
Multiple Linear Regression
• Response Variable: Y
• Explanatory Variables: X1,...,Xk

• Model (Extension of Simple Regression):
 E(Y) = α + β1 X1 + … + βk Xk V(Y) = σ2

• Partial Regression Coefficients (βi): Effect of 
increasing Xi by 1 unit, holding all other 
predictors constant.

• Computer packages fit models, hand 
calculations very tedious



Prediction Equation & Residuals

• Model Parameters: α, β1,…, βk, σ
• Estimators: a, b1, …, bk, 
• Least squares prediction equation:
• Residuals: 
• Error Sum of Squares:
• Estimated conditional standard deviation:   
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Commonly Used Plots
• Scatterplot: Bivariate plot of pairs of variables. Do not 

adjust for other variables. Some software packages plot a 
matrix of plots

• Conditional Plot (Coplot): Plot of Y versus a predictor 
variable, seperately for certain ranges of a second 
predictor variable. Can show whether a relationship 
between Y and X1 is the same across levels of X2

• Partial Regression (Added-Variable) Plot: Plots 
residuals from regression models to determine 
association between Y and X2, after removing effect of X1 
(residuals from (Y , X1) vs (X2 , X1))



Example - Airfares 2002Q4

• Response Variable: Average Fare (Y, in $)
• Explanatory Variables:

– Distance (X1, in miles)
– Average weekly passengers (X2)

• Data: 1000 city pairs for 4th Quarter 2002
• Source: U.S. DOT

Descriptive Statistics

1000 50.52 401.23 163.3754 55.36547
1000 108.00 2724.00 1056.9730 643.20325
1000 181.41 8950.76 672.2791 766.51925
1000

AVEFARE
DISTANCE
AVEPASS
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation



Example - Airfares 2002Q4
Scatterplot Matrix of Average Fare, Distance, and Average 
Passengers (produced by STATA):
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Example - Airfares 2002Q4
Partial Regression Plots: Showing whether a new predictor is 
associated with Y, after removing effects of other predictor(s):

Partial Regression Plot

Dependent Variable: AVEFARE
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Dependent Variable: AVEFARE
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After controlling for AVEPASS, 
DISTANCE is linearly related to FARE

After controlling for DISTANCE, 
AVEPASS not related to FARE



Standard Regression Output

• Analysis of Variance:
– Regression sum of Squares:
– Error Sum of Squares:
– Total Sum of Squares:

• Coefficient of Correlation/Determination: R2=SSR/TSS

• Least Squares Estimates
– Regression Coefficients
– Estimated Standard Errors
– t-statistics
– P-values (Significance levels for 2-sided tests)    
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Example - Airfares 2002Q4
Model Summaryb

.592a .350 .349 44.67574
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), AVEPASS, DISTANCEa. 

Dependent Variable: AVEFAREb. 
ANOVAb

1072336 2 536168.162 268.632 .000a

1989934 997 1995.921
3062270 999

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), AVEPASS, DISTANCEa. 

Dependent Variable: AVEFAREb. 

Coefficientsa

114.146 3.084 37.018 .000
.050 .002 .581 22.646 .000

-.005 .002 -.074 -2.881 .004

(Constant)
DISTANCE
AVEPASS

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: AVEFAREa. 



Multicollinearity
• Many social research studies have large numbers 

of predictor variables
• Problems arise when the various predictors are 

highly related among themselves (collinear)
– Estimated regression coefficients can change 

dramatically, depending on whether or not other 
predictor(s) are included in model.

– Standard errors of regression coefficients can 
increase, causing non-significant t-tests and wide 
confidence intervals

– Variables are explaining the same variation in Y



Testing for the Overall Model - F-test

• Tests whether any of the explanatory variables 
are associated with the response

• H0: β1=⋅⋅⋅=βk=0  (None of Xs associated with Y)
• HA: Not all βi = 0
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The P-value is based on the F-distribution with k numerator and 
(n-(k+1)) denominator degrees of freedom



Testing Individual Partial Coefficients - t-tests

• Wish to determine whether the response is 
associated with a single explanatory variable, after 
controlling for the others

• H0: βi = 0            HA: βi ≠ 0   (2-sided alternative)
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Modeling Interactions
• Statistical Interaction: When the effect of one 

predictor (on the response) depends on the level 
of other predictors.

• Can be modeled (and thus tested) with cross-
product terms (case of 2 predictors):
– E(Y) = α + β1X1 + β2X2 + β3X1X2

– X2=0 ⇒ E(Y) = α + β1X1

– X2=10 ⇒ E(Y) = α + β1X1 + 10β2 + 10β3X1

 = (α + 10β2) + (β1 + 10β3)X1

• The effect of increasing X1 by 1 on E(Y) depends 
on level of X2, unless β3=0  (t-test)



Comparing Regression Models

• Conflicting Goals: Explaining variation in Y while 
keeping model as simple as possible (parsimony)

• We can test whether a subset of k-g predictors 
(including possibly cross-product terms) can be 
dropped from a model that contains the remaining 
g predictors. H0: βg+1=…=βk =0 
– Complete Model: Contains all k predictors
– Reduced Model: Eliminates the predictors from H0

– Fit both models, obtaining the Error sum of squares for 
each (or R2 from each)



Comparing Regression Models
• H0: βg+1=…=βk = 0 (After removing the 

effects of X1,…,Xg, none of other predictors 
are associated with Y)

• Ha: H0 is false
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Partial Correlation
• Measures the strength of association between Y

and a predictor, controlling for other predictor(s).
• Squared partial correlation represents the fraction 

of variation in Y that is not explained by other 
predictor(s) that is explained by this predictor. 
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Coefficient of Partial Determination

• Measures proportion of the variation in Y that is 
explained by X2, out of the variation not explained by 
X1

• Square of the partial correlation between Y and X2, 
controlling for X1.
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• where R2 is the coefficient of determination for model 
with both X1 and X2:  R2 = SSR(X1,X2) / TSS

• Extends to more than 2 predictors (pp.414-415)



Standardized Regression Coefficients
• Measures the change in E(Y) in standard 

deviations, per standard deviation change in Xi, 
controlling for all other predictors (βi

*)
• Allows comparison of variable effects that are 

independent of units
• Estimated standardized regression coefficients:
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• where bi , is the partial regression coefficient and sXi and sY
are the sample standard deviations for the two variables
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