STA 4210 — Supplementary Notes and R Programs

Larry Winner
Department of Statistics
University Of Florida



Introduction/Review

Mathematical Operations — Summation Operators

Consider sequences of numbers and numeric constants.

Sum of a sequence of Variables: ZYi =Y, +..+Y,

i=1

Sum of a sequence of Constants: ZK =k+..+k=nk

Sum of a sequence of Sums of Variables: Z( X +Z

Sum of a sequence of (Commonly) Linearly Transformed Variables: Z(a+ bX, ) =

i=1

= Zn: X, +an2i
i=1 i=1

i=1

Sum of a sequence of (Individually) Linearly Transformed Variables: Z a +b, X

i=1

n n

na+ bzn: X,
i=1

Za +ZbX

Sum of a sequence of Sums of Multiples of Variables: Z(a X;+bZ)=>aX;+> bz,

i=1

i=1 i=1

Example — Opening Weekend Box-Office Gross for Harry Potter Films

Date Movie Gross(SM) Theaters PerTheater(SK) | Euros/Dollar Gross (€M)
11/16/2001|Sorcerer's Stone 90.29 3672 24.59 1.1336 102.36
11/15/2002(Chamber of Secrets 88.36 3682 24.00 0.9956 87.97

6/4/2004|Prisoner of Azkaban 93.69 3855 24.30 0.8135 76.21
11/18/2005|Goblet of Fire 102.69 3858 26.62 0.8496 87.24
7/13/2007|0Order of the Phoenix 77.11 4285 18.00 0.7263 56.00
7/17/2009|Half-Blood Prince 77.84 4325 18.00 0.7085 55.15
11/19/2010|Deathly Hallows: Part | 125.02 4125 30.31 0.7353 91.93
7/15/2011|Deathly Hallows: Part Il 169.19 4375 38.67 0.7042 119.14
Total 824.18 32,177.00 676.00

Total Gross ($Millions): 'Y, =90.29 +88.36+...+169.19 = 824.18

Total Gross (Millions of Euros): ZaiYi
i=1

i=1

=1.1336(90.29) + 0.9956(88.36) + ...+ 0.7042(169.19) = 676.00




Question: What is the average gross per theater for all movies? Is it the same as the average of individual
movies per theater?

Basic Probability

Addition Theorem
A, A, are 2 events defined on a sample space.

P(AUA)=P(A)+P(A)-P(ANA) where:
P(A UA, )= Probability at least one occurs  P(A n A;)= Probability both occur
Multiplication Theorem (Can be obtained from counts when data are in contingency table)

(A0s)

P(AI | Aj ) =—————=% Where P(AI | Aj ) = ProbabiltyAI occurs given Aj has occured
(%)
J

p( .
(i) og
P(4)
:P(AmA.j:P(A)P(A.|A):P(A.jP(A|A.j
I J I ) J )
Complementary Events
P(Zi)zl— P(AI) where A = eventAI does not occur

P(ATAj)zp(/_AmK,-)

Example — New York City Sidewalk Cafes

Cafes classified by size (<100 ft2, 100-199, 200-299, 300-399, 400-499, 500-599, >600) and type (enclosed, unenclosed).

Type\Size <100 100-199 |200-299 (300-399 |400-499 |(500-599 [=600 Total

Enclosed 2 18 31 30 23 7 9 120
Unenclosed 98 318 200 118 63 26 40 863
Total 100 336 231 148 86 33 49 983

Let A; = Size < 300ft* and A, = Type = Unenclosed.



~100+336+231 667

983 983

P(@):%:O.S??g

=0.6785

P(A)

98+318+200 616
983 983

P(AUA)=P(A)+P(A)-P(AA)=L7+803-610 9;2 —0.9298 = 0.6785+ 0.8779 - 0.6267

P(ANA)=P(AA)= — 0.6267

983
P(ANA,) 616 0.6267

P = = :07138:

(AlA) P(A) 863 0.8779
P(ANA) 616 0.6267

P = =—=09235=—"———

(A1A) P(A) 667 0.6785

P(E) _148+86+33+49 316 or 1 e7es
983 83

—\ 120

P(A,)]==-=0.1221=1-0.8779

(AZ) 983
30+23+7+9 69 ~

P(AUA )= 53 =983:O.0702:P(AlmA2)

Univariate Random Variables

Probability (Density) Functions

Discrete (RV = Y takes on masses of probability at specific points Y,,...,Y, ):

f(Y,)=P(Y=Y,) s=1..k oftenwrittenf (y) wherey is specific point Y,

Continuous (RV = Y takes on density of probability over ranges of points on continuum)

f (Y)= densityatY (confusing notation, often written f (y) wherey is specific pointand Y is RV)

Expected Value (Long Run Average Outcome, aka Mean)
k 0 o0
Discrete: i, =E{Y}=>Y,f(Y,) Continuous: z, = E{Y} :J: Yf (Y)dY :J: yf (y)dy
s=1

a,c constants = Ef{a+cY}=a+cE{Y}=a+cuy, = E{a}=a=E{cY}=cE{Y}=cy,

Variance (Average Squared Distance from Expected Value)
o =t (Y} =E{(Y-E{V}) | =E{(Y -1 )]
Equivalently (Computationally easier): oy =& {Y} =E{Y*}-(E {Y})2 =E{Y* -1

a,c constants = o’{a+cY}=c’o’{Y}=c’oy = o’{a}=0=> 0" {cY}=c’c?{Y}=C’0y




Example — Total Goals per Game in National Women’s Soccer League Games (2013)

Goals (y) [Frequency [Probability=p(y) |y*p(y) (y"2)*p(y)
0 4 0.0455 0.0000 0.0000
1 16 0.1818 0.1818 0.1818
2 26 0.2955 0.5909 1.1818
3 20 0.2273 0.6818 2.0455
4q 9 0.1023 0.4091 1.6364
5 6 0.0682 0.3409 1.7045
6 5 0.0568 0.3409 2.0455
7 2 0.0227 0.1591 1.1136
Total 88 1 2.7045 9.9091
Probability Distribution
0.35
P 0.3
' 025
0 0.2
b .
0.15
a
b y 0.1 I
o i =
i
| , -
i 0 1 2 3 4 5 6 7
t Goals

Note: Using more common notation, where y represents a specific outcome (number of goals) and p(y) represents the probability of a
game having y goals

7
Expected Value (Mean): E{Y} = s =Y_ yp(y) = 0(.0455) +...+7(.0227) = 2.7045

y=0

7
Variance: 62 = o2 {Y} = E {(Y —,u)z} =E{Y?}-u? = y*p(y) - u* =9.9091- 2.7045" = 2.5045
y=0

Standard Deviation: o, =o' {Y } =+, /o-z {Y} =42.5945 =1.6108




Bivariate Random Variables

Joint Probability Function - Discrete Case (Generalizes to Densities in Continuous Case)
Random Variables (Outcomes observed on same unit) =Y, Z (k possibilities for Y, m for Z):
9(Y,.Z,)=P(Y=Y,nZ=2) s=1..kit=1..m  ProbabilityY =Y, andZ =Z,

Often written as ¢ (y, z) for specific outcomes y, z

Marginal Probability Function - Discrete Case (Generalizes to Densities in Continuous Case):
m k

f(Y,)=>.9(Y.,Z,) Probability Y =Y,  h(Z,)=> g(Y,,Z,) ProbabilityZ=27  Often denoted f (y), h(z)
t=1 s=1

Continuous: Replace summations with integrals

Conditional Probability Function - Discrete Case (Generalizes to Densities in Continuous Case) :

f(Y,| ZJ:% h(Z,)#0;s=1,..,k  Probability Y =Y, givenZ =7, Often denoted f (y|z)
t

h(Z, |Y. —g(YS—’Zt) f(Y.)=0;t=1..m Probability Z =Z, givenY =Y_ Often denoted h(z|

(t s)_ f(Y) (5)7&,—,..., Y£=4.0 s ( y)

Example — Goals by Half Y=Home Club Z=Away Club — Irish Premier League (2012)

H\A Freq 0 1 2 3 4 5[Total(Home)
0 105 67 20 8 0 0 200
1 75 41 18 1 0 0 135
2 26 17 1 0 1 0 45
3 6 3 3 0 0 0 12
4 1 1 0 0 0 0 2
5 2 0 0 0 0 0 2
Total(Away) 215 129 42 9 1 0 396
H\A Prob 0 1 2 3 4 5[Total(Home)
0O 0.26515| 0.16919( 0.05051| 0.02020( 0.00000{ 0.00000 0.50505
1[ 0.18939| 0.10354| 0.04545| 0.00253( 0.00000/ 0.00000 0.34091 Home Team
2| 0.06566] 0.04293| 0.00253| 0.00000] 0.00253| 0.00000|  0.11364 Distribution: f(y)
3] 0.01515| 0.00758| 0.00758| 0.00000( 0.00000/ 0.00000 0.03030
4 0.00253| 0.00253| 0.00000( 0.00000( 0.00000f 0.00000 0.00505
5] 0.00505| 0.00000( 0.00000{ 0.00000/ 0.00000{ 0.00000 0.00505
Total(Away) 0.54293| 0.32576( 0.10606( 0.02273| 0.00253| 0.00000 1.00000

\ J
|

Away Team Distribution: g(z)




To obtain the conditional distribution of Away goals given a particular number of Home Goals, take the cell probabilities and divide
by the total row probability. Similarly, for the conditional distribution of Home goals given Away goals, divide cell by column total.

Conditional Distribution of Home goals given Away Goals=0 = f(y|z=0):

0.18939
0.54293

0)= 0.26515

0.54293
f(y=3]2=0)= 0.01515 0.00253
0.54293 0.54293

Note: 0.48837 +0.34884 +0.12093+0.02791+ 0.00465+ 0.00930=1

f(y=0]z= =0.48837 f(y=1|z2=0)=

=0.02791 f(y=4|z=0)=

=0.34884

=0.00465

f(y=2]|z

f(y=5|z=

=0)=
0)-

0.06566

0.54293
0.00505

0.54293

=0.12093

=0.00930

Covariance, Correlation, and Independence

Covariance - Average of Product of Distances from Means

o, =0{Y,Z}= E{(Y ~E{Y})(z —E{z})}= E{(Y -1, )(Z- 1)}

Equivalently (for computing): o, =o{Y,Z} =E{YZ}-(E{Y})(E{Z})=E{YZ} - 1 11,

Note: Discrete: E YZ ZZYZ g Y, Z (Replace summations with integrals in continuous case)

s=1 t=1

a,,C,,a,,C, are constants = o{a, +cY,a,+C,Z} =cC,0,, =CC,0{Y,Z}
= o{cY,c,Z} =cC,0,, =CC,0o{Y,Z} =ol{a+Y,a,+Z}=0,=0{Y,Z}

Correlation: Covariance scaled to lie between -1 and +1 for measure of association strength

Standardized Random Variables (Scaled to have mean=0, variance=1) Y '=

O'{Y,Z}

b =pl¥ 2} =0l 2} =T

-1<p{Y,z}<1

o{Y,Z}=p{Y,Z} =0=Y,Z are uncorrelated (not necessarily independent)

Independent Random Variables

Y, Z are independent if and only if g (Y,,Z,)= f (Y,)h(Z,) s=1..k;t=1..m

Y —E{Y}

Y-

oY)

If Y, Z are jointly normally distributed and o {Y,Z} =0then Y,Z are independent

Average Home Goals per Half: z, = 0(0.50505) + ...+ 5(.00505) = 0.70455
Average Away Goals per Half: 1, =0(0.54293) +...+5(.00000) = 0.61616

E{Y?} =0°(0.50505) +...+5°(.00505) =1.27525

E {2} =0%(0.54293)+...+5°(.00000) = 0.99495

E {YZ} = 0(0)(0.26515) + 0(1)(0.16919) +...+5(5)(0.00000) = 0.39647
—1.27525-0.70455? = 0.77887 o, =+/0.77887 =0.88254

o2 =0.99495-0.61616" = 0.61529 o, =+/0.61529 =0.78441
Oy; = G{Y , Z} =E {YZ} — 1, =0.39647 —0.70455(0.61616) = —0.03765

o On _ 00365
o,0, 0.88254(0.78441)




To see that Home and Away Goals are NOT independent (besides simply observing the correlation is not zero), you can check
whether the joint probabilities in the cells of the joint distribution are all equal to the product of their row and column totals (product
of the marginal probabilities).

