CI2[,2] >= FT_pi) / num.samp

wac2 <- sum(CI2[,3] <= FT_pi & CI2[,4] >= FT_pi) / num.samp

wac3 <- sum(CI2[,5] <= FT_pi & CI2[,6] >= FT_pi) / num.samp

ft.out <- rbind(cbind(FT_pi, wald1, wac1,

mean(CI1[,2]-CI1[,1]), mean(CI2[,2]-CI2[,1])),

cbind(FT_pi, wald2, wac2,

mean(CI1[,4]-CI1[,3]), mean(CI2[,4]-CI2[,3])),

cbind(FT_pi, wald3, wac3,

mean(CI1[,6]-CI1[,5]), mean(CI2[,6]-CI2[,5])))

rownames(ft.out) <- c("n=10", "n=30", "n=100")

colnames(ft.out) <- c("pi", "pi-hat cover", "pi-tilde cover",

"pi-hat mean width", "pi-tilde mean width")

round(ft.out, 4)

rm(list=ls(all=TRUE))

### Example 8.2
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nbaou <- read.csv("http://www.stat.ufl.edu/~winner/data/nbaodds201415.csv")

attach(nbaou); names(nbaou)

#### Point Spread Analysis

table(TeamCov)

TeamCov01 <- subset(TeamCov, TeamCov != 0) # Remove Pushes

table(TeamCov01)

Y.Cov <- sum(TeamCov01[TeamCov01 == 1]) # Games Home Team Covers

n.Cov <- length(TeamCov01) # Number of Games

pi.H0 <- 0.50 # Null value for pi

pihat.Cov <- Y.Cov / n.Cov # Point estimate

se.pihat.Cov.CI <- sqrt(pihat.Cov * (1-pihat.Cov) / n.Cov) # Std Error for CI

se.pihat.Cov.H0 <- sqrt(pi.H0 * (1-pi.H0) / n.Cov) # Std Error for Z-test

Z.Cov.H0 <- (pihat.Cov - pi.H0) / se.pihat.Cov.H0 # Z-statistic

p.Cov.H0 <- 2*(1-pnorm(abs(Z.Cov.H0),0,1)) # P-value for Z-test

pihat.Cov.CI <- pihat.Cov + c(-1.96, 1.96) * se.pihat.Cov.CI # Large-sample 95% CI

p.Cov.H0.exact <- pbinom(min(Y.Cov, n.Cov-Y.Cov),n.Cov, pi.H0) +

1-pbinom(max(Y.Cov, n.Cov-Y.Cov)-1,n.Cov, pi.H0) # Exact P-value

cov.out <- cbind(pi.H0, Y.Cov, n.Cov, pihat.Cov, se.pihat.Cov.H0, Z.Cov.H0,

p.Cov.H0, p.Cov.H0.exact, se.pihat.Cov.CI, pihat.Cov.CI[1],

pihat.Cov.CI[2])

colnames(cov.out) <- c("pi(H0)", "y", "n", "pihat", "SE{H0}", "Z", "P(Z)",

"P(Exact})", "SE{pihat}", "Lower", "Upper")

round(cov.out, 4)

### Exact Tests

binom.test(Y.Cov,n.Cov,p=0.5,alternative="two.sided")

rm(list=ls(all=TRUE))

### Example 8.3

### Default probs are 1/#categories

chisq.test(c(306,338,432,348,331,309),p=c(1/6,1/6,1/6,1/6,1/6,1/6))

rm(list=ls(all=TRUE))

### Example 8.4

(mean.bomb <- 537/576)

p0 <- dpois(0,mean.bomb) ### p(0) for Poisson(mean.bomb)

p1 <- dpois(1,mean.bomb)

p2 <- dpois(2,mean.bomb)

p3 <- dpois(3,mean.bomb)

p4 <- 1-p0-p1-p2-p3

obs.bomb <- c(229,211,93,35,8)

(exp.bomb <- sum(obs.bomb)*c(p0,p1,p2,p3,p4))

X2.stat <- sum((obs.bomb-exp.bomb)^2 / exp.bomb)

X2.df <- length(obs.bomb)-1-1

X2.05 <- qchisq(.95,X2.df)

X2.p <- 1-pchisq(X2.stat,X2.df)

bomb.out <- cbind(X2.stat, X2.df, X2.05, X2.p)

colnames(bomb.out) <- c("X2 stat", "DF", "X2(.05)", "P-value")

round(bomb.out, 4)

rm(list=ls(all=TRUE))

### Example 8.5

## Read data from website and attach data frame and obain variable names

rr.mar <- read.csv(
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"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

### Select only males and obtain Method of Moments Estimates of alpha, beta

m.mph <- mph[Gender=="M"]

(alpha.m <- mean(m.mph)^2 / var(m.mph))

(beta.m <- mean(m.mph) / var(m.mph))

n.mph <- length(m.mph)

### Assign bottom and top of cell ranges and obtain counts within cells

cell.bot <- c(0,seq(4.750000001,9.250000001,0.50))

cell.top <- c(seq(4.75,9.25,0.50),9999999)

n.cells <- rep(0,length(cell.bot))

tot.n.cells <- rep(0,length(cell.bot))

n.cells[1] <- sum(m.mph <= cell.top[1])

tot.n.cells[1] <- n.cells[1]

alpha1 <- alpha.m

beta1 <- beta.m

for (i in 2:length(cell.bot)) {

n.cells[i] <- sum(m.mph <= cell.top[i]) - tot.n.cells[i-1]

tot.n.cells[i] <- tot.n.cells[i-1] + n.cells[i]

}

### Set up computations by cell for chi-square statistic and compute it

X2.ab.cell <- rep(0,length(cell.bot))

X2.ab <- 0

exp.cells <- rep(0,length(cell.bot))

for (i in 1:length(cell.bot)) {

exp.cells[i] <- n.mph*

(pgamma(cell.top[i],alpha1,beta1)-pgamma(cell.bot[i],alpha1,beta1))

X2.ab.cell[i] <- ((n.cells[i] - exp.cells[i])^2)/exp.cells[i]

X2.ab <- X2.ab + X2.ab.cell[i]

}

X2.df <- length(cell.bot)-1-2

X2.CV <- qchisq(.95,X2.df)

X2.pval <- 1-pchisq(X2.ab,X2.df)

X2.out <- cbind(alpha1,beta1,X2.ab,X2.df,X2.CV,X2.pval)

colnames(X2.out) <- c("alpha","beta","Test Stat","DF","X2(.05)","P-value")

round(X2.out,4)

round(cbind(cell.top,n.cells,tot.n.cells,exp.cells,X2.ab.cell),3)

rm(list=ls(all=TRUE))

### Example 8.6

y1 <- 75; n1 <- 94 ## Successes and Total for Group 1 (Affected by Flood)

y2 <- 53; n2 <- 107 ## Successes and Total for Group 2 (Unaffected)

pihat.1 <- y1/n1

pihat.2 <- y2/n2

pihat <- (y1+y2)/(n1+n2)

se.pihat.12 <- sqrt((pihat.1*(1-pihat.1)/n1)+(pihat.2*(1-pihat.2)/n2))

se.pihat.12p <- sqrt(pihat*(1-pihat)*(1/n1+1/n2))

z025 <- qnorm(.975,0,1)

pi12.ci <- (pihat.1-pihat.2) + c(-z025,z025)*se.pihat.12 # 95%CI for pi1-pi2

pi12.z <- (pihat.1-pihat.2)/se.pihat.12p # Z_obs for H0:pi1-pi2=0

pi12.p <- 2 * (1-pnorm(abs(pi12.z))) # 2-sided P-value

pi12.out <- cbind(y1, y2, n1, n2, pihat.1, pihat.2, pihat, se.pihat.12, pi12.ci[1],

pi12.ci[2], se.pihat.12p, pi12.z, pi12.p)

colnames(pi12.out) <- c("y1", "y2", "n1", "n2", "pihat1", "pihat2", "pooled",
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"SE{Diff}", "Lower", "Upper", "SE{(H0)}", "Z", "P-value")

round(pi12.out, 4)

prop.test(c(y1,y2),c(n1,n2),correct=F)

rm(list=ls(all=TRUE))

### Example 8.9

## Read data off web page, attach file as data frame, and list variable names

clt2016 <- read.csv("http://www.stat.ufl.edu/~winner/data/trafficstop.csv")

attach(clt2016); names(clt2016)

RsnStop.m <- RsnStop[DrvMale==1]

RsnStop.f <- RsnStop[DrvMale==0]

seatbelt.m <- ifelse(RsnStop.m==6,1,0)

seatbelt.f <- ifelse(RsnStop.f==6,1,0)

N.m <- length(seatbelt.m)

N.f <- length(seatbelt.f)

pi.m <- sum(seatbelt.m)/N.m

pi.f <- sum(seatbelt.f)/N.f

RR.mf <- pi.m/pi.f

OR.mf <- (pi.m*(1-pi.f)) / (pi.f*(1-pi.m))

n.samp <- 4000

num.sim <- 10000

set.seed(12345)

RR.mf.samp <- rep(0,num.sim)

