
Chapter 3 – Diagnostics and Remedial Measures 

 
 

 

Diagnostics for the Predictor Variable (X) 

 
Levels of the independent variable, particularly in settings where the experimenter does not control the levels, 

should be studied. Problems can arise when: 
 

 One or more observations have X  levels far away from the others 

 When data are collected over time or space, X levels that are close together in time or space are “more 

similar” than the overall set of X levels 

 

Useful plots of  X levels include: histograms, box-plots, stem-and-leaf diagrams, and sequence plots (versus 

time order). Also, a useful measure is simply the z-score for each observation’s X value. We will later discuss 

remedies for these problems in Chapter 9???. 

 

 

Residuals 

 
“True” Error Term: )(}{ 10 iiiii XYYEY    

 

Observed Residual: )( 10

^
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Recall the assumption on the “true” error terms: they are independent and normally distributed with mean 0, and 

variance 2
 ( ),0(~ 2 NIDi ). The residuals have mean 0, since they sum to 0, but they are not independent 

since they are based on the fitted values from the same observations, but as n increases, this becomes less 

important. Ignoring the non-independence for now, we have, concerning the residuals ( nee ,,1  ): 
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Semi-studentized Residuals 

 

We are accustomed to standardizing random variables by centering them (subtracting off the mean) and scaling 

them (dividing through by the standard deviation), thus creating a z-score.  

While the theoretical standard deviation of ie  is a complicated function of the entire set of sample data (we will 

see this after introducing the matrix approach to regression), we can approximate the standardized residual as 

follows, which we call the semi-studentized residuals: 
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In large samples, these can be treated approximately as t-statistics, with n-2 degrees of freedom. 

 

 



Diagnostic Plots for Residuals 

 
The major assumptions of the model are: (i) the relationship between the mean of Y and X is linear, (ii) the 

errors are normally distributed, (iii) the mean of the errors is 0, (iv) the variance of the errors is constant and 

equals 2
, (v) the errors are independent, (vi) the model contains all predictors related to E{Y}, and (vii) the 

model fits for all data observations. These can be visually investigated with various plots. 

 

 

Linear Relationship Between E{Y} and X 
 

Plot the residuals versus either X or the fitted values. This will appear as a random cloud of points centered at 0 

under linearity, and will appear U-shaped (or inverted U-shaped) if the relationship is not linear. 

 

Normally Distributed Errors 

 

Obtain a histogram of the residuals, and determine whether it is approximately mound shaped. Alternatively, a 

normal probability plot can be obtained as follows (Note that in R, this is trivial with the qqnorm and qqline 

commands): 

 

1. Order the residuals from smallest (large negative values) to largest (large positive values). Assign the ranks 

as k. 

2. Compute the percentile for each residual (this is one of several versions): 
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3. Obtain the z value from the standard normal distribution corresponding to these percentiles: 












25.0

375.0

n

k
z  

4. Multiply the z values by MSEs   these are the “expected” residuals for the k
th

 smallest residuals under 

the normality assumption 

5. Plot the observed residuals on the vertical axis versus the expected residuals on the horizontal axis. This 

should be approximately a straight line with slope 1. 

 

Errors have Mean 0 

 

Since the residuals sum to 0, and thus have mean 0, we have no need to check this assumption. 

 

 

Errors have Constant Variance 

 

Plot the residuals versus X or the fitted values. This should appear as a random cloud of points, centered at 0, if 

the variance is constant. If the error variance is not constant, this may appear as a funnel shape. 

 

 

Errors are Independent (When Data Collected Over Time) 

 

Plot the residuals versus the time order (when data are collected over time). If the errors are independent, they 

should appear as a random cloud of points centered at 0. If the errors are positively correlated they will tend to 

approximate a smooth (not necessarily monotone) functional form. 

 

 

 

 



 

No Predictors Have Been Omitted 

 

Plot residuals versus omitted factors, or against X seperately for each level of a categorical omitted factor. If the 

current model is correct, these should be random clouds of points centered at 0. If patterns arise, the omitted 

variables may need to be included in model (Multiple Regression). 

 

 

Model Fits for All Observations 

 

Plot Residuals versus fitted values. As long as no residuals stand out (either much higher or lower) from the 

others, the model fits all observations. Any residuals that are very extreme, are evidence of data points that are 

called outliers. Any outliers should be checked as possible data entry errors. We will cover this problem in 

detail in Chapter 10. 

 

 

Example: Bollywood Box Office Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plots below appear to make the constant variance assumption and the normality assumption seem 

unreasonable. We will conduct formal tests below. 

 

 

 

 

 

 

 

 

 

 

 

bbo <- 
read.csv("http://www.stat.ufl.edu/~winner/sta4210/mydata/bollywood_boxoffice.csv", 
      header=T) 
 
attach(bbo) 
names(bbo) 
 
bbo.reg1 <- lm(Gross ~ Budget) 
summary(bbo.reg1) 
e1 <- residuals(bbo.reg1) 
yhat1 <- predict(bbo.reg1) 
 
plot(yhat1,e1,main="Bollywood Regression - Residuals vs Fitted Values", 
xlab="Fitted Values", 
     ylab="Residuals") 
abline(h=0) 
 
qqnorm(e1); qqline(e1) 
 



 

 

 
 

 



Tests Involving Residuals 

 
Several of the assumptions stated above can be formally tested based on statistical tests.  