For the case where both Home and Away goals are 0:

g(y=0,z=0)=0.26515 f(y=0)=0.50505 h(Z = O) =0.54293
0.26515 = 0.50505(0.54293) =0.27421

Linear Functions of Random Variables

U= Za =constants {Y;} = random variables

= E{U}= E{Z } ZaE Za,u,

= UZ{U}=‘72{gaiYi}=Zn:Zn:aiaj‘fu_Za2‘72+222n:a- i%

i=1 j=1 i=1 j=i+l

n=2=E{aY,+a,Y,} =aE{Y,}+a,E{Y,} =au +a,u,

o’{aY,+ay,} =a’c’{Y,} +ajo?{Y,} + 2aa,0{Y,)Y,} =a’c} +a;0; +2a,a,0,,

Total Goals, Difference (Home — Away), and Average Goals by Half Y; = Home Y, = Away:

= p, =0.70455 41, = 4, =0.61616 o} =0o. =0.77887 o) =0, =0.61529 o, =0, =-0.03765
Total Goals: U, =Y, +Y, (a,=1a,=1)
Difference in Goals: U, =Y,-Y, (a =1a,=-1)

Average Goals: U, = Yl;ZYZ (ai :%,a2 = %j

#y, = L4, +1p1, =1(0.70455) +1(0.61616) =1.32071

o =10? +1 0% +2(1)(D)oy, =1(0.77887) +1(0.61529) + 2(~0.03765) = 131886

#y, =1p4 + (1) 1, =1(0.70455) ~1(0.61616) = 0.08838

ot =107 +(-1)*c? +2(1)(~1)o,, =1(0.77887) +1(0.61529) - 2(~0.03765) = 1469461

Hy, = %,ul + %,uz = %(0.70455) + % (0.61616) = 0.66035

2 2
ol = Gj ol + Gj o2+ 2(%}@) oy, = % (0.77887) + % (0.61529) + % (~0.03765) = 0.32972




Linear Functions of INDEPENDENT Random Variables

Y,.....Y, =independent = o*{U}=0" {Z ay, } =Y a’c!
i=1 i=1
Special Cases (Y,,Y, independent):

U =Y,+Y, o’ {U}=0’{Y,+Y,} =07 +()’c} =07 +0;
U,=Y,-Y, o*{U,}=c*{Y,~Y,} = ()’c?+ (-1’0’ =0l +0?

Y,,...Y, =independent = o {Za, ,,Zc }:Zn:aiciaf
i=1

Special Case(Y,,Y, independent):
O'{Ul,UZ} = 0'{Y1 +Y,,Y; —Yz} =W’ +O)(-)o’ =0} -0

Note: These do not apply for the soccer data, but are used repeatedly to obtain properties of estimators in linear
models.

Central Limit Theorem

When random samples of size n are selected from any population with mean m and finite variance s, the
sampling distribution of the sample mean will be approximately normally distributed for large n:

nY-

Y ~N| g,

n =\ n

approximately, for large n

Z-table (and software packages) can be used to approximate probabilities of ranges of values for sample means,
as well as percentiles of their sampling distribution



Probability Distributions Widely Used in Linear Models

Normal (Gaussian) Distribution

Bell-shaped distribution with tendency for individuals to clump around the group median/mean
Used to model many biological phenomena

Many estimators have approximate normal sampling distributions (see Central Limit Theorem)
Notation: Y~N(u,0%) where p is mean and o is variance

f(y)=

exp| —
2o P 2

2
(o)

;((y—mz

J —0< Y <00, —00< <0, >0

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be
used to obtain probabilities once values have been standardized to have mean 0, and standard deviation 1.

Y ~N(g,0?) = zzY;—Y“Y~ N(u, =0,02 =1)

Normal Densities

0.045

0.04 A

0.035 A

0.03 A

0.025 - @ N(100,400

>
+—0.02 A @m— (100,100
0.015 A = = N(100,900

co24 s M) e ANl N e N(75,400)

= = o (125,400
)

0.005 A

200

EXCEL Commands for Probabilities and Quantiles (Default are lower tail areas):

e Lower tail (cumulative) probabilities: =norm.dist(y,mu,sigma,True)
e Upper tail probabilities: =1 - norm.dist(y,mu,sigma,True)
e p™Mquantile: =norm.inv(p,mu,sigma)  0<p<1




Second Decimal Place of Z

Integer

and first
decimal
place

F(z) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359
0.1 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
0.4 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852
0.8 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
11 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
1.2 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015
13 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177
14 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319
1.5 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
2.0 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
2.1 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857
2.2 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890
23 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916
2.4 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936
2.5 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952
2.6 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974
2.8 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981
2.9 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986
3.0 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990

Table gives F(z) = P(Z < z) for a wide range of z-values
(0 to 3.09 by 0.01)

Notes:
e P(Z>2)=1-F(2)

e P(Z<-2)=1-F(2)
e P(Z>-2)=F(2)




R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling

# Obtain P(Y<=80|N(mu=100,sigma=20))
# pnorm gives lower tail probabilities (cdf) for a normal distribution
pnorm(80,mean=100,sd=20)

# Obtain P(Y>=80|N(mu=100,sigma=20))
# lower=FALSE option gives upper tail probabilities
pnorm(80,mean=100,sd=20,lower=FALSE)

# Obtain the 10th percentile of a Normal Density with mu=100, sigma=20
gnorm(0.10, mean=100, sd=20)

# Obtain a plot of a Normal Density with mu=100, sigma=20

# dnorm gives the density function for a normal distribution at point(s) y

# type="1"in plot function joins the points on the density function with a line
# The polygon command fills in the area below y=80 in green

y <- seq(40,160,0.01)

fy <- dnorm(y,mean=100,sd=20)

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\norm_dist1.png")

main=expression(paste(**"Normal(**,mu,"*=100,",sigma,"*=20)""))
polygon(c(y[y<=80],80),c(fy[y<=80],fy[y==40]),col="green")

dev.off() # Close the .png file

# Obtain a random sample of 1000 items from N(mu=100,sigma=20)
# rnorm gives a random sample of size given by the first argument
# Obtain sample mean, median, variance, standard deviation

set.seed(54321)  # Set the seed for random number generator for reproducing data
y.samp <- rnorm(1000,mean=100,sd=20)

mean(y.samp)

median(y.samp)

var(y.samp)

sd(y.samp)

# Plot a histogram of the sample values (Default bin size)
hist(y.samp, main = expression(paste(*'Sampled values, "', mu, =100, ", sigma,
lI:20Il)))

# Allow for more bins

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\norm_dist2.png")

hist(y.samp, breaks=23,
main = expression(paste(**'Sampled values, **, mu, "'=100, "', sigma,
"=20")

# Add normal density (scaled up by (n=1000 x binwidth=5), since a freq histogram)
# Makes use of y and fy defined above

lines(y,1000*5*fy)

dev.off() # Close the .png file




Numeric Output from R Program

>

> pnorm(80,mean=100,sd=20)

[1] 0.1586553

>

> pnorm(80,mean=100,sd=20,lower=FALSE)
[1] 0.8413447

>

> gnorm(0.10, mean=100, sd=20)

[1] 74.36897

> mean(y.samp)
[1] 98.80391

> median(y.samp)
[1] 98.95658

> var(y.samp)

[1] 407.2772

> sd(y.samp)

[1] 20.18111

Note that the first 3 values are easily computed using the z-table. The last 4 values would take lots of
calculations based on a sample of 1000 observations.

Y ~ N (1 =100,0° = 20* = 400)

_Y-—p _80-100
o 20

P(Y >80)=P(Z >-1)=P(Z <1)=.8413

10th-Percentile: From z-table: P(Z <-1.28) =1-P(Z <1.28) =1-.8997 =.1003~ .10

P(Y SSO):P(Z :—1j:1—P(Z 21)21—.8413:.1587

10~P(Z<-1.28)= P(Z _Yon —1.28) =P(Y <-1.280+u)=P(Y <-1.28(20)+100 = 74.4)
O

Cell Result EXCEL Output:

— 0.1586%5 e Cell Al: =NORM.DIST(80,100,20,TRUE)
a2 0.841345 e Cell A2: =1-NORM.DIST(80,100,20,TRUE)
A3 74.36897

e Cell A3: =NORM.INV/(0.1,100,20)




Graphics Output from R Program
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Chi-Square Distribution

« Indexed by “degrees of freedom (v)” X~y
« Z~N(0,1) = Z% ~y,°
« Assuming Independence:

X Xy~ 22 i=l.,n = ZXW%ZZV.
i—1 '

Density Function:

f(x)= #x(v/z)‘le‘x/2 x>0,v>0

F (Vj 2\//2
2

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be
used to obtain certain critical values for given upper and lower tail areas.

Chi-Square Distributions

Xn2

EXCEL Commands for Probabilities and Quantiles (Default are upper tail areas):

e Lower tail (cumulative) probabilities: =1-chidist(y,df)
e Upper tail probabilities: = chidist(y,df)
e p™Mquantile: =chiinv(l-p,df)  0<p<1




Critical Values for Chi-Square Distributions (Mean=v, Variance=2v)

df\F(x) 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 | 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 | 13.277 | 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 | 12.833 | 15.086 | 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 | 12.592 | 14.449 | 16.812 | 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 | 14.067 | 16.013 | 18.475 | 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 | 15.507 | 17.535 | 20.090 | 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 | 16.919 | 19.023 | 21.666 | 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 | 18.307 | 20.483 | 23.209 | 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 | 19.675 | 21.920 | 24.725 | 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 | 21.026 | 23.337 | 26.217 | 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 | 22.362 | 24.736 | 27.688 | 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 | 23.685 | 26.119 | 29.141 | 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 | 24.996 | 27.488 | 30.578 | 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 | 26.296 | 28.845 | 32.000 | 34.267
17 5.697 6.408 7.564 8.672 10.085 | 24.769 | 27.587 | 30.191 | 33.409 | 35.718
18 6.265 7.015 8.231 9.390 10.865 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156

19 6.844 7.633 8.907 10.117 | 11.651 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582
20 7.434 8.260 9.591 10.851 | 12.443 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997
21 8.034 8.897 10.283 | 11.591 | 13.240 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401
22 8.643 9.542 10.982 | 12.338 | 14.041 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796
23 9.260 10.196 | 11.689 | 13.091 | 14.848 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181
24 9.886 10.856 | 12.401 | 13.848 | 15.659 | 33.196 | 36.415 | 39.364 | 42.980 | 45.559
25 10.520 11.524 | 13.120 | 14.611 | 16.473 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928
26 11.160 12.198 | 13.844 | 15.379 | 17.292 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290
27 11.808 12.879 | 14.573 | 16.151 | 18.114 | 36.741 | 40.113 | 43.195 | 46.963 | 49.645
28 12.461 13.565 | 15.308 | 16.928 | 18.939 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993
29 13.121 14.256 | 16.047 | 17.708 | 19.768 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336
30 13.787 14.953 | 16.791 | 18.493 | 20.599 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672
40 20.707 22.164 | 24.433 | 26.509 | 29.051 | 51.805 | 55.758 | 59.342 | 63.691 | 66.766
50 27.991 29.707 | 32.357 | 34.764 | 37.689 | 63.167 | 67.505 | 71.420 | 76.154 | 79.490
60 35.534 37.485 | 40.482 | 43.188 | 46.459 | 74.397 | 79.082 | 83.298 | 88.379 | 91.952
70 43.275 45.442 | 48.758 | 51.739 | 55.329 | 85.527 | 90.531 | 95.023 | 100.425 | 104.215
80 51.172 53.540 | 57.153 | 60.391 | 64.278 | 96.578 | 101.879 | 106.629 | 112.329 | 116.321
90 59.196 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299
67.328 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169




R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling

# Obtain P(Y<=5|X2(df=10))
# pchisq gives lower tail probabilities (cdf) for a chi-square distribution
pchisq(5,df=10)

# Obtain P(Y>=5|X2(df=10))
# lower=FALSE option gives upper tail probabilities
pchisq(5,df=10,lower=FALSE)

# Obtain the 95th percentile of a Chi-square Density with df=10
gchisq(0.95,df=10)

# Obtain a plot of a Chi-square Density with df=10

# dchisq gives the density function for a chi-square distribution at point(s) y
# type="1"in plot function joins the points on the density function with a line
# The polygon command fills in the area below y<5 in green

y <-seq(0,30,0.01)
fy <- dchisq(y,df=10)

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\chisq_dist1.png")

plot(y,fy,type="1",
main=expression(paste(chi”2," (df=10)"")))

polygon(c(y[y<=5],5).c(fy[y<=5].fy[y==0]),col=""blue")

dev.off() # Close the .png file

# Obtain a random sample of 1000 items from Chi-square(df=10)
# rchisq gives a random sample of size given by the first argument
# Obtain sample mean, median, variance, standard deviation

set.seed(54321)  # Set the seed for random number generator for reproducing data
y.samp <- rchisq(1000,df=10)

mean(y.samp)

median(y.samp)

var(y.samp)

sd(y.samp)

# Plot a histogram of the sample values (Default bin size)
hist(y.samp, main = expression(paste(*'Sampled values, ", chi”2, "'(df=10)")))

# Allow for more bins

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\chisq_dist2.png")

hist(y.samp[y.samp<=30], breaks=29,
main = expression(paste(*'Sampled values, ', chi®2, **(df=10)"")))

# Add chi-square density (scaled up by (n=1000 x binwidth=1), since a freq histogram)
# Makes use of y and fy defined above

lines(y,1000*1*fy)

dev.off() # Close the .png file




Numeric Output from R Program

>

> pchisq(5,df=10)

[1] 0.108822

>

> pchisq(5,df=10,lower=FALSE)
[1] 0.891178

>

> gchisq(0.95,df=10)

[1] 18.30704

> mean(y.samp)
[1] 9.834778

> median(y.samp)
[1] 9.060967

> var(y.samp)

[1] 21.78964

> sd(y.samp)

[1] 4.667937

Note that for the chi-square distribution, the mean is the degrees of freedom (v) and the variance is 2v. The
sample mean and variance are close to 10 and 20. As the sample size gets larger, they will tend to get closer.
Also notice that the median is lower than the mean (right-skewed distribution).