OR.mf.samp <- rep(0,num.sim)

lnRR.se <- rep(0,num.sim)

lnOR.se <- rep(0,num.sim)

for (i in 1:num.sim) {

samp.m <- sample(seatbelt.m,n.samp,replace=F)

samp.f <- sample(seatbelt.f,n.samp,replace=F)

y.m <- sum(samp.m)

y.f <- sum(samp.f)

RR.mf.samp[i] <- y.m/y.f

OR.mf.samp[i] <- (y.m*(n.samp-y.f)) / (y.f*(n.samp-y.m))

lnRR.se[i] <- sqrt((1-y.m/n.samp)/y.m + (1-y.f/n.samp)/y.f)

lnOR.se[i] <- sqrt(1/y.m + 1/(n.samp-y.m) + 1/y.f + 1/(n.samp-y.f))

}

z.025 <- qnorm(.975,0,1)

RR.LB <- RR.mf.samp*exp(-z.025*lnRR.se)

RR.UB <- RR.mf.samp*exp(z.025*lnRR.se)

OR.LB <- OR.mf.samp*exp(-z.025*lnOR.se)

OR.UB <- OR.mf.samp*exp(z.025*lnOR.se)

RR.cov <- sum(RR.LB <= RR.mf & RR.UB >= RR.mf) / num.sim

OR.cov <- sum(OR.LB <= OR.mf & OR.UB >= OR.mf) / num.sim

RROR.out <- cbind(pi.m, pi.f, RR.mf, OR.mf, RR.cov, OR.cov)

colnames(RROR.out) <- cbind("pi.m", "pi.f", "RR.mf", "OR.mf", "RR.cov", "OR.cov")

round(RROR.out, 4)

## Figure 8.1

# win.graph(height=5.5, width=7.0)

par(mfrow=c(2,2))

hist(RR.mf.samp,breaks=50,main="Relative Risk (Male/Female)")

hist(OR.mf.samp,breaks=50,main="Odds Ratio (Male/Female)")

hist(log(RR.mf.samp),breaks=50, main="log Relative Risk")

hist(log(OR.mf.samp),breaks=50, main="log Odds Ratio")

## End Figure 8.1
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rm(list=ls(all=TRUE))

### Example 8.10

(lister <- matrix(c(6,34,16,19),byrow=T,ncol=2))

fisher.test(lister,alt="less")

fisher.test(lister,alt="two.sided")

rm(list=ls(all=TRUE))

### Example 8.11

(bet <- matrix(c(16,110,4,20),byrow=T,,ncol=2))

mcnemar.test(bet,correct=F)

z.stat <- (bet[1,2]-bet[2,1])/sqrt(bet[1,2]+bet[2,1])

z.p <- 2*(1-pnorm(abs(z.stat),0,1))

binom.p <- 2*(1-pbinom(max(bet[1,2],bet[2,1])-1,bet[1,2]+bet[2,1],0.5))

bet.out <- cbind(bet[1,2], bet[2,1], z.stat, z.stat^2, z.p, binom.p)

colnames(bet.out) <- c("n12=+R/-S", "n21=+S/-R", "z", "z^2", "P(z)", "P(exact)")

round(bet.out, 4)

rm(list=ls(all=TRUE))

### Example 8.12

(smoke <- array(c(647,204,39990,20132, 857,394,32894,21671,

855,488,20739,19790, 643,766,11197,16499),dim=c(2,2,4)))

mantelhaen.test(smoke,exact=F,correct=F,alternative="two.sided")

rm(list=ls(all=TRUE))

### Example 8.13

pla <- read.csv(

"http://www.stat.ufl.edu/~winner/data/productliability_award.csv")

attach(pla); names(pla)

(jury_award <- table(jury,award))

X2_ja <- chisq.test(jury_award, correct=F)

X2_ja

X2_ja$stdres

rm(list=ls(all=TRUE))

### Example 8.14

rd1 <- read.csv("http://www.stat.ufl.edu/~winner/data/remorse_death.csv")

attach(rd1); names(rd1)

install.packages("vcdExtra")

library(vcdExtra)

(rd.table <- table(remorse,jurVote))

GKgamma(rd.table)

cor.test(remorse,jurVote, method="kendall")

rm(list=ls(all=TRUE))

### Example 8.15

euro13 <- read.csv("http://www.stat.ufl.edu/~winner/data/europesoccer2013.csv")

attach(euro13); names(euro13)
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home.result <- ifelse(DiffGoal<0,0,ifelse(DiffGoal==0,1,2)) ## Assign 0 for loss, 1 for Tie, 2 for Win

League <- factor(League)

kruskal.test(home.result ~ League)

rm(list=ls(all=TRUE))

### Example 8.16

(siskel_ebert <- matrix(c(24,8,13,8,13,11,10,9,64),byrow=T,ncol=3))

install.packages("psych")

library(psych)

cohen.kappa(siskel_ebert)

rm(list=ls(all=TRUE))
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Chapter 9

Linear Regression

Linear regression is used when there is a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s) with
random error terms typically assumed to be independent and normally distributed with constant variance.
The fitting of linear regression models is very flexible, allowing for fitting curvature, categorical predictors,
and interactions between factors.

9.1 Simple Linear Regression

When there is a single numeric predictor, the model is referred to as Simple Regression. The response
variable is denoted as Y and the predictor variable is denoted as X. The model is written as follows.

Y = β0 + β1X + ε ε ∼ N(0, σ) independent

Here β0 is the intercept (mean of Y when X=0) and β1 is the slope (the change in the mean of Y when
X increases by 1 unit). Of primary concern is whether β1 = 0, which implies the mean of Y is constant (β0),
and thus Y and X are not associated.

9.1.1 Estimation of Model Parameters

A sample of pairs (Xi, Yi) i = 1, . . . , n is observed. The goal is to choose estimators of β0 and β1 that
minimize the error sum of squares: Q =

∑n
i=1 ε2i . The resulting ordinary least squares estimators are

given below (the formulas are derived making use of calculus).

Yi = β0 + β1X+εi i = 1, . . . , n εi = Yi − (β0 + β1Xi)

251



252 CHAPTER 9. LINEAR REGRESSION

β̂1 =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
β̂0 = Y − β̂1X

Once estimates have been computed, fitted values and residuals are obtained for each observation.
The error sum of squares (SSE) is obtained as the sum of the squared residuals from the regression fit.

Fitted Values: Ŷi = β̂0+β̂1Xi Residuals: ei = Yi−Ŷi SSE =

n
∑

i=1

(Yi−Ŷi)
2 =

n
∑

i=1

(Yi−Y )2−β̂2
1

n
∑

i=1

(Xi−X)2

The (unbiased) estimator of the error variance σ2 is s2 = MSE = SSE
n−2 , where MSE is the Mean

Square Error. The subtraction of 2 can be thought of as the fact two parameters have been estimated: β0

and β1.

The estimators β̂1 and β̂0 are linear functions of Y1, . . . , Yn and thus using basic rules of mathematical
statistics, their sampling distributions are as follow, assuming the error terms are normal, independent, with
constant variance.

β̂1 ∼ N

(

β1,

√

σ2

∑n
i=1(Xi − X)2

)

β̂0 ∼ N



β0,

√

√

√

√σ2

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]





The estimated standard errors are the standard error with the unknown σ2 replaced by MSE.

ŜE{β̂1} =

√

MSE
∑n

i=1(Xi − X)2
ŜE{β̂0} =

√

√

√

√MSE

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]

Example 9.1: Bollywood Films’ Revenues and Budgets 2013-2017

Box office data for n = 190 Bollywood films, as well as their approximate budgets (production and
advertising) were obtained from bollywoodmoviereviewz.com. These films are being treated as a random
sample of all movies that could have been made under similar conditions. Plots of gross revenues versus
budget are given in Figure 9.1. As is often seen with this type of data, logarithmic transformations on Y
and/or X can be helpful in linearizing the relationship. All four possibilities are considered.

Based on the plots, the model with both variables transformed to the logarithmic scale is fit. This is due
to the linear relation with approximately constant variance. When both variables have been transformed
this way, the slope can be interpreted as percent change in Y when X is increased by 1%. Calculations for
the linear regression are given below.

n = 190 X = 3.5049 Y = 3.1846

n
∑

i=1

(Xi − X)2 = 131.043

n
∑

i=1

(Yi − Y )2 = 381.436

n
∑

i=1

(Xi − X)(Yi − Y ) = 172.9174
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Figure 9.1: Bollywood Film Revenues and Budgets 2013-2017.

β̂1 =
172.9174

131.043
= 1.3195 β̂0 = 3.1846−1.3195(3.5049) = −1.4401 SSE = 381.436−(1.3195)2(131.043) = 153.2796

s2 = MSE =
SSE

n − 2
=

153.2796

190− 2
= 0.8153

ŜE{β̂1} =

√

0.8153

131.043
= 0.0789 ŜE{β̂0} =

√

0.8153

[

1

190
+

3.50492

131.043

]

= 0.2841

R Output

## Output

> round(ss.out, 4)

SSYY SSXX SSXY SSE MSE beta1-hat b0-hat SE{b1} SE{b0}

[1,] 381.436 131.043 172.9174 153.2636 0.8152 1.3195 -1.4402 0.0789 0.2841

∇
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9.1.2 Inference Regarding β1 and β0

Primarily of interest are inferences regarding β1. Note that if β1 = 0, Y and X are not associated. We
can test hypotheses and construct confidence intervals based on the estimate β1 and its estimated standard
error. The t-test is conducted as follows. Note that the null value β10 is almost always 0, and that software
packages that report these tests always are treating β10 as 0.

