1-Way Analysis of Variance

- Setting:
- Comparing $g>2$ groups
- Numeric (quantitative) response
- Independent samples
- Notation (computed for each group):
- Sample sizes: $n_{1}, \ldots, n_{\mathrm{g}}\left(N=n_{1}+\ldots+n_{\mathrm{g}}\right)$
- Sample means:

$$
\bar{Y}_{1}, \ldots, \bar{Y}_{g} \quad\left(\bar{Y}=\frac{n_{1} \bar{Y}_{1}+\cdots+n_{g} \bar{Y}_{g}}{N}\right)
$$

- Sample standard deviations: s_{1}, \ldots, s_{g}

1-Way Analysis of Variance

- Assumptions for Significance tests:
- The g distributions for the response variable are normal
- The population standard deviations are equal for the g groups (σ)
- Independent random samples selected from the g populations

Within and Between Group Variation

- Within Group Variation: Variability among individuals within the same group. (WSS)
- Between Group Variation: Variability among group means, weighted by sample size. (BSS)

$$
\begin{aligned}
& \text { WSS }=\left(n_{1}-1\right) s_{1}^{2}+\cdots+\left(n_{g}-1\right) s_{g}^{2} \quad d f_{W}=N-g \\
& \text { BSS }=n_{1}\left(\bar{Y}_{1}-\bar{Y}\right)^{2}+\cdots+n_{g}\left(\bar{Y}_{g}-\bar{Y}\right)^{2} \quad d f_{B}=g-1
\end{aligned}
$$

If the population means are all equal, $\mathrm{E}\left(\mathrm{WSS} / \mathrm{d} f_{W}\right)=\mathrm{E}\left(B S S / d f_{B}\right)=\sigma^{2}$

Example: Policy/Participation in European Parliament

- Group Classifications: Legislative Procedures ($g=4$): (Consultation, Cooperation, Assent, Co-Decision)
- Units: Votes in European Parliament
- Response: Number of Votes Cast

Legislative Procedure (i)	\# of Cases $\left(n_{\mathrm{i}}\right)$	Mean $\left(\bar{Y}_{i}\right)$	Std. Dev $\left(\mathrm{s}_{\mathrm{i}}\right)$
Consultation	205	296.5	124.7
Cooperation	88	357.3	93.0
Assent	8	449.6	171.8
Codecision	133	368.6	61.1

$N=205+88+8+133=434 \quad \bar{Y}=\frac{205(296.5)+88(357.3)+8(449.6)+133(368.6)}{434}=\frac{144845.5}{434}=333.75$

Source: R.M. Scully (1997). "Policy Influence and Participation in the European Parliament", Legislative Studies Quarterly, pp.233-252.

Example: Policy/Participation in European Parliament

\mathbf{i}	$\mathbf{n _ i}$	Ybar_i	s_i	YBar_i-Ybar	BSS	WSS
1	205	296.5	124.7	-37.25	284450.313	3172218
2	88	357.3	93.0	23.55	48805.02	752463
3	8	449.6	171.8	115.85	107369.78	206606.7
4	133	368.6	61.1	34.85	161531.493	492783.7
					602156.605	4624072

$$
\begin{aligned}
& B S S=205(296.5-333.75)^{2}+\cdots+133(368.6-333.75)^{2}=6021566 \quad d f_{B}=4-1=3 \\
& W S S=(205-1)(124.7)^{2}+\cdots+(133-1)(61.1)^{2}=4624072 \quad d f_{W}=434-4=430
\end{aligned}
$$

F-Test for Equality of Means

- $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{g}$
- H_{A} : The means are not all equal

$$
\text { T.S. } F_{\text {obs }}=\frac{B S S ~ /(g-1)}{W S S ~ /(N-g)}=\frac{B M S}{W M S}
$$

$$
R . R .: F_{o b s} \geq F_{\alpha, g-1, N-g}
$$

$$
P=P\left(F \geq F_{\text {obs }}\right)
$$

BMS and WMS are the Between and Within Mean Squares

Example: Policy/Participation in European Parliament

- $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
- H_{A} : The means are not all equal

$$
\begin{aligned}
& \text { T.S. } F_{o b s}=\frac{B S S ~ /(g-1)}{W S S} /(N-g)
\end{aligned} \frac{602156.6 / 3}{4624072 / 430}=18.670 \text {. }
$$