Confirm that the 95™-percentile is consistent with the table value.

Cell Result EXCEL Output:

Al 0.108822

A2 0.891178 e Cell Al: =1-CHIDIST(5,10)

A3 18.30704 e Cell A2: =CHIDIST(5,10)
e Cell A3: =CHIINV(0.05,10)




Graphics Output from R Program
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Student’s t-Distribution

* Indexed by “degrees of freedom (v)” X~t,
« Z-N(0,1), X~yn
» Assuming Independence of Z and X:

T—— 2 ~t(v)

S

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be
used to obtain certain critical values for given upper tail areas (distribution is symmetric around 0, as N(0,1) is.

t(3), t(11), t(24), Z Distributions

0.45
0.4
0.35
0.3
0.25
—1(t_3)
2 021 P
B f(t_11)
g — f(t_24)
0.15 1 — Z~-N(0,1)
0.1
0.05 -
0+ :
3 2 1 0 1 2 3

t(2)

EXCEL Commands for Probabilities and Quantiles (Default are lower tail areas):

e Lower tail (cumulative) probabilities: =t.dist(y,df, TRUE)
e Upper tail probabilities: =1- t.dist(y,df, TRUE)
e p™Mquantile: =tinv(p,df)  0<p<1




Critical Values for Student’s t-Distributions (Mean=0, Variance = v/(v=2), v>2)

df\F(t) 0.9 0.95 0975 | 0.99 0.995
1 3.078 | 6.314 | 12.706 | 31.821 | 63.657
2 1.886 | 2920 | 4303 | 6965 | 9.925
3 1.638 | 2353 | 3.182 | 4541 | s.8m
4 1533 | 2132 | 2776 | 3.747 | 4604
5 1476 | 2015 | 2571 | 3365 | 4.032
6 1440 | 1943 | 2447 | 3143 | 3.707
7 1415 | 1895 | 2365 | 2.998 | 3.499
8 1397 | 1860 | 2306 | 2.896 | 3.355
9 1383 | 1.833 | 2262 | 2821 | 3.250
10 1372 | 1812 | 2228 | 2764 | 3.169
11 1363 | 1796 | 2201 | 2718 | 3.106
12 1356 | 1.782 | 2179 | 2.681 | 3.055
13 1350 | 1771 | 2.160 | 2.650 | 3.012
14 1345 | 1761 | 2145 | 2.624 | 2.977
15 1341 | 1753 | 2131 | 2602 | 2.947
16 1337 | 1746 | 2120 | 2583 | 2921
17 1333 | 1740 | 2110 | 2567 | 2.898
18 1330 | 1734 | 22010 | 25552 | 2.878
19 1328 | 1729 | 2.003 | 2539 | 2861
20 1325 | 1725 | 2.086 | 2528 | 2.845
21 1323 | 1721 | 2.080 | 2518 | 2.831
22 1321 | 1717 | 2074 | 25508 | 2.819
23 1319 | 1714 | 2.069 | 2500 | 2.807
24 1318 | 1711 | 2064 | 2492 | 2.797
25 1316 | 1.708 | 2.060 | 2.485 | 2.787
26 1315 | 1706 | 2.056 | 2479 | 2.779
27 1314 | 1703 | 2052 | 2473 | 2771
28 1313 | 1701 | 2.048 | 2467 | 2.763
29 1311 | 1699 | 2.05 | 2462 | 2.756
30 1310 | 1697 | 2.0a2 | 2457 | 2.750
40 1303 | 1684 | 2021 | 2423 | 2704
50 1299 | 1676 | 2.000 | 2403 | 2.678
60 1296 | 1671 | 2.000 | 2390 | 2.660
70 1294 | 1667 | 1994 | 2381 | 2.648
80 1292 | 1664 | 1990 | 2374 | 2.639
90 1291 | 1.662 | 1.987 | 2368 | 2.632

100 1290 | 1660 | 1984 | 2364 | 2.626




R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling

# Obtain P(Y<=1]t(df=8))
# pt gives lower tail probabilities (cdf) for a t distribution
pt(1,df=8)

# Obtain P(Y>=1|t(df=8))
# lower=FALSE option gives upper tail probabilities
pt(1,df=8,lower=FALSE)

# Obtain the 90th percentile of a t Density with df=8
qt(0.90,df=8)

# Obtain a plot of a t Density with df=8

# dt gives the density function for a tdistribution at point(s) y

# type="1"in plot function joins the points on the density function with a line
# The polygon command fills in the area below y<1 in red

y <-seq(-4,4,0.01)

fy <- dt(y,df=8)

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\t_dist1.png")
plot(y,fy,type="1",

main=""t(df=8)"")
polygon(c(y[y<=1],1),c(fy[y<=1],fy[y==-4]),col=""red"")
dev.off() # Close the .png file

# Obtain a random sample of 1000 items from t(df=8)
# rt gives a random sample of size given by the first argument
# Obtain sample mean, median, variance, standard deviation

set.seed(54321)  # Set the seed for random number generator for reproducing data
y.samp <- rt(1000,df=8)

mean(y.samp)

median(y.samp)

var(y.samp)

sd(y.samp)

# Plot a histogram of the sample values (Default bin size)
hist(y.samp, main ="'Sampled values, t(df=8)"")

# Allow for more bins

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\t_dist2.png")

hist(y.samp[abs(y.samp)<=4], breaks=31,

main =""Sampled values, t(df=8)"")

# Add t density (scaled up by (n=1000 x binwidth=0.25), since a freq histogram)
# Makes use of y and fy defined above

lines(y,1000*0.25*fy)

dev.off() # Close the .png file




Numeric Output from R Program

> pt(1,df=8)

[1] 0.8267032

>

> pt(1,df=8,lower=FALSE)
[1] 0.1732968

>

> t(0.90,df=8)

[1] 1.396815

> mean(y.samp)
[1] -0.03754771

> median(y.samp)
[1] 0.0007432709
> var(y.samp)

[1] 1.43555

> sd(y.samp)

[1] 1.198145

Note that for the t distribution, the mean is 0, and the variance is v/(v—2). The sample mean and variance are
close to 0 and 8/6=1.333. As the sample size gets larger, they will tend to get closer.

Confirm that the 90™-percentile is consistent with the table value.

Cell Result EXCEL Output:

Al 0.826703

A2 0.173297 e Cell Al: =T.DIST(1,8, TRUE)

A3 1.396815 e Cell A2: =1-T.DIST(1,8,TRUE)
e Cell A3: =T.INV(0.9,8)




Graphics Output from R Program
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F-Distribution

* Indexed by 2 “degrees of freedom (v1,v2)” W~F,1 >
o Xi~xvits Xz ~Yd
» Assuming Independence of X; and X,:

X, /v
W=—"1~F(v,
Xz/Vz (Vl VZ)

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be
used to obtain certain critical values for given upper tail areas. Lower tails are obtained by taking the reciprocal
of the upper tail with the degrees of freedom reversed.

F-Distributions

— f(5,5)

o
IS
!

- =510

o
w

Density Function of F

EXCEL Commands for Probabilities and Quantiles (Default are upper tail areas):

e Lower tail (cumulative) probabilities: =1-fdist(y,df1,df2)
e Upper tail probabilities: = fdist(y,df1,df2)
e p™Mquantile: =finv(1-p,df1,df2)  O<p<1




Critical Values for F-distributions P(F < Table Value) = 0.95

df2\df1 1 2 3 4 5 6 7 8 9 10
1 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 241
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 244 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 243 2.35 2.28 2.22 2.18
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93




R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling

# Obtain P(Y<=2.5|F(df1=10,df2=8))
# pf gives lower tail probabilities (cdf) for a F distribution
pf(2.5,df1=10,df2=8)

# Obtain P(Y>=2.5|F(df1=10,df2=8)))
# lower=FALSE option gives upper tail probabilities
pf(2.5,df1=10,df2=8,lower=FALSE)

# Obtain the 5th and 95th percentiles of a F Density with df1=10,df2=8
gf(0.05,df1=10,df2=8)
gf(0.95,df1=10,df2=8)

# Obtain a plot of a F Density with df1=10, df2=8

# df gives the density function for a F distribution at point(s) y

# type="1" in plot function joins the points on the density function with a line
# The polygon command fills in the area below y<2.5 in purple

y <-seq(0,10,0.01)

fy <- df(y,df1=10,df2=8)

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\f_dist1.png")
plot(y.fy,type="1",

main=""F(df1=10,df2=8)"")

polygon(c(y[y<=2.5],2.5),c(fy[y<=2.5],fy[y==0]),col=""purple")
dev.off() # Close the .png file

# Obtain a random sample of 1000 items from F(df1=10,df2=8)
# rf gives a random sample of size given by the first argument
# Obtain sample mean, median, variance, standard deviation

set.seed(54321)  # Set the seed for random number generator for reproducing data
y.samp <- rf(1000,df1=10,df2=8)

mean(y.samp)

median(y.samp)

var(y.samp)

sd(y.samp)

# Plot a histogram of the sample values (Default bin size)

hist(y.samp, main ="'Sampled values, F(df1=10,df2=8)"")

# Allow for more bins

# Output graph to a .png file in the following directory/file)
png("E:\\blue_drive\\Rmisc\\graphs\\f_dist2.png")

hist(y.samp[y.samp<=10], breaks=19, ylim=c(0,400),

main =""Sampled values, F(df1=10,df2=8)"")

# Add chi-square density (scaled up by (n=1000 x binwidth=0.5), since a freq histogram)
# Makes use of y and fy defined above

lines(y,1000*0.5*fy)

dev.off() # Close the .png file




Numeric Output from R Program

> pf(2.5,df1=10,df2=8)

[1] 0.8964058

>

> pf(2.5,df1=10,df2=8,lower=FALSE)
[1] 0.1035942

>

> f(0.05,df1=10,df2=8)

[1] 0.325557

> f(0.95,df1=10,df2=8)

[1] 3.347163

> mean(y.samp)
[1] 1.369505

> median(y.samp)
[1] 1.059021

> var(y.samp)

[1] 1.50341

> sd(y.samp)

[1] 1.226136

Note that for the F distribution, the mean and variance formulas are given below.

. v (v, +v, -2
Mean: —2 (v,>2)  Variance: A ZVZ ) (v, >4)
v,—2 v (v,—2) (v, —4)
For this case, the mean is 8/6 = 1.333 and the variance is 2048/1440 = 1.422. Again the sample mean and
variance would tend to be closer to the theoretical values as the sample size increases.

Confirm the 5™ and 95" percentiles based on the F-table. Again note that the lower percentile can be obtained
by taking the reciprocal of the upper percentile with the degrees of freedom reversed.

Cell Result EXCEL Output:

2; 3'32:4522 e Cell AL: =1-FDIST(2.5,10,8)

A3 0.325557 e Cell A2: =FDIST(2.5,10,8)

Ad 3.347163 e Cell A3: =FINV/(0.95,10,8)
) e Cell Ad: =FINV(0.05,10,8)




Graphics Output from R Program
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Statistical Estimation: Properties

Properties of Estimators:

Parameter: & Estimator: 6 = function of Y,,...,Y,
1) Unbiased: E {9} =0
-6

2) Consistent: lim P(

n—oo

25j:0 forany £ >0

3) Sufficient if conditional joint probability of sample, given & does not depend on &

*

4) Minimum Variance: o {9}302 {0 } for all 6

Note: If an estimator is unbiased (easy to show) and its variance goes to zero as its sample size gets
infinitely large (easy to show), it is consistent. It is tougher to show that it is Minimum Variance, but
general results have been obtained in many standard cases.

Statistical Estimation: Methods

Maximum Likelihood (ML) Estimators:
Y ~ f(Y;0) = Probability function for Y that depends on parameter ¢
Random Sample (independent) Y,,...,Y. with joint probability function:

g(YynYy) =T F(Y:6)
i=1
When viewed as function of &, given the observed data (sample):
Likelihood function: L(8)=]]f(Y;6) Goal: maximize L (&) with respect to 6.
i=1
Under general conditions, ML estimators are consistent and sufficient
Least Squares (LS) Estimators

Y, =f(0)+¢
where f, (0)is a known function of the parameter 6 and &; are random variables, usually with E {&,} =0

sum of Squares: Q=>[Y,~f,(6)]  Goal: minimize Q with respect to 6.
i=1

In many settings, LSestimators are unbiased and consistent.



