
Logistic Regression

• Logistic Regression - Dichotomous Response 
variable and numeric and/or categorical 
explanatory variable(s)
– Goal: Model the probability of a particular as a function 

of the predictor variable(s)
– Problem: Probabilities are bounded between 0 and 1

• Distribution of Responses: Binomial
• Link Function: 
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Logistic Regression with 1 Predictor

• Response - Presence/Absence of characteristic 

• Predictor - Numeric variable observed for each case

• Model - π(x) ≡ Probability of presence at predictor level x
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• β = 0   ⇒ P(Presence) is the same at each level of x

• β > 0   ⇒ P(Presence) increases as x increases

• β < 0   ⇒ P(Presence) decreases as x increases



Logistic Regression with 1 Predictor
• α, β are unknown parameters and must be 

estimated using statistical software such as SPSS, 
SAS, or STATA

· Primary interest in estimating and testing 
hypotheses regarding β
· Large-Sample test (Wald Test):
· H0: β = 0        HA: β ≠ 0
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Example - Rizatriptan for Migraine 

• Response - Complete Pain Relief at 2 hours (Yes/No)
• Predictor - Dose (mg): Placebo (0),2.5,5,10

Dose # Patients # Relieved % Relieved
0 67 2 3.0

2.5 75 7 9.3
5 130 29 22.3
10 145 40 27.6



Example - Rizatriptan for Migraine (SPSS)

Variables in the Equation

.165 .037 19.819 1 .000 1.180
-2.490 .285 76.456 1 .000 .083

DOSE
Constant

Step
1

a

B S.E. Wald df Sig. Exp(B)

Variable(s) entered on step 1: DOSE.a. 
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Odds Ratio

• Interpretation of Regression Coefficient (β):
– In linear regression, the slope coefficient is the change 

in the mean response as x increases by 1 unit
– In logistic regression, we can show that:
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• Thus eβ represents the change in the odds of the outcome 
(multiplicatively) by increasing x by 1 unit

• If β = 0, the odds and probability are the same at all x levels (eβ=1)

• If β > 0 , the odds and probability increase as x increases (eβ>1)

• If β < 0 , the odds and probability decrease as x increases (eβ<1)



95% Confidence Interval for Odds Ratio
• Step 1: Construct a 95% CI for β :
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• Step 2: Raise e = 2.718 to the lower and upper bounds of the CI:
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• If entire interval is above 1, conclude positive association

• If entire interval is below 1, conclude negative association

• If interval contains 1, cannot conclude there is an association



Example - Rizatriptan for Migraine

• 95% CI for β :
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• 95% CI for population odds ratio:
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• Conclude positive association between dose and 
probability of complete relief



Multiple Logistic Regression

• Extension to more than one predictor variable (either 
numeric or dummy variables).

• With k predictors, the model is written:
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• Adjusted Odds ratio for raising xi by 1 unit, holding 
all other predictors constant:

ieORi
β=

• Many models have nominal/ordinal predictors, and 
widely make use of dummy variables



Testing Regression Coefficients
• Testing the overall model:
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• L0, L1 are values of the maximized likelihood function, computed by 
statistical software packages. This logic can also be used to compare 
full and reduced models based on subsets of predictors. Testing for 
individual terms is done as in model with a single predictor.



Example - ED in Older Dutch Men 

• Response: Presence/Absence of ED (n=1688)
• Predictors:  (p=12)

– Age stratum (50-54*, 55-59, 60-64, 65-69, 70-78)
– Smoking status (Nonsmoker*, Smoker)
– BMI stratum (<25*, 25-30, >30)
– Lower urinary tract symptoms (None*, Mild, 

Moderate, Severe)
– Under treatment for cardiac symptoms (No*, Yes)
– Under treatment for COPD (No*, Yes)

* Baseline group for dummy variables



Example - ED in Older Dutch Men
Predictor b sb Adjusted OR (95% CI)
Age 55-59 (vs 50-54) 0.83 0.42 2.3   (1.0 – 5.2)
Age 60-64 (vs 50-54) 1.53 0.40 4.6   (2.1 – 10.1)
Age 65-69 (vs 50-54) 2.19 0.40 8.9   (4.1 – 19.5)
Age 70-78 (vs 50-54) 2.66 0.41 14.3   (6.4 – 32.1)
Smoker (vs nonsmoker) 0.47 0.19 1.6   (1.1 – 2.3)
BMI 25-30 (vs <25) 0.41 0.21 1.5   (1.0 – 2.3)
BMI >30 (vs <25) 1.10 0.29 3.0   (1.7 – 5.4)
LUTS Mild (vs None) 0.59 0.41 1.8   (0.8 – 4.3)
LUTS Moderate (vs None) 1.22 0.45 3.4   (1.4 – 8.4)
LUTS Severe (vs None) 2.01 0.56 7.5   (2.5 – 22.5)
Cardiac symptoms (Yes vs No) 0.92 0.26 2.5   (1.5 – 4.3)
COPD (Yes vs No) 0.64 0.28 1.9   (1.1 – 3.6)