Analysis of Variance Table

- Partitions the total variation into Between and Within Treatments (Groups)
- Consists of Columns representing: Source, Sum of Squares, Degrees of Freedom, Mean Square, F-statistic, P-value (computed by statistical software packages)

Source of		Degrres of		
Variation	Sum of Squares	Freedom	Mean Square	F
Between	$B S S$	$g-1$	$B M S=B S S /(g-1)$	$F=B M S / W M S$
Within	WSS	$N-g$	$W M S=W S S /(N-g)$	
Total	TSS	$N-1$		

Estimating/Comparing Means

- Estimate of the (common) standard deviation:

$$
\hat{\sigma}=\sqrt{\frac{W S S}{N-g}}=\sqrt{W M S} \quad d f=N-g
$$

- Confidence Interval for μ_{i} :

$$
\bar{Y}_{i} \pm t_{\alpha / 2, N-g} \frac{\sigma}{\sqrt{n_{i}}}
$$

- Confidence Interval for $\mu_{\mathrm{i}}-\mu_{\mathrm{j}}$:

$$
\left(\bar{Y}_{i}-\bar{Y}_{j}\right)_{ \pm t_{\alpha / 2, N-g}} \hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}
$$

Multiple Comparisons of Groups

- Goal: Obtain confidence intervals for all pairs of group mean differences.
- With g groups, there are $g(g-1) / 2$ pairs of groups.
- Problem: If we construct several (or more) 95\% confidence intervals, the probability that they all contain the parameters $\left(\mu_{\mathrm{i}}-\mu_{\mathrm{j}}\right)$ being estimated will be less than 95\%
- Solution: Construct each individual confidence interval with a higher confidence coefficient, so that they will all be correct with 95% confidence

Bonferroni Multiple Comparisons

- Step 1: Select an experimentwise error rate (α_{E}), which is 1 minus the overall confidence level. For 95\% confidence for all intervals, $\alpha_{\mathrm{E}}=0.05$.
- Step 2: Determine the number of intervals to be constructed: $g(g-1) / 2$
- Step 3: Obtain the comparisonwise error rate: $\alpha_{\mathrm{C}}=\alpha_{\mathrm{E}} /[g(g-1) / 2]$
- Step 4: Construct (1- $\left.\alpha_{\mathrm{C}}\right) 100 \%$ CI's for $\mu_{\mathrm{i}}-\mu_{\mathrm{j}}$:

$$
\left(\bar{Y}_{i}-\bar{Y}_{j}\right) \pm t_{\alpha_{C} / 2, N-g} \hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}
$$

Interpretations

- After constructing all $g(g-1) / 2$ confidence intervals, make the following conclusions:
- Conclude $\mu_{\mathrm{i}}>\mu_{\mathrm{j}}$ if CI is strictly positive
- Conclude $\mu_{\mathrm{i}}<\mu_{\mathrm{j}}$ if CI is strictly negative
- Do not conclude $\mu_{\mathrm{i}} \neq \mu_{\mathrm{j}}$ if CI contains 0
- Common graphical description.
- Order the group labels from lowest mean to highest
- Draw sequence of lines below labels, such that means that are not significantly different are "connected" by lines

Example: Policy/Participation in European Parliament

- Estimate of the common standard deviation:

$$
\hat{\sigma}=\sqrt{\frac{W S S}{N-g}}=\sqrt{\frac{4624072}{430}}=103.7
$$

- Number of pairs of procedures: 4(4-1)/2=6
- Comparisonwise error rate: $\alpha_{\mathrm{C}}=.05 / 6=.0083$
- $\mathrm{t}_{.0083 / 2,430} \approx \mathrm{Z}_{.0042} \approx 2.64$