 

 

Normally Distributed Errors (Correlation Test) 
 

Using the expected residuals (denoted *ie ) obtained to construct a normal probability plot, we can obtain the 

correlation coefficient between the observed residuals and their expected residuals under normality: 
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The test is conducted as follows: 

 

 :0H Error terms are normally distributed  

 :AH Error terms are not normally distributed 

 TS: *eer  

 RR:  *eer  Tabled values in Table B.6, Page 1329 (indexed by  and n) 

 

Note this is a test where we do not wish to reject the null hypothesis. Another test that is more complex to 

manually compute, but is automatically reported by several software packages is the Shapiro-Wilks test. It’s 

null and alternative hypotheses are the same as for the correlation test, and P-values are computed for the test. 

 

 

Example: Bollywood Box Office Data 

 

The residuals and their expected values under normality are given below. The correlation between the actual 

residuals and their expected values is ree* = 0.9220. From Table B.6, we have the following critical values for 

sample sizes of n=50 and n=60 for various  levels. 

 
.10 .05 .01

n=50 0.981 0.977 0.966

n=60 0.984 0.980 0.971  
 

Clearly, ree* is well below all of the critical values. Normality assumption is rejected. Shapiro-Wilk test: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bbo <- read.csv("http://www.stat.ufl.edu/~winner/sta4210/mydata/bollywood_boxoffice.csv", 
      header=T) 
 
attach(bbo) 
names(bbo) 
 
bbo.reg1 <- lm(Gross ~ Budget) 
summary(bbo.reg1) 
e1 <- residuals(bbo.reg1) 
yhat1 <- predict(bbo.reg1) 
 
shapiro.test(e1) 
 
############## R Output 
 
> shapiro.test(e1) 
 
        Shapiro-Wilk normality test 
 
data:  e1 
W = 0.87, p-value = 2.627e-05 
 



Movie Name Y X Y-hat e rank_e pctile z(pct) e*

Ek Villain  95.64 36.00 43.08 52.56 51 0.9163 1.3805 50.41

Humshakals  55.65 77.00 94.37 -38.72 4 0.0656 -1.5093 -55.11

Holiday  110.01 90.00 110.63 -0.62 38 0.6810 0.4705 17.18

Fugly  11.16 16.00 18.06 -6.90 25 0.4457 -0.1365 -4.99

City Lights  5.19 9.50 9.93 -4.74 30 0.5362 0.0909 3.32

Kuku Mathur Ki Jhand Ho Gayi 2.23 4.50 3.67 -1.44 36 0.6448 0.3713 13.56

Heropanti  49.07 26.00 30.57 18.50 45 0.8077 0.8694 31.75

2 States  101.61 36.00 43.08 58.53 52 0.9344 1.5093 55.11

Main Tera Hero  53.04 39.00 46.83 6.21 39 0.6991 0.5218 19.05

Ragini MMS 2  46.59 18.00 20.56 26.03 46 0.8258 0.9377 34.24

Queen  61.47 24.00 28.07 33.40 47 0.8439 1.0106 36.90

Gunday  72.26 52.00 63.10 9.16 41 0.7353 0.6289 22.96

Jai Ho  107.71 120.00 148.16 -40.45 2 0.0294 -1.8895 -68.99

Kochadaiiyaan (All Languages India)  23.07 125.00 154.42 -131.35 1 0.0113 -2.2797 -83.24