Interpretations: Risk of ED appears to be:

• Increasing with age, BMI, and LUTS strata

• Higher among smokers

• Higher among men being treated for cardiac or COPD



Loglinear Models with 
Categorical Variables

• Logistic regression models when there is a clear 
response variable (Y), and a set of predictor 
variables (X1,...,Xk)

• In some situations, the variables are all responses, 
and there are no clear dependent and independent 
variables

• Loglinear models are to correlation analysis as 
logistic regression is to ordinary linear regression



Loglinear Models
• Example: 3 variables (X,Y,Z) each with 2 levels 
• Can be set up in a 2x2x2 contingency table
• Hierarchy of Models:

– All variables are conditionally independent
– Two of the pairs of variables are conditionally 

independent
– One of the pairs are conditionally independent
– No pairs are conditionally independent, but each 

association is constant across levels of third variable 
(no interaction or homogeneous association)

– All pairs are associated, and associations differ 
among levels of third variable



Loglinear Models 
• To determine associations, must have a measure: the 

odds ratio (OR)
• Odds Ratios take on the value 1 if there is no 

association
• Loglinear models make use of regressions with 

coefficients being exponents. Thus, tests of whether 
odds ratios are 1, is equivalently to testing whether 
regression coefficients are 0 (as in logistic regression)

• For a given partial table, OR=eβ, software packages 
estimate and test whether β=0



Example - Feminine Traits/Behavior
3 Variables, each at 2 levels (Table contains observed counts):

Feminine Personality Trait (Modern/Traditional)
Female Role Behavior (Modern/Traditional)
Class (Lower Classman/Upper Classman)

PRSNALTY * ROLEBHVR * CLASS1 Crosstabulation

Count

33 25 58
21 53 74
54 78 132
19 13 32
10 35 45
29 48 77

Modern
Traditional

PRSNALTY

Total
Modern
Traditional

PRSNALTY

Total

CLASS1
Lower Classman

Upper Classman

Modern Traditional
ROLEBHVR

Total



Example - Feminine Traits/Behavior
• Expected cell counts under model that allows for association 

among all pairs of variables, but no interaction (association 
between personality and role is same for each class, etc). 
Model:(PR,PC,RC)
– Evidence of personality/role association (see odds ratios)

Class=Lower Class=Lower Class=Upper Class=Upper
Role=M Role=T Role=M Role=T

Personality=M 34.1 23.9 17.9 14.1
Personality=T 19.9 54.1 11.1 33.9

88.3
)1.11(1.14
)9.33(9.17 :UpperClass

88.3
)9.19(9.23
)1.54(1.34 :LowerClass

===

===

OR

OR
Note that under the no 
interaction model, the odds 
ratios measuring the 
personality/role association 
is same for each class



Example - Feminine Traits/Behavior
Role=M Role=M Role=T Role=T

Class=Lower Class=Upper Class=Lower Class=Upper
Personality=M 34.1 17.9 23.9 14.1
Personality=T 19.9 11.1 54.1 33.9

06.1
)1.54(1.14
)9.33(9.23 :TRole

06.1
)9.19(9.17
)1.11(1.34 :MRole

===

===

OR

OR

Personality=M Personality=M Personality=T Personality=T
Class=Lower Class=Upper Class=Lower Class=Upper

Role=M 34.1 17.9 19.9 11.1
Role=T 23.9 14.1 54.1 33.9

12.1
)1.54(1.11
)9.33(9.19 :TyPersonalit

12.1
)9.23(9.17
)1.14(1.34 :MyPersonalit
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Example - Feminine Traits/Behavior

• Intuitive Results:
– Controlling for class in school, there is an 

association between personality trait and role 
behavior (ORLower=ORUpper=3.88)

– Controlling for role behavior there is no association 
between personality trait and class (ORModern= 
ORTraditional=1.06)

– Controlling for personality trait, there is no 
association between role behavior and class 
(ORModern= ORTraditional=1.12)



SPSS Output
• Statistical software packages fit regression type models, where
the regression coefficients for each model term are the log of the 
odds ratio for that term, so that the estimated odds ratio is e
raised to the power of the regression coefficient.
Parameter Estimates

Asymptotic 95% CI
Parameter   Estimate         SE    Z-value      Lower      Upper

Constant       3.5234      .1651      21.35       3.20       3.85
Class           .4674      .2050       2.28        .07        .87
Personality    -.8774      .2726      -3.22      -1.41       -.34
Role          -1.1166      .2873      -3.89      -1.68       -.55
C*P            .0605      .3064        .20       -.54        .66
C*R            .1166      .3107        .38       -.49        .73
R*P           1.3554      .2987       4.54        .77       1.94

Note: e1.3554 = 3.88   e.0605 = 1.06     e.1166 = 1.12



Interpreting Coefficients
• The regression coefficients for each variable 

corresponds to the lowest level (in alphanumeric 
ordering of symbols). Computer output will print a 
“mapping” of coefficients to variable levels.

