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Introduction/Review 

 
Mathematical Operations – Summation Operators 

 
Consider sequences of numbers and numeric constants. 
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Sum of a sequence of Variables:  ...

Sum of a sequence of Constants: ...

Sum of a sequence of Sums of Variables:  
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nearly Transformed Variables: 

Sum of a sequence of (Individually) Linearly Transformed Variables: 

Sum of a sequence of Sums of Multiples of Variable
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Example – Opening Weekend Box-Office Gross for Harry Potter Films 

 
       Date        Movie Gross($M) Theaters PerTheater($K) Euros/Dollar Gross (€M)

11/16/2001 Sorcerer's Stone 90.29 3672 24.59 1.1336 102.36

11/15/2002 Chamber of Secrets 88.36 3682 24.00 0.9956 87.97

6/4/2004 Prisoner of Azkaban 93.69 3855 24.30 0.8135 76.21

11/18/2005 Goblet of Fire 102.69 3858 26.62 0.8496 87.24

7/13/2007 Order of the Phoenix 77.11 4285 18.00 0.7263 56.00

7/17/2009 Half-Blood Prince 77.84 4325 18.00 0.7085 55.15

11/19/2010 Deathly Hallows: Part I 125.02 4125 30.31 0.7353 91.93

7/15/2011 Deathly Hallows: Part II 169.19 4375 38.67 0.7042 119.14

Total 824.18 32,177.00 676.00

 

 

1

1

Total Gross ($Millions): 90.29 88.36 ... 169.19 824.18

Total Gross (Millions of Euros): 1.1336(90.29) 0.9956(88.36) ... 0.7042(169.19) 676.00
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Question: What is the average gross per theater for all movies? Is it the same as the average of individual 

movies per theater?  

 

 

Basic Probability 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example – New York City Sidewalk Cafes 
 
Cafes classified by size (<100 ft

2
, 100-199, 200-299, 300-399, 400-499, 500-599, ≥600) and type (enclosed, unenclosed).  

 

Type\Size <100 100-199 200-299 300-399 400-499 500-599 ≥600 Total

Enclosed 2 18 31 30 23 7 9 120

Unenclosed 98 318 200 118 63 26 40 863

Total 100 336 231 148 86 33 49 983  
 

Let A1 ≡ Size < 300ft
2
 and A2 ≡ Type = Unenclosed. 
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Univariate Random Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
1Discrete (RV   takes on masses of probability at specific points ,..., ):

1,...,      often written  where  is specific point 

Continuous (RV   take

Probability (Density) Functions
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s on density of probability over ranges of points on continuum)

 density at    (confusing notation, often written  where  is specific point and  is RV)

Expected Value (Long Run Average Outcome, 
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    Continuous: 

,  constants  

aka Mean)

Discrete: 

Variance (Average Squared Distance from Expected Value)
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Equivalently (Computationally easier): 
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Example – Total Goals per Game in National Women’s Soccer League Games (2013) 

 

Goals (y) Frequency Probability=p(y) y*p(y) (y^2)*p(y)

0 4 0.0455 0.0000 0.0000

1 16 0.1818 0.1818 0.1818

2 26 0.2955 0.5909 1.1818

3 20 0.2273 0.6818 2.0455

4 9 0.1023 0.4091 1.6364

5 6 0.0682 0.3409 1.7045

6 5 0.0568 0.3409 2.0455

7 2 0.0227 0.1591 1.1136

Total 88 1 2.7045 9.9091  
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Note: Using more common notation, where y represents a specific outcome (number of goals) and p(y) represents the probability of a 

game having y goals 
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Expected Value (Mean): ( ) 0(.0455) ... 7(.0227) 2.7045

Variance: ( ) 9.9091 2.7045 2.5945

Standard Deviation: 2.5945 1.6108
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Bivariate Random Variables 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example – Goals by Half  Y=Home Club Z=Away Club – Irish Premier League (2012) 
 

H\A Freq 0 1 2 3 4 5 Total(Home)

0 105 67 20 8 0 0 200

1 75 41 18 1 0 0 135

2 26 17 1 0 1 0 45

3 6 3 3 0 0 0 12

4 1 1 0 0 0 0 2

5 2 0 0 0 0 0 2

Total(Away) 215 129 42 9 1 0 396

H\A Prob 0 1 2 3 4 5 Total(Home)

0 0.26515 0.16919 0.05051 0.02020 0.00000 0.00000 0.50505

1 0.18939 0.10354 0.04545 0.00253 0.00000 0.00000 0.34091

2 0.06566 0.04293 0.00253 0.00000 0.00253 0.00000 0.11364

3 0.01515 0.00758 0.00758 0.00000 0.00000 0.00000 0.03030

4 0.00253 0.00253 0.00000 0.00000 0.00000 0.00000 0.00505

5 0.00505 0.00000 0.00000 0.00000 0.00000 0.00000 0.00505

Total(Away) 0.54293 0.32576 0.10606 0.02273 0.00253 0.00000 1.00000  
 

 

 

 

 

 

 

   

Random Variables (Outcomes observed on same unit) ,  (  possibilities for ,  for ) :

, 1,...

Joint Probability Function - Discrete Case (Generalizes to Densities in Continuous Case)
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, ; 1,..., Probability  and 

Often written as ,  for specific outcomes ,
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s t

m

s s t

t

k t m Y Y Z Z

g y z y z

f Y g Y Z


  

    
1

lity ,     Probability      Often denoted ( ), ( )

Continuous: Replace summations with integrals
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| 0; 1,..., Probability  given      Often denoted |

,
| 0; 1,...,          Probability  given     Often denoted h |
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s t

s t t s t

t

s t

t s s t s

s

g Y Z
f Y Z h Z s k Y Y Z Z f y z

h Z

g Y Z
h Z Y f Y t m Z Z Y Y z y

f Y

    

    

Home Team 

Distribution: f(y) 

Away Team Distribution:  g(z) 



To obtain the conditional distribution of Away goals given a particular number of Home Goals, take the cell probabilities and divide 

by the total row probability. Similarly, for the conditional distribution of Home goals given Away goals, divide cell by column total. 

 

Conditional Distribution of Home goals given Away Goals=0 ≡ f(y|z=0): 

 

     

     

0.26515 0.18939 0.06566
0 | 0 0.48837 1| 0 0.34884 2 | 0 0.12093

0.54293 0.54293 0.54293

0.01515 0.00253 0.00505
3 | 0 0.02791 4 | 0 0.00465 5 | 0 0.00930

0.54293 0.54293 0.54293

Note: 0.48837

f y z f y z f y z

f y z f y z f y z

           

           

 0.34884 0.12093 0.02791 0.00465 0.00930 1    
 

Covariance, Correlation, and Independence 
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2 2 2

Average Home Goals per Half: 0(0.50505) ... 5(.00505) 0.70455

Average Away Goals per Half: 0(0.54293) ... 5(.00000) 0.61616

0 (0.50505) ... 5 (.00505) 1.27525

0 (0.54293) ... 5 (.00000) 0.9
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0(0)(0.26515) 0(1)(0.16919) ... 5(5)(0.00000) 0.39647

1.27525 0.70455 0.77887 0.77887 0.88254

0.99495 0.61616 0.61529 0.61529 0.78441
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,

Equivalently (for computing): ,

Note:  Discrete: ,     (Replace summati

Covariance - Average of Product of Distances from Means
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ons with integrals in continuous case)

, , ,  are constants  , ,
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Standardized Random Variables  (Scaled to have mean=0, variance=1)  '

,
, ', ' 1 , 1

, , 0 ,  are uncorrelated (not necessarily

or measure of association strength
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 independent)

,  are independent if and only if , 1,..., ; 1,...,

If ,  are jointly normally distributed and , 0 then ,  are independent

Independent Random Variables

s t s tY Z g Y Z f Y h Z s k t m

Y Z Y Z Y Z

  





To see that Home and Away Goals are NOT independent (besides simply observing the correlation is not zero), you can check 

whether the joint probabilities in the cells of the joint distribution are all equal to the product of their row and column totals (product 

of the marginal probabilities). 

 

For the case where both Home and Away goals are 0: 

 

 ( 0, 0) 0.26515 ( 0) 0.50505 0 0.54293

0.26515 0.50505(0.54293) 0.27421

g y z f y h z      

   

 

 

Linear Functions of Random Variables 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Goals, Difference (Home – Away), and Average Goals by Half    Y1 = Home  Y2 = Away: 
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Linear Functions of INDEPENDENT Random Variables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: These do not apply for the soccer data, but are used repeatedly to obtain properties of estimators in linear 

models. 
 