H0 : β1 = β10 HA : β1 6= β10 TS : tobs =
β̂1 − β10

ŜE{β̂1}
RR : |tobs| ≥ tα/2,n−2 P = 2P (tn−2 ≥ |tobs|)

One-sided tests use the same test statistic, but the Rejection Region and P -value are changed to reflect
the alternative hypothesis.

H+
A : β1 > β10 RR : tobs ≥ tα,n−2 P = P (tn−2 ≥ tobs)

H−
A : β1 < β10 RR : tobs ≤ −tα,n−2 P = P (tn−2 ≤ tobs)

A (1 − α)100% confidence interval for β1 is obtained as:

β̂1 ± tα/2,n−2ŜE{β̂1}

Note that the confidence interval represents the values of β10 for which the two-sided test: H0 : β1 =
β10 HA : β1 6= β10 fails to reject the null hypothesis.

Inferences regarding β0 are of less interest in practice, but can be conducted in analogous manner, using
the estimate β̂0 and its estimated standard error ŜE{β̂0}.

Example 9.2: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, a test of
H0 : β1 = 0 and a 95% Confidence Interval for β1 are obtained.

H0 : β1 = 0 HA : β1 6= 0 TS : tobs =
1.3195

0.0789
= 16.72 RR : |tobs| ≥ 1.973 P ≈ 0

95% Confidence Interval for β1 : 1.3195± 1.973(0.0789) ≡ 1.3195± 0.1557 ≡ (1.1638, 1.4752)

There is strong evidence of an association between log(Revenue) and log(Budget). Similarly, inference
regarding the intercept β0 can be made as well (although is of less interest as no movies had log(Budget)=0).
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H0 : β0 = 0 HA : β0 6= 0 TS : tobs =
−1.4402

0.2841
= −5.069 RR : |tobs| ≥ 1.973 P ≈ 0

95% Confidence Interval for β0 : −1.4402± 1.973(0.2841) ≡ −1.4402± 0.5605 ≡ (−2.0007,−0.8797)

R Commands and Output

## Commands

## Analysis using lm (linear model) function in R

bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

confint(bolly.mod1)

## Output

> round(b.out, 4)

Estimate Std. Error t P-Value Lower Bound Upper Bound

Intercept -1.4402 0.2841 -5.0695 0 -2.0007 -0.8798

log(Budget) 1.3195 0.0789 16.7298 0 1.1640 1.4751

> summary(bolly.mod1)

Call:

lm(formula = Y ~ X)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.44023 0.28410 -5.069 9.51e-07 ***

X 1.31955 0.07887 16.730 < 2e-16 ***

Residual standard error: 0.9029 on 188 degrees of freedom

Multiple R-squared: 0.5982, Adjusted R-squared: 0.5961

F-statistic: 279.9 on 1 and 188 DF, p-value: < 2.2e-16

> confint(bolly.mod1)

2.5 % 97.5 %

(Intercept) -2.000665 -0.879805

X 1.163955 1.475138

∇

9.1.3 Estimating a Mean and Predicting a New Observation @ X = X∗

There may be interest in estimating the mean response at a specific level X∗. The parameter of interest is
µ∗ = β0 +β1X

∗. The point estimator, standard error, and (1−α)100% Confidence Interval are given below.

Ŷ ∗ = β̂0 + β̂1X
∗ ŜE

{

Ŷ ∗
}

=

√

√

√

√MSE

[

1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]
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(1 − α)100% CI : Ŷ ∗ ± tα/2,n−2ŜE
{

Ŷ ∗
}

To obtain a simultaneous (1−α)100% Confidence Interval for the entire regression line (not just a single
point), the Working-Hotelling method can be used.

Ŷ ∗ ±
√

2Fα,2,n−2ŜE
{

Ŷ ∗
}

If the goal is to predict a new observation when X = X∗, uncertainty with respect to estimating the
mean (as seen by the Confidence Interval above), and the random error for the new case (with standard
deviation σ) must be taken into account. The point prediction is the same as for the mean. The prediction,
standard error of prediction, and (1 − α)100% Prediction Interval are given below.

Ŷ ∗
New = β̂0 + β̂1X

∗ ŜE
{

Ŷ ∗
New

}

=

√

√

√

√MSE

[

1 +
1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1 − α)100% PI : Ŷ ∗
New ± tα/2,n−2ŜE

{

Ŷ ∗
New

}

Note that the Prediction Interval will tend to be much wider than the Confidence Interval for the mean.

Example 9.3: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, a 95%
Confidence Interval for the mean log(Revenue) of all possible films with a Budget of 60 (X∗ = log(60) =
4.0943) is obtained. Also a Prediction Interval for a single new movie with a budget of 60 is computed.
The predicted value is Ŷ ∗ = −1.4401 + 1.3195(4.0943) = 3.9623. A plot of the data, fitted equation, 95%
Confidence and Prediction Intervals is given in Figure 9.2.

ŜE
{

Ŷ ∗
}

=

√

√

√

√0.8153

[

1

190
+

(4.0943− 3.5049)
2

131.043

]

=
√

0.8153(0.0079) = 0.0803

ŜE
{

Ŷ ∗
New

}

=
√

0.8153(1.0079) = 0.9065

95% CI for Mean: 3.9623± 1.973(0.0803)≡ 3.9623± 0.1585 ≡ (3.8038, 4.1208)

95% PI for Individual: 3.9623± 1.973(0.9065)≡ 3.9623± 1.7885 ≡ (2.1738, 5.7508)

To convert back to the original units, the bounds of the Confidence and Prediction Intervals are expo-
nentiated. The predicted revenue is e3.9623 = 52.58 and the 95% Confidence Interval and Prediction Interval
are given below.
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Figure 9.2: Bollywood Data, Fitted Equation 95% Confidence Interval for the mean and Prediction Interval
for individual films
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95% CI for Mean:
(

e3.8038 = 44.87, e4.1208 = 61.61
)

95% PI for Individual:
(

e2.1738 = 8.79, e5.7508 = 314.44
)

R Commands and Output

## Commands

## Using predict function based on bolly.mod1 object with X*=log(60)

# CI for mean

ci.log60 <- predict(bolly.mod1, list(X=log(60)), interval="c")

# PI for individual movie

pi.log60 <- predict(bolly.mod1, list(X=log(60)), interval="p")

cipi.out1 <- rbind(ci.log60, pi.log60, exp(ci.log60), exp(pi.log60))

colnames(cipi.out1) <- c("Estimate", "Lower Bound", "Upper Bound")

rownames(cipi.out1) <- c("CI(log scale)", "PI(log scale)",

"CI(original scale)", "PI(original scale)")

round(cipi.out1, 4)

## Output

> round(cipi.out,4)

X* Y-hat* CI Lower CI Upper PI Lower PI Upper

Log Scale 4.0943 3.9624 3.8040 4.1209 2.1743 5.7506

Original Scale 60.0000 52.5856 44.8797 61.6147 8.7959 314.3788

> round(cipi.out1, 4)

Estimate Lower Bound Upper Bound

CI(log scale) 3.9624 3.8040 4.1209

PI(log scale) 3.9624 2.1743 5.7506

CI(original scale) 52.5856 44.8797 61.6147

PI(original scale) 52.5856 8.7959 314.3788

∇

9.1.4 Analysis of Variance

When there is no association between Y and X (β1 = 0), the best predictor of each observation is Y = β̂0

(in terms of minimizing sum of squares of prediction errors). In this case, the total variation can be denoted
as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares.

When there is an association between Y and X (β1 6= 0), the best predictor of each observation is

Ŷi = β̂0 + β̂1Xi (in terms of minimizing sum of squares of prediction errors). In this case, the error variation
can be denoted as SSE =

∑n
i=1(Yi − Ŷi)

2, the Error Sum of Squares.

The difference between TSS and SSE is the variation “explained” by the regression of Y on X (as
opposed to having ignored X). It represents the difference between the fitted values and the mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2
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Figure 9.3: Plot of Data (points), Fitted Equation and Mean of Y - Bollywood movie regression with
Y =log(Revenue) and X=log(Budget)

A plot including the data (Y ), the horizontal line at the mean response (Y ) and the fitted equation is
given in Figure 9.3. The sum of the squared vertical distances from the data Yi to Y is the Total Sum of
Squares TSS. The sum of the squared vertical distances from Yi to their fitted values Ŷi is the Error Sum
of Squares SSE. The sum of the squared vertical distances from Ŷi to Y is the Regression Sum of Squares
SSR.

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − 2 (for simple regression). The
Regression Degrees of Freedom is dfRegression = 1 (for simple regression).

dfTotal = dfError + dfRegression n − 1 = n − 2 + 1

The Error and Regression sums of squares have Mean Squares, which are the sum of squares divided
by their corresponding degrees of freedom: MSE = SSE/(n − 2) and MSR = SSR/1. It can be shown
that these mean squares have the following Expected Values, average values in repeated sampling at the
same observed X levels.