One-Sample Confidence Interval for u

« Simple Random Sample (SRS) from a population with mean u is obtained.
« Sample mean, sample standard deviation are obtained

» Degrees of freedom are df= n-1, and confidence level (1-a) are selected

» Level (1-a) confidence interval of form:

»
s{\?}=% Vzile

Y £t(l-a/2n-1)s{Y]

Procedure is theoretically derived based on normally distributed data, but has been found to work well
regardless for moderate to large n

Example: Mercury Levels Albacore Fish in the Eastern Mediterranean

Sample: n = 34 albacore fish caught in the Eastern Mediterranean Sea. Response is Mercury level (mg/kg).

Goal: Treating this as a random sample of all albacore in the area, obtain 95% Confidence Interval for the
population mean mercury level.

Fish 1 2 3 4 5 6 7 8 9 10 11 12
Mercury 1.007 1.447 0.763 2.01 1.346 1.243 1.586 0.821 1.735 1.396 1.109 0.993
Fish 13 14 15 16 17 18 19 20 21 22 23 24
Mercury 2.007 1.373 2.242 1.647 1.35 0.948 1.501 1.907 1.952 0.996 1.433 0.866
Fish 25 26 27 28 29 30 31 32 33 34(Mean StdDev

Mercury 1.049 1.665 2.139 0.534 1.027 1.678 1.214 0.905 1.525 0.763| 1.358147| 0.440703

(1-a)=095 = a=005 n=34
= t(l-a/2;n-1)=t(1-0.05/2;34-1)=t(0.975;33) = 2.0345

y s 0.4407

Y =13581 $=04407 = s{Yl=—== =0.0756
') Jno 34

Y£t(l-a/2n-1)s{Y} = 13581+20345(0.0756)

13581+0.1538 = (1.2043 , 1.5119)

If all possible random samples of size 34 had been obtained, and this calculation had been made for each
sample, then 95% of all sample Confidence Intervals would contain the true unknown population mean level p.
Thus we can be 95% confident that p is between 1.2043 and 1.5119. Note that 90% and 99% Confidence
Intervals based on this same sample are as follow (confirm them, and why the lengths differ):

90% Confidence Interval for p: (1.2302 , 1.4861) 90% Confidence Interval for p: (1.1516 , 1.5647)




1-Sample t-test (2-tailed alternative)

o 2-sided Test: Ho: u=y Ha u#

* Decision Rule :
— Conclude g > y if Test Statistic (t*) > t(1-a/2;n-1)
— Conclude g <y if Test Statistic (t*) <- t(1-a/2;n-1)
— Do not conclude Conclude g # 1 otherwise

* P-value: 2P(t(n-1)= |t*])

+ Test Statistic:

1-tailed alternative tests

Upper Tailed H, :p<pu, H,:u>py,
Decision Rule: Reject H; if t*>t(1-a;n-1)
P-value: P(t(n-1)>t*)

Lower Tailed H,:u>p, H,:u<y,
Decision Rule: Reject H; if t*<—t(1-a;n-1)
P-value: P(t(n—1) <t*)

Note: Tests for u are generally used when trying to show whether a mean differs from, is above or below some
pre-specified value; or when the data are paired differences (such as before/after treatment measures).

Example: The European Union has permissible limit of 1 mg/kg of Mercury in fish. Is p > 1?

Ho:p<upy=1 Hyiu>p =1
To.pe Y s _13581-1
s{y} 0.0756

=4.7836>1(0.95;33) =16924 Reject H;, Conclude x>1

P-value: P(t(33)>4.7836)=.00002




Comparing 2 Means - Independent Samples

» Observed individuals/items from the 2 groups are samples from distinct populations
(identified by (14,01%) and (15,05%))

« Measurements across groups are independent
« Summary statistics obtained from the 2 groups

Group 1: Mean:Y Std. Dev.:s, Sample Size: n,
Group 2: Mean: Z Std. Dev.:s, Sample Size: n,

p It [ZY)

n n -1

similar calculations for Z

In many settings, we replace Y,,...,Y, withY,,,...Y,, and Z,,...,.Z, with Y,,...,Y,,

= ?=V1 Z=V2

Sampling Distribution of V—Z

Underlying distributions normal = sampling distribution is normal, and resulting t-distribution
with estimated std. dev.

Mean, variance, standard error (Std. Dev. of estimator)

E{V_z}:lu\?z_:ul_ﬂz
- 02 02
UZ{Y_Z}:GVZZ:n_iJrn_z Oy 7 =
Y -Z)—(u -
0'12_022 — ( )_(ILE 2)~’[Withd1‘:n1+n2—2
s{Y -Z|
_ ? _ 2
where: s{\?—f}:s S 32:(n1 1)s; +(n, -1)s,
n._ n n+n,—2




Inference for w—u, - Normal Populations — Equal variances

(1-)100% Confidence Interval:
(V—Z)it(l—alz; n, +n, —2)5{\7—2}

* Interpretation (at the a significance level):

— If interval contains 0, do not reject Ho: 11 = 1
— Ifinterval is strictly positive, conclude that 1 > 1

— Ifinterval is strictly negative, conclude that x4 < 5

Ho:py— 1, =0 Hyipy — 1, 20

Test Stat : t* =

Reject Reg:[t*>t(1-a/2;n +n,-2)

Example — Children’s Participation in Meal Preparation and Caloric Intake

Experiment had 2 conditions: Child participated in Cooking Meal, and Parent only cooking meal. Response
measured: Total Energy Intake (kcals). Total of 47 participants: 25 in Child cooks (YY), 22 in Parent cooks (Z).

Child Cooks: Y =431.4 s5,=105.7 n, =25 ParentCooks: Z=346.8 5,=99.5 n,=22
Y-Z=4314-346.8=84.6  t(1-.05/2;25+22-2)=1(.975;45)=2.0141

2 _(ny —1)sz+(n —1)2 _(25-1)105.7° +(22-1)99.5" _ 476045
n -+n, 25+22-2

—+ — [|=102.8532 / —+ — | =102.8532(0.2923) = 30.0667

95% Cl for 14—, - (Y =Z)+1(975,45)s{Y -Z} = 84.6+20141(30.0667) = 84.6460.6 = (24.0,1452)

S

=10578.78 = $=102.8532

Testing: Hy : g, — 14, =0 vs H, iz — 11, #0

Tsir= =2 _ 840 581375 1(975:45)=2.0141 P =2P(t(45) > 2.8137) = 2(.0036) =.0072
s{Y _ z} 30.0667




Sampling Distribution of s> (Normal Data)

- Population variance (&%) is a fixed (unknown) parameter based on the population of
measurements

« Sample variance (s°) varies from sample to sample (just as sample mean does)

«  When Y~N(x,o°), the distribution of (a multiple of) s? is Chi-Square with n-1 degrees of
freedom. Unlike inference on means, the normality assumption is very important.

« (n-1)s°/6” ~ ¥ with df=n-1

(1-a)100% Confidence Interval for o (or o)

« Step 1: Obtain a random sample of n items from the population, compute s?

« Step 2: Obtain »*_ and #*y from table of critical values for chi-square distribution with n-
1 df

- Step 3: Compute the confidence interval for o° based on the formula below and take
square roots of bounds for o” to obtain confidence interval for o

(n-1)s* (n-1)s°
wnooon

2

where: y¢ = y° (1-a/2;n-1) X0 :;(Z(a/Z;n—l)

(1- x)100% ClI for o :

Example: Mercury Levels in Albacore Fish from Eastern Mediterranean (Continued)

(1-2)=095 = =005 = «/2=0025 = 1-a/2=0.975

n=34 = z2=,*(1-al2;n-1)=4?(975,33)=50.73  z2= 4*(.025,33)=19.05

s=04407 = s?=04407°=0.1942 = (n-1)s?=33(0.1942) = 6.4092

(n—1)s? (n—l)szj _ (6.4092 6.4092)
W ox ~ 50.73 " 19.05

(L-a)100% Cl for o= (1/0.1263,10.3364) = (0.3364,0.5800)

(1—)100% Cl for o2 : [ = (0.1263,0.3364)




Statistical Test for o

* Null and alternative hypotheses
— 1-sided (upper tail): Hq: ¢* < oy’ Ha: 0> o
— 1-sided (lower tail): Ho: ¢* > op® Ha: 0* < o’
— 2-sided: Ho: ¢* = ov® Ha: 6% # o’

» Test Statistic
2
X obs 2

Oy

» Decision Rule based on chi-square distribution w/ df=n-1:
— 1-sided (upper tail): Reject Ho if zops” > 70° = #*(1-a;n-1)
— 1-sided (lower tail): Reject Ho if yo5s” < 7% = #*(oi;n-1)

— 2-sided: Reject Ho if yos’ < 712 = 7 (a/2;n-1)(Conclude ¢* < ov?)
or if yons” > yu° = Z/(1-a/2;n-1) (Conclude & > op?)

There are not too many practical cases where there is a null value to test, except in cases where firms may need
to demonstrate that variation in purity of a chemical or compound is below some nominal level, or that variation
in measurements of manufactured parts is below some nominal level.

Note that most decisions can be obtained based on the confidence interval for the population variance (or
standard deviation).



Inferences Regarding 2 Population VVariances

« Goal: Compare variances between 2 populations

2
- Parameter: 2 (Ratio is 1 when variances are equal)

0,

] 52 ] ]

« Estimator: = (Ratio of sample variances)
2

 Distribution of (multiple) of estimator (Normal Data):

2 2 2
S/or SIS g with df, =n, -1 and df, =n, -1

S22/0-22 /02

Test Comparing Two Population VVariances

1-Sided Test: H,:0/ <o’ H,:0} >07

2
Test Statistic: Fobs:S—l Rejection Region: F,, > F(1-a;n,-1,n,-1) P—value:P(F>F,)

Sz obs =

2
2-Sided Test: H,:0{ =02 H,:0! #05

2
Test Statistic: F_, =S—l2
S
2
Rejection Region: F,,, > F (1-a/2;n,-1,n,-1) (o} >0;)
or F <F(a/2;n-1n,-1)=1/F (1—a/2; n,—-1n-1) (o7 <o)
P —value: 2min(P(F > F,,,),P(F < F,,))

(1-2)100% Confidence Interval for o,°/c,

« Obtain ratio of sample variances s,°/s,> = (51/s,)
* Choose ¢, and obtain:
— F.=F(af2, n1-1, n2-1) = 1/ F(1-a/2, n2-1, n1-1)
— Fy=F(-a/2, n1-1, n2-1) 2 2
S1 Sl
2R IF
SZ L’ SZ U
2 2

« Compute Confidence Interval:

Conclude population variances unequal if interval does not contain 1




Example — Children’s Participation in Meal Preparation and Caloric Intake (Continued)

2-Sided Test: H,:07 =0, H,:0! 207

2 2
Test Statistic: F,,, = 5—12 = 105'72 =1.13
> 995

Rejection Region: F,, > F (1-a/2;n, —1,n, -1) = F (1-.025;25-1,22-1) = F (.975;24,21) = 23675 (o, > 03)
or F,, <F(.025,24,21)=1/F (.975;21,24) = 0.4327 (o} <o?)
P —value: 2min(P(F > F,,.), P(F <F_,)) = 2min(.3912,.6088) = 0.7824

2

95% Confidence Interval for 0—12
F

F_=F(.025;24,21) =1/ F (.975; 21,24) = 0.4327
R, =F(.975;24,21) = 2.3675

2 2
{S—leL,:—leU} = [1.13(0.4327),1.13(2.3675)] = [0.49,2.68]

52 2

What do you conclude?

Data Sources:

New York City Street Café’s:
https://nycopendata.socrata.com/Business/Sidewalk-Cafes/6k68-kc8u
Women’s Professional Soccer:

http://www.nwslsoccer.com/

Irish Premier League Soccer:

Www.soccerpunter.com/

Mercury Levels in Albacore:

S. Mol, O. Ozden, S. Karakulak (2012). "Levels of Selected Metals in Albacore (Thunnus alalunga, Bonaterre, 1788) from the Eastern
Mediterranean, Journal of Aquatic Food Product Technology, Vol. 21, #2, pp. 111-117.

Children/Parent Cooking Effects on Food Intake:

K. van der Horst, A. Ferrage, A. Rytz (2014). “Involving Children in Meal Preparation: Effects on Food Intake,” Appetite, Vol. 79, pp.
18-24.




Chapter 1 — Linear Regression with 1 Predictor

Statistical Model

Yo= B+ [BX + & i=1...,n
where:

e Y, is the (random) response for the i case
e [3,, 5, are parameters
e X, isaknown constant, the value of the predictor variable for the i" case

e & isarandom error term, such that: E{g}=0 o’{5}=0" ofg,63=0 Vi, jri# ]

The last point states that the random errors are independent (uncorrelated), with mean 0, and variance o”. This
also implies that:

EQY=A+8X o {f}=0" ofy.Y}=0
Thus, £, represents the mean response when X = 0 (assuming that is reasonable level of X), and is referred to

as the Y-intercept. Also, £, represent the change in the mean response as X increases by 1 unit, and is called
the slope.