Central Limit Theorem 

 
When random samples of size n are selected from any population with mean m and finite variance s

2
, the 

sampling distribution of the sample mean will be approximately normally distributed for large n: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z-table (and software packages) can be used to approximate probabilities of ranges of values for sample means, 

as well as percentiles of their sampling distribution  
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Probability Distributions Widely Used in Linear Models 
 

 

Normal (Gaussian) Distribution 

 
• Bell-shaped distribution with tendency for individuals to clump around the group median/mean 

• Used to model many biological phenomena 

• Many estimators have approximate normal sampling distributions (see Central Limit Theorem) 

• Notation: Y~N(,
2
) where  is mean and 

2 
is variance 

 

 

 

 

 

 

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be 

used to obtain probabilities once values have been standardized to have mean 0, and standard deviation 1. 
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EXCEL Commands for Probabilities and Quantiles (Default are lower tail areas): 

 

 Lower tail (cumulative) probabilities:   =norm.dist(y,mu,sigma,True) 

 Upper tail probabilities:  =1 - norm.dist(y,mu,sigma,True) 

 p
th

 quantile:  =norm.inv(p,mu,sigma)       0<p<1 



Second Decimal Place of Z 

 

 

  F(z) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Integer 

and first 

decimal 

place 

Table gives F(z) = P(Z ≤ z) for a wide range of z-values 

(0 to 3.09 by 0.01) 

 

Notes: 

 

 P(Z ≥ z) = 1-F(z) 

 P(Z ≤ -z) = 1-F(z) 

 P(Z ≥ -z) = F(z) 

 



R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling 

 
 
 

 

  

# Obtain P(Y<=80|N(mu=100,sigma=20)) 

# pnorm gives lower tail probabilities (cdf) for a normal distribution 

pnorm(80,mean=100,sd=20) 

 

# Obtain P(Y>=80|N(mu=100,sigma=20)) 

# lower=FALSE option gives upper tail probabilities 

pnorm(80,mean=100,sd=20,lower=FALSE) 

 

# Obtain the 10th percentile of a Normal Density with mu=100, sigma=20 

qnorm(0.10, mean=100, sd=20) 

 

# Obtain a plot of a Normal Density with mu=100, sigma=20 

# dnorm gives the density function for a normal distribution at point(s) y 

# type="l" in plot function joins the points on the density function with a line 

# The polygon command fills in the area below y=80 in green 

 y <- seq(40,160,0.01) 

fy <- dnorm(y,mean=100,sd=20) 
 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\norm_dist1.png")  

 

plot(y,fy,type="l", 

main=expression(paste("Normal(",mu,"=100,",sigma,"=20)"))) 

polygon(c(y[y<=80],80),c(fy[y<=80],fy[y==40]),col="green") 

 

dev.off()   # Close the .png file  

 

# Obtain a random sample of 1000 items from N(mu=100,sigma=20) 

# rnorm gives a random sample of size given by the first argument 

# Obtain sample mean, median, variance, standard deviation 

 

set.seed(54321)       # Set the seed for random number generator for reproducing data 

y.samp <- rnorm(1000,mean=100,sd=20) 

mean(y.samp) 

median(y.samp) 

var(y.samp) 

sd(y.samp) 

 

# Plot a histogram of the sample values (Default bin size) 

hist(y.samp, main = expression(paste("Sampled values, ", mu, "=100, ", sigma, 

    "=20"))) 

 

# Allow for more bins 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\norm_dist2.png") 

 

hist(y.samp, breaks=23, 

main = expression(paste("Sampled values, ", mu, "=100, ", sigma, 

    "=20"))) 

 

# Add normal density (scaled up by (n=1000 x binwidth=5), since a freq histogram) 

# Makes use of y and fy defined above 

 

lines(y,1000*5*fy) 

 

dev.off()   # Close the .png file 



Numeric Output from R Program 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the first 3 values are easily computed using the z-table. The last 4 values would take lots of 

calculations based on a sample of 1000 observations. 
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Cell Result

A1 0.158655

A2 0.841345

A3 74.36897  
 

 

 

 

 

 

 

 

 

>  

> pnorm(80,mean=100,sd=20) 

[1] 0.1586553 

>  

> pnorm(80,mean=100,sd=20,lower=FALSE) 

[1] 0.8413447 

>  

> qnorm(0.10, mean=100, sd=20) 

[1] 74.36897 

 

> mean(y.samp) 

[1] 98.80391 

> median(y.samp) 

[1] 98.95658 

> var(y.samp) 

[1] 407.2772 

> sd(y.samp) 

[1] 20.18111 

EXCEL Output: 
 

 Cell A1:  =NORM.DIST(80,100,20,TRUE) 

 Cell A2:  =1-NORM.DIST(80,100,20,TRUE) 

 Cell A3:  =NORM.INV(0.1,100,20) 



Graphics Output from R Program 

 

 

 

 

 

 

 

 



Chi-Square Distribution 

 

• Indexed by “degrees of freedom ()” X~
2
 

• Z~N(0,1)  Z
2
 ~1

2 
   

   
 

• Assuming Independence: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be 

used to obtain certain critical values for given upper and lower tail areas. 
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EXCEL Commands for Probabilities and Quantiles (Default are upper tail areas): 

 

 Lower tail (cumulative) probabilities:   =1-chidist(y,df) 

 Upper tail probabilities:  = chidist(y,df) 

 p
th

 quantile:  =chiinv(1-p,df)       0<p<1 



Critical Values for Chi-Square Distributions (Mean=, Variance=2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

df\F(x) 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169



R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling 

 
 
 

 

  

# Obtain P(Y<=5|X2(df=10)) 

# pchisq gives lower tail probabilities (cdf) for a chi-square distribution 

pchisq(5,df=10) 

 

 

# Obtain P(Y>=5|X2(df=10)) 

# lower=FALSE option gives upper tail probabilities 

pchisq(5,df=10,lower=FALSE) 

 

# Obtain the 95th percentile of a Chi-square Density with df=10 

qchisq(0.95,df=10) 

 

# Obtain a plot of a Chi-square Density with df=10 

# dchisq gives the density function for a chi-square distribution at point(s) y 

# type="l" in plot function joins the points on the density function with a line 

# The polygon command fills in the area below y<5 in green 

  

y <- seq(0,30,0.01) 

fy <- dchisq(y,df=10) 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\chisq_dist1.png")  

 

plot(y,fy,type="l", 

main=expression(paste(chi^2,"(df=10)"))) 

polygon(c(y[y<=5],5),c(fy[y<=5],fy[y==0]),col="blue") 

 

dev.off()   # Close the .png file  

 

 

# Obtain a random sample of 1000 items from Chi-square(df=10) 

# rchisq gives a random sample of size given by the first argument 

# Obtain sample mean, median, variance, standard deviation 

 

set.seed(54321)       # Set the seed for random number generator for reproducing data 

y.samp <- rchisq(1000,df=10) 

mean(y.samp) 

median(y.samp) 

var(y.samp) 

sd(y.samp) 

 

# Plot a histogram of the sample values (Default bin size) 

hist(y.samp, main = expression(paste("Sampled values, ", chi^2, "(df=10)"))) 

 

# Allow for more bins 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\chisq_dist2.png") 

 

hist(y.samp[y.samp<=30], breaks=29, 

main = expression(paste("Sampled values, ", chi^2, "(df=10)"))) 

 

# Add chi-square density (scaled up by (n=1000 x binwidth=1), since a freq histogram) 

# Makes use of y and fy defined above 

 

lines(y,1000*1*fy) 

 

dev.off()   # Close the .png file 



Numeric Output from R Program 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for the chi-square distribution, the mean is the degrees of freedom () and the variance is 2. The 

sample mean and variance are close to 10 and 20. As the sample size gets larger, they will tend to get closer. 

Also notice that the median is lower than the mean (right-skewed distribution).  

 

Confirm that the 95
th

-percentile is consistent with the table value. 

 

 

 

 

Cell Result

A1 0.108822

A2 0.891178

A3 18.30704  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

>  

> pchisq(5,df=10) 

[1] 0.108822 

>  

> pchisq(5,df=10,lower=FALSE) 

[1] 0.891178 

>  

> qchisq(0.95,df=10) 

[1] 18.30704 

 

> mean(y.samp) 

[1] 9.834778 

> median(y.samp) 

[1] 9.060967 

> var(y.samp) 

[1] 21.78964 

> sd(y.samp) 

[1] 4.667937 

EXCEL Output: 
 

 Cell A1:  =1-CHIDIST(5,10) 

 Cell A2:  =CHIDIST(5,10) 

 Cell A3:  =CHIINV(0.05,10) 



Graphics Output from R Program 

 

 
 

 
 

 



Student’s t-Distribution 

 

• Indexed by “degrees of freedom )” X~t 

• Z~N(0,1),    X~n
2
 

• Assuming Independence of Z and X: 

 

 
 

 

 

 

 

 

 

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be 

used to obtain certain critical values for given upper tail areas (distribution is symmetric around 0, as N(0,1) is. 
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EXCEL Commands for Probabilities and Quantiles (Default are lower tail areas): 

 

 Lower tail (cumulative) probabilities:   =t.dist(y,df,TRUE) 

 Upper tail probabilities:  =1- t.dist(y,df,TRUE) 

 p
th

 quantile:  =t.inv(p,df)       0<p<1 



Critical Values for Student’s t-Distributions (Mean=0, Variance = ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

df\F(t) 0.9 0.95 0.975 0.99 0.995

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

50 1.299 1.676 2.009 2.403 2.678

60 1.296 1.671 2.000 2.390 2.660

70 1.294 1.667 1.994 2.381 2.648

80 1.292 1.664 1.990 2.374 2.639

90 1.291 1.662 1.987 2.368 2.632

100 1.290 1.660 1.984 2.364 2.626



 