E{MSE} = σ2 E{MSR} = σ2 + β2
1

n
∑

i=1

(Xi − X)2
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Source df SS MS Fobs P -value

Regression (Model) 1 SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
1 Fobs = MSR

MSE P (F1,n−2 ≥ Fobs)

Error (Residual) n − 2 SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−2

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 9.1: Analysis of Variance Table for Simple Linear Regression

Source df SS MS Fobs P -value
Regression (Model) 1 228.1725 228.1725 279.8667 ≈ 0
Error (Residual) 188 153.2676 0.8152

Total (Corrected) 189 381.4360

Table 9.2: Analysis of Variance Table for Bollywood Box Office Data

Note that when β1 = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A second way
of testing whether β1 = 0 is by the following F -test.

H0 : β1 = 0 HA : β1 6= 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,1,n−2 P = P (F1,n−2 ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 9.1.

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y “explained” by X, divided by the total variation in Y .

r2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ r2 ≤ 1

The interpretation of r2 is the proportion of variation in Y that is “explained” by X, and is often
reported as a percentage (100r2).

Example 9.4: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, the Analysis
of Variance and F -test are given Table 9.2. Note that the Total Sum of Squares and Error Sum of Squares
were computed in Example 9.1. The Regression Sum of Squares is the difference SSR = TSS − SSE =
381.4360− 153.2636 = 228.1725.

The coefficient of determination, r2, is 228.1725/381.4360=0.5982. Approximately 60% of the variation
in log Revenue is “explained” by log Budget.

R Commands and Output

## Commands
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bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

anova(bolly.mod1)

## Output

> round(aov.out,4)

TSS SSE SSR MSE F_obs F(.05) P-value R^2

[1,] 381.436 153.2636 228.1725 0.8152 279.8867 3.8914 0 0.5982

> summary(bolly.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.44023 0.28410 -5.069 9.51e-07 ***

X 1.31955 0.07887 16.730 < 2e-16 ***

Residual standard error: 0.9029 on 188 degrees of freedom

Multiple R-squared: 0.5982, Adjusted R-squared: 0.5961

F-statistic: 279.9 on 1 and 188 DF, p-value: < 2.2e-16

> anova(bolly.mod1)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 228.17 228.172 279.89 < 2.2e-16 ***

Residuals 188 153.26 0.815

∇

9.1.5 Correlation

The regression coefficient β1 depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson
Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and X, and
does not distinguish which is the dependent and which is the independent variable. This makes it a widely
reported measure when researchers are interested in how two random variables vary together in a population.
The population correlation coefficient is labeled ρ, and the sample correlation is labeled r, and its formula
is given below.

r =

∑n
i=1(Xi − X)(Yi − Y )

√

∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

=

(

sX

sY

)

β̂1

where sX and sY are the standard deviations of X and Y , respectively. While β̂1 can take on any value, r
lies between −1 and +1, taking on the extreme values if all of the points fall on a straight line. The test
of whether ρ = 0 is mathematically equivalent to the t-test for testing whether β1 = 0. The 2-sided test is
given below.

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
r

√

1−r2

n−2

RR : |tobs| ≥ tα/2,n−2 P = 2P (tn−2 ≥ |tobs|)

To construct a large-sample confidence interval, Fisher’s z transform is used to make the transformed
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r to have a sampling distribution that is approximately normal. A confidence interval is obtained on the
transformed correlation, then “back transformed” to the end points in terms of ρ.

z′ =
1

2
ln

(

1 + r

1 − r

)

(1 − α)100% CI for
1

2
ln

(

1 + ρ

1 − ρ

)

: z′ ± zα/2

√

1

n − 3

Labeling the endpoints of the Confidence Interval as (a, b), the Confidence Interval for ρ is computed as
follows.

(1 − α)100% Confidence Interval for ρ :

(

e2a − 1

e2a + 1
,
e2b − 1

e2b + 1

)

Example 9.5: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, the sample
correlation, a test of whether ρ = 0, and a 95% Confidence Interval for ρ are computed below.

r =
172.9174

√

131.0430(381.4360)
= 0.7734 tobs =

0.7734
√

1−0.77342

190−2

= 16.73

z′ =
1

2
ln

(

1 + 0.7734

1 − 0.7734

)

= 1.0287 1.0287± 1.96

√

1

190− 3
≡ 1.0287± 0.1433 ≡ (0.8854, 1.1720)

⇒ (1 − α)100% CI for ρ :

(

e2(0.8854) − 1

e2(0.8854) + 1
,
e2(1.1720) − 1

e2(1.1720) + 1

)

≡
(

4.8756

6.8756
,

9.4228

11.4228

)

≡ (.7091, .8249)

R Commands and Output

## Commands

cor.test(X,Y)

## Output

> cor.test(X,Y)

Pearson’s product-moment correlation

data: X and Y

t = 16.73, df = 188, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7091543 0.8249551

sample estimates:

cor

0.7734296

9.1.6 Checking Linearity

A plot of the residuals versus X should be a random cloud of points centered at 0 (they sum to 0). A
“U-shaped” or “inverted U-shaped” pattern is inconsistent with linearity.
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A test for linearity can be conducted when there are repeat observations at certain X-levels (methods
have also been developed to “group” X values). Suppose there are c distinct X-levels, with nj observations
at the jth level. The data need to be re-labeled as Yij where j represents the X group, and i represents the
individual case within the group (i = 1, . . . , nj). The following quantities are computed.

Y j =

∑nj

i=1 Yij

nj
Ŷj = β̂0 + β̂1Xj

Then decompose the Error Sum of Squares into Pure Error and Lack of Fit.

n
∑

i=1

(Yi − Ŷi)
2 =

c
∑

j=1

nj
∑

i=1

(

Yij − Y j

)2
+

c
∑

j=1

nj

(

Y j − Ŷj

)2

SSE = SSPE + SSLF

Partition the error degrees of freedom (n− 2) into Pure Error (n− c) and Lack of Fit (c− 2). This leads
to an F -test for testing H0: Relation is Linear versus HA: Relation is not Linear.

TS : Fobs =
[SSLF/(c − 2)]

[SSPE/(n − c)]
=

MSLF

MSPE
RR : Fobs ≥ Fα,c−2,n−c P = P (Fc−2,n−c ≥ Fobs)

Note that the Pure Error sum of squares is the Error sum of squares for the 1-Way ANOVA model
(treating the distinct X levels as nominal categories).

SSPE =
c
∑

j=1

nj
∑

i=1

(

Yij − Y j

)2
=

c
∑

j=1

(nj − 1) s2
j

If the relationship is not linear, polynomial terms can be added to the model to allow for “bends” in the
relationship between Y and X using multiple regression.

Example 9.6: Chewiness of Berries of Various Sugar Contents

A study of physical and mechanical properties of berries of c = 6 sugar contents (176.5, 192.6, 209.3,
225.0, 242.1, and 258.5) included the response chewiness (Zouid, et al, 2013, [54]). There were nj = 15
replicates at each sugar content level. Figure 9.4 gives data that have been simulated to match the mean
and standard deviation at each of the six sugar contents.

Computations for the Lack of Fit F -test are given in Table 9.3. The fitted simple linear regression
equation and error sum of squares are given below.

Ŷj = 7.6629− 0.0228Xj SSE =

n
∑

i=1

(Yi − Ŷi)
2 = 74.126 dfE = 90 − 2 = 88
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Figure 9.4: Berry Chewiness and Sugar Content with fitted regression line and group means

j Xj nj Y j sj Ŷj Y j − Ŷj

1 176.5 15 3.43 1.29 3.639 -0.209
2 192.6 15 3.41 0.71 3.272 0.138
3 209.3 15 2.98 0.86 2.891 0.089
4 225.0 15 2.71 1.20 2.534 0.176
5 248.1 15 2.01 0.70 2.144 -0.134
6 258.5 15 1.71 0.57 1.770 -0.060

Table 9.3: Lack-of-Fit summary statistics for Berry Chewiness experiment
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The F -test for lack-of-fit is conducted as follows. There is no evidence that the true relationship between
chewiness and sugar content is not linear.

H0 : E{Yij} = β0 + β1Xj HA : E{Yij} = µj 6= β0 + β1Xj

SSLF = 15
[

(−0.209)2 + · · ·+ (−0.060)2
]

= 1.848 dfLF = 6 − 2 = 4 MSLF =
1.848

4
= 0.4620

SSPE = (15 − 1)
[

(1.29)2 + · · ·+ (0.57)2
]

= 72.278 dfPE = 90 − 6 = 84 MSPE =
72.278

84
= 0.8605

TS : FLF =
0.4620

0.8605
= 0.5369 RR : FLF ≥ F.05,4,84 = 2.480 P = P (F4,85 ≥ 0.5369) = .7090

R Commands and Output

### Commands

berry1 <- read.csv("http://www.stat.ufl.edu/~winner/data/berry_sugar_chewy.csv")

attach(berry1); names(berry1)

chewy1 <- lm(chewiness ~ sugar) ### Fit Linear Regression

anova(chewy1)

chewy2 <- lm(chewiness ~ factor(sugar)) ### Fit 1-Way ANOVA

anova(chewy2)

anova(chewy1, chewy2) ### Compare Linear Reg w/ 1-Way ANOVA

### Output

> round(LF.out,4)

df(LF) SSLF MSLF df(PE) SSPE MSPE F_LOF F(.05) P(F>=F_LOF)

[1,] 4 1.848 0.462 84 72.2784 0.8605 0.5369 2.4803 0.709

> anova(chewy1)

Analysis of Variance Table

Response: chewiness

Df Sum Sq Mean Sq F value Pr(>F)

sugar 1 36.721 36.721 43.594 2.951e-09 ***

Residuals 88 74.126 0.842

> anova(chewy2)

Analysis of Variance Table

Response: chewiness

Df Sum Sq Mean Sq F value Pr(>F)

factor(sugar) 5 38.569 7.7138 8.9647 7.423e-07 ***

Residuals 84 72.278 0.8605

> anova(chewy1, chewy2) ### Compare Linear Reg w/ 1-Way ANOVA

Analysis of Variance Table

Model 1: chewiness ~ sugar

Model 2: chewiness ~ factor(sugar)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 88 74.126

2 84 72.278 4 1.848 0.5369 0.709

∇
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9.2 Multiple Linear Regression

When there is more than one predictor variable, the model generalizes to multiple linear regression. The
calculations become more complex, but conceptually, the ideas remain the same. We will use the notation of
p as the number of predictors, and p′ = p+1 as the number of regression coefficients in the model (including
the intercept). The model can be written as follows with the same assumptions about the errors as in simple
regression.

