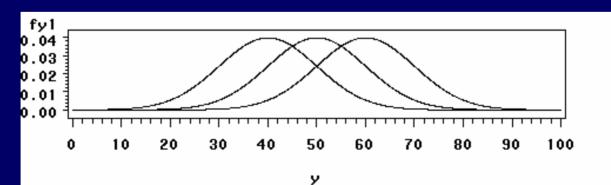
1-Way Analysis of Variance

- Setting:
 - Comparing g > 2 groups
 - Numeric (quantitative) response
 - Independent samples
- Notation (computed for each group):
 - Sample sizes: $n_1,...,n_g$ (N= n_1 +...+ n_g)
 - Sample means: $\overline{Y}_1,...,\overline{Y}_g$ $\left(\overline{Y} = \frac{n_1\overline{Y}_1 + \dots + n_g\overline{Y}_g}{N}\right)$
 - Sample standard deviations: s_1, \dots, s_g

1-Way Analysis of Variance

- Assumptions for Significance tests:
 - The g distributions for the response variable are normal
 - The population standard deviations are equal for the g groups (σ)
 - Independent random samples selected from the *g* populations



Within and Between Group Variation

- Within Group Variation: Variability among individuals within the same group. (*WSS*)
- Between Group Variation: Variability among group means, weighted by sample size. (*BSS*)

WSS =
$$(n_1 - 1)s_1^2 + \dots + (n_g - 1)s_g^2$$
 $df_w = N - g$

$$BSS = n_1 \left(\overline{Y}_1 - \overline{Y}\right)^2 + \dots + n_g \left(\overline{Y}_g - \overline{Y}\right)^2 \qquad df_B = g - 1$$

• If the population means are all equal, $E(WSS/df_W) = E(BSS/df_B) = \sigma^2$

Example: Policy/Participation in European Parliament

- Group Classifications: Legislative Procedures (g=4): (Consultation, Cooperation, Assent, Co-Decision)
- Units: Votes in European Parliament
- Response: Number of Votes Cast

Legislative Procedure (i)	# of Cases (n_i)	Mean $\left(\overline{Y}_{i}\right)$	Std. Dev (s _i)
Consultation	205	296.5	124.7
Cooperation	88	357.3	93.0
Assent	8	449.6	171.8
Codecision	133	368.6	61.1

$$N = 205 + 88 + 8 + 133 = 434 \qquad \overline{Y} = \frac{205(296.5) + 88(357.3) + 8(449.6) + 133(368.6)}{434} = \frac{144845.5}{434} = 333.75$$

Source: R.M. Scully (1997). "Policy Influence and Participation in the European Parliament", Legislative Studies Quarterly, pp.233-252.

Example: Policy/Participation in European Parliament

i	n_i	Ybar_i	s_i	YBar_i-Ybar	BSS	WSS
1	205	296.5	124.7	-37.25	284450.313	3172218
2	88	357.3	93.0	23.55	48805.02	752463
3	8	449.6	171.8	115.85	107369.78	206606.7
4	133	368.6	61.1	34.85	161531.493	492783.7
					602156.605	4624072

 $BSS = 205(296.5 - 333.75)^{2} + \dots + 133(368.6 - 333.75)^{2} = 6021566 \quad df_{B} = 4 - 1 = 3$ $WSS = (205 - 1)(124.7)^{2} + \dots + (133 - 1)(61.1)^{2} = 4624072 \qquad df_{W} = 434 - 4 = 430$

F-Test for Equality of Means

- $H_0: \mu_1 = \mu_2 = \dots = \mu_g$
- H_A : The means are not all equal

$$T.S. F_{obs} = \frac{BSS / (g-1)}{WSS / (N-g)} = \frac{BMS}{WMS}$$

$$R.R.: F_{obs} \ge F_{\alpha,g-1,N-g}$$

 $P = P(F \ge F_{obs})$

• BMS and WMS are the Between and Within Mean Squares

Example: Policy/Participation in European Parliament

• $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

• H_A : The means are not all equal

 $T.S. F_{obs} = \frac{BSS / (g-1)}{WSS / (N-g)} = \frac{602156.6/3}{4624072/430} = 18.67$ $R.R.: F_{obs} \ge F_{\alpha,g-1,N-g} = F_{.05,3,430} \approx 2.60$ $P = P(F \ge F_{obs} = 18.67) < P(F \ge 5.42) = .001$