Least Squares Estimation of Model Parameters

In practice, the parameters £, and £, are unknown and must be estimated. One widely used criterion is to
minimize the error sum of squares:

i=htBXi+s5 = =Y -(4+5X)

Q:;a%;(vi—(ﬁwﬁlxi»z

This is done by calculus, by taking the partial derivatives of Q with respectto £, and S, and setting each
equation to 0. The values of g, and g, that set these equations to O are the least squares estimates and are
labelled b, and b, .

First, take the partial derivatives of Q with respectto £, and f;:

@_ n
7,0 L OB AXEY @
@ n
o, - MR BXNEX) @)




Next, set these 2 equations to 0, replacing £, and g, with b, and b, since these are the values that minimize
the error sum of squares:

~2) (Y, -by-bX)=0 = Y Y =nb+b) X, (la)
i=1 i=1 i=1

2 (Y -by-b X)X, =0 = Y XY, =b ) X, +b) X  (2a)
i=1

i=1 i=1 i=1

These two equations are referred to as the normal equations (although, note that we have said nothing YET,
about normally distributed data).

Solving these two equations yields:

i=1 i=1
— _ ni1 — n
by =Y-b X= Z{__ Xk|:|Y| = Z LY,
i=1 n i=1
where k; and |, are constants, and Y, is a random variable with mean and variance given above:
k=X NN nx(xi—i)
D (X=X " "X XY
i=1 i=1

The fitted regression line, also known as the prediction equation is:
Y =Db,+b X

The fitted values for the individual observations are obtained by plugging in the corresponding level of the
predictor variable ( X,) into the fitted equation. The residuals are the vertical distances between the observed

values (;) and their fitted values (Y ), and are denoted as e, .

YiZbO-I-lei e-ZYi—Yi




Properties of the fitted reqgression line

e) e =0 Theresidualssumto0
i=1

o Z X,e; = 0 The sum of the weighted (by X) residuals is O
i=1

Yie, =0 The sum of the weighted (by Y ) residuals is O

M-

[ ]
i=1

« The regression line goes through the point ( X,Y)

These can be derived via their definitions and the normal equations:

n

_Zn:\?i :Z(bo+b1xi):nb0+blzn:xi =Zn:Yi = _Zn:(vi —\?ij:iei =0 (1a)

i=1

Zn“xi\?:Zn“xi(boerlxi)=b0_zn“xi+t11_zn“xf=Zn“xi\(i = ixi(vi—\?i]:_z:xieiw (2a)

Estimation of the Error Variance

Note that for a random variable, its variance is the expected value of the squared deviation from the mean. That
is, for a random variable W, with mean g, its variance is:

o’ {W}= E{W - 14,)"}

For the simple linear regression model, the errors have mean 0, and variance o. This means that for the actual
observed values Y,, their mean and variance are as follows:

EQI=A+ A% o=E{(Y-(f+AX)) | =0

First, we replace the unknown mean £, + £ X; with its fitted value Y; = b, + b, X;, then we take the “average”
squared distance from the observed values to their fitted values. We divide the sum of squared errors by n-2 to
obtain an unbiased estimate of & (recall how you computed a sample variance when sampling from a single
population).

n

Z(Yi_%)2 Z‘ieiz

2 =1

n-2 n- 2

Common notation is to label the numerator as the error sum of squares (SSE).

SSE Y (Y -Y)? = e
i=1

i=1




Also, the estimated variance is referred to as the error (or residual) mean square (MSE).

SSE
n-2

MSE = s° =

To obtain an estimate of the standard deviation (which is in the units of the data), we take the square root of the

error mean square. s= -/ MSE .
A shortcut formula for the error sum of squares, which can cause problems due to round-off errors is:

SSE = Y (-2 -BY (X, - XYY, - V)

Some notation makes life easier when writing out elements of the regression model:

B
8 = 2 (G = X)! = L X = X7 -n(X)

$S,, = an:[(xi “X)0%,-Y) = 21: XY - [Zl Xij@Yij =3 TX,Y, ~nXY

n i1

L
SS,, :Zm ~Y)? :ZYiZ—HT:ZYiZ—n(V)

Note that we will be able to obtain most all of the simple linear regression analysis from these quantities, the
sample means, and the sample size.

— J— 2
S b, =Y -bX  SSE=Ss, - o) _gs pss. s =MSE=—C

b= SS,., SS,., n-2

Normal Error Regression Model (Assumes STA 4322)

If we add further that the random errors follow a normal distribution, then the response variable also has a
normal distribution, with mean and variance given above. The notation, we will use for the errors, and the data
is:

& ~N(0,0%) Y, ~N(4 + X, 0%)

The density function for the i observation is:

f, =

s )




The likelihood function, is the product of the individual density functions (due to the independence assumption
on the random errors).

LBy, 0 H mexr{ 5oz (i - AX)}

- ﬂlxi)2:|

1

The values of 3, 3,0 that maximize the likelihood function are referred to as maximum likelihood

AN n

estimators. The MLE’s are denoted as: f3), B,,0, . Note that the natural logarithm of the likelihood is

maximized by the same values of 4,3, o? that maximize the likelihood function, and it’s easier to work with
the log likelihood function.

1 ¢ 5
Zazé(Yi_ﬂo_ﬂlxi)

log, L = - glog(Zﬁ) - glog(az) -

Taking partial derivatives with respectto 4,3, yields:

dlogL _ dlogLb _ 1 &y 2 _
7 ZZ(Y “A-AX)ED @) o~ 22 A AXYEX) )
JlogL _n

Z(Y B—-BX)  (6)

a0 207 2( 2)2 4

Setting these three equations to 0, and placing “hats” on parameters denoting the maximum likelihood
estimators, we get the following three equations:

SV =n Bt B, DX, (a)  IXN=AIXABIXE ()
BB XY =1 (6a)
o 7 o

From equations 4a and 5a, we see that the maximum likelihood estimators are the same as the least squares
estimators (these are the normal equations). However, from equation 6a, we obtain the maximum likelihood
estimator for the error variance as:

» Zl(%—bo—blxi)z Zl(vi—%)z

o == =
n n

This estimator is biased downward. We will use the unbiased estimator s> = MSE throughout this course to
estimate the error variance.



Example — U.S. State Non-Fuel Mineral Production vs Land Area (2011).

Non-Fuel mineral production ($10M) and land area (1000m?) for the 50 United States in 2011.

Source: http://minerals.er.usgs.gov/minerals/pubs/commodity/statistical summary/index.html#myb
(retrieved 6/23/2014).

The following EXCEL spreadsheet gives the data in a form that is easier to read. The original data are in an
EXCEL file in Columns A-C and Rows 1-51 (variable names in row 1, numeric data in rows 2-51). Note that
Column A contains the state postal abbreviation, B contains Area, and C contains mineral production.

state Area Mineral|state Area Mineral]state Area Mineral|state Area Mineral|state Area Mineral
AL 50.74 96.0]HI 6.42 10.1]|MA 7.84 22.5]NM 121.36 125.0}SD 75.89 31.2
AK 567.40 381.0]I1D 82.75 132.0} Ml 58.11 241.0]NY 47.21 134.0] TN 41.22 87.8
AZ 113.64 839.0]IL 55.58 107.0| MN 79.61 449.0|NC 48.71 84.3|TX 261.80 303.0
AR 52.07 78.9]IN 35.87 76.2lMS 46.91 19.5|ND 68.98 12.5)UT 82.14 430.0
CA 155.96 321.0) 1A 55.87 65.3] MO 68.89 220.0)]OH 40.95 96.2)VT 9.25 11.8
co 103.72 193.0|KS 81.82 112.0|MT 145.55 144.0] OK 68.67 60.8| VA 39.59 119.0
CcT 4.85 15.6] KY 39.73 79.1|NE 76.87 23.8]OR 96.00 30.5]WA 66.54 74.2
DE 1.95 1.1]LA 43.56 46.5]NV 109.83] 1000.0] PA 44.82 160.0jWV 24.23 32.4
FL 53.93 343.0| ME 30.86 11.8|NH 8.97 10.0]RI 1.05 4.2 WI 54.31 68.3
GA 57.91 145.0] MD 9.77 29.3INJ 7.42 27.5]SC 30.11 48.3| WY 97.11 214.0

Which variable is more likely to “cause” the other variable?
AREA — MINERAL or MINERAL — AREA

While we will use R for statistical analyses this semester that would be way too time consuming (if even
possible) in EXCEL, EXCEL does have some nice built-in functions to make calculations on ranges of cells.

=COUNT(range) - Computes the number of values in the range

=SUM(range) - Computes the sum for the values in the range

=AVERAGE(range) - Computes the sample mean for the values in the range

=VAR(range) - Computes the sample mean for the values in the range

=STDEV(range) - Computes the sample mean for the values in the range

=SUMSQ(range) - Computes the sum of squares for the values in the range

=DEVSQ(range) - Computes the sum of squared deviations from the mean

=SUMPRODUCT(rangel,range2) - Computes the sum of products of each pair of elements of 2
ranges of equal length

=COVAR(rangel,range2) - Computes the covariance of two ranges of equal length, using n as the
denominator, not n-1. In later versions, =COVARIANCE.S(rangel,range?2) is available, using n-1.

Making use of these, we can “brute-force” obtain the estimated regression equation and estimated error
variance. First, obtain the means and sums of squares and cross-products needed to obtain the regression
equation.


http://minerals.er.usgs.gov/minerals/pubs/commodity/statistical_summary/index.html#myb

n: =COUNT(B2B51) Y X,: =SUM(B2B51) YY,: =SUM(C2:C51)
i=1 i=1

X: =AVERAGE(B2:B51) Y: =AVERAGE(C2:C51) Y X?: =SUMSQ(B2:B51)

i=1

YY1 =SUMSQ(C2:C51) (X;~X): =DEVSQ(B2BS51)  >'(Y,~Y): =DEVSQ(C2C51)
e ) i=1
> X,Y;: =SUMPRODUCT (B2:B51,C2:C51) iZ[( X, = X)(¥, —\?)} : =COVAR (B2:B51,C2:C51)
= N ‘o
. - :g'gg 5“"‘:;’\:’ 2:;22‘5‘2':2 Note that when using formulas
-bar .69|sum . e . - rr e
Y-bar 147.35(SS_XX 357703.85 :;;lth muglctlpleus’t,eps }(;(.)u will find
sum(X) 3534.29[sS_YY 1889585.31 ere are “small” rounding errors.
sum(Y) 7367.71|COV(X,Y) 6715.24
sum(X~2) 607528.11|SS_XY 335762.03

SSy = 2 (X; —X)* =357703.85

i=1

3534.29)"

2
=) x? _u 607528.1-

—sz—n( ) = 607528.1—50(70.69)° =

SSyy = Z[(xi -X)(Y,-Y) |= n(%)i[(xi - X)(Y,-Y) | =50(6715.24) = 335762

(B

— j o56554 65 _ (3534:29)(7367.71) _

_ _\i=l _ _ .
- le X n ' 50

= > XY, ~nXY =856554.66 —50(70.69)(147.35) =

i=1

SS,y = . (Y;-Y)? =1889585.31

i=1

n

n Z lj
—ZYZ ( ——~ =2975248.32—-

(7367.71)*
50

sz—n( ) = 2975248.32 - 50(147.35)° =

Next compute the estimated regression coefficients, fitted equation, and estimated error variance and standard
deviation.



SS,, 335762
SS,, 357703.85

b, = 0.9387 b, =Y —b, X =147.35-0.9387(70.69) = 80.9933

Y =80.99+0.94X or using symbols better related to data: M =80.99+0.94A

For State 1 (Alabama): Area = X, = 50.74 and Mineral =Y, =96.0

= Yi=Db,+b X, =80.99+0.94(50.74) =80.99+47.70=128.69 = e =Y,-Y1=96.0-128.69=-32.69

n

SSE = zl:(v —\?ijz =>¢

i=1

2 2
=SS, — (S5 ) _ 1889585.31— (335762)” _ 1889585.31—315166.08 = 1574419.23
SS,« 357703.85
= s*=MSE = % —32800.40 = s=+/32800.40 =181.11

A plot of the data and the fitted equation are given below, obtained from EXCEL.

Mineral Production versus Area
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Area

As land area increases by 1 unit (1000 mile?), mineral value increases on average by 0.94 units ($10M). The
intercept has no physical meaning, as no states have an area of 0.

Note that while there is a tendency for larger states to have higher mineral production, there are many states that

the line does not fit well for. This issue among others will be considered in later chapters, and a model with both
variables log transformed is fit below.