Example: Policy/Participation in European Parliament

Comparison	$\bar{Y}_{i}-\bar{Y}_{j}$	$\wedge \hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}$	Confidence Interval
Consult vs Cooperate	$296.5-357.3=-60.8$	$2.64(103.7)(0.13)=35.6$	$(-96.4,-25.2)^{*}$
Consult vs Assent	$296.5-449.6=-153.1$	$2.64(103.7)(0.36)=98.7$	$(-251.8,-54.4)^{*}$
Consult vs Codecision	$296.5-368.6=-72.1$	$2.64(103.7)(0.11)=30.5$	$(-102.6,-41.6)^{*}$
Cooperate vs Assent	$357.3-449.6=-92.3$	$2.64(103.7)(0.37)=101.1$	$(-193.4,8.8)$
Cooperate vs Codecision	$357.3-368.6=-11.3$	$2.64(103.7)(0.14)=37.6$	$(-48.9,26.3)$
Assent vs Codecision	$449.6-368.6=81.0$	$2.64(103.7)(0.36)=99.7$	$(-18.7,180.7)$

Consultation Cooperation Codecision Assent

Population mean is lower for consultation than all other procedures, no other procedures are significantly different.

Regression Approach To ANOVA

- Dummy (Indicator) Variables: Variables that take on the value 1 if observation comes from a particular group, 0 if not.
- If there are g groups, we create g - 1 dummy variables.
- Individuals in the "baseline" group receive 0 for all dummy variables.
- Statistical software packages typically assign the "last" ($g^{\text {th }}$) category as the baseline group
- Statistical Model: $\mathrm{E}(\mathrm{Y})=\alpha+\beta_{1} \mathrm{Z}_{1}+\ldots+\beta_{\mathrm{g}-1} \mathrm{Z}_{\mathrm{g}-1}$
- $\mathrm{Z}_{\mathrm{i}}=1$ if observation is from group $\mathrm{i}, 0$ otherwise
- Mean for group $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{~g}-1)$: $\mu_{\mathrm{i}}=\alpha+\beta_{\mathrm{i}}$
- Mean for group $g: \mu_{g}=\alpha$

Test Comparisons

$$
\square \mu_{\mathrm{i}}=\alpha+\beta_{\mathrm{i}} \quad \mu_{\mathrm{g}}=\alpha \quad \Rightarrow \beta_{\mathrm{i}}=\mu_{\mathrm{i}}-\mu_{\mathrm{g}}
$$

- 1-Way ANOVA: $\mathrm{H}_{0}: \mu_{1}=\ldots=\mu_{\mathrm{g}}$
- Regression Approach: $\mathrm{H}_{0}: \beta_{1}=\ldots=\beta_{\mathrm{g}-1}=0$
- Regression t-tests: Test whether means for groups i and g are significantly different: $-\mathrm{H}_{0}: \beta_{\mathrm{i}}=\mu_{\mathrm{i}}-\mu_{\mathrm{g}}=0$
2-Way ANOVA
- 2 nominal or ordinal factors are believed to be related to a quantitative response
- Additive Effects: The effects of the levels of each factor do not depend on the levels of the other factor.
- Interaction: The effects of levels of each factor depend on the levels of the other factor
- Notation: μ_{ij} is the mean response when factor A is at level i and Factor B at j

Example - Thalidomide for AIDS

- Response: 28-day weight gain in AIDS patients
- Factor A: Drug: Thalidomide/Placebo
- Factor B: TB Status of Patient: TB ${ }^{+} / \mathrm{TB}^{-}$
- Subjects: 32 patients (16 TB ${ }^{+}$and $16 \mathrm{~TB}^{-}$). Random assignment of 8 from each group to each drug). Data:
- Thalidomide/TB+: 9,6,4.5,2,2.5,3,1,1.5
- Thalidomide/TB: $2.5,3.5,4,1,0.5,4,1.5,2$
- Placebo/TB ${ }^{+}: 0,1,-1,-2,-3,-3,0.5,-2.5$
- Placebo/TB:: -0.5,0,2.5,0.5,-1.5,0,1,3.5