Analysis of Variance Table

- Partitions the total variation into Between and Within Treatments (Groups)
- Consists of Columns representing: Source, Sum of Squares, Degrees of Freedom, Mean Square, *F*-statistic, *P*-value (computed by statistical software packages)

Source of		Degrres of		
Variation	Sum of Squares	Freedom	Mean Square	F
Between	BSS	<i>g</i> -1	BMS = BSS/(g-1)	F=BMS/WMS
Within	WSS	N- g	WMS=WSS/(N-g)	
Total	TSS	<i>N</i> -1		

Estimating/Comparing Means

• Estimate of the (common) standard deviation:

$$\hat{\sigma} = \sqrt{\frac{WSS}{N-g}} = \sqrt{WMS}$$
 $df = N-g$

• Confidence Interval for μ_i:

$$\overline{Y}_i \pm t_{\alpha/2,N-g} \frac{\sigma}{\sqrt{n_i}}$$

• Confidence Interval for $\mu_i - \mu_j$: $(\overline{Y}_i - \overline{Y}_j) \pm t_{\alpha/2, N-g} \circ \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$

Multiple Comparisons of Groups

- Goal: Obtain confidence intervals for all pairs of group mean differences.
- With g groups, there are g(g-1)/2 pairs of groups.
- Problem: If we construct several (or more) 95% confidence intervals, the probability that they all contain the parameters (μ_i - μ_j) being estimated will be less than 95%
- Solution: Construct each individual confidence interval with a higher confidence coefficient, so that they will all be correct with 95% confidence

Bonferroni Multiple Comparisons

- Step 1: Select an experimentwise error rate (α_E), which is 1 minus the overall confidence level.
 For 95% confidence for all intervals, α_E=0.05.
- Step 2: Determine the number of intervals to be constructed: *g*(*g*-1)/2
- Step 3: Obtain the comparisonwise error rate: $\alpha_{\rm C} = \alpha_{\rm E} / [g(g-1)/2]$
- Step 4: Construct (1- α_c)100% CI's for $\mu_i \mu_i$:

$$\left(\overline{Y}_{i}-\overline{Y}_{j}\right) \pm t_{\alpha_{c}/2,N-g} \stackrel{\wedge}{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}$$

Interpretations

- After constructing all *g*(*g*-1)/2 confidence intervals, make the following conclusions:
 - Conclude $\mu_i > \mu_j$ if CI is strictly positive
 - Conclude $\mu_i < \mu_j$ if CI is strictly negative
 - Do not conclude $\mu_i \neq \mu_i$ if CI contains 0
- Common graphical description.
 - Order the group labels from lowest mean to highest
 - Draw sequence of lines below labels, such that means that are not significantly different are "connected" by lines

Example: Policy/Participation in European Parliament

• Estimate of the common standard deviation:

$$\hat{\sigma} = \sqrt{\frac{WSS}{N-g}} = \sqrt{\frac{4624072}{430}} = 103.7$$

- Number of pairs of procedures: 4(4-1)/2=6
- Comparisonwise error rate: $\alpha_{\rm C}$ =.05/6=.0083
- $t_{.0083/2,430} \approx z_{.0042} \approx 2.64$

Example: Policy/Participation in European Parliament

Comparison	$\overline{Y}_i - \overline{Y}_j$	$t \hat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$	Confidence Interval
Consult vs Cooperate	296.5-357.3 = -60.8	2.64(103.7)(0.13)=35.6	(-96.4 , -25.2)*
Consult vs Assent	296.5-449.6 = -153.1	2.64(103.7)(0.36)=98.7	(-251.8, -54.4)*
Consult vs Codecision	296.5-368.6 = -72.1	2.64(103.7)(0.11)=30.5	(-102.6 , -41.6)*
Cooperate vs Assent	357.3-449.6 = -92.3	2.64(103.7)(0.37)=101.1	(-193.4 , 8.8)
Cooperate vs Codecision	357.3-368.6 = -11.3	2.64(103.7)(0.14)=37.6	(-48.9, 26.3)
Assent vs Codecision	449.6-368.6 = 81.0	2.64(103.7)(0.36)=99.7	(-18.7, 180.7)

Consultation Cooperation Codecision Assent

Population mean is lower for consultation than all other procedures, no other procedures are significantly different.