EXCEL (Using Built-in Data Analysis Package)

Regression Coefficients (and standard errors/t-tests/CI’s, which will be covered in Chapter 2)

Coefficientcandard Err  t Stat P-value Lower 95%Upper 95%
Intercept 81.004 33.379 2.427 0.0190 13.891 148.118
Area 0.939 0.303 3.100 0.0032 0.330 1.548

Data Cells, Fitted Values and Residuals (Copied and Pasted to fit better on page)

state Area Mineral |Fitted Residual state Area Mineral |Fitted Residual

AL 50.74 96.0| 128.6356| -32.6356 MT 145.55 144.0| 217.628| -73.628
AK 567.40 381.0| 613.5996 -232.6 NE 76.87 23.8| 153.1609| -129.361
AZ 113.64 839.0| 187.6688| 651.3312 NV 109.83 1000.0| 184.0935| 815.9065
AR 52.07 78.9| 129.8784| -50.9784 NH 8.97 10.0| 89.4222| -79.4522
CA 155.96 321.0| 227.3967| 93.60334 NJ 7.42 27.5| 87.96634( -60.4663
CO 103.72 193.0| 178.3602( 14.63984 NM 121.36 125.0| 194.9162| -69.9162
CT 4.85 15.6| 85.5521| -69.9521 NY 47.21 134.0| 125.3222| 8.677841
DE 1.95 1.1| 82.83844| -81.7184 NC 48.71 84.3| 126.7273| -42.4273
FL 53.93 343.0| 131.6234| 211.3766 ND 68.98 12.5| 145.7493| -133.249
GA 57.91 145.0| 135.3583| 9.641697 OH 40.95 96.2| 119.4405| -23.2405
HI 6.42 10.1| 87.03331| -76.9333 OK 68.67 60.8| 145.4592| -84.6592
ID 82.75 132.0| 158.6755| -26.6755 OR 96.00 30.5| 171.1128| -140.613
IL 55.58 107.0| 133.1787| -26.1787 PA 44.82 160.0| 123.0722| 36.92781
IN 35.87 76.2| 114.6712( -38.4712 RI 1.05 4.2 81.9852| -77.7652
1A 55.87 65.3| 133.4463( -68.1463 SC 30.11 48.3| 109.2664| -60.9664
KS 81.82 112.0| 157.8007| -45.8007 SD 75.89 31.2| 152.2345( -121.034
KY 39.73 79.1| 118.2954( -39.1954 TN 41.22 87.8] 119.693( -31.893
LA 43.56 46.5| 121.8942| -75.3942 TX 261.80 303.0| 326.7425| -23.7425
ME 30.86 11.8| 109.9732| -98.1732 uT 82.14 430.0| 158.1095| 271.8905
MD 9.77 29.3| 90.17876| -60.8788 VT 9.25 11.8| 89.6869| -77.8869
MA 7.84 22.5| 88.36339| -65.8634 VA 39.59 119.0| 118.1696| 0.830425
Mi 58.11 241.0| 135.5498| 105.4502 WA 66.54 74.2| 143.4664| -69.2664
MN 79.61 449.0( 155.731| 293.269 WV 24.23 32.4| 103.748| -71.348
MS 46.91 19.5| 125.034| -105.534 Wi 54.31 68.3| 131.9829| -63.6829
MO 68.89 220.0| 145.6648| 74.33522 WY 97.11 214.0| 172.1528| 41.84719

R Program for Regression Analysis and Plot

png("F:\\blue_drive\\Rmisc\\graphs\\minerall.png")

minerall <- read.table("http://www.stat.ufl.edu/~winner/stad4210/mydata/minerall.txt",
header=T)

attach(minerall)

min.regl <- lm(Mineral ~ Area)
summary(min.regl)

plot(Area,Mineral,xlab="Area",ylab="Mineral"”,main="Mineral Production vs Area")
abline(min.regl)

dev.off()




R Regression Output:

Call:

Im(formula = Mineral ~ Area)

Residuals:

Min 1Q Median
-232.60 -76.54 -55.72

Coefficients:

Estimate Std.
(Intercept) 81.0023
Area 0.9387

Signif. codes: @ €©***’

3Q Max
6.72 815.90

Error t value Pr(>|t]|)

33.3793 2.427 0.01904 *
0.3028 3.100 0.00324 **

0.001 “**’ @9.01 “*’ @.05 .’ 0.1 "’ 1

Residual standard error: 181.1 on 48 degrees of freedom

Multiple R-squared: 0.1668,

Adjusted R-squared: 0.1494

F-statistic: 9.609 on 1 and 48 DF, p-value: 0.003236

R Graphics Output:

Mineral Production vs Area
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Analysis when each variable has been transformed by taking natural logarithms:

US States 2011 Mineral Production - In(Value) vs In(Area)

‘0

In(Area)

Note that the linear relation appears to fit much better when both of these highly skewed variables are log
transformed.

Standard Lower Upper
Coefficients Error t Stat P-value 95% 95%
Intercept 2.888 1.221 2.366  0.0221 0.434 5.342
INAREA 0.911 0.105 8.708  0.0000 0.701 1.121

As In(AREA) increases 1 unit, In(VALUE) increases by 0.911 units.

Note: When both variables are log transformed the physical meaning of the slope represents percent changes in
variables in their original units. In this case, we would say that a 1 percent increase in area is associated with
a 0.911 percent change in mineral production value.

Example — LSD Concentration and Math Scores

A pharmacodynamic study was conducted at Yale in the 1960’s to determine the relationship between LSD
concentration and math scores in a group of volunteers. The independent (predictor) variable was the mean
tissue concentration of LSD in a group of 5 volunteers, and the dependent (response) variable was the mean
math score among the volunteers. There were n=7 observations, collected at different time points throughout the
experiment.

Source: Wagner, J.G., Agahajanian, G.K., and Bing, O.H. (1968), “Correlation of Performance Test Scores
with Tissue Concentration of Lysergic Acid Diethylamide in Human Subjects,” Clinical Pharmacology and
Therapeutics, 9:635-638.



The following EXCEL spreadsheet gives the data and all pertinent calculations in spreadsheet form.

Time (i) Score (Y) Conc (X) Y-Ybar X-Xbar (Y-Ybar)**2 |(X-Xbar)**2 g(ﬁ;rt;ar)(Y- Yhat e e**2
1 78.93 1.17 28.84286 -3.162857| 831.910408| 10.0036653| -91.2258367 78.5828 0.3472 0.1205
2 58.2 2.97 8.112857 -1.362857| 65.818451| 1.85737959| -11.0566653 62.36576 -4.1658 17.354
3 67.47 3.26 17.38286 -1.072857] 302.163722| 1.15102245| -18.6493225 59.75301 7.717 59.552
4 37.47 4.69 -12.61714 0.357143| 159.192294] 0.12755102| -4.50612245 46.86948 -9.3995 88.35
5 45.65 5.83 -4.437143 1.497143| 19.6882367| 2.24143673| -6.64303674 36.59868 9.0513 81.926
6 32.92 6 -17.16714 1.667143] 294.710794| 2.77936531| -28.6200796 35.06708 -2.1471 4.6099
7 29.97 6.41 -20.11714 2.077143| 404.699437| 4.31452245| -41.7861796 31.37319 -1.4032 1.969

Sum 350.61 30.33 0 0| 2078.18334| 22.4749429| -202.487243 350.61 1.00E-14 253.88

Mean 50.0871429| 4.3328571

b1l -9.009466

b0 89.123874

MSE 50.776266

The fitted equation is: Y =89.12—-9.01X and the estimated error variance is s> = MSE =50.78, with
corresponding standard deviation s =7.13.

As tissue concentration of LSD increases by 1 unit, math scores tend to drop on average by 9.01 points.

Math Scorevs LSD Concentration

90

80 1

70 A

60

Math Score (Y)

0 T T T T T T
0 1 2 3 4 5 6 7

LSD Concentration (X)




Chapter 2 — Inferences in Reqgression Analysis

Rules Concerning Linear Functions of Random Variables

Let Y,,...,Y, be nrandom variables. Consider the function ZaiYi where the coefficients a,,...,a, are
i=1

constants. Then, we have:

E{Zn:aiYi} = Zn:aiE{Yi} O_z{z”:aiYi} = anzn:aiajo-{Yi’Yj}

i=l j=1

When Y,,...,Y, are independent (as in the model in Chapter 1), the variance of the linear combination simplifies

to:

0'2{anaiYi} = Zn:aiz(TZ{Yi}

When Y,,...,Y, are independent, the covariance of two linear functions ZaiYi and ZciYi can be written as:
i=1 i=1

a{zn: a,Y; ,Zn:ciYi } = _Zn:aiCiGZ{Yi}

We will use these rules to obtain the distribution of the estimators by,b,,Y =b, +b, X

Example: Bollywood Movie Budgets (X) and Box Office Grosses (Y)

Data: A sample of n = 55 Bollywood films released in 2013-2014. Data in crore, not certain of units.

http://www.bollymoviereviewz.com/2013/04/bollywood-box-office-collection-2013.html

Box Office Collection vs Budget

c
S 250 *
2 200 S +*
S 150
S .
£ 100 40404" :
x 50 W
8 » +
0
0.00 50.00 100.00 150.00 200.00

Budget

X-bar Y-Bar | SS XX | SS.YY | SS_XY
39.04 46.88 |72165.43 | 183601.1 | 90278.06




Inferences Concerning B

Recall that the least squares estimate of the slope parameter, b, , is a linear function of the observed responses
Y. Y,:

n*

-0, _ -
blzzng _ i Z (X, - X) SCATInts) NV Zk - n(Xi—X_) :()ES—X)
XX Z(Xi—x) I—lZ(X X) i=1 Z(Xi_x)z -~

Note that E{Y,}= £ + £ X,, so that the expected value of b, is:

(X, = X)

XX

E{b}= ZKE{Y} Z

(Bt BX) = oo — {ﬂoZ(x X)+ﬂlZ(X X)X}

Note that Z (X, - X)=0  (why?), so that the first term in the brackets is 0, and that we can subtract

i=1

B XD (X, - X) = 0 from the last term to get:
i=1

y Xy -1 _
iZ:l:(Xi_X) _SS :Blssxx ﬂl

XX

Edb}= sS {ﬂlZ(Xi_Y)Xi_ﬂ1zn:(Xi—Y)Y}:

=1 i=1

Thus, b, is an unbiased estimator of the parameter 4.

SS, _ 90278.06

= =1.2510
S, 7216543

Example: Bollywood Movie Data: b =

To obtain the variance of by, recall that o*{Y,}= &°. Thus:

o*{b}= Zk2 {r}= Z

i=1

(X X) g _;(Xi_X)z 2 _ SSXX 2 _ 02
Sy | )

o = (o2
[SS | [SS | SS,,

Note that the variance of b, decreases when we have larger sample sizes (as long as the added X levels are

not placed at the sample mean X ). Since o is unknown in practice, and must be estimated from the data, we
obtain the estimated variance of the estimator b, by replacing the unknown & with its unbiased estimate

s> = MSE :



b} = s° _ MSE
SS,y  SSy

with estimated standard error:

S MSE
SS, SS,

Example: Bollywood Movie Data:

SSy )’ 062 |
SSE =SS, _(SSw)” _1g3p011- 9027806 _neens o 52— s = SSE _ 706644
SSxx 72165.43 n—2 55_2

s> 1333.29
SS, 7216543

=1333.29

s?{b} = =0.018475 = s{b}=1+/0.018475=0.1359

Further, the sampling distribution of b, is normal, that is:

2
O

Z (X; - X)?

b, ~ N| A,

Since, under the current model, b, is a linear function of independent, normal random variables Y,,...,Y, .

Making use of theory from mathematical statistics, we obtain the following result that allows us to make
inferences concerning f:

b=/ ~t(n-2)

sto,}

where t(n-2) represents Student’s t-distribution with n-2 degrees of freedom.



Confidence Interval for S

As a result of the fact that % ~t(n—2), we obtain the following probability statement:
S

P{t(alZ;n—Z)SMst(l—alz;n—Z)} = l1-«
s{o}

where t(a/2;n—2) is the («/2)100™ percentile of the t-distribution with n-2 degrees of freedom. Note that
since the t-distribution is symmetric around 0, we have that t(«/2;n—2) = —t(l—a/2;n—2) . We obtain the
values corresponding to t(1—«/2;n—2) from tables or computer software, which is the value of that leaves an
upper tail area of o/2. The following algebra results in obtaining a (1-«)100% confidence interval for S;:

P{t(a/Z;n—Z)s b=/ St(l—a/Z;n—Z)}
s{b,}

plt-arzn-2< bl ciarzn-a)
s{b.}

—tl-a/2;n-2)s{h}<h — B <tl—al2;n-2)s{b}

=P
=P{-b -tl-a/2;n-2)s{b}<-B <-b +t(l-a/2;n-2)s{b}}
=P{b +tl-a/2;n-2)s{b}> B, >b -t(l-a/2;n-2)s{b}}

This leads to the following rule for a (1-2)100% confidence interval for g:

+t(l—a/2:n—2)s{b,}

Some statistical software packages print this out automatically (e.g. EXCEL and SPSS). Other packages simply
print out estimates, standard errors, and t-statistics only, but have options to print them (e.g. R).