Cell (C,P,R) Class β Prsnlty β Role β C*P β C*R β P*R β Expected Count 
L,M,M 0.4674 -0.8774 -1.1166 0.0605 0.1166 1.3554 34.1 
L,M,T 0.4674 -0.8774 0 0.0605 0 0 23.9 
L,T,M 0.4674 0 -1.1166 0 0.1166 0 19.9 
L,T,T 0.4674 0 0 0 0 0 54.1 

U,M,M 0 -0.8774 -1.1166 0 0 1.3554 17.9 
U,M,T 0 -0.8774 0 0 0 0 14.1 
U,T,M 0 0 -1.1166 0 0 0 11.1 
U,T,T 0 0 0 0 0 0 33.9 

 

To obtain the expected cell counts, add the constant (3.5234) to
each of the βs for that row, and raise e to the power of that sum



Goodness of Fit Statistics
• For any logit or loglinear model, we will have 

contingency tables of observed (fo) and 
expected (fe) cell counts under the model being 
fit.

• Two statistics are used to test whether a model 
is appropriate: the Pearson chi-square statistic 
and the likelihood ratio (aka Deviance) statistic
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Goodness of Fit Tests
• Null hypothesis: The current model is 

appropriate
• Alternative hypothesis: Model is more complex
• Degrees of Freedom: Number of cells-Number 

of parameters in model
• Distribution of Goodness of Fit statistics under 

the null hypothesis is chi-square with degrees of 
freedom given above

• Statistical software packages will print these 
statistics and P-values.



Example - Feminine Traits/Behavior
Table Information

Observed            Expected
Factor               Value     Count       %       Count       %
PRSNALTY         Modern
ROLEBHVR         Modern
CLASS1   Lower Classman      33.00 ( 15.79)      34.10 ( 16.32)
CLASS1   Upper Classman      19.00 (  9.09)      17.90 (  8.57)
ROLEBHVR    Traditional
CLASS1   Lower Classman      25.00 ( 11.96)      23.90 ( 11.44)
CLASS1   Upper Classman      13.00 (  6.22)      14.10 (  6.75)

PRSNALTY    Traditional
ROLEBHVR         Modern
CLASS1   Lower Classman      21.00 ( 10.05)      19.90 (  9.52)
CLASS1   Upper Classman      10.00 (  4.78)      11.10 (  5.31)
ROLEBHVR    Traditional
CLASS1   Lower Classman      53.00 ( 25.36)      54.10 ( 25.88)
CLASS1   Upper Classman      35.00 ( 16.75)      33.90 ( 16.22)

Goodness-of-fit Statistics
Chi-Square       DF       Sig.

Likelihood Ratio         .4695        1      .4932
Pearson         .4664        1      .4946



Example - Feminine Traits/Behavior
Goodness of fit statistics/tests for all possible models:

Model G2 χ2 df P-value (G2) P-value (χ2)
(C,P,R) 22.21 22.46 4 .0002 .0002
(C,PR) 0.7199 0.7232 3 .8685 .8677
(P,CR) 21.99 22.24 3 .00007 .00006
(R,CP) 22.04 22.34 3 .00006 .00006

(CR,CP) 22.93 22.13 2 .00002 .00002
(CP,PR) 0.6024 0.6106 2 .7399 .7369
(CR,PR) 0.5047 0.5085 2 .7770 .7755

(CP,CR,PR) 0.4644 0.4695 1 .4946 .4932

The simplest model for which we fail to reject the null 
hypothesis that the model is adequate is: (C,PR): Personality 
and Role are the only associated pair.



Adjusted Residuals

• Standardized differences between actual 
and expected counts (fo-fe, divided by its 
standard error). 

• Large adjusted residuals (bigger than 3 in 
absolute value, is a conservative rule of 
thumb) are cells that show lack of fit of 
current model

• Software packages will print these for logit 
and loglinear models



Example - Feminine Traits/Behavior
• Adjusted residuals for (C,P,R) model of all 

pairs being conditionally independent:
Adj.

Factor               Value       Resid.   Resid.   