The Xpose  11.69 16.00 18.06 -6.37 28 0.5000 0.0000 0.00

Hawa Hawaai  10.42 11.00 11.81 -1.39 37 0.6629 0.4204 15.35

Mastram  3.36 5.50 4.93 -1.57 35 0.6267 0.3231 11.80

Koyelaanchal  2.17 8.00 8.05 -5.88 29 0.5181 0.0454 1.66

Yeh Hain Bakrapur  0.97 4.50 3.67 -2.70 34 0.6086 0.2757 10.07

Manjunath 1.02 5.00 4.30 -3.28 33 0.5905 0.2288 8.36

Purani Jeans  1.28 11.00 11.81 -10.53 23 0.4095 -0.2288 -8.36

Kya Dilli Kya Lahore 0.63 5.50 4.93 -4.30 31 0.5543 0.1365 4.99

Revolver Rani  9.44 26.00 30.57 -21.13 9 0.1561 -1.0106 -36.90

Kaanchi 3.93 29.00 34.32 -30.39 7 0.1199 -1.1754 -42.92

Samrat & Co  2.10 16.00 18.06 -15.96 12 0.2104 -0.8050 -29.39

Bhootnath Returns  34.03 34.00 40.58 -6.55 27 0.4819 -0.0454 -1.66

Youngistaan  6.76 27.00 31.82 -25.06 8 0.1380 -1.0893 -39.78

Dishkiyaoon  5.79 9.00 9.30 -3.51 32 0.5724 0.1825 6.66

O Teri  3.72 16.00 18.06 -14.34 14 0.2466 -0.6852 -25.02

Gang Of Ghosts  1.55 16.00 18.06 -16.51 11 0.1923 -0.8694 -31.75

Bewakoofiyaan  12.06 22.00 25.57 -13.51 16 0.2828 -0.5745 -20.98

Gulaab Gang  13.32 27.00 31.82 -18.50 10 0.1742 -0.9377 -34.24

Total Siyappa  5.91 18.00 20.56 -14.65 13 0.2285 -0.7438 -27.16

Shaadi ke Side Effects  37.95 43.00 51.84 -13.89 15 0.2647 -0.6289 -22.96

Highway  27.71 32.00 38.08 -10.37 24 0.4276 -0.1825 -6.66

Darr @ Mall  5.70 15.00 16.81 -11.11 19 0.3371 -0.4204 -15.35

Hasee Toh Phasee  36.52 24.00 28.07 8.45 40 0.7172 0.5745 20.98

Heartless  1.16 11.00 11.81 -10.65 22 0.3914 -0.2757 -10.07

One By Two  2.41 12.00 13.06 -10.65 21 0.3733 -0.3231 -11.80

Yaariyan  31.04 19.00 21.81 9.23 42 0.7534 0.6852 25.02

Dedh Ishqiya  25.87 31.00 36.83 -10.96 20 0.3552 -0.3713 -13.56

Sholay 3D  11.25 20.00 23.06 -11.81 18 0.3190 -0.4705 -17.18

Joe B Carvalho  3.83 10.00 10.55 -6.72 26 0.4638 -0.0909 -3.32

Dhoom 3 (Hindi)   262.58 150.00 185.69 76.89 54 0.9706 1.8895 68.99

Chennai Express 208.44 130.00 160.67 47.77 50 0.8982 1.2713 46.42

Krrish 3 (Hindi)  181.11 115.00 141.91 39.20 48 0.8620 1.0893 39.78

Yeh Jawani Hain Deewani 185.83 50.00 60.59 125.24 55 0.9887 2.2797 83.24

R Rajkumar   66.10 65.00 79.36 -13.26 17 0.3009 -0.5218 -19.05

Ram Leela   112.96 83.00 101.88 11.08 43 0.7715 0.7438 27.16

Boss  52.38 72.00 88.12 -35.74 6 0.1018 -1.2713 -46.42

Besharam  55.79 78.00 95.62 -39.83 3 0.0475 -1.6695 -60.96

OUATIMD 60.93 80.00 98.12 -37.19 5 0.0837 -1.3805 -50.41

Bhag Milkha Bhag 109.18 52.00 63.10 46.08 49 0.8801 1.1754 42.92

Race 2  96.34 65.00 79.36 16.98 44 0.7896 0.8050 29.39

Aashiqui 2 78.42 10.50 11.18 67.24 53 0.9525 1.6695 60.96

 



Errors have Constant Variance  

 

1. Brown-Forsyth (aka Modified Levene) Test  
 

There are several ways to test for equal variances. One simple (to describe) approach is a modified version of 

Levene’s test, which tests for equality of variances, without depending on the errors being normally distributed. 

Recall that due to Central Limit Theorems, lack of normality causes us no problems in large samples, as long as 

the other assumptions hold. The procedure can be described as follows: 

 

1. Split the data into 2 groups, one group with low X values containing n1 of the observations, the other group 

with high X values containing n2 observations (n1=n2=n).  

2. Obtain the medians of the residuals for each group, labeling them 1

~

e  and 2

~

e , respectively.  

3. Obtain the absolute deviations for each residual from its group median: 
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4. Obtain the sample mean absolute deviation from the median for each group:
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5. Obtain the pooled variance of the absolute deviations: 
2

)()(
1 2

1 1

2
22

2
11

2







 
 

n

dddd

s

n

i

n

i

ii

 

6. Compute the test statistic: 
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7. Conclude that the error variance is not constant if 
*| | (1 / 2; 2)BFt t n   , otherwise conclude the error 

variance is constant. 

 

 

Example: Bollywood Box Office Data 

 

By using a split-point at X=25, we have n1=27 films with budgets below 25, and n2=28 films with budgets 

above 25. Using the AVERAGE and DEVSQ functions in EXCEL, we obtain the following test: 
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We conclude that there is evidence of non-constant error variance. 

 

 



2. Breusch-Pagan (aka Cook-Weisberg) Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Bollywood Box Office Data 

 

Regressing the squared residuals of Budget (X) results in SS(Reg*) = 106398914.7. From the original regression, we 

have SSE = 70664.39. Thus, the test statistic and rejection region are: 

 

 

 

2

2

2

106398914.7 2 53199457.35
32.2279

1650729.1170664.39 55

0.95,1 3.841

BPX



  


 

 

 

Thus, there is strong evidence against the assumption of normality. 

