STA 4702/5701 - Spring 2017 - Exam 3 PRTNT Name \qquad

Note: Conduct all tests at at $\alpha=\mathbf{0 . 0 5}$ significance level. SHOW ALL WORK.
Q.1. A study involving e-commerce selection of sunglasses was conducted in Malaysia. There were $\mathrm{p}=30$ words used to describe $\mathrm{n}=20$ pairs of sunglasses (words like: trendy, glamorous, classic...). Subjects rated the sunglasses by the 30 words (each on a $1-5$ scale). The authors were interested in describing the correlation matrix among the keywords applied to the sunglasses. Note that the correlation matrix among the words is 30x 30 . The 5 largest eigenvalues of the correlation matrix are given below. Give the percentage of the total variation in ratings due to each of the first 5 principal components, as well as the cumulative percentages.

	Factor1	Factor2	Factor3	Factor4	Factor5
Eigenvalue	14.51	7.14	2.37	1.09	0.82
Variability(\%)					
Cumulative(\%)					

Q.2. There are 2 populations of individuals: π_{1} and π_{2}. The density functions, prior probabilities and costs of misclassification are given below.

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad f_{1}(\mathbf{x})=4 x_{1} x_{2} \quad f_{2}(\mathbf{x})=4\left(1-x_{1}\right)\left(1-x_{2}\right) \quad 0 \leq x_{1}, x_{2} \leq 1 \quad p_{1}=0.6 \quad C(1 \mid 2)=2 C(2 \mid 1)
$$

How will individuals with the following $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ values be classified? $\mathrm{A}=(0.1,0.1), \mathrm{B}=(0.5,0.5), \mathrm{C}=(0.9,0.9)$.

A: \qquad B: \qquad C: \qquad
Q.3. A multivariate multiple regression model was fit on the NFL combine data, relating Y_{1} (40 Yard Time) and Y_{2} (Bench Press Reps at 225 pounds) to Z_{1} (Weight) and Z_{2} (Height). The estimated regression coefficients and the ML estimates for the variance/covariance matrices for $\mathbf{Y}(\mathrm{V}\{\mathbf{Y}\}=\Sigma)$ are given for the following 2 models ($\mathrm{n}=200$ players):

Model 1: $E\left\{Y_{k}\right\}=\beta_{0 k}+\beta_{1 k} Z_{1}+\beta_{2 k} Z_{2} \quad k=1,2$
Model 2: $E\left\{Y_{k}\right\}=\beta_{0 k}+\beta_{1 k} Z_{1} \quad k=1,2$

Mode1 1 Beta-hat	time40	bench
intercept	4.1052	33.9310
wt	0.0062	0.1298
height	-0.0116	-0.6209
Mode1 1 Sigma-hat	time40	bench
time40	0.0172	-0.1565
bench	-0.1565	19.8332
Mode1 2 Beta-hat	time40	bench
intercept	3.3794	-5.0717
wt	0.0057	0.1025
Mode1 2 Sigma-hat	time40	bench
time40	0.0177	-0.1299
bench	-0.1299	21.2662

p.3.a. Give the predicted 40 Yard Times and Bench Press Reps, based on Model 1 with a player that is $\mathrm{Z}_{1}=210$ pounds and $\mathrm{Z}_{2}=74$ inches.