PRSNALTY         Modern
ROLEBHVR         Modern
CLASS1   Lower Classman         10.43     3.04**    
CLASS1   Upper Classman          5.83     1.99     
ROLEBHVR    Traditional
CLASS1   Lower Classman         -9.27    -2.46    
CLASS1   Upper Classman         -6.99    -2.11    

PRSNALTY    Traditional
ROLEBHVR         Modern
CLASS1   Lower Classman         -8.85    -2.42    
CLASS1   Upper Classman         -7.41    -2.32    
ROLEBHVR    Traditional
CLASS1   Lower Classman          7.69     1.93     
CLASS1   Upper Classman          8.57     2.41



Comparing Models with G2 Statistic
• Comparing a series of models that increase in 

complexity.
• Take the difference in the deviance (G2) for the 

models (less complex model minus more 
complex model)

• Take the difference in degrees of freedom for the 
models

• Under hypothesis that less complex (reduced) 
model is adequate, difference follows chi-square 
distribution



Example - Feminine Traits/Behavior

• Comparing a model where only Personality 
and Role are associated (Reduced Model) 
with the model where all pairs are associated 
with no interaction (Full Model).

• Reduced Model (C,PR): G2=.7232, df=3
• Full Model (CP,CR,PR): G2=.4695, df=1
• Difference: .7232-.4695=.2537, df=3-1=2
• Critical value (α=0.05): 5.99
• Conclude Reduced Model is adequate



Logit Models for Ordinal Responses

• Response variable is ordinal (categorical 
with natural ordering)

• Predictor variable(s) can be numeric or 
qualitative (dummy variables)

• Labeling the ordinal categories from 1 
(lowest level) to c (highest), can obtain the 
cumulative probabilities:
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Logistic Regression for Ordinal Response

• The odds of falling in category j or below:
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• Logit (log odds) of cumulative probabilities are modeled 
as linear functions of predictor variable(s):
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This is called the proportional odds model, and assumes the 
effect of X is the same for each cumulative probability



Example - Urban Renewal Attitudes

• Response: Attitude toward urban renewal 
project (Negative (Y=1), Moderate (Y=2), 
Positive (Y=3))

• Predictor Variable: Respondent’s Race 
(White, Nonwhite)

• Contingency Table:
A ttitud e\R ace W hite N onw hite
N egative (Y = 1) 101 106
M od erate  (Y =2) 91 127
P ositive  (Y =3) 170 190



SPSS Output
• Note that SPSS fits the model in the 

following form:
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Parameter Estimates

-1.027 .102 101.993 1 .000 -1.227 -.828
.165 .094 3.070 1 .080 -.020 .351

-.001 .133 .000 1 .993 -.263 .260
0a . . 0 . . .

[ATTITUDE = 1]
[ATTITUDE = 2]

Threshold

[RACE=0]
[RACE=1]

Location

Estimate Std. Error Wald df Sig. Lower Bound Upper Bound
95% Confidence Interval

Link function: Logit.
This parameter is set to zero because it is redundant.a. 

Note that the race variable is not significant (or even close).



Fitted Equation
• The fitted equation for each group/category:
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For each group, the fitted probability of falling in that set of categories 
is eL/(1+eL) where L is the logit value (0.264,0.264,0.541,0.541)



Inference for Regression Coefficients
• If β = 0, the response (Y) is independent of X
• Z-test can be conducted to test this (estimate 

divided by its standard error)
• Most software will conduct the Wald test, with the 

statistic being the z-statistic squared, which has a 
chi-squared distribution with 1 degree of freedom 
under the null hypothesis

• Odds ratio of increasing X by 1 unit and its 
confidence interval are obtained by raising e to the 
power of the regression coefficient and its upper 
and lower bounds 



Example - Urban Renewal Attitudes

• Z-statistic for testing for race differences: 
Z=0.001/0.133 = 0.0075 (recall model estimates -β)

• Wald statistic: .000 (P-value=.993)
• Estimated odds ratio: e.001 = 1.001
• 95% Confidence Interval: (e-.260,e.263)=(0.771,1.301)
• Interval contains 1, odds of being in a given category or 

below is same for whites as nonwhites

Parameter Estimates

-1.027 .102 101.993 1 .000 -1.227 -.828
.165 .094 3.070 1 .080 -.020 .351

-.001 .133 .000 1 .993 -.263 .260
0a . . 0 . . .

[ATTITUDE = 1]
[ATTITUDE = 2]

Threshold

[RACE=0]
[RACE=1]

Location

Estimate Std. Error Wald df Sig. Lower Bound Upper Bound
95% Confidence Interval

Link function: Logit.
This parameter is set to zero because it is redundant.a. 



Ordinal Predictors

• Creating dummy variables for ordinal 
categories treats them as if nominal

• To make an ordinal variable, create a new 
variable X that models the levels of the 
ordinal variable 

• Setting depends on assignment of levels 
(simplest form is to let X=1,...,c for the 
categories which treats levels as being 
equally spaced)
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