R code for computing the Breusch-Pagan test (it utilizes the lmtest package): 
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install.packages("lmtest")  
library(lmtest) 
 
bptest(Gross ~ Budget,studentize=FALSE) 
 
### Output #### 
> bptest(Gross ~ Budget,studentize=FALSE) 
 
        Breusch-Pagan test 
 
data:  Gross ~ Budget 
BP = 32.2279, df = 1, p-value = 1.371e-08 



Errors are Independent (When Data Collected Over Time) 

 

When data are collected over time, one common departure from independence is that error terms are positively 

autocorrelated. That is, the errors that are close to each other in time are similar in magnitude and sign. This can 

happen when learning or fatigue is occuring over time in physical processes or when long-term trends are 

occuring in social processes. A test that can be used to determine whether positive autocorrelation (non-

independence of errors) exists is the Durbin-Watson test (see Section 12.3, we will consider it in more detail 

later). The test can be conducted as follows: 

 

 :0H  The errors are independent 

 :AH  The errors are not independent (positively autocorrelated) 
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 Decision Rule: (i) Reject 0H  if LdD      (ii) Accept AH  if UdD    (iii) withhold judgment if 

UL dDd   where UL dd ,  are bounds indexed by: , n, and p-1  (the number of predictors, which is 1 for 

now). These bounds are given in Table B.7, pages 1330-1331. 

 

The Bollywood data is not a time series. We will cover an example of this test later in the course. 

 

 

 

F Test for Lack of Fit to Test for Linear Relation Between E{Y} and X 
 

A test can be conducted to determine whether the true regression function is that which is being currently 

specified. For the test to be conducted, we must have the following conditions hold. The observations Y, 

conditional on their X level are independent, normally distributed, and have the same variance 2
. Further, the X 

levels in the sample must have repeat observations at a minimum (preferably more) of one X level. Repeat trials 

at the same level(s) of the predictor variable(s) are called replications. The actual observations are referred to as 

replicates. 

 

The null and alternative hypotheses for the simple linear regression model are stated as: 
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The null hypothesis states that the mean structure is a linear relation, the alternative says that the mean structure 

is any structure except linear (this is not simply a test of whether 1=0). The test (which is a special case of the 

general linear test)  is conducted as follows: 

 

1. Begin with n total observations at c distinct levels of X. There are nj observations at the j
th

 of X.    

nnn c 1  

2. Let Yij be the i
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 level of X     jnicj ,,1,,1    

3. Fit the Full model (HA):  ijjijY     The least squares estimate of j  is jj Y
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4. Obtain the error sum of squares for the Full model, also known as the Pure Error sum of squares. 
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5. The degrees of freedom for the Full model is dfF= n-c. This is from the fact that the j
th

 level of X, we have 

nj-1 degrees of freedom, and they sum up to n-c. Also, we have estimated c parameters ( c ,,1  ). 

6. Fit the Reduced model (H0): ijjij XY   10   The least squares estimate of jX10    is 

jj XbbY 10
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7. Obtain the error sum of squares for the Reduced model, also known as the Error sum of squares. 


 


c

j

n

i

jij

j

YYSSERSSE
1 1

2
^

)()(  

8. The degrees of freedom for the Reduced model is dfR=n-2. We have estimated two parameters in this model 

( 10 , ) 

9. Compute the F statistic: 
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10.  Obtain the rejection region: ),2;1(*: cncFFRR    

 

 

Note that the numerator of the F statistic is also known as the Lack of Fit sum of squares: 
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The degrees of freedom can be intuitively thought of as being a result of us fitting a aimple linear regression 

model of c sample means on X. Note then that the F statistic can be written as: 
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Thus, we have partitioned the Error sum of squares for the linear regression model into Pure Error (based on 

deviations from individual responses to their group means) and Lack of Fit  (based on deviations from group 

means to the fitted values from the regression model).  

 

The expected mean squares for MSPE and MSLF are as follows: 

 

2

)]([
}{}{

2

1022







c

Xn
MSLFEMSPEE

jjj 
  

 

Under the null hypothesis (relationship is linear), the second term for the lack of fit mean square is 0. Under the 

alternative hypothesis (relationship is not linear), the second term is positive. Thus large values of the F statistic 

are consistent with the alternative hypothesis. 

 

Example: Bollywood Box Office Data 

 

There are n=55 movies with c=40 distinct budgets. The following EXCEL spreadsheet has results: 

 