40 yard Time \qquad Bench Press Reps \qquad
p.3.b. Test $\mathrm{H}_{0}: \beta_{21}=\beta_{22}=0$
\qquad
\qquad P-value > or
Q.4. For the LPGA 2008 data, we define $\mathrm{X}^{(1)}$ as the average driving distance $\left(\mathrm{X}_{1}{ }^{(1)}\right)$ and fairway accuracy percent $\left(\mathrm{X}_{2}{ }^{(1)}\right)$; and $\mathrm{X}^{(2)}$ as Sand save percent $\left(\mathrm{X}_{1}{ }^{(2)}\right)$ and Putts per round $\left(\mathrm{X}_{2}{ }^{(2)}\right)$. These two aspects represent long and short skills. The eigenvalues of $R_{11}^{-1 / 2} R_{12} R_{22}^{-1} R_{21} R_{11}^{-1 / 2}$ are 0.06261 and 0.00192 , respectively. The sample size is $\mathrm{n}=157$ golfers.
p.4.a. What is the correlation between the first canonical variates of the standardized $X^{(1)}$ and $X^{(2)}$ sets of variables? The second canonical variates of the standardized $\mathrm{X}^{(1)}$ and $\mathrm{X}^{(2)}$ sets of variables?
$\operatorname{CORR}\left(\hat{U}_{1}, \hat{V}_{1}\right)=\square \operatorname{CORR}\left(\hat{U}_{2}, \hat{V}_{2}\right)=$ \qquad
p.4.b. Test $H_{0}: \boldsymbol{\Sigma}_{12}=\boldsymbol{\rho}_{12}=\mathbf{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Test Statistic: \qquad Rejection Region: \qquad P-value < or > 0.05
Q.5. A principal component analysis is conducted for $p=5$ variables, based on a sample correlation matrix, \boldsymbol{R}, based on a sample of $n=100$ units. The largest eigenvalue of \boldsymbol{R} is 3.2. Compute a 95% Confidence Interval for the variable for the population's largest eigenvalue of $\rho, \quad \lambda_{1}$.
\qquad
Q.6. A sample of $\mathrm{n}=151$ NASCAR races from the 1970 s were observed and the following variables were measured for each race: $X_{1}=\#$ of Drivers, $X_{2}=$ Race Length (miles), $X_{3}=\#$ of Caution Flags (crashes), and $X_{4}=\#$ Lead Changes. The sample correlation matrix, its eigenvalues and eigenvectors are given below.

```
> (R <- cor(race))
        drivers racelen cautions leadchng
drivers 1.0000000 0.7906728 0.1599884 0.6595712
racelen 0.7906728 1.0000000 0.3186467 0.6015968
cautions 0.1599884 0.3186467 1.0000000 0.3167884
1eadchng 0.6595712 0.6015968 0.3167884 1.0000000
> R.1am <- eigen(R)$val
> R.e <- eigen(R)$vec
round(R.1am,4)
[1] 2.5092 0.8919 0.4185 0.1805
> round(R.e,4)
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & -0.5595 & 0.3367 & -0.2034 & 0.7295 \\
{\([2]\),} & -0.5662 & 0.1170 & -0.5160 & -0.6321 \\
{\([3]\),} & -0.2903 & -0.9338 & -0.1106 & 0.1775 \\
{\([4]\),} & -0.5311 & 0.0311 & 0.8247 & -0.1917
\end{tabular}
```

p.6.a. For the factor analytic model, with $m=1$, compute estimates of \mathbf{L} and Ψ based on the principal components method.
$\tilde{\mathbf{L}}=$ \qquad $\tilde{\boldsymbol{\Psi}}=$ \qquad
p.6.b. What propotion of the standardized sample variance is due to the first factor?
Q.7. Q.5. A discriminant analysis is conducted to classify NHL and EPL players by Height and Weight. Random samples of $\mathrm{n}_{\mathrm{NHL}}=\mathrm{n}_{\mathrm{EPL}}=100$ players to generate Fisher's discriminant function to classify players by league. The results for the 2 samples are given below.

	Xbar1	Xbar2	Diff	Sum Spooled		INV (Sp)		
S111	73.3708	72.2699	1.1009	145.6407	5.6294	22.7423	0.3005	-0.0304
S112	202.4500	169.9500	32.5000	372.4000	22.7423	224.6843	-0.0304	0.0075

p.7.a. Compute $\hat{\mathbf{a}^{\prime}}=\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\text {pooled }}^{-1}$ and $\hat{m}=\frac{1}{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\text {pooled }}^{-1}\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)$
$\hat{\mathbf{a}^{\prime}}=$ \qquad $\hat{m}=$ \qquad
p.7.b. The confusion matrix for the holdout samples (617 NHL players and 426 EPL players) is given below, based on the function generated for the training sample. Compute the estimate of the Expected actual error rate.

```
> (classtab <- table(league,classify))
league classify
    12517 100
```

$\hat{E}\{A E R\}=$
\qquad

