Multiple Linear Regression

- Response Variable: Y
- Explanatory Variables: $X_{1}, \ldots, X_{\mathrm{k}}$
- Model (Extension of Simple Regression):

$$
E(Y)=\alpha+\beta_{1} X_{1}+\ldots+\beta_{\mathrm{k}} X_{\mathrm{k}} \quad V(Y)=\sigma^{2}
$$

- Partial Regression Coefficients $\left(\beta_{\mathrm{i}}\right)$: Effect of increasing X_{i} by 1 unit, holding all other predictors constant.
- Computer packages fit models, hand calculations very tedious

Prediction Equation \& Residuals

- Model Parameters: $\alpha, \beta_{1}, \ldots, \beta_{k}, \sigma$
- Estimators: $a, b_{1}, \ldots, b_{\mathrm{k}}, \quad \hat{\sigma}$
- Least squares prediction equation: $\hat{Y}=a+b_{1} X_{1}+\cdots+b_{k} X_{k}$
- Residuals: $e=Y-\hat{Y}$
- Error Sum of Squares: $S S E=\sum e^{2}=\sum(Y-\hat{Y})^{2}$
- Estimated conditional standard deviation:

$$
\hat{\sigma}=\sqrt{\frac{S S E}{n-k-1}}
$$

Commonly Used Plots

- Scatterplot: Bivariate plot of pairs of variables. Do not adjust for other variables. Some software packages plot a matrix of plots
- Conditional Plot (Coplot): Plot of Y versus a predictor variable, seperately for certain ranges of a second predictor variable. Can show whether a relationship between Y and X_{1} is the same across levels of X_{2}
- Partial Regression (Added-Variable) Plot: Plots residuals from regression models to determine association between Y and X_{2}, after removing effect of X_{1} (residuals from $\left(Y, X_{1}\right)$ vs $\left(X_{2}, X_{1}\right)$)

Example - Airfares 2002Q4

- Response Variable: Average Fare (Y, in \$)
- Explanatory Variables:
- Distance (X_{1}, in miles)
- Average weekly passengers (X_{2})
- Data: 1000 city pairs for 4th Quarter 2002
- Source: U.S. DOT

Descriptive Statistics					
	N	Minimum	Maximum	Mean	Std. Deviation
AVEFARE	1000	50.52	401.23	163.3754	55.36547
DISTANCE	1000	108.00	2724.00	1056.9730	643.20325
AVEPASS	1000	181.41	8950.76	672.2791	766.51925
Valid N (listwise)	1000				

Example - Airfares 2002Q4

Scatterplot Matrix of Average Fare, Distance, and Average Passengers (produced by STATA):

Example - Airfares 2002Q4

Partial Regression Plots: Showing whether a new predictor is associated with Y, after removing effects of other predictor(s):

Partial Regression Plot
Dependent Variable: AVEFARE

After controlling for AVEPASS, DISTANCE is linearly related to FARE

Partial Regression Plot
Dependent Variable: AVEFARE

AVEPASS

After controlling for DISTANCE, AVEPASS not related to FARE

Standard Regression Output

- Analysis of Variance:
- Regression sum of Squares: $\quad S S R=\sum(\hat{Y}-\bar{Y})^{2} \quad d f_{R}=k$
- Error Sum of Squares: $\quad S S E=\sum(Y-\hat{Y})^{2} \quad d f_{E}=n-k-1$
- Total Sum of Squares: \quad TSS $=\sum(Y-\bar{Y})^{2} \quad d f_{T}=n-1$
- Coefficient of Correlation/Determination: $R^{2}=S S R / T S S$
- Least Squares Estimates
- Regression Coefficients
- Estimated Standard Errors
- t-statistics
- P-values (Significance levels for 2-sided tests)

Example - Airfares 2002Q4

Model Summary ${ }^{\text {b }}$

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.592^{\mathrm{a}}$.350	.349	44.67574

a. Predictors: (Constant), AVEPASS, DISTANCE

ANOVA ${ }^{b}$

		Sum of Model				
1	Regression	1072336	df	Mean Square	F	Sig.
	Residual	1989934	997	536168.162	268.632	$.000^{\text {a }}$
	Total	3062270	999			

a. Predictors: (Constant), AVEPASS, DISTANCE
b. Dependent Variable: AVEFARE

Coefficients ${ }^{\text {a }}$

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	114.146	3.084		37.018	.000
	DISTANCE	.050	.002	.581	22.646	.000
	AVEPASS	-.005	.002	-.074	-2.881	.004

a. Dependent Variable: AVEFARE

Multicollinearity

- Many social research studies have large numbers of predictor variables
- Problems arise when the various predictors are highly related among themselves (collinear)
- Estimated regression coefficients can change dramatically, depending on whether or not other predictor(s) are included in model.
- Standard errors of regression coefficients can increase, causing non-significant t-tests and wide confidence intervals
- Variables are explaining the same variation in Y