R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling 

 
 
 

 

  

# Obtain P(Y<=1|t(df=8)) 

# pt gives lower tail probabilities (cdf) for a t distribution 

pt(1,df=8) 

 

 

# Obtain P(Y>=1|t(df=8)) 

# lower=FALSE option gives upper tail probabilities 

pt(1,df=8,lower=FALSE) 

 

# Obtain the 90th percentile of a t Density with df=8 

qt(0.90,df=8) 

 

# Obtain a plot of a t Density with df=8 

# dt gives the density function for a tdistribution at point(s) y 

# type="l" in plot function joins the points on the density function with a line 

# The polygon command fills in the area below y<1 in red 

 y <- seq(-4,4,0.01) 

fy <- dt(y,df=8) 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\t_dist1.png")  

plot(y,fy,type="l", 

main="t(df=8)") 

polygon(c(y[y<=1],1),c(fy[y<=1],fy[y==-4]),col="red") 

dev.off()   # Close the .png file  

 

 

# Obtain a random sample of 1000 items from t(df=8) 

# rt gives a random sample of size given by the first argument 

# Obtain sample mean, median, variance, standard deviation 

 

set.seed(54321)       # Set the seed for random number generator for reproducing data 

y.samp <- rt(1000,df=8) 

mean(y.samp) 

median(y.samp) 

var(y.samp) 

sd(y.samp) 

 

# Plot a histogram of the sample values (Default bin size) 

hist(y.samp, main ="Sampled values, t(df=8)") 

 

# Allow for more bins 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\t_dist2.png") 

 

hist(y.samp[abs(y.samp)<=4], breaks=31, 

main ="Sampled values, t(df=8)") 

 

 

# Add t density (scaled up by (n=1000 x binwidth=0.25), since a freq histogram) 

# Makes use of y and fy defined above 

 

lines(y,1000*0.25*fy) 

 

dev.off()   # Close the .png file 



Numeric Output from R Program 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for the t  distribution, the mean is 0, and the variance is . The sample mean and variance are 

close to 0 and 8/6=1.333. As the sample size gets larger, they will tend to get closer.  

 

Confirm that the 90
th

-percentile is consistent with the table value. 

 

 

 

Cell Result 

A1 0.826703 

A2 0.173297 

A3 1.396815 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> pt(1,df=8) 

[1] 0.8267032 

>  

> pt(1,df=8,lower=FALSE) 

[1] 0.1732968 

>  

> qt(0.90,df=8) 

[1] 1.396815 

 

> mean(y.samp) 

[1] -0.03754771 

> median(y.samp) 

[1] 0.0007432709 

> var(y.samp) 

[1] 1.43555 

> sd(y.samp) 

[1] 1.198145 

EXCEL Output: 
 

 Cell A1:  =T.DIST(1,8,TRUE) 

 Cell A2:  =1-T.DIST(1,8,TRUE) 

 Cell A3:  =T.INV(0.9,8) 



Graphics Output from R Program 

 

 
 

 



F-Distribution 
 

• Indexed by 2 “degrees of freedom (1,2)” W~F1,2 

• X1 ~
2
,    X2 ~

2
 

• Assuming Independence of X1 and X2: 
 

 

 

 

 

 

 

 

 

 

Probabilities can be obtained from software packages (e.g. EXCEL, R, SPSS, SAS, STATA). Tables can be 

used to obtain certain critical values for given upper tail areas. Lower tails are obtained by taking the reciprocal 

of the upper tail with the degrees of freedom reversed. 
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EXCEL Commands for Probabilities and Quantiles (Default are upper tail areas): 

 

 Lower tail (cumulative) probabilities:   =1-fdist(y,df1,df2) 

 Upper tail probabilities:  = fdist(y,df1,df2) 

 p
th

 quantile:  =finv(1-p,df1,df2)       0<p<1 



 

Critical Values for F-distributions   P(F ≤ Table Value) = 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

df2\df1 1 2 3 4 5 6 7 8 9 10

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95

90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93



R Program to Obtain Probabilities, Percentiles, Density Functions, and Random Sampling 

 
 
 

 

  

# Obtain P(Y<=2.5|F(df1=10,df2=8)) 

# pf gives lower tail probabilities (cdf) for a F distribution 

pf(2.5,df1=10,df2=8) 

 

 

# Obtain P(Y>=2.5|F(df1=10,df2=8))) 

# lower=FALSE option gives upper tail probabilities 

pf(2.5,df1=10,df2=8,lower=FALSE) 

 

# Obtain the 5th and 95th percentiles of a F Density with df1=10,df2=8 

qf(0.05,df1=10,df2=8) 

qf(0.95,df1=10,df2=8) 

 

# Obtain a plot of a F Density with df1=10, df2=8 

# df gives the density function for a F distribution at point(s) y 

# type="l" in plot function joins the points on the density function with a line 

# The polygon command fills in the area below y<2.5 in purple 

 y <- seq(0,10,0.01) 

fy <- df(y,df1=10,df2=8) 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\f_dist1.png")  

plot(y,fy,type="l", 

main="F(df1=10,df2=8)") 

polygon(c(y[y<=2.5],2.5),c(fy[y<=2.5],fy[y==0]),col="purple") 

dev.off()   # Close the .png file  

 

 

# Obtain a random sample of 1000 items from F(df1=10,df2=8) 

# rf gives a random sample of size given by the first argument 

# Obtain sample mean, median, variance, standard deviation 

 

set.seed(54321)       # Set the seed for random number generator for reproducing data 

y.samp <- rf(1000,df1=10,df2=8) 

mean(y.samp) 

median(y.samp) 

var(y.samp) 

sd(y.samp) 

 

# Plot a histogram of the sample values (Default bin size) 

 

hist(y.samp, main ="Sampled values, F(df1=10,df2=8)") 

 

# Allow for more bins 

 

# Output graph to a .png file in the following directory/file) 

png("E:\\blue_drive\\Rmisc\\graphs\\f_dist2.png") 

 

hist(y.samp[y.samp<=10], breaks=19, ylim=c(0,400), 

main ="Sampled values, F(df1=10,df2=8)") 

 

 

# Add chi-square density (scaled up by (n=1000 x binwidth=0.5), since a freq histogram) 

# Makes use of y and fy defined above 

 

lines(y,1000*0.5*fy) 

 

dev.off()   # Close the .png file 



Numeric Output from R Program 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for the F distribution, the mean and variance formulas are given below. 
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2 1 22
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2 1 2 2
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Mean:  2         Variance: 4

2 2 4

  
 

   

 
 

  
 

 

For this case, the mean is 8/6 = 1.333 and the variance is 2048/1440 = 1.422. Again the sample mean and 

variance would tend to be closer to the theoretical values as the sample size increases. 

 

Confirm the 5
th

 and 95
th

 percentiles based on the F-table. Again note that the lower percentile can be obtained 

by taking the reciprocal of the upper percentile with the degrees of freedom reversed. 

 

 

Cell Result

A1 0.896406

A2 0.103594

A3 0.325557

A4 3.347163  
 

 

 

 

 

 

 

 

> pf(2.5,df1=10,df2=8) 

[1] 0.8964058 

> 

> pf(2.5,df1=10,df2=8,lower=FALSE) 

[1] 0.1035942 

> 

> qf(0.05,df1=10,df2=8) 

[1] 0.325557 

> qf(0.95,df1=10,df2=8) 

[1] 3.347163 

 

> mean(y.samp) 

[1] 1.369505 

> median(y.samp) 

[1] 1.059021 

> var(y.samp) 

[1] 1.50341 

> sd(y.samp) 

[1] 1.226136 

EXCEL Output: 
 

 Cell A1:  =1-FDIST(2.5,10,8) 

 Cell A2:  =FDIST(2.5,10,8) 

 Cell A3:  =FINV(0.95,10,8) 

 Cell A4:  =FINV(0.05,10,8) 



Graphics Output from R Program 

 

 

 



Statistical Estimation: Properties 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If an estimator is unbiased (easy to show) and its variance goes to zero as its sample size gets 

infinitely large (easy to show), it is consistent. It is tougher to show that it is Minimum Variance, but 

general results have been obtained in many standard cases. 

 

Statistical Estimation: Methods 
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where is a known function of the parameter  and    are random variables, usually with =0 

Sum of Squares:        Goal: minimiz

Least Squares (LS) Estimators

i i i

i i i

n

i i

i

Y f

f E

Q Y f

 

   




 

    e  with respect to .

In many settings, LSestimators are unbiased and consistent.
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One-Sample Confidence Interval for  
 

 

• Simple Random Sample (SRS) from a population with mean  is obtained. 

• Sample mean, sample standard deviation are obtained 

• Degrees of freedom are df= n-1, and confidence level (1-) are selected 

• Level (1-) confidence interval of form: 

 

 

 

 

 

 

Procedure is theoretically derived based on normally distributed data, but has been found to work well 

regardless for moderate to large n 

 

Example: Mercury Levels Albacore Fish in the Eastern Mediterranean 

 
Sample: n = 34 albacore fish caught in the Eastern Mediterranean Sea. Response is Mercury level (mg/kg). 

