STA 4702/5701 - Exam 3 Practice Problems

Q.1. A study considered a model involving subway stations in Tehran, Iran. The authors had 2 sets of variables, each measured for each of the $n=22$ subway stations.
$X^{(1)}=$ Population, Number of Workers in a particular economic sector, Degree of Functional Mix, Place-to-Movement, and Place-Through-Movement $(\mathrm{p}=5)$
$X^{(2)}=$ Frequency of Train Services, Number of Stations w/in 45 minutes travel time, Passenger Frequency, Proximity to Central Business District, Node-to-Movement, Node-Through-Movement ($q=6$)
p.1.a. The eigenvalues of $\quad \boldsymbol{R}_{11}^{-1 / 2} \boldsymbol{R}_{12} \boldsymbol{R}_{22}^{-1} \boldsymbol{R}_{21} \boldsymbol{R}_{11}^{-1 / 2}$ are:
0.784202200 .438376670 .220562790 .089686950 .02091465

What is the correlation between the first canonical variate for $\mathrm{X}^{(1)}$ and the first canonical variate for $\mathrm{X}^{(2)}$?
What is the correlation between the second canonical variate for $\mathrm{X}^{(1)}$ and the second canonical variate for $\mathrm{X}^{(2)}$?
What is the correlation between the first canonical variate for $X^{(1)}$ and the second canonical variate for $\mathrm{X}^{(1)}$?
p.1.b. Test $H_{0}: \boldsymbol{\Sigma}_{12}=\mathbf{0} \quad$ p.1.c. Test $H_{0}: \rho_{3}=\rho_{4}=\rho_{5}=0$
Q.2. A multivariate multiple regresiion model was fit, relating $\mathrm{m}=3$ texture scores to $\mathrm{r}=5$ physiochemical predictors.
$\mathrm{Y}_{1}=$ Hardness, $\mathrm{Y}_{2}=$ Gumminess, $\mathrm{Y}_{3}=$ Chewiness
$\mathrm{Z}_{1}=$ Moisture, $\mathrm{Z}_{2}=$ Amylase, $\mathrm{Z}_{3}=$ Water Absorption, $\mathrm{Z}_{4}=$ Swelling, $\mathrm{Z}_{5}=$ Solids Content
Two models were fit:

Model 1: $\quad E\left\{Y_{k}\right\}=\beta_{0 k}+\beta_{1 k} Z_{1}+\beta_{2 k} Z_{2}+\beta_{3 k} Z_{3}+\beta_{4 k} Z_{4}+\beta_{5 k} Z_{5} \quad k=1,2,3$
Model 2: $\quad E\left\{Y_{k}\right\}=\beta_{0 k}+\beta_{1 k} Z_{1}+\beta_{2 k} Z_{2} \quad k=1,2,3$

Results for Model 1 are given below.

Response Y1 :
Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	-10495.060	4415.928	-2.377	0.0258	$\%$
Z1	402.449	235.203	1.711	0.1000	.
Z2	227.385	38.285	5.939	$3.96 \mathrm{e}-06$	$* * *$
Z3	11.408	9.367	1.218	0.2351	
Z4	-1.996	7.945	-0.251	0.8038	
Z5	15.393	24.226	0.635	0.5312	

Residual standard error: 424.7 on 24 degrees of freedom
Multiple R-squared: 0.6532, Adjusted R-squared: 0.581
F-statistic: 9.042 on 5 and 24 DF, p-value: 6.151e-05
Response Y2 :
Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	-8534.728	2595.555	-3.288	0.0031	$* *$
Z1	324.992	138.245	2.351	0.0273	$\%$
Z2	141.141	22.503	6.272	$1.75 \mathrm{e}-06$	$* * *$
Z3	5.280	5.505	0.959	0.3471	
Z4	1.671	4.670	0.358	0.7236	
Z5	15.271	14.240	1.072	0.2942	