Movie Name Y X Y-hat Group Ybar(grp) LackFit PureError

Ek Villain  2.23 4.50 3.67 1.00 1.60 -2.07 0.63

Humshakals  0.97 4.50 3.67 1.00 1.60 -2.07 -0.63

Holiday  1.02 5.00 4.30 2.00 1.02 -3.28 0.00

Fugly  3.36 5.50 4.93 3.00 2.00 -2.93 1.37

City Lights  0.63 5.50 4.93 3.00 2.00 -2.93 -1.37

Kuku Mathur Ki Jhand Ho Gayi 2.17 8.00 8.05 4.00 2.17 -5.88 0.00

Heropanti  5.79 9.00 9.30 5.00 5.79 -3.51 0.00

2 States  5.19 9.50 9.93 6.00 5.19 -4.74 0.00

Main Tera Hero  3.83 10.00 10.55 7.00 3.83 -6.72 0.00

Ragini MMS 2  78.42 10.50 11.18 8.00 78.42 67.24 0.00

Queen  10.42 11.00 11.81 9.00 4.29 -7.52 6.13

Gunday  1.28 11.00 11.81 9.00 4.29 -7.52 -3.01

Jai Ho  1.16 11.00 11.81 9.00 4.29 -7.52 -3.13

Kochadaiiyaan (All Languages India)  2.41 12.00 13.06 10.00 2.41 -10.65 0.00

The Xpose  5.70 15.00 16.81 11.00 5.70 -11.11 0.00

Hawa Hawaai  11.16 16.00 18.06 12.00 6.04 -12.02 5.12

Mastram  11.69 16.00 18.06 12.00 6.04 -12.02 5.65

Koyelaanchal  2.10 16.00 18.06 12.00 6.04 -12.02 -3.94

Yeh Hain Bakrapur  3.72 16.00 18.06 12.00 6.04 -12.02 -2.32

Manjunath 1.55 16.00 18.06 12.00 6.04 -12.02 -4.49

Purani Jeans  46.59 18.00 20.56 13.00 26.25 5.69 20.34

Kya Dilli Kya Lahore 5.91 18.00 20.56 13.00 26.25 5.69 -20.34

Revolver Rani  31.04 19.00 21.81 14.00 31.04 9.23 0.00

Kaanchi 11.25 20.00 23.06 15.00 11.25 -11.81 0.00

Samrat & Co  12.06 22.00 25.57 16.00 12.06 -13.51 0.00

Bhootnath Returns  61.47 24.00 28.07 17.00 49.00 20.93 12.48

Youngistaan  36.52 24.00 28.07 17.00 49.00 20.93 -12.48

Dishkiyaoon  49.07 26.00 30.57 18.00 29.26 -1.32 19.82

O Teri  9.44 26.00 30.57 18.00 29.26 -1.32 -19.82

Gang Of Ghosts  6.76 27.00 31.82 19.00 10.04 -21.78 -3.28

Bewakoofiyaan  13.32 27.00 31.82 19.00 10.04 -21.78 3.28

Gulaab Gang  3.93 29.00 34.32 20.00 3.93 -30.39 0.00

Total Siyappa  25.87 31.00 36.83 21.00 25.87 -10.96 0.00

Shaadi ke Side Effects  27.71 32.00 38.08 22.00 27.71 -10.37 0.00

Highway  34.03 34.00 40.58 23.00 34.03 -6.55 0.00

Darr @ Mall  95.64 36.00 43.08 24.00 98.63 55.54 -2.99

Hasee Toh Phasee  101.61 36.00 43.08 24.00 98.63 55.54 2.99

Heartless  53.04 39.00 46.83 25.00 53.04 6.21 0.00

One By Two  37.95 43.00 51.84 26.00 37.95 -13.89 0.00

Yaariyan  185.83 50.00 60.59 27.00 185.83 125.24 0.00

Dedh Ishqiya  72.26 52.00 63.10 28.00 90.72 27.62 -18.46

Sholay 3D  109.18 52.00 63.10 28.00 90.72 27.62 18.46

Joe B Carvalho  66.10 65.00 79.36 29.00 81.22 1.86 -15.12

Dhoom 3 (Hindi)   96.34 65.00 79.36 29.00 81.22 1.86 15.12

Chennai Express 52.38 72.00 88.12 30.00 52.38 -35.74 0.00

Krrish 3 (Hindi)  55.65 77.00 94.37 31.00 55.65 -38.72 0.00

Yeh Jawani Hain Deewani 55.79 78.00 95.62 32.00 55.79 -39.83 0.00

R Rajkumar   60.93 80.00 98.12 33.00 60.93 -37.19 0.00

Ram Leela   112.96 83.00 101.88 34.00 112.96 11.08 0.00

Boss  110.01 90.00 110.63 35.00 110.01 -0.62 0.00

Besharam  181.11 115.00 141.91 36.00 181.11 39.20 0.00

OUATIMD 107.71 120.00 148.16 37.00 107.71 -40.45 0.00

Bhag Milkha Bhag 23.07 125.00 154.42 38.00 23.07 -131.35 0.00

Race 2  208.44 130.00 160.67 39.00 208.44 47.77 0.00

Aashiqui 2 262.58 150.00 185.69 40.00 262.58 76.89 0.00  
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There is strong evidence for lack-of-fit in this data. Note: typically this test is more useful when there are few 

groups, with multiple replicates at each group level. The test is widely conducted when response surfaces are fit 

to optimize processes.  

 

Remedial Measures 

 
 

Nonlinearity of Regression Function 

 

Several options apply: 

 

Quadratic Regression Function:  2

210}{ XXYE      (Places a bend in the data) 

 

Exponential Regression Function:  XYE 10}{    (Allows for multiplicative increases) 

 

Nonlinear Regression Function: Mathematical form typically generated from differential equations, with 

parameters to be estimated. 