Goal: Treating this as a random sample of all albacore in the area, obtain 95% Confidence Interval for the 

population mean mercury level. 

 
Fish 1 2 3 4 5 6 7 8 9 10 11 12

Mercury 1.007 1.447 0.763 2.01 1.346 1.243 1.586 0.821 1.735 1.396 1.109 0.993

Fish 13 14 15 16 17 18 19 20 21 22 23 24

Mercury 2.007 1.373 2.242 1.647 1.35 0.948 1.501 1.907 1.952 0.996 1.433 0.866

Fish 25 26 27 28 29 30 31 32 33 34 Mean StdDev

Mercury 1.049 1.665 2.139 0.534 1.027 1.678 1.214 0.905 1.525 0.763 1.358147 0.440703  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If all possible random samples of size 34 had been obtained, and this calculation had been made for each 

sample, then 95% of all sample Confidence Intervals would contain the true unknown population mean level . 

Thus we can be 95% confident that  is between 1.2043 and 1.5119. Note that 90% and 99% Confidence 

Intervals based on this same sample are as follow (confirm them, and why the lengths differ): 

 

90% Confidence Interval for (1.2302 , 1.4861)       90% Confidence Interval for (1.1516 , 1.5647)     
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1-Sample t-test (2-tailed alternative) 
 

• 2-sided Test:  H0:  = 0       Ha:   0  

• Decision Rule : 

– Conclude   > 0 if  Test Statistic (t*) > t(1-/2;n-1) 

– Conclude   < 0 if  Test Statistic (t*) <- t(1-/2;n-1)  

– Do not conclude Conclude   0 otherwise 

• P-value: 2P(t(n-1) |t*|) 

• Test Statistic: 
 

 

 

 

 

 

 

 

1-tailed alternative tests 
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Note: Tests for  are generally used when trying to show whether a mean differs from, is above or below some 

pre-specified value; or when the data are paired differences (such as before/after treatment measures).  

 

Example: The European Union has permissible limit of 1 mg/kg of Mercury in fish. Is  > 1? 
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Comparing 2 Means - Independent Samples 
 

 

• Observed individuals/items from the 2 groups are samples from distinct populations 

(identified by (

) and (


))  

• Measurements across groups are independent 

• Summary statistics obtained from the 2 groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling Distribution of  Y Z  

 

• Underlying distributions normal  sampling distribution is normal, and resulting t-distribution 

with estimated std. dev. 

• Mean, variance, standard error (Std. Dev. of estimator)  
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Inference for   - Normal Populations – Equal variances 
 

 

 

 

 

 

 

 

• Interpretation (at the  significance level): 

– If interval contains 0, do not reject H0:  

– If interval is strictly positive, conclude that  

– If interval is strictly negative, conclude that  

 

 

 

 

 

 

 

 

 

 

 

 

Example – Children’s Participation in Meal Preparation and Caloric Intake 

 
Experiment had 2 conditions: Child participated in Cooking Meal, and Parent only cooking meal. Response 

measured: Total Energy Intake (kcals). Total of 47 participants: 25 in Child cooks (Y), 22 in Parent cooks (Z). 
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Sampling Distribution of s
2  

(Normal Data) 

 
• Population variance (

) is a fixed (unknown) parameter based on the population of 

measurements 

• Sample variance (s
2
) varies from sample to sample (just as sample mean does) 

• When Y~N(
), the distribution of (a multiple of) s

2
 is Chi-Square with n-1 degrees of 

freedom. Unlike inference on means, the normality assumption is very important.                 

• (n-1)s
2
/

 with df=n-1 

 

(1-a)100% Confidence Interval for  
(or ) 

 

• Step 1: Obtain a random sample of n items from the population, compute s
2
  

• Step 2: Obtain 2
L  and 2

U from table of critical values for chi-square distribution with n-

1 df 

• Step 3: Compute the confidence interval for 
2
 based on the formula below and take 

square roots of bounds for 
2
 to obtain confidence interval for  

 
 

 

 

 

 

 

 

 

 

Example: Mercury Levels in Albacore Fish from Eastern Mediterranean (Continued) 
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Statistical Test for 2
 

 

• Null and alternative hypotheses 

– 1-sided (upper tail):  H0: 

  0

2
   Ha: 

2
 > 0

2
  

– 1-sided (lower tail): H0: 
2
  0

2
   Ha: 

2
 < 0

2
 

– 2-sided: H0: 
2
 = 0

2
   Ha: 

2
  0

2
  

• Test Statistic 

 

 

 

 

 

 

• Decision Rule based on chi-square distribution w/ df=n-1: 

– 1-sided (upper tail): Reject H0 if obs
2
 > U

2
 =  2

(1-;n-1) 

– 1-sided (lower tail): Reject H0 if obs
2
 < L

2
 = 2

(;n-1)  

– 2-sided: Reject H0 if obs
2
 < L

2
 = 2

(/2;n-1)(Conclude 2
 < 0

2
)                                        

or if obs
2
 > U

2
 = 2

(1-/2;n-1)
 
 (Conclude 2

 > 0
2
 ) 

 

There are not too many practical cases where there is a null value to test, except in cases where firms may need 

to demonstrate that variation in purity of a chemical or compound is below some nominal level, or that variation 

in measurements of manufactured parts is below some nominal level.  

 
Note that most decisions can be obtained based on the confidence interval for the population variance (or 

standard deviation). 
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Inferences Regarding 2 Population Variances 

 
• Goal: Compare variances between 2 populations 

• Parameter:              (Ratio is 1 when variances are equal) 

• Estimator:               (Ratio of sample variances)   

• Distribution of (multiple) of estimator (Normal Data): 

 
 

 

 

 

Test Comparing Two Population Variances 
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• Obtain ratio of sample variances s1
2
/s2

2 
= (s1/s2)

2
 

• Choose , and obtain: 

–  FL = F(/2, n1-1, n2-1) = 1/ F(1-/2, n2-1, n1-1) 

– FU = F(1-/2, n1-1, n2-1) 

• Compute Confidence Interval: 

 

 

 

Conclude population variances unequal if interval does not contain 1 
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Example – Children’s Participation in Meal Preparation and Caloric Intake (Continued) 
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   327) ,1.13(2.3675) 0.49 , 2.68

 
What do you conclude? 

 

 

Data Sources:  

 
New York City Street Café’s:  

 

https://nycopendata.socrata.com/Business/Sidewalk-Cafes/6k68-kc8u 

 

Women’s Professional Soccer: 

 

http://www.nwslsoccer.com/ 

 

Irish Premier League Soccer: 

 
www.soccerpunter.com/ 
 

Mercury Levels in Albacore: 

 
S. Mol, O. Ozden, S. Karakulak (2012). "Levels of Selected Metals in Albacore (Thunnus alalunga, Bonaterre, 1788) from the Eastern 

Mediterranean, Journal of Aquatic Food Product Technology, Vol. 21, #2, pp. 111-117. 

 

Children/Parent Cooking Effects on Food Intake: 

 
K. van der Horst, A. Ferrage, A. Rytz (2014). “Involving Children in Meal Preparation: Effects on Food Intake,” Appetite, Vol. 79, pp. 

18-24. 

  



Chapter 1 – Linear Regression with 1 Predictor 

 

 
Statistical Model 

 
Y X i ni i i     0 1 1, ,  

 

where: 

 

 Yi  is the (random) response for the i
th

 case 

  0 1,  are parameters  

 X i  is a known constant, the value of the predictor variable for the i
th

 case 

 i  is a random error term, such that:  E i j i ji i i j{ } { } { , } ,           0 02 2  

 

The last point states that the random errors are independent (uncorrelated), with mean 0, and variance  2 . This 

also implies that: 

 

E Y X Y Y Yi i i i j{ } { } { , }       0 1

2 2 0  

 

Thus, 0  represents the mean response when X  0  (assuming that is reasonable level of X ), and is referred to 

as the Y-intercept. Also, 1  represent the change in the mean response as X  increases by 1 unit, and is called 

the slope. 

 

 

Least Squares Estimation of Model Parameters 

 
In practice, the parameters 0  and 1  are unknown and must be estimated. One widely used criterion is to 

minimize the error sum of squares: 
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This is done by calculus, by taking the partial derivatives of Q  with respect to 0  and 1  and setting each 

equation to 0. The values of 0  and 1  that set these equations to 0 are the least squares estimates and are 

labelled b0  and b1 .  

 

First, take the partial derivatives of Q  with respect to 0  and 1 : 
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Next, set these 2 equations to 0, replacing 0  and 1  with b0  and b1  since these are the values that minimize 

the error sum of squares: 
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These two equations are referred to as the normal equations (although, note that we have said nothing YET, 

about normally distributed data). 

 

Solving these two equations yields: 
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where k i  and li  are constants, and Yi  is a random variable with mean and variance given above: 
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The fitted regression line, also known as the prediction equation is: 

 

Y b b X
^

 0 1  

 

The fitted values for the individual observations are obtained by plugging in the corresponding level of the 

predictor variable ( X i ) into the fitted equation. The residuals are the vertical distances between the observed 

values (Yi ) and their fitted values (Y i

^

), and are denoted as ei . 

