Analysis of Covariance

- Combines linear regression and ANOVA
- Can be used to compare *g* treatments, after controlling for quantitative factor believed to be related to response (e.g. pre-treatment score)
- Can be used to compare regression equations among g groups (e.g. common slopes and/or intercepts)
- Model: (X quantitative, $Z_1, ..., Z_{g-1}$ dummy variables)

 $E(Y) = \alpha + \beta X + \beta_1 Z_1 + \dots + \beta_{g-1} Z_{g-1}$

Tests for Additive Model

- Relation for group *i* (*i*=1,...,*g*-1): $E(Y) = \alpha + \beta X + \beta_i$
- Relation for group $g: E(Y) = \alpha + \beta X$
- $H_0: \beta_1 = ... = \beta_{g-1} = 0$ (Controlling for covariate, no differences among treatments)

Interaction Model

• Regression slopes between *Y* and *X* are allowed to vary among groups

 $E(Y) = \alpha + \beta X + \beta_1 Z_1 + \dots + \beta_{g-1} Z_{g-1} + \gamma_1 X Z_1 + \dots + \gamma_{g-1} X Z_{g-1}$

- Group *i* (*i*=1,...,*g*-1): $E(Y) = \alpha + \beta X + \beta_i + \gamma_i X = (\alpha + \beta_i) + (\beta + \gamma_i) X$
- Group g: $E(Y) = \alpha + \beta X$
- No interaction means common slopes: $\gamma_1 = ... = \gamma_{g-1} = 0$

Inference in ANCOVA

- Model: $E(Y) = \alpha + \beta X + \beta_1 Z_1 + \dots + \beta_{g-1} Z_{g-1} + \gamma_1 X Z_1 + \dots + \gamma_{g-1} X Z_{g-1}$
- Construct 3 "sets" of independent variables:
 - $\{X\}, \{Z_1, Z_2, \dots, Z_{g-1}\}, \{XZ_1, \dots, XZ_{g-1}\}$
- Fit Complete model, containing all 3 sets. – Obtain SSE_C (or, equivalently R_C^2) and df_C
- Fit Reduced, model containing $\{X\}$, $\{Z_1, Z_2, ..., Z_{g-1}\}$ - Obtain SSE_R (or, equivalently R_R^{-2}) and df_R
- $H_0: \gamma_1 = ... = \gamma_{g-1} = 0$ (No interaction). Test Statistic:

$$F_{obs} = \frac{\left[\frac{SSE_R - SSE_C}{df_R - df_C}\right]}{\left[\frac{SSE_C}{df_C}\right]} = \frac{\left[\frac{R_C^2 - R_R^2}{df_R - df_C}\right]}{\left[\frac{1 - R_C^2}{df_C}\right]}$$

Inference in ANCOVA

- Test for Group Differences, controlling for covariate $E(Y) = \alpha + \beta X + \beta_1 Z_1 + \dots + \beta_{g-1} Z_{g-1}$
- Fit Complete, model containing $\{X\}$, $\{Z_1, Z_2, ..., Z_{g-1}\}$ – Obtain SSE_C (or, equivalently R_C^2) and df_C
- Fit Reduced, model containing $\{X\}$ - Obtain SSE_R (or, equivalently R_R^{-2}) and df_R
- $H_0: \beta_1 = ... = \beta_{g-1} = 0$ (No group differences) Test Statistic:

$$F_{obs} = \frac{\left[\frac{SSE_R - SSE_C}{df_R - df_C}\right]}{\left[\frac{SSE_C}{df_C}\right]} = \frac{\left[\frac{R_C^2 - R_R^2}{df_R - df_C}\right]}{\left[\frac{1 - R_C^2}{df_C}\right]}$$

Inference in ANCOVA

- Test for Effect of Covariate controlling for qualitative variable $E(Y) = \alpha + \beta X + \beta_1 Z_1 + \dots + \beta_{\sigma-1} Z_{\sigma-1}$
- $H_0:\beta=0$ (No covariate effect) Test Statistic:

$$t_{obs} = \frac{b}{\frac{1}{\sigma_b}}$$

Adjusted Means

- Goal: Compare the *g* group means, after controlling for the covariate
- Unadjusted Means: $\overline{Y}_1, \dots, \overline{Y}_g$
- Adjusted Means: $\overline{Y}_{1},...,\overline{Y}_{g}$ Obtained by evaluating regression equation at $X = \overline{X}$
- Comparing adjusted means (based on regression equation):

$$b_i = \overline{Y}_i - \overline{Y}_g \qquad b_i - b_j = \overline{Y}_i - \overline{Y}_j$$

Multiple Comparisons of Adjusted Means

• Comparisons of each group with group g:

$$b_i \pm t_{\alpha_c/2, N-g-1} \overset{\land}{\sigma}_{b_i} \qquad i = 1, ..., g-1$$

• Comparisons among the other *g*-1 groups:

$$(b_i - b_j) \pm t_{\alpha_C/2, N-g-1} \sqrt{\sigma_{b_i}^{\wedge 2} + \sigma_{b_j}^{\wedge 2} - 2COV(b_i, b_j)}$$

• Variances and covariances are obtained from computer software packages (SPSS, SAS)