ANOVA Approach

- Total Variation (TSS) is partitioned into 4 components:
- Factor A: Variation in means among levels of A
- Factor B: Variation in means among levels of B
- Interaction: Variation in means among combinations of levels of A and B that are not due to A or B alone
- Error: Variation among subjects within the same combinations of levels of A and B (Within SS)

ANOVA Approach

General Notation: Factor A has a levels, B has b levels

Source	df	SS	MS	F
Factor A	$\mathrm{a}-1$	SSA	MSA=SSA/(a-1)	$\mathrm{F}_{\mathrm{A}}=$ MSA/WMS
Factor B	$\mathrm{b}-1$	SSB	MSB=SSB/(b-1)	$\mathrm{F}_{\mathrm{B}}=\mathrm{MSB} / \mathrm{WMS}$
Interaction	$(\mathrm{a}-1)(\mathrm{b}-1)$	SSAB	MSAB=SSAB/[(a-1)(b-1)]	$\mathrm{F}_{\mathrm{AB}}=$ MSAB/WMS
Error	$\mathrm{N}-\mathrm{ab}$	WSS	WMS=WSS/(N-ab)	
Total	$\mathrm{N}-1$	TSS		

- Procedure:
- Test H_{0} : No interaction based on the F_{AB} statistic
- If the interaction test is not significant, test for Factor A and B effects based on the F_{A} and F_{B} statistics

Example - Thalidomide for AIDS

Individual Patients

Group Means

Report							
WTGAIN					Mean	N	Std. Deviation
GROUP							
TB+/Thalidomide							
TB-/Thalidomide							
TB+/Placebo							
TB-/Placebo							
Total							

Example - Thalidomide for AIDS

Tests of Between-Subjects Effects
Dependent Variable: WTGAIN

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	109.688^{a}	3	36.563	10.206	.000
Intercept	60.500	1	60.500	16.887	.000
DRUG	87.781	1	87.781	24.502	.000
TB	.781	1	.781	.218	.644
DRUG * TB	21.125	1	21.125	5.897	.022
Error	100.313	28	3.583		
Total	270.500	32			
Corrected Total	210.000	31			

a. R Squared $=.522$ (Adjusted R Squared $=.471$)

- There is a significant Drug*TB interaction $\left(\mathrm{F}_{\mathrm{DT}}=5.897, \mathrm{P}=.022\right)$
- The Drug effect depends on TB status (and vice versa)

Regression Approach

- General Procedure:
- Generate a-1 dummy variables for factor $\mathrm{A}\left(A_{1}, \ldots, A_{a-1}\right)$
- Generate b-1 dummy variables for factor $\mathrm{B}\left(B_{1}, \ldots, B_{b-1}\right)$
- Additive (No interaction) model:
$E(Y)=\alpha+\beta_{1} A_{1}+\cdots+\beta_{a-1} A_{a-1}+\beta_{a} B_{1}+\cdots+\beta_{a+b-2} B_{b-1}$
Test for differences among levels of factor $\mathrm{A}: H_{0}: \beta_{1}=\cdots=\beta_{a-1}=0$
Test for differences among levels of factor $\mathrm{B}: H_{0}: \beta_{a}=\cdots=\beta_{a+b-2}=0$
Tests based on fitting full and reduced models.

Example - Thalidomide for AIDS

- Factor A: Drug with $a=2$ levels:
- $D=1$ if Thalidomide, 0 if Placebo
- Factor B: TB with $b=2$ levels:
- T=1 if Positive, 0 if Negative
- Additive Model:

$$
E(Y)=\alpha+\beta_{1} D+\beta_{2} T
$$

- Population Means:
- Thalidomide/TB ${ }^{+}: \alpha+\beta_{1}+\beta_{2}$
- Thalidomide/TB: $\alpha+\beta_{1}$
- Placebo/TB ${ }^{+}$: $\alpha+\beta_{2}$
- Placebo/TB: α
- Thalidomide (vs Placebo Effect) Among TB ${ }^{+} /$TB $^{-}$Patients:
- $\mathrm{TB}^{+}:\left(\alpha+\beta_{1}+\beta_{2}\right)-\left(\alpha+\beta_{2}\right)=\beta_{1} \quad \mathrm{~TB} \because:\left(\alpha+\beta_{1}\right)-\alpha=\beta_{1}$