Residual standard error: 249.6 on 24 degrees of freedom
Multiple R-squared: 0.6516, Adjusted R-squared: 0.5791
F-statistic: 8.979 on 5 and 24 DF, p-value: 6.475e-05
Response Y3 :
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -7092.0228 2566.9409 -2.763 0.010822 *
$\begin{array}{llrrr}\text { Z1 } & 325.9379 & 136.7212 & 2.384 & 0.025385\end{array}$
$\begin{array}{lrrrr}\text { Z2 } & 96.1867 & 22.2550 & 4.322 & 0.000233 \\ \text { Z3 } & 3.3346 & 5.4448 & 0.612 & 0.545998\end{array}$
$\begin{array}{lllll}23 & 3.3346 & 5.4448 & 0.612 & 0.545998\end{array}$
$\begin{array}{lllll}\text { Z4 } & -0.0744 & 4.6183 & -0.016 & 0.987280\end{array}$
$\begin{array}{lllll}Z 5 & 17.2643 & 14.0826 & 1.226 & 0.232118\end{array}$
Residual standard error: 246.9 on 24 degrees of freedom Multiple R-squared: 0.4692, Adjusted R-squared: 0.3586
F-statistic: 4.243 on 5 and 24 DF, p-value: 0.006619
p.2.a. Give the predicted value for each response when $Z_{1}=15, Z_{2}=24, Z_{3}=230, Z_{4}=235, Z_{5}=10$
p.2.b. The ML estimates of $\Sigma=\mathrm{V}\{\mathbf{Y}\}$ for models 1 and 2 are given below: Test
$\mathrm{H}_{0}: \beta_{31}=\beta_{32}=\beta_{33}=\beta_{41}=\beta_{42}=\beta_{43}=\beta_{51}=\beta_{52}=\beta_{53}=0$

```
> Y <- cbind(Y1,Y2,Y3)
> n <- nrow(Y)
> Z1 <- cbind(rep(1,n),X1,X2,X3,X4,X5)
> Z2 <- cbind(rep(1,n),X1,X2)
> beta.hat1 <- solve(t(Z1)%*%Z1) %*% t(Z1) %*% Y
> beta.hat2 <- solve(t(Z2)%*%Z2) %*% t(Z2) %*% Y
>
> E1 <- Y - Z1 %*% beta.hat1
> E2 <- Y - Z2 %*% beta.hat2
>
> (Sigma.hat <- (1/n) * (t(E1) %*% E1))
    Y1 Y2 Y3
Y1 144267.51 79026.95 62432.82
Y2 79026.95 49840.82 42928.50
Y3 62432.82 42928.50 48747.95
> (Sigma.hat1 <- (1/n) * (t(E2) %*% E2))
    Y1 Y2 Y3
Y1 155187.15 85622.10 67251.98
Y2 85622.10 54898.31 46664.51
Y3 67251.98 46664.51 52318.60
> det(Sigma.hat); det(Sigma.hat1)
[1] 9.54529e+12
[1] 1.33586e+13
```

Q.3. A study compared $\mathrm{n}=40$ lager beers in terms of Total phenolic content, melanoidin content, and $\mathrm{p}=5$ measures of antioxidant activity. Consider a principal component analysis of the 5 antioxidant activity variables (dsa, asa, orac, rp, and mea) based on the Correlation matrix.

```
> X <- cbind(dsa,asa,orac,rp,mca)
> (R <- cor(X))
```



```
asa 0.4551698 1.0000000 0.2003063 0.6613946 0.3522524
orac 0.5360284 0.2003063 1.0000000 0.3189525 0.1791062
rp 0.6132432 0.6613946 0.3189525 1.0000000 0.3743024
mса 0.5406189 0.3522524 0.1791062 0.3743024 1.0000000
> eigen(R)$va1
[1] 2.7416852 0.9031943 0.7426515 0.3568033 0.2556657
> eigen(R)$vec
    [,1] [,2] [,3] [,4] [,5]
[1,] -0.5224466 -0.2277687 0.1623841 -0.4372943 0.6764437
[2,] -0.4468155 0.4591393 -0.3951008 0.5923713 0.2872952
[3,] -0.3447843 -0.8047989 -0.1794726 0.3682451 -0.2561401
[4,] -0.5018368 0.2335563 -0.3396039 -0.5144648-0.5600058
[5,] -0.3958397 0.1872506 0.8185264 0.2399821-0.2840268
```

p.3.a. Give the first principal component of the standardized variables. How would you interpret it?

p.3.b. What proporion of the standardized sample variance is due to the first principal component?

p.3.c. Give the cumulative proportion of variation due to components 1:5.
p.3.d. Compute the correlation between orac and the $2^{\text {nd }}$ principal component.
p.3.e. Compute a 95% Confidence Interval for λ_{1}.
Q.4. A study considered agricultural production for $\mathrm{n}=22$ countries in the 1950s. The variables were: Agricultural output ($\$ 1$ million), population active in agriculture (1000 s), arables land equivalent (1000 s of acres), and productive livestock (1000s of animals). The correlation matrix, its eigenvalues and eigenvectors are given below.

```
> (R <- cor(X))
x1 x2 x3 x5
x1 1.0000000 0.4737335 0.9635610 0.8761381
x2 0.4737335 1.0000000 0.5720992 0.6960911
x3 0.9635610 0.5720992 1.0000000 0.9449781
x5 0.8761381 0.6960911 0.9449781 1.0000000
> round(eigen(R)$val,4)
[1] 3.2981 0.6057 0.0782 0.0180
> round(eigen(R)$vec,4)
[,1] [,2] [,3] [,4]
[1,] -0.5124 -0.4121 -0.5900 0.4685
[2,] -0.4018 0.8729 -0.2761 -0.0193
[3,] -0.5359 -0.2612 0.0103-0.8028
[4,] -0.5374 0.0007 0.7587
```