Y = β0 + β1X1 + · · ·+ βpXp + ε ε ∼ N(0, σ2) independent

Least squares (and maximum likelihood) estimates β̂0 , β̂1, . . . , β̂p minimize the error sum of squares. The
fitted values, residuals, and error sum of squares are given below.

Ŷi = β̂0 + β̂1Xi1 + · · · β̂pXip ei = Yi − Ŷi SSE =

n
∑

i=1

e2
i

The degrees of freedom for error are now n − p′ = n − (p + 1), as the model estimates p′ = p + 1
parameters. The degrees of freedom for regression is p.

In the multiple linear regression model, βj represents the change in E{Y } when Xj increases by 1 unit,
with all other predictor variables being held constant. It is referred to as the partial regression coefficient.

9.2.1 Testing and Estimation for Partial Regression Coefficients

Once the model is fit, for each predictor variable, the estimated regression coefficient, its estimated standard
error, t-statistic and confidence interval are obtained. Technically, the estimated variance-covariance matrix
for the vector of regression coefficients is computed, with the standard errors being the square root of the
variances of the individual coefficients.

To test whether Y is associated with Xj , after controlling for the remaining p− 1 predictors, the test is
whether βj = 0. This is equivalent to the t-test from simple regression (in general, the test can be whether
a regression coefficient is any specific number, although software packages are testing whether it is 0).

H0 : βj = βj0 HA : βj 6= βj0 TS : tobs =
β̂j − βj0

ŜE{β̂j}
RR : |tobs| ≥ tα/2,n−p′ P = 2P (tn−p′ ≥ |tobs|)

One-sided tests make the same adjustments as in simple linear regression.

H+
A : βj > βj0 RR : tobs ≥ tα,n−p′ P = P (tn−p′ ≥ tobs)
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H−
A : βj < βj0 RR : tobs ≤ −tα,n−p′ P = P (tn−p′ ≤ tobs)

A (1 − α)100% confidence interval for βj is obtained as:

β̂j ± tα/2,n−p′ŜE{β̂j}

Note that the confidence interval represents the values of βj0 for which the two-sided test: H0 : βj =
βj0 HA : βj 6= βj0 fails to reject the null hypothesis.

Example 9.7: How Stature (Height) Relates to Hand and Foot Length among Females

A regression model was fit, relating stature (Y , height, in mm) to hand length (X1 , mm) and foot length
(X2, mm) for a sample of n = 75 female adult Turks (Sanli, Kizilkanat, Boyan, et al., 2005, [45]). The data
have been simulated to match means, standard deviations, and bivariate correlations. A matrix plot of the
variables is given in Figure 9.5. The model, fitted equation, Error sum of squares and mean square are given
below (n = 75, p′ = 2 + 1 = 3).

Yi = β0 + β1Xi1 + β2Xi2 + εi Ŷi = 743.970 + 2.375X1 + 1.727X2 SSE = 68924.42 MSE = 957.284

The estimated standard errors are 0.486 for β̂1 and 0.375 for β̂2, respectively. The t-tests and 95% Confidence
Intervals for β1 and β2 are given below.

Hand: H0 : β1 = 0 HA : β1 6= 0 TS : tobs =
2.375

0.486
= 4.89 RR : |tobs| ≥ t.025,72 = 1.993 P = P (t72 ≥ 5.63) ≈ 0

Foot: H0 : β2 = 0 HA : β2 6= 0 TS : tobs =
1.727

0.375
= 4.61 RR : |tobs| ≥ t.025,72 = 1.993 P = P (t72 ≥ 4.61) ≈ 0

95% CI for β1: 2.375± 1.993(0.486) ≡ 2.375± 0.969 ≡ (1.406, 3.344)

95% CI for β2: 1.727± 1.993(0.375) ≡ 1.727± 0.747 ≡ (0.980, 2.474)

R Commands and Output

### Commands

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)

f.height <- height[gender == 2] ### Female Heights

f.hand <- hand[gender == 2] ### Female Hand Lengths

f.foot <- foot[gender == 2] ### Female Foot Lengths

f.stature <- data.frame(f.height, f.hand, f.foot)

plot(f.stature)

shf.mod1 <- lm(f.height ~ f.hand + f.foot)

summary(shf.mod1)

confint(shf.mod1)

#### Output
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Figure 9.5: Heights, Hand Lengths and Foot Lengths among a Sample of 75 Adult Female Turks

> summary(shf.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 743.9696 79.7499 9.329 5.12e-14 ***

f.hand 2.3748 0.4858 4.888 5.99e-06 ***

f.foot 1.7271 0.3745 4.611 1.69e-05 ***

Residual standard error: 30.94 on 72 degrees of freedom

Multiple R-squared: 0.6159, Adjusted R-squared: 0.6053

F-statistic: 57.73 on 2 and 72 DF, p-value: 1.093e-15

> confint(shf.mod1)

2.5 % 97.5 %

(Intercept) 584.9911070 902.948034

f.hand 1.4062645 3.343310

f.foot 0.9804939 2.473711

∇

9.2.2 Analysis of Variance

When there is no association between Y and X1, . . . , Xp (β1 = · · · = βp = 0), the best predictor of each

observation is Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this case, the total
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variation can be denoted as TSS =
∑n

i=1(Yi − Y )2, the Total Sum of Squares, just as with simple
regression.

When there is an association between Y and at least one of X1, . . . , Xp (not all βi = 0), the best predictor

of each observation is Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip (in terms of minimizing the sum of squares of prediction

errors). In this case, the error variation can be denoted as SSE =
∑n

i=1(Yi − Ŷi)
2, the Error Sum of

Squares.

The difference between TSS and SSE is the variation “explained” by the regression of Y on X1, . . . , Xp

(as opposed to having ignored X1, . . . , Xp). It represents the difference between the fitted values and the

mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares. Note that when there is p > 1 predictor,
the fitted equation is no longer a straight line in 2-dimensions. This makes visualization more difficult,
but the concept of distance from observed to predicted value is the same. For the stature example, Ŷ =
β̂0 + β̂1X1 + β̂2X2 represents a 2-dimensional plane in 3-dimensional space.

TSS = SSE + SSR
n
∑

i=1

(Yi − Y )2 =
n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2

The Total Degrees of Freedom remains dfTotal = n − 1. The Error Degrees of Freedom is
dfError = n − p′. The Regression Degrees of Freedom is dfRegression = p. Note that when there is

p = 1 predictor, this generalizes to simple regression.

dfTotal = dfError + dfRegression n − 1 = n − p′ + p

The Mean Squares for Error and Regression are: MSE = SSE/(n − p′) and MSR = SSR/p. It can be
shown that these mean squares have the following Expected Values, average values in repeated sampling
at the same observed X levels.

E{MSE} = σ2 E{MSR} ≥ σ2

Note that when β1 = · · ·βp = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way
of testing whether β1 = · · ·βp = 0 is by the F -test.

H0 : β1 = · · ·βp = 0 HA : Not all βj = 0

TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,p,n−p′ P = P (Fp,n−p′ ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 9.4.

The Coefficient of Determination is labeled R2 for the multiple regression model. This represents
the variation in Y “explained” by X1, . . . , Xp, divided by the total variation in Y . Note that the summary
function in R reports “Multiple R-squared” even when there is only a single predictor.
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Source df SS MS Fobs P (> F )

Regression (Model) p SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
p Fobs = MSR

MSE P (Fp,n−p′ ≥ Fobs)

Error (Residual) n − p′ SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−p′

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 9.4: Analysis of Variance Table for Multiple Linear Regression

R2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ R2 ≤ 1

Example 9.8: Stature (Height) as Function of Hand and Foot Length among Females

In a continuation of the Turkish adult females’ model relating stature to hand and foot lengths, the
following sums of squares and F -test are computed.