Example - Thalidomide for AIDS

- Testing for a Thalidomide effect on weight gain: $-H_{0}: \beta_{1}=0$ vs $H_{\mathrm{A}}: \beta_{1} \neq 0$ (t-test, since $a-1=1$)
- Testing for a TB^{+}effect on weight gain: $-H_{0}: \beta_{2}=0$ vs $H_{\mathrm{A}}: \beta_{2} \neq 0$ (t-test, since $\left.b-1=1\right)$
- SPSS Output: (Thalidomide has positive effect, TB None)

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	-. 125	. 627		-. 200	. 843
	DRUG	3.313	. 723	. 647	4.579	. 000
	TB	-. 313	. 723	-. 061	-. 432	. 669

a. Dependent Variable: WTGAIN

Regression with Interaction

- Model with interaction (A has a levels, B has b):
- Includes $a-1$ dummy variables for factor A main effects
- Includes $b-1$ dummy variables for factor B main effects
- Includes $(a-1)(b-1)$ cross-products of factor A and B dummy variables
- Model:
$E(Y)=\alpha+\beta_{1} A_{1}+\cdots+\beta_{a-1} A_{a-1}+\beta_{a} B_{1}+\cdots+\beta_{a+b-2} B_{b-1}+\beta_{a+b-1}(A B)+\cdots+\beta_{a b-1}\left(A_{a-1} B_{b-1}\right)$
As with the ANOVA approach, we can partition the variation to that attributable to Factor A, Factor B, and their interaction

Example - Thalidomide for AIDS

- Model with interaction: $E(Y)=\alpha+\beta_{1} D+\beta_{2} T+\beta_{3}(D T)$
- Means by Group:
- Thalidomide/TB ${ }^{+}: \alpha+\beta_{1}+\beta_{2}+\beta_{3}$
- Thalidomide/TB: $\alpha+\beta_{1}$
- Placebo/TB ${ }^{+}$: $\alpha+\beta_{2}$
- Placebo/TB: α
- Thalidomide (vs Placebo Effect) Among TB ${ }^{+}$Patients:
- $\left(\alpha+\beta_{1}+\beta_{2}+\beta_{3}\right)-\left(\alpha+\beta_{2}\right)=\beta_{1}+\beta_{3}$
- Thalidomide (vs Placebo Effect) Among TB Patients:
- $\left(\alpha+\beta_{1}\right)-\alpha=\beta_{1}$
- Thalidomide effect is same in both TB groups if $\beta_{3}=0$

Example - Thalidomide for AIDS

- SPSS Output from Multiple Regression:

Coefficients ${ }^{\text {a }}$						
Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \\ \hline \end{gathered}$	t	Sig.
		B	Std. Error			
1	(Constant)	. 687	. 669		1.027	. 313
	DRUG	1.688	. 946	. 329	1.783	. 085
	TB	-1.937	. 946	-. 378	-2.047	. 050
	DRUGTB	3.250	1.338	. 549	2.428	. 022

[^0]We conclude there is a Drug*TB interaction ($\mathrm{t}=2.428, \mathrm{p}=.022$). Compare this with the results from the two factor ANOVA table

1- Way ANOVA with Dependent Samples (Repeated Measures)

- Some experiments have the same subjects (often referred to as blocks) receive each treatment.
- Generally subjects vary in terms of abilities, attitudes, or biological attributes.
- By having each subject receive each treatment, we can remove subject to subject variability
- This increases precision of treatment comparisons.