Regression Approach To ANOVA

- Dummy (Indicator) Variables: Variables that take on the value 1 if observation comes from a particular group, 0 if not.
- If there are g groups, we create g-1 dummy variables.
- Individuals in the "baseline" group receive 0 for all dummy variables.
- Statistical software packages typically assign the "last" (*g*th) category as the baseline group
- Statistical Model: $E(Y) = \alpha + \beta_1 Z_1 + ... + \beta_{g-1} Z_{g-1}$
- $Z_i = 1$ if observation is from group i, 0 otherwise
- Mean for group i (i=1,...,g-1): $\mu_i = \alpha + \beta_i$
- Mean for group $g: \mu_g = \alpha$

Test Comparisons

 $\Box \ \mu_{\rm i} = \alpha + \beta_{\rm i} \qquad \mu_{\rm g} = \alpha \quad \Longrightarrow \beta_{\rm i} = \mu_{\rm i} - \mu_{\rm g}$

- 1-Way ANOVA: $H_0: \mu_1 = ... = \mu_g$
- Regression Approach: $H_0: \beta_1 = ... = \beta_{g-1} = 0$

• Regression *t*-tests: Test whether means for groups *i* and *g* are significantly different: $-H_0: \beta_i = \mu_i - \mu_g = 0$

2-Way ANOVA

- 2 nominal or ordinal factors are believed to be related to a quantitative response
- Additive Effects: The effects of the levels of each factor do not depend on the levels of the other factor.
- Interaction: The effects of levels of each factor depend on the levels of the other factor
- Notation: μ_{ij} is the mean response when factor A is at level *i* and Factor B at *j*

- Response: 28-day weight gain in AIDS patients
- Factor A: Drug: Thalidomide/Placebo
- Factor B: TB Status of Patient: TB⁺/TB⁻
- Subjects: 32 patients (16 TB⁺ and 16 TB⁻). Random assignment of 8 from each group to each drug). Data:
 - Thalidomide/TB⁺: 9,6,4.5,2,2.5,3,1,1.5
 - Thalidomide/TB⁻: 2.5,3.5,4,1,0.5,4,1.5,2
 - Placebo/TB+: 0,1,-1,-2,-3,-3,0.5,-2.5
 - Placebo/TB⁻: -0.5,0,2.5,0.5,-1.5,0,1,3.5

ANOVA Approach

- Total Variation (*TSS*) is partitioned into 4 components:
 - Factor A: Variation in means among levels of A
 - Factor B: Variation in means among levels of B
 - Interaction: Variation in means among combinations of levels of A and B that are not due to A or B alone
 - Error: Variation among subjects within the same combinations of levels of A and B (Within SS)

ANOVA Approach

General Notation: Factor A has a levels, B has b levels

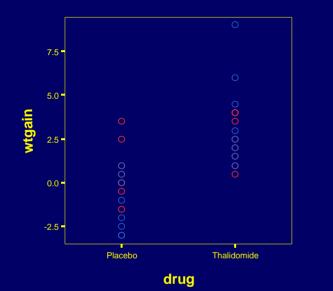
Source	df	SS	MS	F
Factor A	a-1	SSA	MSA=SSA/(a-1)	F _A =MSA/WMS
Factor B	b-1	SSB	MSB=SSB/(b-1)	F _B =MSB/WMS
Interaction	(a-1)(b-1)	SSAB	MSAB=SSAB/[(a-1)(b-1)]	F _{AB} =MSAB/WMS
Error	N-ab	WSS	WMS=WSS/(N-ab)	
Total	N-1	TSS		

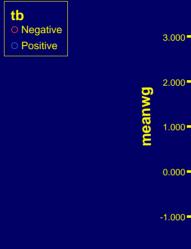
• Procedure:

- Test H_0 : No interaction based on the F_{AB} statistic
- If the interaction test is not significant, test for Factor A and B effects based on the F_A and F_B statistics

Individual Patients

Group Means





3.000-

2.000-

1.000-

0.000-

Thalidomide

Placebo

Report							
WTGAIN							
GROUP	Mean	Ν	Std. Deviation				
TB+/Thalidomide	3.688	8	2.6984				
TB-/Thalidomide	2.375	8	1.3562				
TB+/Placebo	-1.250	8	1.6036				
TB-/Placebo	.688	8	1.6243				
Total	1.375	32	2.6027				

Tests of Between-Subjects Effects

Dependent Variable: WTGAIN

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	109.688 ^a	3	36.563	10.206	.000
Intercept	60.500	1	60.500	16.887	.000
DRUG	87.781	1	87.781	24.502	.000
ТВ	.781	1	.781	.218	.644
DRUG * TB	21.125	1	21.125	5.897	.022
Error	100.313	28	3.583		
Total	270.500	32			
Corrected Total	210.000	31			
a D Squarad	522 (Adjusted I		171)		

a. R Squared = .522 (Adjusted R Squared = .471)