TSS =

n
∑

i=1

(Yi − Y )2 = 179409 SSE =

n
∑

i=1

(Yi − Ŷi)
2 = 68924 SSR =

n
∑

i=1

(Ŷi − Y )2 = 110504

MSE =
68924

75− 3
= 957.3 MSR =

110504

2
= 55252

H0 : β1 = β2 = 0 TS : Fobs =
55252

957.3
= 57.72 RR : Fobs ≥ F.05,2,72 = 3.124 P (F2,72 ≥ 57.72) ≈ 0

The Coefficient of Determination is R2 = 110504/179409 = .616, approximately 62% of the variation in
height is “explained” by hand and foot length.

R Commands and Output

### Commands

shf.mod1 <- lm(f.height ~ f.hand + f.foot)

summary(shf.mod1)

anova(shf.mod1)

drop1(shf.mod1, test="F")

### Output

> summary(shf.mod1)

Residual standard error: 30.94 on 72 degrees of freedom

Multiple R-squared: 0.6159, Adjusted R-squared: 0.6053

F-statistic: 57.73 on 2 and 72 DF, p-value: 1.093e-15

> anova(shf.mod1)

Analysis of Variance Table

Response: f.height

Df Sum Sq Mean Sq F value Pr(>F)
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f.hand 1 90153 90153 94.203 1.027e-14 ***

f.foot 1 20351 20351 21.265 1.694e-05 ***

Residuals 72 68905 957

Note that SSR = SSR(X1) + SSR(X2 |X1) = 90153 + 20351 = 110504. The sums of squares for the
anova function are the Sequential Sums of Squares and sum up to the Regression Sum of Squares.

∇

9.2.3 Testing a Subset of βs = 0

The F -test from the Analysis of Variance and the t-tests represent extremes of model testing (all variables
simultaneously versus one-at-a-time). Often interest in testing whether a group of predictors do not improve
prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, we wish to test whether the remaining p − g predictors
are associated with Y . That is, we wish to test the following hypotheses.

H0 : βg+1 = · · ·βp = 0 HA : Not all of βg+1 , . . . , βp = 0

Note that, the t-tests control for all other predictors, while here, we want to control for only X1, . . . , Xg.
To do this, fit two models: the Complete or Full Model with all p predictors, and the Reduced Model
with only the g “control” variables. For each model, obtain the Regression and Error sums of squares, as well
as R2. Let (F ) represent the Full model and (R) represent the Reduced model. This leads to the following
test statistic and rejection region.

TS : Fobs =

[

SSE(R)−SSE(F )
(n−g′)−(n−p′)

]

[

SSE(F )
n−p′

] =

[

SSR(F )−SSR(R)
p−g

]

[

SSE(F )
n−p′

] =

[

R2
F −R2

R

p−g

]

[

1−R2
F

n−p′

]

RR : Fobs ≥ Fα,p−g,n−p′ P = P (Fp−g,n−p′ ≥ Fobs)

Example 9.9: Energy Consumption of Luxury Hotels

A study considered factors relating to Energy Consumption (Y , in millions of kilowatt-hours) for a
sample of n = 19 luxury hotels in Hainan Province, China (Xin, Lu, Xu, and Wu, 2012, [53]). The model
had 3 predictors: Area (X1, in 1000s of square meters), Age (X2 , in years), and Effective number of guest
rooms (X3, # rooms times occupancy rate).

Consider two models: Model 1 with X1, X2, X3 as predictors and Model 2 with only X1 as a predictor.
The goal is to determine whether age and/or effective guest rooms is associated with energy consumption,
after controlling for the hotel’s size (Area). The data, fitted values and residuals for Models 1 and 2 are given
in Table 9.5. The fitted equations and Error Sums of Squares are given below (n = 19, p = 3, p′ = 4, g = 1).
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Hotel Y X1 X2 X3 Ŷ1 e1 Ŷ2 e2

1 1.95 43.00 6.00 44.64 5.61 -3.66 6.31 -4.36
2 1.05 19.98 16.00 85.33 3.31 -2.26 2.64 -1.60
3 4.25 46.53 7.00 115.52 6.48 -2.24 6.87 -2.63
4 2.13 20.96 6.00 110.34 2.48 -0.32 2.80 -0.67
5 2.79 24.21 5.00 230.27 3.82 -1.04 3.32 -0.53
6 13.83 112.20 4.00 188.73 17.11 -3.28 17.33 -3.50
7 5.56 45.00 3.00 78.03 5.70 -0.14 6.63 -1.07
8 4.00 28.55 6.00 54.37 3.27 0.73 4.01 -0.01
9 4.67 32.87 8.00 89.75 4.58 0.09 4.70 -0.03
10 8.92 59.41 5.00 167.23 8.82 0.10 8.92 0.00
11 6.87 45.00 10.00 368.20 7.83 -0.96 6.63 0.24
12 6.01 37.44 13.00 197.29 6.44 -0.43 5.42 0.59
13 8.19 50.83 4.00 83.31 6.74 1.45 7.56 0.63
14 11.74 68.00 13.00 187.53 11.02 0.72 10.29 1.45
15 14.84 78.87 8.00 206.12 12.25 2.58 12.02 2.82
16 5.37 28.45 13.00 128.30 4.42 0.95 3.99 1.37
17 13.52 70.00 4.00 228.74 10.56 2.95 10.61 2.91
18 3.88 20.00 5.00 85.81 2.04 1.85 2.65 1.24
19 10.57 50.00 12.00 120.28 7.67 2.90 7.42 3.15

Table 9.5: Hotel Energy Consumption Data, Fitted Values, and Residuals for Model 1 and Model 2

Model 1: Full: ŶF = −2.1320+0.1540X1+0.0959X2+0.0075X3 SSE(F ) = 67.846 dfE(F ) = n−p′ = 19−4 = 15

Model 2: Reduced: ŶR = −0.5380+0.1593X1 SSE(R) = 75.129 dfE(R) = n−g′ = 19−2 = 17 p−g = 3−1 = 2

The test of H0 : β2 = β3 = 0 versus HA : β2 and/or β3 = 0 is given below.

TS : Fobs =

[

75.129−67.846
17−15

]

[

67.846
15

] =
3.642

4.523
= 0.805 RR : Fobs ≥ F.05,2,15 = 3.682 P (F2,15 ≥ 0.805) = .4634

After controlling for Area, neither Age or Effective guest rooms are associated with Energy Consumption.

R Commands and Output

### Commands

hotel_ec <- read.csv("http://www.stat.ufl.edu/~winner/data/hotel_energy.csv")

attach(hotel_ec); names(hotel_ec)

enrgcons <- enrgcons/1000000

area <- area/1000

## Full Model

hec.mod1 <- lm (enrgcons ~ area + age + effrooms)

summary(hec.mod1)
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anova(hec.mod1)

## Reduced Model

hec.mod2 <- lm (enrgcons ~ area)

summary(hec.mod2)

anova(hec.mod2)

## Full versus Reduced F-test

anova(hec.mod2, hec.mod1)

### Output

> summary(hec.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.252767 1.781202 -1.265 0.225260

area 0.148709 0.029066 5.116 0.000127 ***

age 0.113045 0.134527 0.840 0.413924

effrooms 0.005777 0.007096 0.814 0.428315

Residual standard error: 2.127 on 15 degrees of freedom

Multiple R-squared: 0.7946, Adjusted R-squared: 0.7535

F-statistic: 19.35 on 3 and 15 DF, p-value: 2.049e-05

> anova(hec.mod1)

Response: enrgcons

Df Sum Sq Mean Sq F value Pr(>F)

area 1 255.218 255.218 56.4258 1.854e-06 ***

age 1 4.286 4.286 0.9475 0.3458

effrooms 1 2.998 2.998 0.6628 0.4283

Residuals 15 67.846 4.523

> summary(hec.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.53804 1.08509 -0.496 0.626

area 0.15925 0.02096 7.599 7.29e-07 ***

Residual standard error: 2.102 on 17 degrees of freedom

Multiple R-squared: 0.7726, Adjusted R-squared: 0.7592

F-statistic: 57.75 on 1 and 17 DF, p-value: 7.294e-07

> anova(hec.mod2)

Response: enrgcons

Df Sum Sq Mean Sq F value Pr(>F)

area 1 255.218 255.218 57.75 7.294e-07 ***

Residuals 17 75.129 4.419

> anova(hec.mod2, hec.mod1)

Analysis of Variance Table

Model 1: enrgcons ~ area

Model 2: enrgcons ~ area + age + effrooms

Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 75.129

2 15 67.846 2 7.2834 0.8051 0.4654

∇
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9.2.4 Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If a categorical variable has m levels, there
will need to be m − 1 dummy or indicator variables to reflect the effects of the variable’s levels. The
variable will take on 1 if the ith observation is in that level of the variable, 0 otherwise. Note that one level
of the variable will have 0s for all m − 1 dummy variables, making it the reference category. The βs for the
other groups (levels of the qualitative variable) reflect the difference in the mean for that group with the
reference group, controlling for all other predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and we can test
for differences in the effects of the 2 levels with a t-test, controlling for all other predictors. If there are
m − 1 > 2 dummy variables, the F -test can be used to test whether all m − 1 βs are 0, controlling for all
other predictors. An example is given below.

9.2.5 Models With Interaction Terms

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way to model interaction(s) is to create a new variable that is the product of
the 2 predictors. Suppose the model has Y , and 2 numeric predictors: X1 and X2. Create a new predictor
X3 = X1X2. Now, consider the following model.