Example: Bollywood Movie Data:

t(.975,53)=2.0057 b =12510  s{b}=0.1359
95% Cl for /3, :1.2510+ 2.0057(0.1359) =1.2510+0.2726 = (0.9784,1.5236)




Tests Concerning S,

b, - .
We can also make use of the of the fact that boA t, , to test hypotheses concerning the slope parameter.

s{b.}
As with means and proportions (and differences of means and proportions), we can conduct one-sided and two-
sided tests, depending on whether a priori a specific directional belief is held regarding the slope. More often
than not (but not necessarily), the null value for 4 is 0 (the mean of Y is independent of X) and the alternative is
that g is positive (1-sided), negative (1-sided), or different from 0 (2-sided). The alternative hypothesis must be
selected before observing the data. Default t-tests produced by computer software packages are two-sided tests
that $1=0.

2-sided tests

e Null Hypothesis:  H, : 3, = S,
e Alternative (Research Hypothesis): H, : g, # [,

e Test Statistic: t*= M
s{b}

e Decision Rule: Conclude Ha if |t*| > t(1—a/2;n—2), otherwise conclude Hy
e P-value: 2P(t(n—2) >|t*|)

All statistical software packages (to my knowledge) will print out the test statistic and P-value corresponding to
a 2-sided test with f10=0.

1-sided tests (Upper Tail)

e Null Hypothesis:  H;: 5 < S,
o Alternative (Research Hypothesis): H, : 3, > f,,

e Test Statistic: t*= M
s{b}

e Decision Rule: Conclude Haif t* > t(1—ea;n—2), otherwise conclude Hy
e P-value: P(t(n—2) >t*)

A test for positive association between Y and X (Ha:$1>0) can be obtained from standard statisical software by
first checking that b; (and thus t*) is positive, and cutting the printed P-value in half.

1-sided tests (Lower Tail)

e Null Hypothesis:  H,: 5 =8,
e Alternative (Research Hypothesis): H, : S8, < S,

e Test Statistic: t*= M
s{b}

e Decision Rule: Conclude Hp if t* < —t(1—a;n—2), otherwise conclude Hy
e P-value: P(t(n—-2) <t*)

A test for negative association between Y and X (Ha:£1<0) can be obtained from standard statistical software by
first checking that b; (and thus t*) is negative, and cutting the printed P-value in half.



Example: Bollywood Movie Data:

Question 1: Is there any association between Box Office Collection and Budget?
Question 2: Does increasing Budget by 1 unit lead to an increase in average Box Office Collection by > 1 unit?

QLH;:8=0 H;:p8=0 Q2:H2:p <0 HZ:B>0

Tsit =221970 g 9035 t(.975;53) = 2.0057 Decision?
0.1359

P—value: 2P(t(53)>]9.2035])~0

TS2: 1, _1.21071_, 6469 t(.95;53) =1.6741 Decision?

P—value: P(t(53)>1.8469)=.0352

Inferences Concerning £

Recall that the least squares estimate of the intercept parameter, b,
responses Y,

i _ZIiYi
Recalling that E{Y,}= 5, + B, X;:

1 (X, -X)X

by=Y-b X = Zn 55,

i=1

£} - 2{1 (XSS—X)X}(ﬂowlxi) - ﬂoZ[i (Xisgx)x}wli{—
Y. 0)+ﬂ{ Zx XZ(XSSX)} ot X -X(W) =4,

Thus, by is an unbiased estimator or the parameter o,

, is a linear function of the observed

1 (X ~ X)X
SS,,

}xi

n

Example: Bollywood Movie Data:

Y —b, X =46.88-1.2510(39.04) = —1.9549

Below, we obtain the variance of the estimator of bg.



Note that the variance will decrease as the sample size increases, as long as X values are not all placed at the
mean (which would not allow the regression to be fit). Further, the sampling distribution is normal under the
assumptions of the model. The estimated standard error of b, replaces o* with its unbiased estimate s’=MSE and
taking the square root of the variance.

—2 —2
1 X 1 X
s{b,}=s,/—+ = IMSE| =+
(0o} \/n 5SS,y J {n ssxx}

Example: Bollywood Movie Data:

MSE =s?=133329 n=55 X =39.04 SS,, =72165.43

2
s{bo}:Jlggg.zg{Lﬂ}:«%52.4027_24

55 72165.43

Note that Do = fo
s{b

0
meaningful, namely when X=0 is within the range of observed data.

~t(n-2), allowing for inferences concerning the intercept parameter S, when it is

Confidence Interval for £

b, +t(L—a/2;n—2)s{b, }

Example: Bollywood Movie Data:

Although no movies have a budget of X=0, a 95% CI for £ would be computed as follows:

—1.9549+ 2.0057(7.2385) = —1.9549+14.5185 = (-16.47,12.56)




It is also useful to obtain the covariance of by and by, as they are only independent under very rare
circumstances:

ol b} = o {ihﬂihﬁ}ihkpﬁY& S 1 XX =X) (X =X)

| N SS,, SS,
o & - aiX —\2 o X a2 X
-2 (- X) - (X =X = 0-T 5 = -T2
nSS,, ‘= (SSXX) = SS, SS,

In practice, X is usually positive, so that the intercept and slope estimators are usually negatively correlated.
We will use the result shortly.

Considerations on Making Inferences Concerning £ and g

Normality of Error Terms

If the data are approximately normal, simulation results have shown that using the t-distribution will provide
approximately correct significance levels and confidence coefficients for tests and confidence intervals,
respectively. Even if the distribution of the errors (and thus Y) is far from normal, in large samples the sampling
distributions of by and by, have sampling distributions that are approximately normal as results of central limit
theorems. This is sometimes referred to as asymptotic normality.

Interpretations of Confidence Coefficients and Error Probabilities

Since X levels are treated as fixed constants, these refer to the case where we repeated the experiment many
times at the current set of X levels in this data set. In this sense, it’s easier to interpret these terms in controlled
experiments where the experimenter has set the levels of X (such as time and temperature in a laboratory type
setting) as opposed to observational studies, where nature determines the X levels, and we may not be able to
reproduce the same conditions repeatedly. This will be covered later.

Spacing of X Levels

The variances of by and by (for given n and o) decrease as the X levels are more spread out, since their
n _

variances are inversely related to SS,, = Z(Xi — X)?. However, there are reasons to choose a diverse range of
i=1

X levels for assessing model fit. This is covered in Chapter 4.



Power of Tests

The power of a statistical test refers to the probability that we reject the null hypothesis. Note that when the null
hypothesis is true, the power is simply the probability of a Type | error (). When the null hypothesis is false,
the power is the probability that we correctly reject the null hypothesis, which is 1 minus the probability of a
Type Il error (z=1-f), where 7z denotes the power of the test and £ is the probability of a Type Il error (failing to
reject the null hypothesis when the alternative hypothesis is true). The following procedure can be used to
obtain the power of the test concerning the slope parameter with a 2-sided alternative.

1) Write out null and alternative hypotheses: H, : g, = S, H,:B8 # B

2) Obtain the non-centrality measure, the standardized distance between the true value of £, and the value
under the null hypothesis (fi0): 6 = M
ofb}
3) Choose the probability of a Type I error (a=0.05 or ¢=0.01)
4) Determine the degrees of freedom for error: df = n-2

5) Using R, we can obtain the power as: Power = 1-pf(qf(1-a,1,n-2),1,n-2,5%)

Note that the power increases as the non-centrality measure increases for a given degrees of freedom, and as the
degrees of freedom increases for a given non-centrality measure.

Confidence Interval for E{Y,}=4+8Xx

When we wish to estimate the mean at a hypothetical X value (within the range of observed X values), we can
use the fitted equation at that value of X=X, as a point estimate, but we have to include the uncertainty in the
regression estimators to construct a confidence interval for the mean.

Parameter: E{Y,}= 4, + £, X,

Estimator: Yn =b, +b X,

We can obtain the variance of the estimator (as a function of X=Xy,) as follows:

o’ {YAh} =o’{b, +b X, } = o’ {b }+ X o {b }+ 22X, ofb,. b}

1 X o’ o’ X 1 (X —Y)Z
=0’ =+ + X} +2X, | - R4 R SAT A
N SS,. SS,., SS,., n SS.




. . ’ 1 (X, -X)?
Estimated standard error of estimator: s{Yn}= |[MSE| ~+ ————"—

Z(Xi _Y)z

i=1

Example: Bollywood Movie Data:

Suppose we are interested in mean Box Office Collection of all possible movies with budgets of X;, = 20

X, =20 b,=-1.9549 b =12510 Yn=-1.9549+1.2510(20)=23.07
MSE =s® =1333.29 n=55 X, =20 X =39.04 SS, =72165.43

' 20-39.04)°

S{Y h} = 1333.29{5—2+ ( 165 43) ] = \/1333.29(0.02321) = /30.94 =5.56

w ~t(n—2) which can be used to construct confidence intervals for the mean response at specific X
s{Yn}

levels, and tests concerning the mean (tests are rarely conducted).

(1-0)100% Confidence Interval for E{Yp}:

Yntt@l—al/2n—2)s{Y 1}

Example: Bollywood Movie Data:

23.07 +2.0057(5.56) = 23.07 +11.15 = (11.92,34.22)

Predicting a Future Observation When X is Known

If B,,B,,0 were known, we’d know that the distribution of responses when X=Xp is normal with mean
B, + B, X, and standard deviation o . Thus, making use of the normal distribution (and equivalently, the

empirical rule) we know that if we took a sample item from this distribution, it is very likely that the value will
fall within 2 standard deviations of the mean. That is, we would know that the probability that the sampled item

lies within the range (8, + B X, —20, B, + B X, +20) is approximately 0.95.



In practice, we don’t know the mean S, + £, X, or the standard deviation o . However, we have just

constructed a (1-a)100% Confidence Interval for E{Y}, and we have an estimate of o (s). Intuitively, we can
approximately use the logic of the previous paragraph (with the estimate of o) across the range of believable
values for the mean. Then our prediction interval spans the lower tail of the normal curve centered at the lower
bound for the mean to the upper tail of the normal curve centered at the upper bound for the mean.

The prediction error for the new observation is the difference between the observed value and its predicted

value: Y, —Y n. Since the data are assumed to be independent, the new (future) value is independent of its

predicted value, since it wasn’t used in the regression analysis. The variance of the prediction error can be
obtained as follows:

o*{pred}=c*{Y, _YAh}ZUZ{Yh}JFUZ{YAh}CG2 +o? %+‘n(Xh _Xlz
Z(Xi—X)z
=0’ 1+1+ n(xh X)’
D (X =X)?

and an unbiased estimator is:

BRVAY:
s?{pred} = Msg| 1+ L 4 Ka=X)"

t Xy

Example: Bollywood Movie Data:

Suppose interested in predicting Box Office Collection of a single new movie with a budget of X;, = 20

X, =20 b,=-1.9549 b =12510 Yn=-1.9549+1.2510(20)=23.07
MSE =s® =1333.29 n=55 X, =20 X =39.04 SS, =72165.43

20-39.04)°
s{pred} = [1333.29 TR ) = \/1333.29(1.02321) = \/1364.24 = 36.94
55  72165.43




(1-2)100% Prediction Interval for New Observation When X=X

E-l— (Xh _Y)Z

Yntt(a/2;n—2) [MSE|1+=+—
Ty X=X’
i=1 _

Example: Bollywood Movie Data:

23.07 +2.0057(36.94) = 23.07 + 74.08 = (-51.01,97.15) = (0,97.15)

Note: Unlike a Confidence Interval for a mean, which has a standard error that gets smaller, as the sample size
increases, the Prediction Interval for a single observation cannot be smaller than s, the residual standard
deviation. When that is large, prediction intervals will be wide, and often of little use.

It is a simple extension to obtain a prediction for the mean of m new observations when X=Xy. The sample mean
2
of m observations is Z— and we get the following variance for the error in the prediction mean.
m

__ 2
s?{predmean} = MSE 1+1+M

HERD NCHES %

(1-2)100% Prediction Interval for the Mean of m New Observations When X=Xp,

1+ (Xh—X)2

1
HED NS 9%

Yntt(a/2;n-2) |IMSE

(1-2)100% Confidence Band for the Entire Reqgression Line (Working-Hotelling Method)

Y ntWs{Y n} W = J2F(1—a;2,n-2)




Example: Bollywood Movie Data:

W = [2F (0.95;2,55-2) = /2(3.1716) = 2.5186

Selected values of X;, , estimates, standard errors, and half-widths for confidence band:

X_h Y-hat [SE{Y-hat}/W*SE{Yh}
5 4.30 6.82 17.18
20 23.06 5.38 13.55
40 48.08 5.07 12.78
60 73.10 6.76 17.02
80 98.12 9.42 23.73

100 123.14 | 12.45 31.35

Working-Hotelling 95% Confidence Bands
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Analysis of Variance Approach to Regression

Observed Data, Fitted Line, Overall Mean
300
+
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3 --"
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o
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Consider the total deviations of the observed responses from the mean: Y, —Y . When these terms are all
squared and summed up, this is referred to as the total sum of squares (SSTO).