 

 

Nonconstant Error Variance 

 

Often transformations can solve this problem. Another option is weighted least squares. 

 

 

Nonindependent Error Terms 

 

One option is to work with a model permitting correlated errors. Other options include working with 

differenced data or allowing for previously observed Y values as predictors. 

 

 

Nonnormality of Errors 

 

Non-normal errors and errors with non-constant variances tend to occur together. Some of the transformations 

used to stabilize variances often normalize errors as well. The Box-Cox transformation often can (but not 

necessarily) cure both problems. 

 

 

 

 

 



Omission of Important Variables 

 

When important predictors have been omitted, they can be added in the form of a multiple linear regression 

model (Chapter 6). 

 

 

Outliers 

 

When an outlier has been determined to be not due to data entry or recording error and should not be removed 

from model due to other reasons, indicator variables may be used to classify these observations away from 

others, or use of robust methods that decrease the effect of the outlying observation on the regression estimates.  

 

 

Transformations 

 
Prototype plots and transformations of Y and/or X that are useful in linearizing the relation and/or stabilizing the 

variance are given below.  Many times simply taking the logarithm of Y and/or X can solve the problems, as we 

will see below for the Bollywood data (where the distributions of both Y and X are highly skewed).  

 

Transformations on X when the relation is nonlinear, with constant variance. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

X’ = √X        X’ = ln(X) X’ = X
2
         X’ = e

X
 X’ = 1/X       X’ = e

-X
 



Transformations on Y when the relation is nonlinear, with non-constant variance. 

 

 

 

   
 

Common transformations on Y: 
1

' ln( ) ' 'Y Y Y Y Y
Y

    

Often (as in the Bollywood data), simultaneous transformations of Y and X will work. 

 
Example: Bollywood Box Office Data 

 

First, we try taking logarithm of Y, leaving X untransformed. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

################ LN transformation on Y 

bbo.reg2 <- lm(log(Gross) ~ Budget) 

summary(bbo.reg2) 

e2 <- residuals(bbo.reg2) 

yhat2 <- predict(bbo.reg2) 

plot(yhat2,e2,main="Bollywood Regression - Residuals vs Fitted Values", xlab="Fitted Values", ylab="Residuals") 

abline(h=0) 

qqnorm(e2); qqline(e2) 

shapiro.test(e2) 

# install.packages("lmtest")  

library(lmtest) 

bptest(log(Gross) ~ Budget,studentize=FALSE) 

 

##### R Output 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.59676    0.23114   6.908 6.34e-09 *** 

Budget       0.03229    0.00434   7.439 8.86e-10 *** 

 

Residual standard error: 1.166 on 53 degrees of freedom 

Multiple R-squared:  0.5108,    Adjusted R-squared:  0.5016  

F-statistic: 55.34 on 1 and 53 DF,  p-value: 8.859e-10 



 

 

 

 

 

 

 

 

 

 

 
Based on the Shapiro-Wilk test (Normality) and the Breusch-Pagan test (Constant Variance), the new model 

appears to be better. However, see the plot of Y’ versus X, and the residuals versus fitted values plot below. The 

relation is clearly not linear. 

 

 
 

Now, consider the model where both Gross Revenues and Budget have been long transformed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

####  R Output Continued 

 

> shapiro.test(e2) 

 

        Shapiro-Wilk normality test 

 

data:  e2 

W = 0.9886, p-value = 0.8803 

 

> bptest(log(Gross) ~ Budget,studentize=FALSE) 

 

        Breusch-Pagan test 

 

data:  log(Gross) ~ Budget 

BP = 0.6532, df = 1, p-value = 0.419 

 

 

################ LN transformation on Y and X 

 

bbo.reg3 <- lm(log(Gross) ~ log(Budget)) 

summary(bbo.reg3) 

e3 <- residuals(bbo.reg3) 

yhat3 <- predict(bbo.reg3) 

par(mfrow=c(1,2)) 

plot(Budget,log(Gross),main="Log(Gross) vs Budget",xlab="Budget",ylab="LN(Gross)") 

plot(yhat3,e3,main="Residuals vs Fitted Values", xlab="Fitted Values", ylab="Residuals") 

abline(h=0) 

qqnorm(e3); qqline(e3) 

shapiro.test(e3)  

library(lmtest) 

bptest(log(Gross) ~ log(Budget),studentize=FALSE) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Now, looking at the plot of transformed Y versus transformed X, and the residuals versus fitted values plot, we 

see that the model appears to meet the normality and constant variance assumptions. 

 

 
 

 

For the model, with both Y and X log transformed, the interpretation of the slope is the elasticity between Y 

and X. As X increases 1%, Y increases by b1%. For this data, as Budget increases 1%, Gross Revenue increases 

1.4645%. 