 

Y b b X e Y Yi i i i i

^ ^

   0 1  

 

 
 



Properties of the fitted regression line 

 ei
i

n



 
1

0        The residuals sum to 0 

 X ei i
i

n



 
1

0     The sum of the weighted (by X ) residuals is 0 

 Y ei i
i

n ^



 
1

0     The sum of the weighted (by Y
^

)  residuals is 0 

 The regression line goes through the point  ( X Y, ) 

 

 

These can be derived via their definitions and the normal equations: 
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Estimation of the Error Variance 
 

Note that for a random variable, its variance is the expected value of the squared deviation from the mean. That 

is, for a random variable W , with mean W  its variance is: 

 

 2 2{ } {( ) }W E W W   

 

For the simple linear regression model, the errors have mean 0, and variance  2 . This means that for the actual 

observed values Yi , their mean and variance are as follows: 

 

   22 2

0 1 0 1{ } { }i i i i iE Y X Y E Y X            

First, we replace the unknown mean  0 1 X i  with its fitted value  Y b b Xi i

^

 0 1 , then we take the “average” 

squared distance from the observed values to their fitted values. We divide the sum of squared errors by n-2 to 

obtain an unbiased estimate of   2  (recall how you computed a sample variance when sampling from a single 

population). 
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Common notation is to label the numerator as the error sum of squares (SSE).  
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Also, the estimated variance is referred to as the error (or residual) mean square (MSE).  
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To obtain an estimate of the standard deviation (which is in the units of the data), we take the square root of the 

error mean square.  s MSE . 

A shortcut formula for the error sum of  squares, which can cause problems due to round-off errors is: 
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Some notation makes life easier when writing out elements of the regression model: 
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Note that we will be able to obtain most all of the simple linear regression analysis from these quantities, the 

sample means, and the sample size. 
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Normal Error Regression Model (Assumes STA 4322) 

 
If we add further that the random errors follow a normal distribution, then the response variable also has a 

normal distribution, with mean and variance given above. The notation, we will use for the errors, and the data 

is: 
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The density function for the i
th

 observation is: 
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The likelihood function, is the product of the individual density functions (due to the independence assumption 

on the random errors). 
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The values of   0 1

2, ,  that maximize the likelihood function are referred to as maximum likelihood 

estimators. The MLE’s are denoted as:   0 1 2, ,
^ ^ ^

. Note that the natural logarithm of the likelihood is 

maximized by the same values of   0 1

2, ,  that maximize the likelihood function, and it’s easier to work with 

the log likelihood function. 
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Taking partial derivatives with respect to   0 1

2, ,  yields: 
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Setting these three equations to 0, and placing “hats” on parameters denoting the maximum likelihood 

estimators, we get the following three equations: 
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From equations 4a and 5a, we see that the maximum likelihood estimators are the same as the least squares 

estimators (these are the normal equations). However, from equation 6a, we obtain the maximum likelihood 

estimator for the error variance as: 
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This estimator is biased downward. We will use the unbiased estimator s MSE2   throughout this course to 

estimate the error variance. 



Example – U.S. State Non-Fuel Mineral Production vs Land Area (2011). 

 

Non-Fuel mineral production ($10M) and land area (1000m
2
) for the 50 United States in 2011. 

  

Source: http://minerals.er.usgs.gov/minerals/pubs/commodity/statistical_summary/index.html#myb 

(retrieved 6/23/2014). 

 

The following EXCEL spreadsheet gives the data in a form that is easier to read. The original data are in an 

EXCEL file in Columns A-C and Rows 1-51 (variable names in row 1, numeric data in rows 2-51). Note that 

Column A contains the state postal abbreviation, B contains Area, and C contains mineral production. 

 
state Area Mineral state Area Mineral state Area Mineral state Area Mineral state Area Mineral

AL 50.74 96.0 HI 6.42 10.1 MA 7.84 22.5 NM 121.36 125.0 SD 75.89 31.2

AK 567.40 381.0 ID 82.75 132.0 MI 58.11 241.0 NY 47.21 134.0 TN 41.22 87.8

AZ 113.64 839.0 IL 55.58 107.0 MN 79.61 449.0 NC 48.71 84.3 TX 261.80 303.0

AR 52.07 78.9 IN 35.87 76.2 MS 46.91 19.5 ND 68.98 12.5 UT 82.14 430.0

CA 155.96 321.0 IA 55.87 65.3 MO 68.89 220.0 OH 40.95 96.2 VT 9.25 11.8

CO 103.72 193.0 KS 81.82 112.0 MT 145.55 144.0 OK 68.67 60.8 VA 39.59 119.0

CT 4.85 15.6 KY 39.73 79.1 NE 76.87 23.8 OR 96.00 30.5 WA 66.54 74.2

DE 1.95 1.1 LA 43.56 46.5 NV 109.83 1000.0 PA 44.82 160.0 WV 24.23 32.4

FL 53.93 343.0 ME 30.86 11.8 NH 8.97 10.0 RI 1.05 4.2 WI 54.31 68.3

GA 57.91 145.0 MD 9.77 29.3 NJ 7.42 27.5 SC 30.11 48.3 WY 97.11 214.0
 

 

Which variable is more likely to “cause” the other variable?     

 

AREA → MINERAL         or         MINERAL → AREA 

 

While we will use R for statistical analyses this semester that would be way too time consuming (if even 

possible) in EXCEL, EXCEL does have some nice built-in functions to make calculations on ranges of cells. 

 

 

    =COUNT(range)   - Computes the number of values in the range    

    =SUM(range)   - Computes the sum  for the values in the range 

    =AVERAGE(range)   - Computes the sample mean for the values in the range 

    =VAR(range)   - Computes the sample mean for the values in the range 

    =STDEV(range)   - Computes the sample mean for the values in the range 

 =SUMSQ(range)   - Computes the sum of squares for the values in the range 

    =DEVSQ(range)   - Computes the  sum of squared deviations from the mean 

    =SUMPRODUCT(range1,range2)    -  Computes the sum of  products of each pair of elements of 2  

ranges of equal length 

    =COVAR(range1,range2)    -  Computes the covariance of  two ranges of equal length, using n as the 

denominator, not n-1. In later versions,    =COVARIANCE.S(range1,range2) is available, using  n-1. 

 

Making use of these, we can “brute-force” obtain the estimated regression equation and estimated error 

variance. First, obtain the means and sums of squares and cross-products needed to obtain the regression 

equation. 
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n 50.00 sum(Y^2) 2975248.32

X-bar 70.69 sum(XY) 856554.66

Y-bar 147.35 SS_XX 357703.85

sum(X) 3534.29 SS_YY 1889585.31

sum(Y) 7367.71 COV(X,Y) 6715.24

sum(X^2) 607528.11 SS_XY 335762.03  
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Next compute the estimated regression coefficients, fitted equation, and estimated error variance and standard 

deviation. 

 

 

 

Note that when using formulas 

with “multiple steps” you will find 

there are “small” rounding errors. 
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A plot of the data and the fitted equation are given below, obtained from EXCEL. 

 

 
 

As land area increases by 1 unit (1000 mile
2
), mineral value increases on average by 0.94 units ($10M). The 

intercept has no physical meaning, as no states have an area of 0. 

 

Note that while there is a tendency for larger states to have higher mineral production, there are many states that 

the line does not fit well for. This issue among others will be considered in later chapters, and a model with both 

variables log transformed is fit below.  
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EXCEL (Using Built-in Data Analysis Package) 

 
Regression Coefficients (and standard errors/t-tests/CI’s, which will be covered in Chapter 2) 

 
CoefficientsStandard Error t Stat P-value Lower 95%Upper 95%

Intercept 81.004 33.379 2.427 0.0190 13.891 148.118

Area 0.939 0.303 3.100 0.0032 0.330 1.548  
 
Data Cells, Fitted Values and Residuals (Copied and Pasted to fit better on page) 