1- Way ANOVA with Dependent Samples (Repeated Measures)

- Notation: g Treatments, b Subjects, $N=g b$
- Mean for Treatment $i: \bar{T}_{i}$
- Mean for Subject (Block) $j: \bar{S}_{j}$
- Overall Mean: \bar{Y}

Total Sum of Squares : SSTO $=\sum(Y-\bar{Y})^{2} \quad d f_{T O}=N-1$
Between Treatmentt SS : SSTR $=b \sum(\bar{T}-\bar{Y})^{2} \quad d f_{T R}=g-1$
Between Subject SS: SSBL $=g \sum(\bar{S}-\bar{Y})^{2} \quad d f_{B L}=b-1$
Error SS : SSE $=S S T O-S S T R-S S B L \quad d f_{E}=(g-1)(b-1)$

ANOVA \& F-Test

Source	df	SS	MS	F
Treatments	$\mathrm{g}-1$	SSTR	MSTR=SSTR/(g-1)	$\mathrm{F}=$ MSTR/MSE
Blocks	$\mathrm{b}-1$	SSBL	MSBL=SSBL/(b-1)	
Error	$(\mathrm{g}-1)(\mathrm{b}-1)$	SSE	MSE=SSE/[(g-1)(b-1)]	
Total	$\mathrm{gb-1}$	SSTO		

H_{0} : No Difference in Treatment Means
H_{A} : Differences in Trt Means Exist
T.S. $F_{\text {obs }}=\frac{M S T R}{M S E}$
R.R. $F_{o b s} \geq F_{\alpha, g-1,(g-1)(b-1)}$
$P=P\left(F \geq F_{o b s}\right)$

Post hoc Comparisons (Bonferroni)

- Determine number of pairs of Treatment means ($g(g-1) / 2$)
- Obtain $\alpha_{\mathrm{C}}=\alpha_{\mathrm{E}} /(g(g-1) / 2)$ and $t_{\alpha_{\mathrm{C}} / 2(\cdot(g-1)(b-1)}$
- Obtain

$$
\hat{\sigma}=\sqrt{M S E}
$$

- Obtain the "critical quantity": $t \sigma \sqrt{\frac{2}{b}}$
- Obtain the simultaneous confidence intervals for all pairs of means (with standard interpretations):

$$
\left(\bar{T}_{i}-\bar{T}_{j}\right) \pm t \hat{\sigma} \sqrt{\frac{2}{b}}
$$

Repeated Measures ANOVA

- Goal: compare g treatments over t time periods
- Randomly assign subjects to treatments (Between Subjects factor)
- Observe each subject at each time period (Within Subjects factor)
- Observe whether treatment effects differ over time (interaction, Within Subjects)

Repeated Measures ANOVA

- Suppose there are N subjects, with n_{i} in the $i^{\text {hh }}$ treatment group.
- Sources of variation:
- Treatments (g-1 df)
- Subjects within treatments aka Error1 ($\mathrm{N}-\mathrm{g} \mathrm{df}$)
- Time Periods ($t-1 \mathrm{df}$)
- Time x Trt Interaction ((g-1)(t-1) df)
- Error2 ((N-g)(t-1) df)

Repeated Measures ANOVA

Source	df	SS	MS	F
Between Subjects				
Treatment	g-1	SSTrt	MSTrt=SSTrt/(g-1)	MSTrt/MSE1
Subj(Trt) $=$ Error1 Within Subjects	N-g	SSE1	MSE1=SSE1/(N-g)	
Time	$t-1$	SSTi	MSTi=SSTi/(t-1)	MSTi/MSE2
TimexTrt	$(t-1)(g-1)$	SSTiTrt	MSTiTrt=SSTiTrt/($(t-1)(g-1))$	MSTiTrt/MSE2
Time*Subj(Trt)=Error2	$(N-g)(t-1)$	SSE2	MSE2=SSE2/((N-g)(t-1))	

To Compare pairs of treatment means (assuming no time by treatment interaction, otherwise they must be done within time periods and replace tn with just n):

$$
\left(\bar{T}_{i}-\bar{T}_{j}\right) \pm t_{\alpha / 2, N-g} \sqrt{\operatorname{MSE1}\left(\frac{1}{t n_{i}}+\frac{1}{t n_{j}}\right)}
$$

[^0]: a. Dependent Variable: WTGAIN