 

 

### R output 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.9038     0.4489  -4.241 8.95e-05 *** 

log(Budget)   1.4645     0.1327  11.034 2.41e-15 *** 

 

Residual standard error: 0.9181 on 53 degrees of freedom 

Multiple R-squared:  0.6967,    Adjusted R-squared:  0.691  

F-statistic: 121.7 on 1 and 53 DF,  p-value: 2.411e-15 

 

> shapiro.test(e3) 

 

        Shapiro-Wilk normality test 

 

data:  e3 

W = 0.98, p-value = 0.4866 

 

> bptest(log(Gross) ~ log(Budget),studentize=FALSE) 

 

        Breusch-Pagan test 

 

data:  log(Gross) ~ log(Budget) 

BP = 1.1056, df = 1, p-value = 0.293 



Box-Cox Transformations 

 

Procedure to choose a transformation on Y (not X) with goal of choosing a power of Y that meets the model 

assumptions.  

 

• Automatically selects a transformation from power family with goal of obtaining: normality, linearity, 

and constant variance (not always successful, but widely used) 

• Goal: Fit model: Y’ = b0 + b1X + e  for various power transformations on Y, and selecting transformation 

producing minimum SSE (maximum likelihood) 

• Procedure: over a range of l from, say -2 to +2, obtain Wi and regress Wi on X (assuming all Yi > 0, 

although adding constant won’t affect shape or spread of Y distribution)  

• When the power () is 0, this implies a logarithmic transformation.  

 

 

 

 

 

 

 

Example: Bollywood Box Office Data 

 

The boxcox procedure has a default range for  of -2 to 2. The second command “blows up” the plot to show 

the range better that contains the 95% Confidence Interval for . 
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### Box-Cox Transformation (must load MASS library first) 

 

library(MASS) 

 

bbo.reg4 <- lm(Gross ~ Budget) 

 

boxcox(bbo.reg4,plotit=T) 

boxcox(bbo.reg4,lambda=seq(0,1,0.01),plotit=T) 

 



 

 
 

 
The procedure chooses a “quarter root” transformation for Y. We will not pursue that here, as we have seen that 

log transformations of Y and X work quite well. 

 
Lowess (Smoothed) Plots 

 

• Nonparametric method of obtaining a smooth plot of the regression relation between Y and X 

• Fits regression in small neighborhoods around points along the regression line on the X axis 

• Weights observations closer to the specific point higher than more distant points 

• Re-weights after fitting, putting lower weights on larger residuals (in absolute value) 

• Obtains fitted value for each point after “final” regression is fit 

• Model is plotted along with linear fit, and confidence bands, linear fit is good if lowess lies within bands 

 

 

 

 

 

 

 

 

 

 

 

 

 

#############  Loess  Plot 

x <- log(Budget);  y <- log(Gross) 

par(mfrow=c(1,1)) 

plot(x,y,xlim=c(1.0,5.0),ylim=c(-2,7), 

main="Bollywood Data - Confidence Bands and Loess") 

bbo.reg6 <- lm(y~x) 

abline(bbo.reg6,col="red") 

xh <- seq(1.0,5.0,0.01) 

yhatci <-predict(bbo.reg6,list(x=xh),interval = c("confidence"),  level = 0.95,type="response") 

lines(xh,yhatci[,2],col="red",lty=2) 

lines(xh,yhatci[,3],col="red",lty=2) 

lines(lowess(x,y),col="blue",lty=3) 



 
 

 
Note that for the log transformed variables, the loess curve lies within the 95% Confidence Lines for the mean, 

confirming the linear fit is good for these data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – Simultaneous Inference and Other Topics 

 

 
Joint Estimation of 0 and 1


We’ve obtained (1-)100% confidence intervals for the slope and intercept parameters in Chapter 2. Now we’d 

like to construct a range of values ( 10 , ) that we believe contains BOTH parameters with the same level of 

confidence. One way to do this is to construct each individual confidence interval at a higher level of 

confidence, namely:  

(1-(/2))100% confidence intervals for 0 and 1 seperately. The resulting ranges are called Bonferroni Joint 

(Simultaneous) Confidence Intervals.  

 

 

 

Joint Confidence Level  (1-)100%        Individual Confidence Level (1-(/2))100% 

               90%                                                                95% 

               95%                                                                97.5% 

               99%                                                                99.5% 

 

 

The resulting simultaneous confidence intervals, with a joint confidence level of  at least (1-)100% are: 

 

 

)2);4/(1(}{}{ 1100  ntBbBsbbBsb   

 

Example: Bollywood Box Office Data 

 

Simultaneous 95% Confidence Intervals for 01 for the log transformed model


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Simultaneous Estimation of Mean Responses 

 
Case 1: Simultaneous (1-)100% Bounds for the Regression Line (Working-Hotelling’s Approach) 
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Case 2: Simultaneous (1-)100% Bounds at g Specific X Levels (Bonferroni’s Approach) 
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Simultaneous Prediction Intervals for New Observations 

 
Sometimes we wish to obtain simultaneous prediction intervals for g new outcomes. 

 

Scheffe’s Method:  
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2

2

( )1
{ } 1

( )

h

i

X X
s pred MSE

n X X

 
   

  
is the estimated standard error of the prediction. 