- There is a significant Drug*TB interaction (F_{DT} =5.897, P=.022)
- The Drug effect depends on TB status (and vice versa)

Regression Approach

• General Procedure:

- Generate *a*-1 dummy variables for factor A (A_1, \dots, A_{a-1})
- Generate *b*-1 dummy variables for factor B ($B_1, ..., B_{b-1}$)

• Additive (No interaction) model:

 $E(Y) = \alpha + \beta_1 A_1 + \dots + \beta_{a-1} A_{a-1} + \beta_a B_1 + \dots + \beta_{a+b-2} B_{b-1}$ Test for differences among levels of factor A : H_0 : $\beta_1 = \dots = \beta_{a-1} = 0$ Test for differences among levels of factor B : H_0 : $\beta_a = \dots = \beta_{a+b-2} = 0$

Tests based on fitting full and reduced models.

- Factor A: Drug with *a*=2 levels: *D*=1 if Thalidomide, 0 if Placebo
- Factor B: TB with *b*=2 levels:
 - -T=1 if Positive, 0 if Negative
- Additive Model:
- Population Means:
 - Thalidomide/TB⁺: $\alpha + \beta_1 + \beta_2$
 - Thalidomide/TB⁻: $\alpha + \beta_1$
 - Placebo/TB⁺: $\alpha + \beta_2$
 - Placebo/TB⁻: α
- Thalidomide (vs Placebo Effect) Among TB⁺/TB⁻ Patients:
- TB⁺: $(\alpha + \beta_1 + \beta_2) (\alpha + \beta_2) = \beta_1$ TB⁻: $(\alpha + \beta_1) \alpha = \beta_1$

$$E(Y) = \alpha + \beta_1 D + \beta_2 T$$

- Testing for a Thalidomide effect on weight gain: $-H_0: \beta_1 = 0 \text{ vs } H_A: \beta_1 \neq 0 \text{ (t-test, since } a-1=1)$
- Testing for a TB⁺ effect on weight gain:

 $-H_0: \beta_2 = 0 \text{ vs } H_A: \beta_2 \neq 0 \text{ (t-test, since } b-1=1)$

• SPSS Output: (Thalidomide has positive effect, TB None)

Coefficients ^a							
Unstandardized Standardized Coefficients Coefficients							
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	125	.627		200	.843	
	DRUG	3.313	.723	.647	4.579	.000	
	ТВ	313	.723	061	432	.669	

a. Dependent Variable: WTGAIN

Regression with Interaction

- Model with interaction (A has a levels, B has b):
 - Includes *a*-1 dummy variables for factor A main effects
 - Includes *b*-1 dummy variables for factor B main effects
 - Includes (a-1)(b-1) cross-products of factor A and B dummy variables
- Model:

 $E(Y) = \alpha + \beta_1 A_1 + \dots + \beta_{a-1} A_{a-1} + \beta_a B_1 + \dots + \beta_{a+b-2} B_{b-1} + \beta_{a+b-1} (A_1 B_1) + \dots + \beta_{ab-1} (A_{a-1} B_{b-1})$

As with the ANOVA approach, we can partition the variation to that attributable to Factor A, Factor B, and their interaction

- Model with interaction: $E(Y) = \alpha + \beta_1 D + \beta_2 T + \beta_3 (DT)$
- Means by Group:
 - Thalidomide/TB⁺: $\alpha + \beta_1 + \beta_2 + \beta_3$
 - Thalidomide/TB⁻: $\alpha + \beta_1$
 - Placebo/TB⁺: $\alpha + \beta_2$
 - Placebo/TB⁻: α
- Thalidomide (vs Placebo Effect) Among TB⁺ Patients:
 - $(\alpha + \beta_1 + \beta_2 + \beta_3) (\alpha + \beta_2) = \beta_1 + \beta_3$
- Thalidomide (vs Placebo Effect) Among TB⁻ Patients:
 - $(\alpha + \beta_1) \alpha = \beta_1$
- Thalidomide effect is same in both TB groups if $\beta_3=0$

• SPSS Output from Multiple Regression:

Coefficients ^a						
		Unstandardized Standardized Coefficients Coefficients				
Mode	I	В	Std. Error	Beta	t	Sig.
1	(Constant)	.687	.669		1.027	.313
	DRUG	1.688	.946	.329	1.783	.085
	ТВ	-1.937	.946	378	-2.047	.050
	DRUGTB	3.250	1.338	.549	2.428	.022
а. [Dependent Varia	able: WTGAII	Ν			

We conclude there is a Drug*TB interaction (t=2.428, p=.022). Compare this with the results from the two factor ANOVA table

1- Way ANOVA with Dependent Samples (Repeated Measures)

- Some experiments have the same subjects (often referred to as blocks) receive each treatment.
- Generally subjects vary in terms of abilities, attitudes, or biological attributes.
- By having each subject receive each treatment, we can remove subject to subject variability
- This increases precision of treatment comparisons.