 

state Area Mineral Fitted Residual state Area Mineral Fitted Residual

AL 50.74 96.0 128.6356 -32.6356 MT 145.55 144.0 217.628 -73.628

AK 567.40 381.0 613.5996 -232.6 NE 76.87 23.8 153.1609 -129.361

AZ 113.64 839.0 187.6688 651.3312 NV 109.83 1000.0 184.0935 815.9065

AR 52.07 78.9 129.8784 -50.9784 NH 8.97 10.0 89.4222 -79.4522

CA 155.96 321.0 227.3967 93.60334 NJ 7.42 27.5 87.96634 -60.4663

CO 103.72 193.0 178.3602 14.63984 NM 121.36 125.0 194.9162 -69.9162

CT 4.85 15.6 85.5521 -69.9521 NY 47.21 134.0 125.3222 8.677841

DE 1.95 1.1 82.83844 -81.7184 NC 48.71 84.3 126.7273 -42.4273

FL 53.93 343.0 131.6234 211.3766 ND 68.98 12.5 145.7493 -133.249

GA 57.91 145.0 135.3583 9.641697 OH 40.95 96.2 119.4405 -23.2405

HI 6.42 10.1 87.03331 -76.9333 OK 68.67 60.8 145.4592 -84.6592

ID 82.75 132.0 158.6755 -26.6755 OR 96.00 30.5 171.1128 -140.613

IL 55.58 107.0 133.1787 -26.1787 PA 44.82 160.0 123.0722 36.92781

IN 35.87 76.2 114.6712 -38.4712 RI 1.05 4.2 81.9852 -77.7652

IA 55.87 65.3 133.4463 -68.1463 SC 30.11 48.3 109.2664 -60.9664

KS 81.82 112.0 157.8007 -45.8007 SD 75.89 31.2 152.2345 -121.034

KY 39.73 79.1 118.2954 -39.1954 TN 41.22 87.8 119.693 -31.893

LA 43.56 46.5 121.8942 -75.3942 TX 261.80 303.0 326.7425 -23.7425

ME 30.86 11.8 109.9732 -98.1732 UT 82.14 430.0 158.1095 271.8905

MD 9.77 29.3 90.17876 -60.8788 VT 9.25 11.8 89.6869 -77.8869

MA 7.84 22.5 88.36339 -65.8634 VA 39.59 119.0 118.1696 0.830425

MI 58.11 241.0 135.5498 105.4502 WA 66.54 74.2 143.4664 -69.2664

MN 79.61 449.0 155.731 293.269 WV 24.23 32.4 103.748 -71.348

MS 46.91 19.5 125.034 -105.534 WI 54.31 68.3 131.9829 -63.6829

MO 68.89 220.0 145.6648 74.33522 WY 97.11 214.0 172.1528 41.84719  
 

R Program for Regression Analysis and Plot 

 

 

 

 

 

 

 

 

 

 
 

png("F:\\blue_drive\\Rmisc\\graphs\\mineral1.png") 
 
mineral1 <- read.table("http://www.stat.ufl.edu/~winner/sta4210/mydata/mineral1.txt", 
        header=T) 
 
attach(mineral1) 
 
min.reg1 <- lm(Mineral ~ Area) 
summary(min.reg1) 
 
plot(Area,Mineral,xlab="Area",ylab="Mineral",main="Mineral Production vs Area") 
abline(min.reg1) 
 
dev.off() 
 



R Regression Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

R Graphics Output: 

 

 

 

 

Call: 
lm(formula = Mineral ~ Area) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-232.60  -76.54  -55.72    6.72  815.90  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  81.0023    33.3793   2.427  0.01904 *  
Area          0.9387     0.3028   3.100  0.00324 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 181.1 on 48 degrees of freedom 
Multiple R-squared: 0.1668,     Adjusted R-squared: 0.1494  
F-statistic: 9.609 on 1 and 48 DF,  p-value: 0.003236 



Analysis when each variable has been transformed by taking natural logarithms: 
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Note that the linear relation appears to fit much better when both of these highly skewed variables are log 

transformed. 
 

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Intercept 2.888 1.221 2.366 0.0221 0.434 5.342 

lnAREA 0.911 0.105 8.708 0.0000 0.701 1.121 
 

As ln(AREA) increases 1 unit, ln(VALUE) increases by 0.911 units. 

 

Note: When both variables are log transformed the physical meaning of the slope represents percent changes in 

variables in their original units. In this case, we would say that a 1 percent increase in area is associated with 

a 0.911 percent change in mineral production value. 

 

 

 

 

Example – LSD Concentration and Math Scores 

 
A pharmacodynamic study was conducted at Yale in the 1960’s to determine the relationship between LSD 

concentration and math scores in a group of volunteers. The independent (predictor) variable was the mean 

tissue concentration of LSD in a group of 5 volunteers, and the dependent (response) variable was the mean 

math score among the volunteers. There were n=7 observations, collected at different time points throughout the 

experiment.  

 

Source: Wagner, J.G., Agahajanian, G.K., and Bing, O.H. (1968), “Correlation of Performance Test Scores 

with Tissue Concentration of Lysergic Acid Diethylamide in Human Subjects,” Clinical Pharmacology and 

Therapeutics, 9:635-638. 

 

 

 

 

 

 



The following EXCEL spreadsheet gives the data and all pertinent calculations in spreadsheet form. 

 

Time (i) Score (Y ) Conc (X ) Y-Ybar X-Xbar (Y-Ybar)**2 (X-Xbar)**2
(X-Xbar)(Y-

Ybar)
Yhat e e**2

1 78.93 1.17 28.84286 -3.162857 831.910408 10.0036653 -91.2258367 78.5828 0.3472 0.1205

2 58.2 2.97 8.112857 -1.362857 65.818451 1.85737959 -11.0566653 62.36576 -4.1658 17.354

3 67.47 3.26 17.38286 -1.072857 302.163722 1.15102245 -18.6493225 59.75301 7.717 59.552

4 37.47 4.69 -12.61714 0.357143 159.192294 0.12755102 -4.50612245 46.86948 -9.3995 88.35

5 45.65 5.83 -4.437143 1.497143 19.6882367 2.24143673 -6.64303674 36.59868 9.0513 81.926

6 32.92 6 -17.16714 1.667143 294.710794 2.77936531 -28.6200796 35.06708 -2.1471 4.6099

7 29.97 6.41 -20.11714 2.077143 404.699437 4.31452245 -41.7861796 31.37319 -1.4032 1.969

Sum 350.61 30.33 0 0 2078.18334 22.4749429 -202.487243 350.61 1.00E-14 253.88

Mean 50.0871429 4.3328571

b1 -9.009466

b0 89.123874

MSE 50.776266  

The fitted equation is: XY 01.912.89
^

    and the estimated error variance is 78.502  MSEs , with 

corresponding standard deviation 13.7s . 

 

As tissue concentration of LSD increases by 1 unit, math scores tend to drop on average by 9.01 points. 
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Chapter 2 – Inferences in Regression Analysis 
 

Rules Concerning Linear Functions of Random Variables 
 

Let nYY ,,1   be n random variables. Consider the function 
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 where the coefficients naa ,,1   are 

constants. Then, we have: 
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When nYY ,,1   are independent (as in the model in Chapter 1), the variance of the linear combination simplifies 

to: 
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When nYY ,,1   are independent, the covariance of two linear functions 
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We will use these rules to obtain the distribution of the estimators XbbYbb 10

^

10 ,,   

 

Example: Bollywood Movie Budgets (X) and Box Office Grosses (Y)  
 

Data: A sample of n = 55 Bollywood films released in 2013-2014. Data in crore, not certain of units. 

 

 http://www.bollymoviereviewz.com/2013/04/bollywood-box-office-collection-2013.html 
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X-bar Y-Bar SS_XX SS_YY SS_XY

39.04 46.88 72165.43 183601.1 90278.06  
 



Inferences Concerning 1 

 
Recall that the least squares estimate of the slope parameter, 1b  , is a linear function of the observed responses 

nYY ,,1  : 
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Note that E Y Xi i{ }   0 1 , so that the  expected value of 1b  is: 
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      (why?), so that the first term in the brackets is 0, and that we can subtract 
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  from the last term to get: 
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Thus, b1  is an unbiased estimator of the parameter 1 .    

 

Example: Bollywood Movie Data:          1
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To obtain the variance of  b1 , recall that   2 2{ }Yi  . Thus: 
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Note that the variance of  b1   decreases when we have larger sample sizes (as long as the added X  levels are 

not placed at the sample mean  X ). Since  2  is unknown in practice, and must be estimated from the data, we 

obtain the estimated variance of the estimator b1  by replacing the unknown  2  with its unbiased estimate 

s MSE2  : 
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with estimated standard error:             
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Example: Bollywood Movie Data: 
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Further, the sampling distribution of b1  is normal, that is:  
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Since, under the current model, b1  is a linear function of independent, normal random variables  nYY ,,1  . 

Making use of theory from mathematical statistics, we obtain the following result that allows us to make 

inferences concerning   1 : 
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where  t(n-2)  represents Student’s t-distribution with n-2 degrees of freedom. 

 

 

 

 

 

 



Confidence Interval for 1 
 

As a result of the fact that   )2(~
}{ 1

11 


nt
bs

b 
, we obtain the following probability statement: 
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where )2;2/( nt   is the (/2)100
th

 percentile of the t-distribution with n-2 degrees of freedom. Note that 

since the t-distribution is symmetric around 0, we have that )2;2/1()2;2/(  ntnt  . We obtain the 

values corresponding to )2;2/1(  nt   from tables or computer software, which is the value of that leaves an 

upper tail area of /2. The following algebra results in obtaining a (1-)100% confidence interval for 1: 
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This leads to the following rule for a (1-)100% confidence interval for 1: 

 

}{)2;2/1( 11 bsntb  
 

 

Some statistical software packages print this out automatically (e.g. EXCEL and SPSS). Other packages simply 

print out estimates, standard errors, and t-statistics only, but have options to print them (e.g. R). 

 

Example: Bollywood Movie Data: 
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Tests Concerning 1 
 

We can also make use of the of the fact that  
b

s b
tn

1 1

1

2






{ }
~  to test hypotheses concerning the slope parameter. 

As with means and proportions (and differences of means and proportions), we can conduct one-sided and two-

sided tests, depending on whether a priori a specific directional belief is held regarding the slope. More often 

than not (but not necessarily), the null value for 1 is 0 (the mean of Y is independent of X) and the alternative is 

that 1 is positive (1-sided), negative (1-sided), or different from 0 (2-sided). The alternative hypothesis must be 

selected before observing the data. Default t-tests produced by computer software packages are two-sided tests 

that 1 = 0.  
 