 

 

Bonferroni’s Method: 
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 ngtBpredBsY h   

 

Both S and B can be computed before observing the data, and the smallest of the two should be used. 

 

 

 

Regression Through  the Origin 

 
Sometimes it is desirable to have the mean response be 0 when the predictor variable is 0 (this is not the same as 

saying Y must be 0 when X is 0). Even though it can cause extra problems, it is an interesting special case of the 

simple regression model, and is also used in various tests/procedures. 
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We obtain the least squares estimate of 1 (which also happens to be maximum likelihood) as follows: 
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The fitted values and residuals (which no longer necessarily sum to 0) are: 
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An unbiased estimate of the error variance 2
 is: 
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Note that we have only estimated one parameter in this regression function. 

 

 

Note that the following are linear functions of nYY ,,1  : 
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Thus, b1 is an unbiased estimate of the slope parameter 1, and its variance (and thus standard error) can be 

estimated as follows: 
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This can be used to construct confidence intervals for or conduct tests regarding 1.   

 

Example: Bollywood Box Office Data 

 

For the original (non-transformed) data, we obtain the following quantities and estimates: 
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The mean response at Xh for this model is:  hh XYE 1}{   and its estimate is hh XbY 1

^

 , with mean and 

variance:  
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This can be used to obtain a confidence interval for the mean response when X=Xh. 

 

 

The estimated prediction error for a new observation at X=Xh is: 
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This can be used to obtain a prediction interval for a new observation at this level of X. 

 

 

Comments Regarding Regression Through the Origin: 

 

 You should test whether the true intercept is 0 when X=0 before proceeding. 

 Remember the notion of constant variance. If you are forcing Y to be 0 when X is 0, you are saying that the 

variance of Y at X=0 is 0. 

 If X=0 is not an important value of X in practice, there is no reason to put this constraint into the model. 

 2r is no longer constrained to be between 0 and 1, the error sum of squares from the regression can exceed 

the total corrected sum of squares. The coefficient of determination loses its interpretation of being the 

proportion of variation in Y that is “explained” by X. 

 

 

Effects of Measurement Errors 

 
Measurement errors can take on one of three forms. Two of the three forms cause no major problems, one does. 

 

Measurement Errors in Y 

 

This causes no problems as the measurement error in Y  becomes part of the random error term, which 

represents effects of many unobservable quantities. This is the case as long as the random errors are 

independent, unbiased, and not correlated with the level of X. 

 

 

Measurement Errors in X 

 

Problems do arise when the measurement of the predictor variable is measured with error. This is particularly 

the case when the observed (reported) Xi* level is the true level Xi plus a random error term. In this case the 

random error terms are not independent of the reported levels of the predictor variable, causing the estimated 

regression coefficients to be biased and not consistent. See textbook for a mathematical development. Certain 

methods have been developed for particular forms of measurement error. See Measurement Error Models by 

W.A. Fuller for a theoretical treatment of the problem or Applied Regression Analysis by J.O. Rawlings, S.G. 

Pantula, and D.A. Dickey for a brief description. 



 

Measurement Errors with Fixed Observed X Levels 

 

When working in engineering and behavioral settings, a factor such as temperature may be set by controlling a 

level on a thermostat. That is, you may set an oven’s cooking temperature at 300, 350, 400, etc. When this is the 

case and the actual physical temperatures vary at random around these actual observed temperatures, the least 

squares estimators are unbiased. Further when normality and constant variance assumptions are applied to the 

“new errors” that  reflect the random actual temperatures, the usual tests and confidence intervals can be 

applied. 

 

 

Inverse Predictions 

 
Sometimes after we fit (or calibrate) a regression model, we can observe Y values and wish to predict the X 

levels that generated the outcomes. Let Yh(new)  represent a new value of Y we have just observed, or a desired 

level of Y we wish to observe. In neither case, was this observation part of the sample. We wish to predict the X 

level that led to our observation, or the X level that will lead to our desired level. Consider the estimated 

regression function: 
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Now we observe a new outcome Yh(new) and wish to predict the X value corresponding to it, we can use an 

estimator that solves the previous equation for X. The estimator and its (approximate) estimated standard error 

are:  
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Then, an approximate (1-)100% Prediction Interval for Xh(new) is: 
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Example: Bollywood Box Office Data 
 

Suppose a new movie was released, and we observed that the log of its box-office gross was  

Y’h(new) =  ln(30) = 3.4012. We want to obtain a 95% Prediction Interval for X’h(new) 
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Choosing X Levels 

 
Issues arising involving choices of X levels and sample sizes include: 

 

 The “range” of X values of interest to experimenter 

 The goal of research: inference concerning the slope, predicting future outcomes, understanding the shape of 

the relationship (linear, curved,…) 

 The cost of collecting measurements 

 

 

Note that all of our estimated standard errors depend on the number of observations and the spacing of X levels. 

The more spread out, the smaller the standard errors, generally. However, if we wish to truly understand the 

shape of the response curve, we must space the observations throughout the set of X values. See quote by D.R. 

Cox on page 171 of textbook. 


