Multiple Linear Regression

Response Variable: Y

Explanatory Variables: X;,....X,

Model (Extension of Simple Regression):
EM)=a+ g X;+...+ B X, V(Y)=0?
Partial Regression Coefficients (3): Effect of

Increasing X: by 1 unit, holding all other
predictors constant.

Computer packages fit models, hand
calculations very tedious



Prediction Equation & Residuals

Model Parameters: «, f,,..., B, O

Estimators: a, by, ..., b, o

Least squares prediction equation: \A(=a+qxl+.-+bek
Residuals: o_vy _v

Error Sum of Squares: ssE=Ye? =3 (y _YY?
Estimated conditional standard deviation:

" \/SSE
U:
n—k-1




Commonly Used Plots

o Scatterplot: Bivariate plot of pairs of variables. Do not
adjust for other variables. Some software packages plot a
matrix of plots

e Conditional Plot (Coplot): Plot of Y versus a predictor
variable, seperately for certain ranges of a second

predictor variable. Can show whether a relationship

petween Y and X, Is the same across levels of X,

o Partial Regression (Added-Variable) Plot: Plots
residuals from regression models to determine
assoclation between Y and X,, after removing effect of X,
(residuals from (Y, X;) vs (X,, X;))




Example - Airfares 200204

* Response Variable: Average Fare (Y, in $)

o Explanatory Variables:
— Distance (X,, in miles)
— Average weekly passengers (X,)

e Data: 1000 city pairs for 4th Quarter 2002
e Source: U.S. DOT

Descriptive Statistics

| N[ Minimum | Maximum | Mean | Std. Deviation

AVEFARE 1000 50.52 401.23 | 163.3754 55.36547
DISTANCE 1000 108.00 2724.00 |1056.9730 643.20325
AVEPASS 1000 181.41 8950.76 | 672.2791 766.51925
Valid N (listwise) 1000




Example - Airfares 200204

Scatterplot Matrix of Average Fare, Distance, and Average
Passengers (produced by STATA):

1000 2000 3000




Example - Airfares 200204

Partial Regression Plots: Showing whether a new predictor Is
assoclated with Y, after removing effects of other predictor(s):

Partial Regression Plot

Partial Regression Plot

Dependent Variable: AVEFARE Dependent Variable: AVEFARE
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After controlling for AVEPASS, After controlling for DISTANCE,
DISTANCE is linearly related to FARE AVEPASS not related to FARE



Standard Regression Output

 Analysis of Variance:
— Regression sum of Squares: Ssr :Z(\?—\?)Z df, =k
— Error Sum of Squares: SSE =3 (Y Y)Y df. =n-k-1
— Total Sum of Squares: TSS=> (Y -Y)* df; =n-1
o Coefficient of Correlation/Determination: R2=SSR/TSS

o |east Squares Estimates
— Regression Coefficients
— Estimated Standard Errors
— t-statistics
— P-values (Significance levels for 2-sided tests)



Example - Airfares 200204

Model Summary?

Adjusted Std. Error of
Model R Square R Square the Estimate
4467574

a. Predictors: (Constant), AVEPASS, DISTANCE

ANOVAP

Sum of
Model Squares Mean Square

Regression 1072336 536168.162 268 632
Residual 1989934 1995.921
Total 3062270

a. Predictors: (Constant), AVEPASS, DISTANCE
b. Dependent Variable: AVEFARE

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Mode! | B IsStdEmor | Beta | Sig.

(Constant) 114.146
DISTANCE .050
AVEPASS -.005

a. Dependent Variable: AVEFARE




Multicollinearity

e Many social research studies have large numbers
of predictor variables

* Problems arise when the various predictors are
highly related among themselves (collinear)

— Estimated regression coefficients can change
dramatically, depending on whether or not other
predictor(s) are included in model.

— Standard errors of regression coefficients can
Increase, causing non-significant t-tests and wide
confidence intervals

— Variables are explaining the same variation in Y



Testing for the Overall Model - F-test

o Tests whether any of the explanatory variables
are assoclated with the response

e H,: f,=-=£=0 (None of X®associated with Y)

« Hy: Notall =0

2
T.S.:F,, = MSR__ 2R LK
MSE (1-R“)/(n-(k+1))
P—-val :P(F > F_, )

The P-value is based on the F-distribution with k numerator and
(n-(k+1)) denominator degrees of freedom



Testing Individual Partial Coefficients - t-tests

* Wish to determine whether the response is
assoclated with a single explanatory variable, after
controlling for the others

e Hy 5=0 Ha: B# 0 (2-sided alternative)
T.S.:t, = Ab‘
O b,

RR. [ tg |2 U2 (ks1)
P—val :2P(t>|t,, |)



Modeling Interactions

o Statistical Interaction: When the effect of one
predictor (on the response) depends on the level
of other predictors.

e Can be modeled (and thus tested) with cross-
product terms (case of 2 predictors):
— E(Y) = a+ BiX, + BX; + BXi X,
— Xo=0= E(Y) = a+ X,
- X,=10 = E(Y) = a+ X, + 104, + 1045,X,
= (a+108) + (B, + 1083)X,
» The effect of increasing X, by 1 on E(Y) depends
on level of X,, unless £,=0 (t-test)



Comparing Regression Models

o Conflicting Goals: Explaining variation in Y while
keeping model as simple as possible (parsimony)

* \We can test whether a subset of k-g predictors
(including possibly cross-product terms) can be
dropped from a model that contains the remaining
g predictors. Hy: B,,,=...=4 =0
— Complete Model: Contains all k predictors
— Reduced Model: Eliminates the predictors from H,

— Fit both models, obtaining the Error sum of squares for
each (or R? from each)




Comparing Regression Models

* Hy! Byia=- —,Bk 0 (After removing the
effects of X,,...,X,, hone of other predictors

are assoclated With Y)
 H_: H, Is false

_ (SSE, - SSE,) /(k - g)
SSE, /[n—(k +1)]

Test Statistic: F_,,

P: P(F obs)

P-value based on F-distribution with k-g and n-(k+1) d.f.



Partial Correlation

o Measures the strength of association between Y
and a predictor, controlling for other predictor(s).

o Squared partial correlation represents the fraction
of variation in Y that is not explained by other
predictor(s) that Is explained by this predictor.

[y —F I
_ g T XX, B
1-1 N1y




Coefficient of Partial Determination

o Measures proportion of the variation in Y that is
explained by X,, out of the variation not explained by

Xl
» Square of the partial correlation between Y and X,,
controlling for X;.

R%—r2
2 _ YX 2
rYXZ.X]_ - 2 - O S rYXZ.Xl Sl
1-r.
YX,

e where R? is the coefficient of determination for model
with both X, and X,: R?= SSR(X,,X,) / TSS

 Extends to more than 2 predictors (pp.414-415)



Standardized Regression Coefficients

* Measures the change in E(Y) In standard
deviations, per standard deviation change in X,

controlling for all other predictors (37)
 Allows comparison of variable effects that are
Independent of units
o Estimated standardized regression coefficients:

N Sx.
o
SY

e Where b; , Is the partial regression coefficient and s,; and s,
are the sample standard deviations for the two variables
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