SSTO=> (Y, -Y)?
i=1

In the plot, these are the vertical distance of the points to the purple line just below 50. The more spread out the
observed data are, the larger SSTO will be.

Now consider the deviation of the observed responses from their fitted values based on the regression model:

Y, -Yi =Y, —(b, +b,X;) =¢€,. When these terms are squared and summed up, this is referred to as the error
sum of squares (SSE). We’ve already encountered this quantity and used it to estimate the error variance.

SSE =) (Y, -Yi)’
i=1

When the observed responses fall close to the regression line, SSE will be small. When the data are not near the
line, SSE will be large.

Finally, there is a third quantity, representing the deviations of the predicted values from the mean. Then these
deviations are squared and summed up, this is referred to as the regression sum of squares (SSR).

sm:i(\?i—\?)z

The error and regression sums of squares sum to the total sum of squares: SSTO = SSR + SSE which can be
seen as follows:



Yi—?:Yi—?'l‘Yi—Yi:(Yi—Yi)'l‘(Yi—?) =

Y =YY =[(Y, =Y )+ (V=) = (Y, Y1) + (Y=Y )2+ 20, =Y )Y =) =

SSTO='(Y, -V’ = Z[(\(i LYY (YY) 4 2(Y, —YAi)(\?i—\?)} _

i(vi Y0 +i(\?i—\?)2 +zi(\(i Y)Y i-Y) =i(\(i —Y))? +i(\?i—\?)2 +2iei(b0 +h X, -Y) =

DY, —YAi)2+i(YAi—?)2+2|:boiei +blzn:eixi —Vzn:ei} :Z(Yi —YAi)2+i(YAi—?)2+2(O):

n
i=1 i=1 i=1

DY, =Yi)?+ Y (Yi-Y)? = SSE + SSR
i=1 i=1

The last term was O since > e, => e X, =0,

Each sum of squares has associated with degrees of freedom. The total degrees of freedom is dfr = n-1. The
error degrees of freedom is dfg = n-2. The regression degrees of freedom is dfg = 1. Note that the error and
regression degrees of freedom sum to the total degrees of freedom: n—-1=1+(n-2).

Mean squares are the sums of squares divided by their degrees of freedom:

MSR:%_R MSEziE2

Note that MSE was our estimate of the error variance, and that we don’t compute a total mean square. It can be
shown that the expected values of the mean squares are:

E{MSE}=0?  E{MSR}=o?+ ﬂfzn:(xi —X)?

Note that these expected mean squares are the same if and only if 3=0.

The Analysis of Variance is reported in tabular form:

Source df SS MS F
Regression 1 SSR MSR=SSR/1 F=MSR/MSE
Error n-2 SSE MSE=SSE/(n-2)

C Total n-1 SSTO

Example: Bollywood Movie Data:

Total: SSTO=)'(Y,~Y) =S5, =183601.1 df,, =55-1=54
i=1
2 278.6)°
SSxv :183601_1—M
SS,, 72165.43
882, (90278.6)°

- =112936.7 df, =1
SS, 7216543

n A \2
Error (Residual): SSE = Z(Yi —Yi) =SS, — =70664.4 df. =55-2=53
i=1

n /na _\?
Regression: SSR = Z(Yi—Yj

i=1




ANOVA Table:

ANOVA

df SS MS F
Regression 1 112936.7| 112936.7( 84.70529
Residual 53| 70664.39| 1333.29
Total 54| 183601.1

F Test of £ =0 versus B #0

As a result of Cochran’s Theorem (stated on page 76 of text book), we have a test of whether the dependent
variable Y is linearly related to the predictor variable X. This is a very specific case of the t-test described
previously. Its full utility will be seen when we consider multiple predictors. The test proceeds as follows:

o Null hypothesis: H, : g, =0
e Alternative (Research) Hypothesis: H, : g, #0

e Test Statistic: TS : F*= @
MSE

e Rejection Region: RR: F*>F(1-a;1,n—2)
eP-value: P{F(,n-2) > F*}

Critical values of the F-distribution (indexed by numerator and denominator degrees’ of freedom) are given in
Table B.4, pages 1340-1345, and on class website, and can be obtained simply in EXCEL or R (see
Introduction). P-values must be obtained in EXCEL or R.

Note that this is a very specific version of the t-test regarding the slope parameter, specifically a 2-sided test of
whether the slope is 0. Mathematically, the tests are identical:

Y -X =) DX s e
B0 X=X \/Z(Xi—x)2 _SSk _ 1 _JMsR
b} MSE _ - JMSE JMSE JMSE JMSE
Z(Xi_x)2
*Z_M_SR_ *
(1) = MSE

Further, the critical values are equivalent: (t(l—a/2;n-2))> =F(1-a;1,n-2),

check this from the two tables. Thus, the tests are equivalent.



Example: Bollywood Movie Data:

H,:8,=0 H,:8 =0
MSR  112936.7
MSE  1333.29
P —value: P(F(1,53) > 84.71) =.0000

Test Statistic; F*=

=84.71 F(0.95;1,55—-2)=4.023

Confirm the t-statistic, when squared, gives the F-statistic, and that the critical t-value for the 2-sided t-test is
the same as the critical F-value.

General Linear Test Approach

This is a very general method of testing hypotheses concerning regression models. We first consider the the
simple linear regression model, and testing whether Y is linearly associated with X. We wishto test H, : 5, =0

vs H,: 5, #0.

Full Model

This is the model specified under the alternative hypothesis, also referred to as the unrestricted model. Under
simple linear regression with normal errors, we have:

Y, =6, + B X +e&

Using least squares (and maximum likelihood) to estimate the model parameters and the fitted values

(Yi =b, +b,X,), we obtain the error sum of squares for the full model:

SSE(F) = 2(Y, (0, +B,X,))? = X(Y, ~Y1)? = SSE

Reduced Model

This the model specified by the null hypothesis, also referred to as the restricted model. Under simple linear
regression with normal errors, we have:

Y. =5, +0X; +& = [, +¢
Using least squares (and maximum likelihood) to estimate the model parameter, we obtain Y as the estimate of

So, and have b, = Y as the fitted value for each observation. We then obtain the following error sum of squares
under the reduced model:

SSE(R) = > (Y; —by)* = (Y, -Y)? =SSTO



Test Statistic

The error sum of squares for the full model will always be less than or equal to the error sum of squares for
reduced model, by definition of least squares. The test statistic will be:

SSE(R) — SSE(F)
df, —df
SSE(F)
df,

models. We will use this method throughout course.
For the simple linear regression model, we obtain the following quantities:

F*= where df,,df. are the error degrees of freedom for the full and reduced

SSE(F)=SSE  df.=n-2  SSE(R)=SSTO  df, =n-1

thus the F-Statistic for the General Linear Test can be written:

SSE(R)—SSE(F)  SSTO-SSE  ssR
- df, —dfe _(n-)-(n-2) 1 _ MSR
SSE(F) SSE SSE ~ MSE
df . n-2 n-2

Thus, for this particular null hypothesis, the general linear test “generalizes” to the F-test.

Example: Bollywood Movie Data:

Suppose we wish to test whether on average, Box office collection is equal to the movie’s budget.

E{Yj=X = H;:4=0 g=1 = SSE(R)zZn:(Yi—Xi)2=78593.4 df, =n=55

i=1

SSE(F)=70664.4 df_ =55—2=53
SSE(R)—SSE(F) 78593.4—70664.4

w__ df-dfe _ 55-53 39645 _ e o
PSR T Toted  ~1aa 29° F(095:258)=3172 Pvalue=0.0507
df 53

Descriptive Measures of Association

Along with the slope, Y-intercept, and error variance; several other measures are often reported.

Coefficient of Determination (r?)

The coefficient of determination measures the proportion of the variation in Y that is “explained” by the
regression on X. It is computed as the regression sum of squares divided by the total (corrected) sum of squares.
Values near 0 imply that the regression model has done little to “explain” variation in Y, while values near 1
imply that the model has “explained” a large portion of the variation in Y. If all the data fall exactly on the fitted
line, r’=1. The coefficient of determination will lie beween 0 and 1.



rzzﬂzl_ﬁ 0<r?<1
SSTO SSTO

Coefficient of Correlation (r)

The coefficient of correlation is a measure of the strength of the linear association between Y and X. It will
always be the same sign as the slope estimate (b1), but it has several advantages:

e In some applications, we cannot identify a clear dependent and independent variable, we just wish to
determine how two variables vary together in a population (peoples heights and weights, closing stock
prices of two firms, etc). Unlike the slope estimate, the coefficient of correlation does not depend on which
variable is labeled as Y, and which is labeled as X.

e The slope estimate depends on the units of X and Y, while the correlation coefficient does not.

e The slope estimate has no bound on its range of potential values. The correlation coefficient is bounded by —

1 and +1, with higher values (in absolute value) implying stronger linear association (it is not useful in
measuring nonlinear association which may exist, however).

st - IO s,
IX =X, =-Y) Sy

-1<r<1

where sgn(by) is the sign (positive or negative) of by, and s, ,s, are the sample standard deviations of X and Y,
respectively.

Example: Bollywood Movie Data:

2 _ SSR _112936.7 _
SSTO 1836011
oSSy _ 90278.06 _
JSSSSyy  [72165.43(183601.1)

0.6151

Approximately 61.5% of the variation in box-office collection is “explained” by the film’s budget.



Tests Concerning the Population Correlation p

o\, } _ %
o {Yl} o {YZ} 0,0,
Point (maximum likelihood) Estimator (aka Pearson product-moment correlation coefficient):
X, = X)(Y, =Y
DX=xX)-Y)
I, = = -1<r,<1
2 55,8

Z(x X) Z(Y ¥y

Parameter: p,, =

Testing H,:p,=0 vs H,:p,#0:

Test Statistic: t =2

12
Reject H, if ‘t‘ >t(1-(a/2);n-2)
For 1-sided tests:
H,ip,>0: RejectH, if t" >t(1-a;n-2)
H,:p,<0: RejectH, if t' <-t(1-a;n-2)
This test is mathematically equivalent to t-test for H, : , =0

Example: Bollywood Movie Data:

Hy:p,=0 vs H,:p,#0:

r,\/N—2 7843\/55 _
JI-rZ  N1-.6151
Reject H, if [t'|>t(1-(/2);n—2)=1(.975,55—2) = 2.0057

Test Statistic: t =

(1-a)100% Confidence Inteval for p

Problem: When p,, # 0, sampling distribution of r,, is messy

Fisher's z transformation: z' = 1 In 1+1,
2 1-r,

approx
For large n (typically at least 25): z' ~ (g j §=%In(1+p12j

-3 1-py,
Compute an approximate (1—a)100% Cl for £ and transform back for p:
1
1-2)100% Clfor ¢: z'+z(1—-(/2))|——
(1-a)100% Clfor ¢ 2 2(1-(af2),
2¢& _1

After computing CI for £, use identity p,, = —




Example: Bollywood Movie Data:

j =10564

Fisher's z transformation: z' = % In (“ "o } _1 In (M

1-r,) 2 \1-0.7843

(1-a)100% Cl for ¢ : z'+z(1-(/2)) ni—?,

10564i1.96‘/$ = 10564+0.2718 = (0.7846,13282)

p2s _1  g2078%) _q p2e _1  g203282) _q

P = 0% 11 = 2007836 ¢ =0.6554 Prous = o2 1] = 020328 1 =0.8688

= 95% ClI for p = (0.6554,0.8688)

Issues in Applying Reqgression Analysis

e \When using regression to predict the future, the assumption is that the conditions are the same in future as
they are now. Clearly any future predictions of economic variables such as tourism made prior to September
11, 2001 would not be valid.

¢ Often when we predict in the future, we must also predict X, as well as Y, especially when we aren’t
controlling the levels of X. Prediction intervals using methods described previously will be too narrow (that
is, they will overstate confidence levels).

e Inferences should be made only within the range of X values used in the regression analysis. We have no
means of knowing whether a linear association continues outside the range observed. That is, we should not
extrapolate outside the range of X levels observed in experiment.

e Even if we determine that X and Y are associated based on the t-test and/or F-test, we cannot conclude that
changes in X cause changes in Y. Finding an association is only one step in demonstrating a causal
relationship.

e When multiple tests and/or confidence intervals are being made, we must adjust our confidence levels. This
is covered in Chapter 4.

¢ When X; is a random variable, and not being controlled, all methods described thus far hold, as long as the
Xi are independent, and their probability distribution does not depend on 3, 3,,c°.



