STA 4702 - Spring 2019 - Homework 2

Conduct all Tests at $\boldsymbol{\alpha}=\mathbf{0 . 0 5}$ Significance Level

Part 1: Paired Differences for WNBA Regular Season Vegas Predictions and Game Outcomes

Oddsmakers set a point spread for the home team and Over/Under for total points for all games. This data includes all regular season games played over the 2010-2018 regular seasons. We are treating this as a random sample from a population of all games that could ever be played among these teams.

If the Home Team's spread is -3 , then if it wins by 4 or more points it "covers," if it wins by 2 or fewer (including losing), it loses the bet, and if it wins by exactly 3 points it "pushes." Let:
$\mathrm{W}_{1}=$ Home Team Spread, $\quad \mathrm{W}_{2}=$ Over/Under, $\mathrm{W}_{3}=$ Home Team Points, $\mathrm{W}_{4}=$ Opposing Team Points
Then: the predicted scores are: Home Team: $\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right) / 2$ and Opposing Team: $\left(\mathrm{W}_{2}+\mathrm{W}_{1}\right) / 2$
Consider the p $=2$ Differences: Home Spread: $D_{3}=\left(W_{3}-W_{4}\right)+W_{1} \quad$ Over/Under: $D_{4}=\left(W_{3}+W_{4}\right)-W_{2}$

- Test the null hypothesis that the vector of population mean differences is $\boldsymbol{\delta}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\prime}$
- Obtain Simultaneous 95% Confidence Intervals for δ_{3}, δ_{4} based on all simultaneous and Bonferroni's methods.
- Obtain a 95% Confidence Interval for sum of the two differences in the form: $\mathbf{a}^{\prime} \boldsymbol{\delta}$

Part 2: Repeated Measures for Comparing Treatments

```
Dataset: mobile_3d_tasktime.dat
Source: C-Y. Hu, H-Y. Lin, L-C. Chen (2016). "The Effects of Screen Size
on Rotating 3D Contents Using Compound Gestures on a Mobile Device,"
Displays, Vol. 41, pp. 25-32
Description: 2-Factor ANOVA run in 30 subjects (each subject received
each treatment). Y=Time to Complete Reading Task
Factor A: Display Size (5", 7")
Factor B: Task (1=Easy, 2=Difficult, 3=Normal)
Authors did not remove Subject effects, blocks generated by a randomization
and data-based mechanism. Data simulated to match cell means, SDS, ANOVA.
Variables/Columns
Treatment 8
Display 16 /* 1=5", 2=7" */
Task 24 /* 1=Easy, 2=Difficult, 3=Normal */
Subject 31-32
Task Completion Time (seconds) 33-40
```

Note: In multivariate dataset: $\operatorname{Trt} 11=5 " /$ Easy, $\operatorname{Trt} 12=5 " /$ Difficult"..., $\operatorname{Trt23}=7 " /$ Normal

- Test whether there are differences among the 6 Treatments (combinations of Display Size and Task) at $\alpha=0.05$ significance level.
- Give simultaneous 95% Confidence Intervals for a) $5^{\prime \prime}$ versus $7{ }^{\prime \prime} \mathrm{C}_{\mathrm{a}}{ }^{\prime}=\left[\begin{array}{llll}1 & 1 & 1 & -1\end{array}-1-1\right]$ and b) Difficult versus Easy $\mathrm{C}_{\mathrm{b}}{ }^{\prime}=\left[\begin{array}{lllll}-1 & 1 & 0 & -1 & 1\end{array} 0\right]$

Treating the NFL 2014 combine players as a random sample from a population of potential NFL future players:

- Conduct Hotelling's T^{2} to test whether the population mean (Heights, Weights, Arm Lengths, and Hand Lengths) differ among Defensive Backs (Position = DB) and Wide Receivers (Position = WO).
- Obtain Simultaneous 95\% Confidence Intervals for the population mean differences for each body dimension.
- Obtain Bonferroni 95% Confidence Intervals for the population mean differences for each body dimension.
- What linear combination of the body dimensions gives the largest population difference?

Part 4: MANOVA - Comparing 3 Treatments for 3 Response Variables

```
Dataset: meniscus.dat
Source: P. Borden, J. Nyland, D.N.M. Caborn, D. Pienkowski (2003).
"Biomechanical Comparison of the FasT-Fix Meniscal Repair Suture System
with Vertical Mattress Sutures and Meniscus Arrows," The American Journal
of Sports Medicine, Vol. 31, #3, pp. 374-378.
Description: Comparison of 3 Fixation Methods wrt 3 responses, with 6
replicates (knees) per method.
Methods:
1=Vertical Suture
2=Meniscus Arrow
3=FasT-Fix
Responses:
Load at failure (N)
Displacement (mm)
Stiffness (N/mm)
Variables/Columns
Method 8
Load at Failure 10-16
Displacement 18-24
Stiffness 26-32
```

Test whether the 3 treatments (Vertical Suture, Meniscus Arrow and FasT-Fix) differ with respect to population mean outcomes (Load at Failure, Displacement, and Stiffness) at $\alpha=0.05$ significance level. Conduct the test based on Wilks' Lambda. Do the test in matrix form, and using the manova function in R. Give the mean vectors and variance-covariance matrices by treatment, and the \mathbf{B} and \mathbf{W} matrices.

Part 5: Testing for Equality of Covariance Matrices

Based on the NFL Combine 2014 data in Part 3 (Defensive Backs and Wide Receivers), use Box's test to test whether the 2 population covariances matrices are equal.