E{Y } = β0 + β1X1 + β2X2 + β3X3 = β0 + β1X1 + β2X2 + β3X1X2 = β0 + β2X2 + (β1 + β3X2) X1

The slope with respect to X1 depends on the level of X2, unless β3 = 0, which can be tested with a
t-test of H0 : β3 = 0. This logic extends to qualitative variables as well. Create cross-product terms between
numeric (or other categorical) predictors with the m − 1 dummy variables representing the qualitative
predictor. Then the t-test (m−1 = 1) or F -test (m−1 ≥ 2) can be conducted to test for interactions among
predictors. This is demonstrated by adding males to the stature data below.

Example 9.10: Heights, Hand and Foot Lengths in Males and Females

In the stature study (Sanli, Kizilkanat, Boyan, et al., 2005, [45]), there were also 80 males, for a total of
n = 75 + 80 = 155 adults. For these models, Y is height, X1 is hand length, and X2 is foot length. Create
the dummy (indicator) variable X3 = 1 if male, X3 = 0 if female. Then consider three models: Common
slopes and intercept by gender (Model 1), Common slopes but different intercepts by gender (Model 2), and
Different slopes and intercepts by gender (Model 3). The models are given below.

Model 1: E{Y } = β0 + β1X1 + β2X2

Model 2: E{Y } = β0 + β1X1 + β2X2 + β3X3

Females: E{Y } = β0 + β1X1 + β2X2 Males: E{Y } = (β0 + β3) + β1X1 + β2X2

Model 3: E{Y } = β0 + β1X1 + β2X2 + β3X3 + β4X1X3 + β5X2X3

Males: E{Y } = (β0 + β3) + (β1 + β4)X1 + (β2 + β5)X2
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The fitted equations and their Error Sums of Squares are given below (the regression coefficients are
taken from the R output given below).

Model 1: ŶF = ŶM = 372.64 + 3.32X1 + 2.58X2 SSE1 = 189029 dfE1 = 155 − 3 = 152

Model 2: ŶF = 581.99+2.81X1+2.06X2 ŶM = 621.55+2.81X1+2.06X2 SSE2 = 165341 dfE2 = 155−4 = 151

Model 3: ŶF = 743.97+2.38X1+1.73X2 ŶM = 439.27+3.29X1+2.38X2 SSE3 = 157360 dfE3 = 155−6 = 149

Tests comparing the different models include Model 2 versus Model 1, where the null hypothesis is
common slopes and intercepts (Model 1) and the alternative is common slopes and different intercepts
(Model 2). The null hypothesis is H0 : β3 = 0.

TS : F12 =

[

189029−165341
152−151

]

[

165341
151

] =
23688

1095
= 21.63 RR : F12 ≥ F.05,1,151 = 3.904

A second test comparing the different models include Model 3 versus Model 2, where the null hypothesis
is common slopes and different intercepts (Model 2) and the alternative is different slopes and intercepts
(Model 3). The null hypothesis is H0 : β4 = β5 = 0.

TS : F23 =

[

165341−157360
151−149

]

[

157360
149

] =
3990.5

1056
= 3.78 RR : F23 ≥ F.05,2,149 = 3.057 P = .0251

The “full model” allowing for different slopes and intercepts for males and females gives the best fit.

R Commands and Output

### Commands

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)

male <- 2-gender ### male = 1 if male, 0 if female

## Model 1: Common slope/intercept

shf.mod1 <- lm(height ~ hand + foot)

summary(shf.mod1)

anova(shf.mod1)

## Model 2: Common slope/Different intercept

shf.mod2 <- lm(height ~ hand + foot + male)

summary(shf.mod2)

anova(shf.mod2)

## Model 3: Different slope/intercept

shf.mod3 <- lm(height ~ hand + foot + male + I(hand*male) + I(foot*male))

summary(shf.mod3)

anova(shf.mod3)
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anova(shf.mod1,shf.mod2) ### Compare Models 1 and 2

anova(shf.mod2,shf.mod3) ### Compare Models 2 and 3

### Output

> ## Model 1: Common slope/intercept

> shf.mod1 <- lm(height ~ hand + foot)

> summary(shf.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 372.6378 43.2581 8.614 8.41e-15 ***

hand 3.3175 0.3461 9.586 < 2e-16 ***

foot 2.5816 0.2490 10.370 < 2e-16 ***

Residual standard error: 35.26 on 152 degrees of freedom

Multiple R-squared: 0.8608, Adjusted R-squared: 0.859

F-statistic: 470.1 on 2 and 152 DF, p-value: < 2.2e-16

> anova(shf.mod1)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 832.59 < 2.2e-16 ***

foot 1 133728 133728 107.53 < 2.2e-16 ***

Residuals 152 189029 1244

> ## Model 2: Common slope/Different intercept

> shf.mod2 <- lm(height ~ hand + foot + male)

> summary(shf.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 581.9858 60.6099 9.602 < 2e-16 ***

hand 2.8116 0.3425 8.210 9.11e-14 ***

foot 2.0643 0.2587 7.979 3.43e-13 ***

male 39.5640 8.5064 4.651 7.16e-06 ***

Residual standard error: 33.09 on 151 degrees of freedom

Multiple R-squared: 0.8783, Adjusted R-squared: 0.8758

F-statistic: 363.1 on 3 and 151 DF, p-value: < 2.2e-16

> anova(shf.mod2)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 945.602 < 2.2e-16 ***

foot 1 133728 133728 122.128 < 2.2e-16 ***

male 1 23687 23687 21.633 7.157e-06 ***

Residuals 151 165341 1095

> ## Model 3: Different slope/intercept

> shf.mod3 <- lm(height ~ hand + foot + male + I(hand*male) + I(foot*male))

> summary(shf.mod3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 743.9696 83.7772 8.880 1.98e-15 ***

hand 2.3748 0.5104 4.653 7.17e-06 ***

foot 1.7271 0.3934 4.390 2.14e-05 ***

male -304.7039 125.5987 -2.426 0.0165 *

I(hand * male) 0.9120 0.6809 1.340 0.1824

I(foot * male) 0.6537 0.5162 1.266 0.2074

Residual standard error: 32.5 on 149 degrees of freedom
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Multiple R-squared: 0.8841, Adjusted R-squared: 0.8803

F-statistic: 227.4 on 5 and 149 DF, p-value: < 2.2e-16

> anova(shf.mod3)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 980.4040 < 2.2e-16 ***

foot 1 133728 133728 126.6232 < 2.2e-16 ***

male 1 23687 23687 22.4289 5.035e-06 ***

I(hand * male) 1 6288 6288 5.9538 0.01586 *

I(foot * male) 1 1694 1694 1.6036 0.20737

Residuals 149 157360 1056

>

> anova(shf.mod1,shf.mod2) ### Compare Models 1 and 2

Analysis of Variance Table

Model 1: height ~ hand + foot

Model 2: height ~ hand + foot + male

Res.Df RSS Df Sum of Sq F Pr(>F)

1 152 189029

2 151 165341 1 23687 21.633 7.157e-06 ***

> anova(shf.mod2,shf.mod3) ### Compare Models 2 and 3

Analysis of Variance Table

Model 1: height ~ hand + foot + male

Model 2: height ~ hand + foot + male + I(hand * male) + I(foot * male)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 151 165341

2 149 157360 2 7981.4 3.7787 0.02507 *

∇

9.3 R Code for Chapter 9

### Chapter 9

### Examples 9.1-9.5 Bollywood Revenue/Budget Analysis

### Example 9.1

bolly <- read.csv("http://www.stat.ufl.edu/~winner/data/bollywood_boxoffice.csv")

attach(bolly); names(bolly)

### Figure 9.1

par(mfrow=c(2,2))

plot(Gross ~ Budget, main="Y=Gross, X=Budget")

abline(lm(Gross~Budget))

plot(log(Gross) ~ Budget, main="Y=log(Gross), X=Budget")

abline(lm(log(Gross) ~ Budget))

plot(Gross ~ log(Budget), main="Y=Gross, X=log(Budget)")

abline(lm(Gross ~ log(Budget)))

plot(log(Gross) ~ log(Budget), main="Y=log(Gross), X=log(Budget)")

abline(lm(log(Gross) ~ log(Budget)))

### End Figure 9.1
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Y <- log(Gross)

X <- log(Budget)

n <- length(Y)

SSYY <- sum((Y-mean(Y))^2)

SSXX <- sum((X-mean(X))^2)

SSXY <- sum((X-mean(X))*(Y-mean(Y)))

b1 <- SSXY/SSXX

b0 <- mean(Y) - b1*mean(X)

SSE <- SSYY - b1^2*SSXX

MSE <- SSE/(n-2)

se.b1 <- sqrt(MSE/SSXX)

se.b0 <- sqrt(MSE*(1/n + mean(X)^2/SSXX))

ss.out <- cbind(SSYY, SSXX, SSXY, SSE, MSE, b1, b0, se.b1, se.b0)

colnames(ss.out) <- c("SSYY", "SSXX", "SSXY", "SSE", "MSE",

"beta1-hat", "b0-hat", "SE{b1}", "SE{b0}")

round(ss.out, 4)