2-sided tests 

 

 Null Hypothesis: 1010 :  H  

 Alternative (Research Hypothesis):  101:  AH  

 Test Statistic: 1 10

1

*
{ }

b
t

s b


  

 Decision Rule: Conclude HA if )2;2/1(|*|  ntt  , otherwise conclude H0 

 P-value: |)*|)2((2 tntP   

 

All statistical software packages (to my knowledge) will print out the test statistic and P-value corresponding to 

a 2-sided test with 10=0. 

 

1-sided tests (Upper Tail) 

 

 Null Hypothesis: 0 1 10:H    

 Alternative (Research Hypothesis):  101:  AH  

 Test Statistic: 1 10

1

*
{ }

b
t

s b


  

 Decision Rule: Conclude HA if )2;1(*  ntt  , otherwise conclude H0 

 P-value: *))2(( tntP   

 

A test for positive association between Y and X  (HA:1>0) can be obtained from standard statisical software by 

first checking that b1 (and thus t*) is positive, and cutting the printed P-value in half. 

 

1-sided tests (Lower Tail) 

 

 Null Hypothesis: 0 1 10:H    

 Alternative (Research Hypothesis):  101:  AH  

 Test Statistic: 1 10

1

*
{ }

b
t

s b


  

 Decision Rule: Conclude HA if )2;1(*  ntt  , otherwise conclude H0 

 P-value: *))2(( tntP   

 

A test for negative association between Y and X  (HA:1<0) can be obtained from standard statistical software by 

first checking that b1 (and thus t*) is negative, and cutting the printed P-value in half. 



Example: Bollywood Movie Data: 

 

Question 1: Is there any association between Box Office Collection and Budget? 

Question 2: Does increasing Budget by 1 unit lead to an increase in average Box Office Collection by > 1 unit? 
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Inferences Concerning 0 

 
Recall that the least squares estimate of the intercept parameter, 0b  , is a linear function of the observed 

responses nYY ,,1  : 

 

0 1

1 1

( )1n n
i

i i i

i iXX

X X X
b Y b X Y l Y

n SS 

 
     

 
   

 

Recalling that  ii XYE 10}{   : 
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Thus, b0 is an unbiased estimator or the parameter 0.  

 

Example: Bollywood Movie Data:          0 1 46.88 1.2510(39.04) 1.9549b Y b X       

 

Below, we obtain the variance of the estimator of b0. 
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Note that the variance will decrease as the sample size increases, as long as X values are not all placed at the 

mean (which would not allow the regression to be fit). Further, the sampling distribution is normal under the 

assumptions of the model. The estimated standard error of b0 replaces 2
 with its unbiased estimate s

2
=MSE and 

taking the square root of the variance.  
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Example: Bollywood Movie Data: 
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Note that  )2(~
}{ 0

00 
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b 
, allowing for inferences concerning the intercept parameter 0 when it is 

meaningful, namely when X=0 is within the range of observed data.  

 

Confidence Interval for 0 

 

Example: Bollywood Movie Data: 

Although no movies have a budget of X=0, a 95% CI for 0 would be computed as follows: 

 

 

 

}{)2;2/1( 00 bsntb  

1.9549 2.0057(7.2385) 1.9549 14.5185 ( 16.47,12.56)      



It is also useful to obtain the covariance of b0 and b1, as they are only independent under very rare 

circumstances: 
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In practice, X  is usually positive, so that the intercept and slope estimators are usually negatively correlated. 

We will use the result shortly. 

Considerations on Making Inferences Concerning 0 and 1 

 

Normality of Error Terms 

If the data are approximately normal, simulation results have shown that using the t-distribution will provide 

approximately correct significance levels and confidence coefficients for tests and confidence intervals, 

respectively. Even if the distribution of the errors (and thus Y) is far from normal, in large samples the sampling 

distributions of b0 and b1 have sampling distributions that are approximately normal as results of central limit 

theorems. This is sometimes referred to as asymptotic normality. 

 

Interpretations of Confidence Coefficients and Error Probabilities 

Since X levels are treated as fixed constants, these refer to the case where we repeated the experiment many 

times at the current set of X levels in this data set. In this sense, it’s easier to interpret these terms in controlled 

experiments where the experimenter has set the levels of X (such as time and temperature in a laboratory type 

setting) as opposed to observational studies, where nature determines the X levels, and we may not be able to 

reproduce the same conditions repeatedly. This will be covered later. 

 

 

Spacing of X Levels 

The variances of b0 and b1 (for given n and 2
) decrease as the X levels are more spread out, since their 

variances are inversely related to 2

1

( )
n

XX i

i

SS X X


  . However, there are reasons to choose a diverse range of 

X levels for assessing model fit. This is covered in Chapter 4. 

 



Power of Tests 

The power of a statistical test refers to the probability that we reject the null hypothesis. Note that when the null 

hypothesis is true, the power is simply the probability of a Type I error (). When the null hypothesis is false, 

the power is the probability that we correctly reject the null hypothesis, which is 1 minus the probability of a 

Type II error (=1-), where denotes the power of the test and  is the probability of a Type II error (failing to 

reject the null hypothesis when the alternative hypothesis is true). The following procedure can be used to 

obtain the power of the test concerning the slope parameter with a 2-sided alternative. 

 

1) Write out null and alternative hypotheses:  1011010 ::   AHH  

2) Obtain the non-centrality measure, the standardized distance between the true value of 1 and the value 

under the null hypothesis (10): 
}{ 1

101

b





   

3) Choose the probability of a Type I error (=0.05 or =0.01) 

4) Determine the degrees of freedom for error: df = n-2 

5) Using R, we can obtain the power as:  Power = 1-pf(qf(1-,1,n-2),1,n-2,

)  

Note that the power increases as the non-centrality measure increases for a given degrees of freedom, and as the 

degrees of freedom increases for a given non-centrality measure. 

 

Confidence Interval for E{Yh}=0+1Xh 

When we wish to estimate the mean at a hypothetical X value (within the range of observed X values), we can 

use the fitted equation at that value of X=Xh as a point estimate, but we have to include the uncertainty in the 

regression estimators to construct a confidence interval for the mean. 

Parameter: hh XYE 10}{    

Estimator: hh XbbY 10

^

  

We can obtain the variance of the estimator (as a function of X=Xh) as follows: 
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Estimated standard error of estimator: 
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Example: Bollywood Movie Data:  

Suppose we are interested in mean Box Office Collection of all possible movies with budgets of Xh = 20 

   

^

0 1

2

2
^

20 1.9549 1.2510 1.9549 1.2510(20) 23.07

1333.29 55 20 39.04 72165.43

20 39.041
1333.29 1333.29(0.02321) 30.94 5.56

55 72165.43

hh

h XX

h

X b b Y

MSE s n X X SS

s Y

       

     

 
     

  

 

)2(~

}{

}{
^

^




nt

Ys

YEY

h

hh
  which can be used to construct confidence intervals for the mean response at specific X 

levels, and tests concerning the mean (tests are rarely conducted). 

 

(1-)100% Confidence Interval for E{Yh}: 
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Example: Bollywood Movie Data:  

23.07 2.0057(5.56) 23.07 11.15 (11.92,34.22)     

 

Predicting a Future Observation When X is Known 

 

If  ,, 10  were known, we’d know that the distribution of responses when X=Xh is normal with mean 

hX10    and standard deviation   . Thus, making use of the normal distribution (and equivalently, the 

empirical rule) we know that if we took a sample item from this distribution, it is very likely that the value will 

fall within 2 standard deviations of the mean. That is, we would know that the probability that the sampled item 

lies within the range 0 1 0 1( 2 , 2 )h hX X          is approximately 0.95. 



In practice, we don’t know the mean hX10    or the standard deviation  . However, we have just 

constructed a (1-)100% Confidence Interval for E{Yh}, and we have an estimate of   (s). Intuitively, we can 

approximately use the logic of the previous paragraph (with the estimate of  ) across the range of believable 

values for the mean. Then our prediction interval spans the lower tail of the normal curve centered at the lower 

bound for the mean to the upper tail of the normal curve centered at the upper bound for the mean.  

The prediction error for the new observation is the difference between the observed value and its predicted 

value: hh YY
^

 . Since the data are assumed to be independent, the new (future) value is independent of its 

predicted value, since it wasn’t used in the regression analysis. The variance of the prediction error can be 

obtained as follows: 
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and an unbiased estimator is: 
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Example: Bollywood Movie Data:  

Suppose interested in predicting Box Office Collection of a single new movie with a budget of Xh = 20 
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(1-)100% Prediction Interval for New Observation When X=Xh 
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Example: Bollywood Movie Data:  

23.07 2.0057(36.94) 23.07 74.08 ( 51.01,97.15) (0,97.15)       

Note: Unlike a Confidence Interval for a mean, which has a standard error that gets smaller, as the sample size 

increases, the Prediction Interval for a single observation cannot be smaller than s, the residual standard 

deviation. When that is large, prediction intervals will be wide, and often of little use. 