p.4.a. For the factor analytic model with $\mathrm{m}=2$, compute estimates for L and Ψ
p.4.b. What proportion of the standardized sample variance is due to the first factor?
p.4.c. Maximum likelihood estimates of L_{z} and Ψ are given below along with the determinants of Sigma-hat under the $\mathrm{m}=1$ model, and R . Test whether $\mathrm{m}=1$.

```
> (Sigma.hat <- mlfa$loadings %*% t(m1fa$loadings) + diag(m1fa$uniquenesses))
x1 1.0000003 0.5540950 0.9616386 0.9114152
x2 0.5540950 0.9999992 0.5734351 0.5434864
x3 0.9616386 0.5734351 1.0002037 0.9432272
x5 0.9114152 0.5434864 0.9432272 0.9999995
> det(Sigma.hat)
[1] 0.005581524
> det(R)
[1] 0.002811384
Ca11:
factanal(x = X, factors = 1)
Uniquenesses: 
Loadings:
    Factor1
x1 0.964
x2 0.575
x3 0.998
x5 0.945
\begin{tabular}{lr} 
& Factor1 \\
SS loadings & 3.149 \\
Proportion Var & 0.787
\end{tabular}
```

Q.5. A discriminant analysis is conducted to classify NHL and EPL players by Height and Weight. Random samples of $\mathrm{n}_{\mathrm{NHL}}=\mathrm{n}_{\mathrm{EPL}}=100$ players to generate Fisher's discriminant function to classify players by league. The results for the 2 samples are given below.

Xbar1	Xbar2	Diff	Spooled	INV (Sp)		
73.1862	71.168	2.0182	6.4397	29.4987	0.3307	-0.0383
202.2000	166.260	35.9400	29.4987	254.7638	-0.0383	0.0084

p.5.a. Compute $\hat{\mathbf{a}^{\prime}}=\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\text {pooled }}^{-1} \quad$ and $\hat{m}=\frac{1}{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} S_{\text {pooled }}^{-1}\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)$
p.5.b. The confusion matrix for the holdout samples (617 NHL players and 426 EPL players) is given below, based on the function generated for the training sample. Compute the estimate of the Expected actual error rate.

```
> (classtab <- table(league,classify))
    classify
league 1 2
    1 517 100
    2 95 331
```

Q.6. There are 2 populations of individuals: π_{1}, π_{2}. Two variables are measured on each individual, both of which range between 0 and 1 . The prior probabilities are $p_{1}=0.25, p_{2}=0.75$ and the cost of misclassification is twice as high for individuals from population 1 than for individuals from population 2.
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \quad f_{1}(\mathbf{x})=f_{1}\left(x_{1}, x_{2}\right)=x_{2}^{\frac{1-x_{1}}{x_{1}}} \quad 0<x_{1}, x_{2}<1 \quad f_{2}(\mathbf{x})=f_{2}\left(x_{1}, x_{2}\right)=2 x_{2}^{\frac{2-x_{1}}{x_{1}}} \quad 0<x_{1}, x_{2}<1$

Which population would the following points \mathbf{x} be allocated to: (.10,.10), (.10,.90), (.90,.10), (.9,.9), (.5,.5)
Q.7. The market capitalizations (in \$100B), gross profits (in \$100B), and the revenues (in \$100B) for Facebook, Apple, Amazon, Netflix, and Google (aka Alphabet) as of 8:00AM, 4/29/2019 are given in the following table.

Company	MktCap	Profits	Revenues
Facebook	5.47	0.47	0.59
Apple	9.63	1.02	2.62
Amazon	9.60	0.94	2.42
Netflix	1.64	0.06	0.17
Google (Alphabet)	8.86	0.77	1.37

p.7.a. Compute the matrix of distances among the 5 firms.
p.7.b. Cluster the 5 firms by single linkage, complete linkage, and average linkage. Draw a dendogram based on average linkage.
Q.8. The following table gives the Height (inches), Number of Instagram followers (millions), net worth (\$1M), and age (years) of the 5 Kardashian/Jenner sisters.

Sister	Height	InstaFollow	NetWorth	Age
Kim	62	127	350	40
Kourtney	60	73.5	35	38
Khloe	70	86.9	40	34
Kendall	70	104	30	23
Kylie	66	127	1000	21

p.8.a. Obtain the correlation matrix for the 4 variables.
p.8.b. Obtain a cluster analysis of the 4 variables by single linkage, complete linkage, and average linkage. Draw a dendogram based on average linkage.