### Example 9.2

t.b1 <- b1/se.b1

p.b1 <- 2*(1-pt(abs(t.b1),n-2))

beta1.LB <- b1 - qt(.975,n-2)*se.b1

beta1.UB <- b1 + qt(.975,n-2)*se.b1

b1.out <- cbind(b1, se.b1, t.b1, p.b1, beta1.LB, beta1.UB)

t.b0 <- b0/se.b0

p.b0 <- 2*(1-pt(abs(t.b0),n-2))

beta0.LB <- b0 - qt(.975,n-2)*se.b0

beta0.UB <- b0 + qt(.975,n-2)*se.b0

b0.out <- cbind(b0, se.b0, t.b0, p.b0, beta0.LB, beta0.UB)

b.out <- rbind(b0.out, b1.out)

rownames(b.out) <- c("Intercept", "log(Budget)")

colnames(b.out) <- c("Estimate", "Std. Error", "t", "P-Value", "Lower Bound",

"Upper Bound")

round(b.out, 4)

## Analysis using lm (linear model) function in R

bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

confint(bolly.mod1)

### Example 9.3

x.star <- log(60)

yhat.star <- b0 + b1*x.star

CIstar.LB <- yhat.star - qt(.975,n-2)*sqrt(MSE*(1/n+(x.star-mean(X))^2/SSXX))

CIstar.UB <- yhat.star + qt(.975,n-2)*sqrt(MSE*(1/n+(x.star-mean(X))^2/SSXX))

PIstar.LB <- yhat.star - qt(.975,n-2)*sqrt(MSE*(1+1/n+(x.star-mean(X))^2/SSXX))

PIstar.UB <- yhat.star + qt(.975,n-2)*sqrt(MSE*(1+1/n+(x.star-mean(X))^2/SSXX))

cipi_log.out <- cbind(x.star,yhat.star,CIstar.LB,CIstar.UB,PIstar.LB,PIstar.UB)

cipi_orig.out <- cbind(exp(x.star),exp(yhat.star),exp(CIstar.LB),

exp(CIstar.UB),exp(PIstar.LB),exp(PIstar.UB))

cipi.out <- rbind(cipi_log.out, cipi_orig.out)

rownames(cipi.out) <- c("Log Scale", "Original Scale")

colnames(cipi.out) <- c("X*","Y-hat*","CI Lower","CI Upper","PI Lower","PI Upper")

round(cipi.out,4)
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X.grid <- seq(0,6,0.01)

yhat <- b0 + b1*X.grid

CI.LO <- yhat - qt(.975,n-2)*sqrt(MSE*(1/n + (X.grid-mean(X))^2/SSXX))

CI.HI <- yhat + qt(.975,n-2)*sqrt(MSE*(1/n + (X.grid-mean(X))^2/SSXX))

PI.LO <- yhat - qt(.975,n-2)*sqrt(MSE*(1 + 1/n + (X.grid-mean(X))^2/SSXX))

PI.HI <- yhat + qt(.975,n-2)*sqrt(MSE*(1 + 1/n + (X.grid-mean(X))^2/SSXX))

## Using predict function based on bolly.mod1 object with X*=log(60)

# CI for mean

ci.log60 <- predict(bolly.mod1, list(X=log(60)), interval="c")

# PI for individual movie

pi.log60 <- predict(bolly.mod1, list(X=log(60)), interval="p")

cipi.out1 <- rbind(ci.log60, pi.log60, exp(ci.log60), exp(pi.log60))

colnames(cipi.out1) <- c("Estimate", "Lower Bound", "Upper Bound")

rownames(cipi.out1) <- c("CI(log scale)", "PI(log scale)",

"CI(original scale)", "PI(original scale)")

round(cipi.out1, 4)

## Figure 9.2

par(mfrow=c(1,1))

plot(X,Y,xlim=c(0,6), ylim=c(-1,7),

main="Bollywood Box Office Data, Regression Line, CI and PI")

lines(X.grid,yhat,lty=1)

lines(X.grid,CI.LO,lty=2)

lines(X.grid,CI.HI,lty=2)

lines(X.grid,PI.LO,lty=3)

lines(X.grid,PI.HI,lty=3)

## End Figure 9.2

### Example 9.4

plot(Y ~ X, pch=16,

main="Bollywood Movies: log(Revenue) vs log(Budget)")

abline(lm(Y ~ X), lwd=2)

abline(h=mean(Y), lty=2, lwd=2)

legend(1.5,6,c("Fitted Equation", "Ybar"), lty=c(1,2), lwd=c(2,2))

SSR <- SSYY-SSE

MSE <- SSE/(n-2)

F_obs <- (SSR/1)/MSE

F_05 <- qf(.95,1,n-2)

p_F <- 1 - pf(F_obs,1,n-2)

aov.out <- cbind(SSYY,SSE,SSR,MSE,F_obs,F_05,p_F,SSR/SSYY)

colnames(aov.out) <- c("TSS","SSE","SSR","MSE","F_obs","F(.05)","P-value","R^2")

round(aov.out,4)

### Using aov function

bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

anova(bolly.mod1)

### Example 9.5

cor.test(X,Y)

rm(list=ls(all=TRUE))

### Example 9.6
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berry1 <- read.csv("http://www.stat.ufl.edu/~winner/data/berry_sugar_chewy.csv")

attach(berry1); names(berry1)

sugar.lev <- unique(sugar)

## Figure 9.3

plot(sugar, chewiness, main="Berry Chewiness by Sugar Content")

abline(lm(chewiness ~ sugar))

for (i in 1:length(sugar.lev)) {

lines(c(sugar.lev[i]-2,sugar.lev[i]+2),

c(mean(chewiness[sugar==sugar.lev[i]]),

mean(chewiness[sugar==sugar.lev[i]])),

lwd=2)

}

## End Figure 5.3

(ybar_j <- as.vector(tapply(chewiness, sugar, mean)))

(s_j <- as.vector(tapply(chewiness, sugar, sd)))

(n_j <- as.vector(tapply(chewiness, sugar, length)))

c <- length(n_j)

(X_j <- unique(sugar))

chewy1 <- lm(chewiness ~ sugar) ### Fit Linear Regression

summary(chewy1)

anova(chewy1)

(yhat_j <- predict(chewy1,list(sugar=X_j)))

SS_LF <- sum(n_j * (ybar_j - yhat_j)^2)

df_LF <- c-2

MS_LF <- SS_LF/df_LF

SS_PE <- sum((n_j-1)*s_j^2)

df_PE <- sum(n_j)-c

MS_PE <- SS_PE/df_PE

F_LF <- MS_LF / MS_PE

F_05 <- qf(.95,c-2,sum(n_j)-c)

p_F <- 1 - pf(F_LF, c-2, sum(n_j)-c)

LF.out <- cbind(df_LF, SS_LF, MS_LF, df_PE, SS_PE, MS_PE, F_LF, F_05, p_F)

colnames(LF.out) <- c("df(LF)","SSLF","MSLF","df(PE)","SSPE","MSPE",

"F_LOF", "F(.05)", "P(F>=F_LOF)")

round(LF.out,4)

chewy2 <- lm(chewiness ~ factor(sugar)) ### Fit 1-Way ANOVA

anova(chewy2)

anova(chewy1, chewy2) ### Compare Linear Reg w/ 1-Way ANOVA

rm(list=ls(all=TRUE))

### Examples 9.7-9.8

### Example 9.7

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)

f.height <- height[gender == 2] ### Female Heights

f.hand <- hand[gender == 2] ### Female Hand Lengths

f.foot <- foot[gender == 2] ### Female Foot Lengths

f.stature <- data.frame(f.height, f.hand, f.foot)
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## Figure 9.4

plot(f.stature)

## End Figure 9.4

shf.mod1 <- lm(f.height ~ f.hand + f.foot)

summary(shf.mod1)

confint(shf.mod1)

### Example 9.8

shf.mod1 <- lm(f.height ~ f.hand + f.foot)

summary(shf.mod1)

anova(shf.mod1)

drop1(shf.mod1, test="F")

rm(list=ls(all=TRUE))

### Example 9.9

hotel_ec <- read.csv("http://www.stat.ufl.edu/~winner/data/hotel_energy.csv")

attach(hotel_ec); names(hotel_ec)

enrgcons <- enrgcons/1000000

area <- area/1000

## Full Model

hec.mod1 <- lm (enrgcons ~ area + age + effrooms)

summary(hec.mod1)

anova(hec.mod1)

## Reduced Model

hec.mod2 <- lm (enrgcons ~ area)

summary(hec.mod2)

anova(hec.mod2)

## Full versus Reduced F-test

anova(hec.mod2, hec.mod1)

rm(list=ls(all=TRUE))

### Example 9.10

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)

male <- 2-gender ### male = 1 if male, 0 if female

## Model 1: Common slope/intercept

shf.mod1 <- lm(height ~ hand + foot)

summary(shf.mod1)

anova(shf.mod1)

## Model 2: Common slope/Different intercept

shf.mod2 <- lm(height ~ hand + foot + male)

summary(shf.mod2)

anova(shf.mod2)

## Model 3: Different slope/intercept

shf.mod3 <- lm(height ~ hand + foot + male + I(hand*male) + I(foot*male))

summary(shf.mod3)

anova(shf.mod3)
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anova(shf.mod1,shf.mod2) ### Compare Models 1 and 2

anova(shf.mod2,shf.mod3) ### Compare Models 2 and 3

rm(list=ls(all=TRUE))
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