1- Way ANOVA with Dependent Samples (Repeated Measures)

- Notation: g Treatments, b Subjects, N=gb
- Mean for Treatment *i*: \overline{T}_i
- Mean for Subject (Block) *j*: \overline{S}_{j}
- Overall Mean: \overline{Y}

Total Sum of Squares : $SSTO = \sum (Y - \overline{Y})^2 \quad df_{TO} = N - 1$ Between Treatmentt SS : $SSTR = b \sum (\overline{T} - \overline{Y})^2 \quad df_{TR} = g - 1$ Between Subject SS : $SSBL = g \sum (\overline{S} - \overline{Y})^2 \quad df_{BL} = b - 1$ Error SS : $SSE = SSTO - SSTR - SSBL \quad df_E = (g - 1)(b - 1)$

ANOVA & F-Test

Source	df	SS	MS	F
Treatments	g-1	SSTR	MSTR=SSTR/(g-1)	F=MSTR/MSE
Blocks	b-1	SSBL	MSBL=SSBL/(b-1)	
Error	(g-1)(b-1)	SSE	MSE=SSE/[(g-1)(b-1)]	
Total	gb-1	SSTO		

 H_0 : No Difference in Treatment Means H_{A} : Differences in Trt Means Exist $T.S. F_{obs} = \frac{MSTR}{MSE}$ $R.R. F_{obs} \geq F_{\alpha,g-1,(g-1)(b-1)}$ $P = P(F \ge F_{obs})$

Post hoc Comparisons (Bonferroni)

- Determine number of pairs of Treatment means (g(g-1)/2)
- Obtain $\alpha_{\rm C} = \alpha_{\rm E}/(g(g-1)/2)$ and $t_{\alpha_{\rm C}/2,(g-1)(b-1)}$
- Obtain $\hat{\sigma} = \sqrt{MSE}$
- Obtain the "critical quantity": $t \hat{\sigma} \sqrt{\frac{2}{b}}$
- Obtain the simultaneous confidence intervals for all pairs of means (with standard interpretations):

$$\left(\overline{T}_{i}-\overline{T}_{j}\right)\pm t \hat{\sigma}\sqrt{\frac{2}{b}}$$

Repeated Measures ANOVA

- Goal: compare g treatments over t time periods
- Randomly assign subjects to treatments (Between Subjects factor)
- Observe each subject at each time period (Within Subjects factor)
- Observe whether treatment effects differ over time (interaction, Within Subjects)

Repeated Measures ANOVA

- Suppose there are N subjects, with n_i in the i^{th} treatment group.
- Sources of variation:
 - Treatments (g-1 df)
 - Subjects within treatments aka Error1 (N-g df)
 - Time Periods (t-1 df)
 - Time x Trt Interaction ((g-1)(t-1) df)
 - Error2 ((*N*-*g*)(*t*-1) df)

Repeated Measures ANOVA

Source	df	SS	MS	F
Between Subjects				
Treatment	g-1	SSTrt	MSTrt=SSTrt/(g-1)	MSTrt/MSE1
Subj(Trt) = Error1	N-g	SSE1	MSE1=SSE1/(N-g)	
Within Subjects				
Time	<i>t</i> -1	SSTi	MSTi=SSTi/(t-1)	MSTi/MSE2
TimexTrt	(t-1)(g-1)	SSTiTrt	MSTiTrt=SSTiTrt/((<i>t</i> -1)(<i>g</i> -1))	MSTiTrt/MSE2
Time*Subj(Trt)=Error2	(N-g)(t-1)	SSE2	MSE2=SSE2/((N-g)(t-1))	

To Compare pairs of treatment means (assuming no time by treatment interaction, otherwise they must be done within time periods and replace *tn* with just *n*):

$$\left(\overline{T}_{i}-\overline{T}_{j}\right) \pm t_{\alpha/2,N-g} \sqrt{MSE1\left(\frac{1}{tn_{i}}+\frac{1}{tn_{j}}\right)}$$