Testing for the Overall Model - F-test

- Tests whether any of the explanatory variables are associated with the response
- $H_{0}: \beta_{1}=\cdots=\beta_{\mathrm{k}}=0$ (None of X^{s} associated with Y)
- H_{A} : Not all $\beta_{\mathrm{i}}=0$
$T . S .: F_{\text {obs }}=\frac{M S R}{M S E}=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-(k+1))}$
$P-\operatorname{val}: P\left(F \geq F_{\text {obs }}\right)$
The P-value is based on the F-distribution with k numerator and $(n-(k+1))$ denominator degrees of freedom

Testing Individual Partial Coefficients - t-tests

- Wish to determine whether the response is associated with a single explanatory variable, after controlling for the others
- $H_{0}: \beta_{\mathrm{i}}=0 \quad H_{\mathrm{A}}: \beta_{\mathrm{i}} \neq 0 \quad$ (2-sided alternative)

$$
\begin{aligned}
& \text { T.S.: } t_{o b s}=\frac{b_{i}}{\hat{\sigma}_{b_{i}}} \\
& \text { R.R.: }\left|t_{o b s}\right| \geq t_{\alpha / 2, n-(k+1)} \\
& P-\text { val }: 2 P\left(t \geq\left|t_{o b s}\right|\right)
\end{aligned}
$$

Modeling Interactions

- Statistical Interaction: When the effect of one predictor (on the response) depends on the level of other predictors.
- Can be modeled (and thus tested) with crossproduct terms (case of 2 predictors):
$-E(Y)=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}$
$-X_{2}=0 \Rightarrow E(Y)=\alpha+\beta_{1} X_{1}$
$-X_{2}=10 \Rightarrow E(Y)=\alpha+\beta_{1} X_{1}+10 \beta_{2}+10 \beta_{3} X_{1}$
$=\left(\alpha+10 \beta_{2}\right)+\left(\beta_{1}+10 \beta_{3}\right) X_{1}$
- The effect of increasing X_{1} by 1 on $E(Y)$ depends on level of X_{2}, unless $\beta_{3}=0$ (t-test)

Comparing Regression Models

- Conflicting Goals: Explaining variation in Y while keeping model as simple as possible (parsimony)
- We can test whether a subset of $k-g$ predictors (including possibly cross-product terms) can be dropped from a model that contains the remaining g predictors. $H_{0}: \beta_{\mathrm{g}+1}=\ldots=\beta_{\mathrm{k}}=0$
- Complete Model: Contains all k predictors
- Reduced Model: Eliminates the predictors from H_{0}
- Fit both models, obtaining the Error sum of squares for each (or R^{2} from each)

Comparing Regression Models

- $H_{0}: \beta_{\mathrm{g}+1}=\ldots=\beta_{\mathrm{k}}=0$ (After removing the effects of $X_{1}, \ldots, X_{\mathrm{g}}$, none of other predictors are associated with Y)
- $H_{a}: H_{0}$ is false

Test Statistic $: F_{\text {obs }}=\frac{\left(S S E_{r}-S S E_{c}\right) /(k-g)}{S S E_{c} /[n-(k+1)]}$

$$
P=P\left(F \geq F_{\text {obs }}\right)
$$

P-value based on F-distribution with $k-g$ and $n-(k+1)$ d.f.

Partial Correlation

- Measures the strength of association between Y and a predictor, controlling for other predictor(s).
- Squared partial correlation represents the fraction of variation in Y that is not explained by other predictor(s) that is explained by this predictor.

$$
r_{Y X_{2}} \bullet X_{1}=\frac{r_{Y X_{2}}-r_{Y X_{1}} r_{X_{1} X_{2}}}{\sqrt{\left(1-r_{Y X_{1}}^{2}\right)\left(1-r_{X_{1} X_{2}}^{2}\right)}} \quad-1 \leq r_{Y X_{2} \bullet X_{1}} \leq 1
$$

Coefficient of Partial Determination

- Measures proportion of the variation in Y that is explained by X_{2}, out of the variation not explained by X_{1}
- Square of the partial correlation between Y and X_{2}, controlling for X_{1}.

$$
r_{Y X_{2} \bullet X_{1}}^{2}=\frac{R^{2}-r_{Y X_{1}}^{2}}{1-r_{Y X_{1}}^{2}} \quad 0 \leq r_{Y X_{2} \bullet X_{1}}^{2} \leq 1
$$

- where R^{2} is the coefficient of determination for model with both X_{1} and $X_{2}: R^{2}=\operatorname{SSR}\left(X_{1}, X_{2}\right) / T S S$
- Extends to more than 2 predictors (pp.414-415)

Standardized Regression Coefficients

- Measures the change in $E(Y)$ in standard deviations, per standard deviation change in X_{i}, controlling for all other predictors (β_{i}^{*})
- Allows comparison of variable effects that are independent of units
- Estimated standardized regression coefficients:

$$
b_{i}^{*}=b_{i}\left(\frac{s_{X_{i}}}{s_{Y}}\right)
$$

- where b_{i}, is the partial regression coefficient and $s_{X i}$ and s_{Y} are the sample standard deviations for the two variables