 

It is a simple extension to obtain a prediction for the mean of m new observations when X=Xh. The sample mean 

of m observations is 
m

2
 and we get the following variance for the error in the prediction mean. 
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 (1-)100% Prediction Interval for the Mean of m New Observations When X=Xh 
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(1-)100%  Confidence Band for the Entire Regression Line (Working-Hotelling Method) 

)2,2;1(2}{
^^

 nFWYWsY hh   



Example: Bollywood Movie Data: 

 2 0.95;2,55 2 2(3.1716) 2.5186W F     

Selected values of Xh , estimates, standard errors, and half-widths for confidence band: 

X_h Y-hat SE{Y-hat} W*SE{Yh}

5 4.30 6.82 17.18

20 23.06 5.38 13.55

40 48.08 5.07 12.78

60 73.10 6.76 17.02

80 98.12 9.42 23.73

100 123.14 12.45 31.35  
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Analysis of Variance Approach to Regression 
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Consider the total deviations of the observed responses from the mean:  YYi  . When these terms are all 

squared and summed up, this is referred to as the total sum of squares (SSTO). 
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i YYSSTO
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2)(  

In the plot, these are the vertical distance of the points to the purple line just below 50. The more spread out the 

observed data are, the larger SSTO will be.  

Now consider the deviation of the observed responses from their fitted values based on the regression model: 

iiiii eXbbYYY  )( 10

^

. When these terms are squared and summed up, this is referred to as the error 

sum of squares (SSE). We’ve already encountered this quantity and used it to estimate the error variance. 
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When the observed responses fall close to the regression line, SSE will be small. When the data are not near the 

line, SSE will be large. 

Finally, there is a third quantity, representing the deviations of the predicted values from the mean. Then these 

deviations are squared and summed up, this is referred to as the regression sum of squares (SSR).  
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The error and regression sums of squares sum to the total sum of squares: SSESSRSSTO   which can be 

seen as follows: 
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The last term was 0 since    0iii Xee , 

Each sum of squares has associated with degrees of freedom. The total degrees of freedom is dfT = n-1. The 

error degrees of freedom is dfE = n-2. The regression degrees of freedom is dfR = 1. Note that the error and 

regression degrees of freedom sum to the total degrees of freedom: )2(11  nn . 

Mean squares are the sums of squares divided by their degrees of freedom: 

21 


n

SSE
MSE

SSR
MSR  

Note that MSE was our estimate of the error variance, and that we don’t compute a total mean square. It can be 

shown that the expected values of the mean squares are: 
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Note that these expected mean squares are the same if and only if 1=0. 

The Analysis of Variance is reported in tabular form: 

 
Source df SS MS F 

Regression 1 SSR MSR=SSR/1 F=MSR/MSE 

Error n-2 SSE MSE=SSE/(n-2)  

C Total n-1 SSTO   

Example: Bollywood Movie Data: 
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ANOVA Table: 

ANOVA

df SS MS F

Regression 1 112936.7 112936.7 84.70529

Residual 53 70664.39 1333.29

Total 54 183601.1  

 

F Test of 1 = 0 versus 1  0 

As a result of Cochran’s Theorem (stated on page 76 of text book), we have a test of whether the dependent 

variable Y is linearly related to the predictor variable X. This is a very specific case of the t-test described 

previously. Its full utility will be seen when we consider multiple predictors. The test proceeds as follows: 

 Null hypothesis: 0: 10 H  

 Alternative (Research) Hypothesis: 0: 1 AH  

 Test Statistic: 
MSE

MSR
FTS *:  

 Rejection Region: )2,1;1(*:  nFFRR   

 P-value: *})2,1({ FnFP   

Critical values of the F-distribution (indexed by numerator and denominator degrees’ of freedom) are given in 

Table B.4, pages 1340-1345, and on class website, and can be obtained simply in EXCEL or R (see 

Introduction). P-values must be obtained in EXCEL or R. 

Note that this is a very specific version of the t-test regarding the slope parameter, specifically a 2-sided test of 

whether the slope is 0. Mathematically, the tests are identical:  
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Further, the critical values are equivalent: )2,1;1())2;2/1(( 2  nFnt  , 

check this from the two tables. Thus, the tests are equivalent. 

 

 



Example: Bollywood Movie Data: 

 

 

0 1 1: 0 : 0

112936.7
Test Statistic:  * 84.71 0.95;1,55 2 4.023

1333.29

value: (1,53) 84.71 .0000
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Confirm the t-statistic, when squared, gives the F-statistic, and that the critical t-value for the 2-sided t-test is 

the same as the critical F-value. 

 

General Linear Test Approach 

This is a very general method of testing hypotheses concerning regression models. We first consider the the 

simple linear regression model, and testing whether Y is linearly associated with X. We wish to test 0: 10 H  

vs 0: 1 AH . 

Full Model 

This is the model specified under the alternative hypothesis, also referred to as the unrestricted model. Under 

simple linear regression with normal errors, we have: 

iii XY   10  

Using least squares (and maximum likelihood) to estimate the model parameters and the fitted values                  

( ii XbbY 10

^

 ), we obtain the error sum of squares for the full model: 

   SSEYYXbbYFSSE iiii
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Reduced Model 

This the model specified by the null hypothesis, also referred to as the restricted model. Under simple linear 

regression with normal errors, we have: 

iiii XY   00 0  

Using least squares (and maximum likelihood) to estimate the model parameter, we obtain Y as the estimate of 

0, and have Yb 0 as the fitted value for each observation. We then obtain the following error sum of squares 

under the reduced model: 
 

   SSTOYYbYRSSE ii
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Test Statistic 

 

The error sum of squares for the full model will always be less than or equal to the error sum of squares for 

reduced model, by definition of least squares. The test statistic will be: 
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            where FR dfdf ,  are the error degrees of freedom for the full and reduced 

models. We will use this method throughout course. 

For the simple linear regression model, we obtain the following quantities: 
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thus the F-Statistic for the General Linear Test can be written: 

 

MSE

MSR

n

SSE

SSR

n

SSE

nn

SSESSTO

df

FSSE

dfdf

FSSERSSE

F

F

FR 


















2

1

2

)2()1(

)(

)()(

*  

 

Thus, for this particular null hypothesis, the general linear test “generalizes” to the F-test. 

 

Example: Bollywood Movie Data: 

 

Suppose we wish to test whether on average, Box office collection is equal to the movie’s budget.  
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Descriptive Measures of Association 

 
Along with the slope, Y-intercept, and error variance; several other measures are often reported. 

 

Coefficient of Determination (r
2
) 

 

The coefficient of determination measures the proportion of the variation in Y that is “explained” by the 

regression on X. It is computed as the regression sum of squares divided by the total (corrected) sum of squares. 

Values near 0 imply that the regression model has done little to “explain” variation in Y, while values near 1 

imply that the model has “explained” a large portion of the variation in Y. If all the data fall exactly on the fitted 

line, r
2
=1. The coefficient of determination will lie beween 0 and 1. 
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Coefficient of Correlation (r) 

 

The coefficient of correlation is a measure of the strength of the linear association between Y and X. It will 

always be the same sign as the slope estimate (b1), but it has several advantages: 

 

 In some applications, we cannot identify a clear dependent and independent variable, we just wish to 

determine how two variables vary together in a population (peoples heights and weights, closing stock 

prices of two firms, etc). Unlike the slope estimate, the coefficient of correlation does not depend on which 

variable is labeled as Y, and which is labeled as X. 

 The slope estimate depends on the units of X and Y, while the correlation coefficient does not. 

 The slope estimate has no bound on its range of potential values. The correlation coefficient is bounded by –

1 and +1, with higher values (in absolute value) implying stronger linear association (it is not useful in 

measuring nonlinear association which may exist, however). 
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where sgn(b1) is the sign (positive or negative) of b1, and yx ss ,  are the sample standard deviations of X and Y, 

respectively. 

 

Example: Bollywood Movie Data: 
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Approximately 61.5% of the variation in box-office collection is “explained” by the film’s budget. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tests  Concerning the Population Correlation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example: Bollywood Movie Data: 
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Example: Bollywood Movie Data: 
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Issues in Applying Regression Analysis 

 
 When using regression to predict the future, the assumption is that the conditions are the same in future as 

they are now. Clearly any future predictions of economic variables such as tourism made prior to September 

11, 2001 would not be valid. 

 Often when we predict in the future, we must also predict X, as well as Y, especially when we aren’t 

controlling the levels of X. Prediction intervals using methods described previously will be too narrow (that 

is, they will overstate confidence levels). 

 Inferences should be made only within the range of X values used in the regression analysis. We have no 

means of knowing whether a linear association continues outside the range observed. That is, we should not 

extrapolate outside the range of X levels observed in experiment. 

 Even if we determine that X and Y are associated based on the t-test and/or F-test, we cannot conclude that 

changes in X cause changes in Y. Finding an association is only one step in demonstrating a causal 

relationship. 

 When multiple tests and/or confidence intervals are being made, we must adjust our confidence levels. This 

is covered in Chapter 4. 

 When Xi is a random variable, and not being controlled, all methods described thus far hold, as long as the 

Xi are independent, and their probability distribution does not depend on  2

10 ,,  . 


