Chapter 3 – Diagnostics and Remedial Measures

Diagnostics for the Predictor Variable (X)

Levels of the independent variable, particularly in settings where the experimenter does not control the levels, should be studied. Problems can arise when:

· One or more observations have X  levels far away from the others
· When data are collected over time or space, X levels that are close together in time or space are “more similar” than the overall set of X levels
Useful plots of  X levels include: histograms, box-plots, stem-and-leaf diagrams, and sequence plots (versus time order). Also, a useful measure is simply the z-score for each observation’s X value. We will later discuss remedies for these problems in Chapter 9.

Residuals

“True” Error Term: 
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Observed Residual: 
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Recall the assumption on the “true” error terms: they are independent and normally distributed with mean 0, and variance 2 (
[image: image3.wmf])
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). The residuals have mean 0, since they sum to 0, but they are not independent since they are based on the fitted values from the same observations, but as n increases, this becomes less important. Ignoring the nonindependence for now, we have, concerning the residuals (
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Semistudentized Residuals

We are accustomed to standardizing random variables by centering them (subtracting off the mean) and scaling them (dividing through by the standard deviation), thus creating a z-score. 

While the theoretical standard deviation of 
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 is a complicated function of the entire set of sample data (we will see this after introducing the matrix approach to regression), we can approximate the standardized residual as follows, which we call the semistudentized residuals:


[image: image7.wmf]MSE

e

MSE

e

e

e

i

i

i

=

-

=

*


In large samples, these can be treated approximately as t-statistics, with n-2 degrees of freedom.

Diagnostic Plots for Residuals

The major assumptions of the model are: (i) the relationship between the mean of Y and X is linear, (ii) the errors are normally distributed, (iii) the mean of the errors is 0, (iv) the the variance of the errors is constant and equals 2, (v) the errors are independent, (vi) the model contains all predictors related to E{Y}, and (vii) the model fits for all data observations. These can be visually investigated with various plots.

Linear Relationship Between E{Y} and X
Plot the residuals versus either X or the fitted values. This will appear as a random cloud of points centered at 0 under linearity, and will appear U-shaped (or inverted U-shaped) if the relationship is not linear.

Normally Distributed Errors

Obtain a histogram of the residuals, and determine whether it is approximately mound shaped. Alternatively, a normal probability plot can be obtained as follows:

1. Order the residuals from smallest (large negative values) to largest (large positive values). Assign the ranks as k.

2. Compute the percentile for each residual: 
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3. Obtain the z value from the standard normal distribution corresponding to these percentiles: 
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4. Multiply the z values by 
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 these are the “expected” residuals for the kth smallest residuals under the normality assumption

5. Plot the observed residuals on the vertical axis versus the expected residuals on the horizontal axis. This should be approximately a straight line with slope 1.

Errors have Mean 0

Since the residuals sum to 0, and thus have mean 0, we have no need to check this assumption.

Errors have Constant Variance

Plot the residuals versus X or the fitted values. This should appear as a random cloud of points, centered at 0, if the variance is constant. If the error variance is not constant, this may appear as a funnel shape.

Errors are Independent (When Data Collected Over Time)

Plot the residuals versus the time order (when data are collected over time). If the errors are independent, they should appear as a random cloud of points centered at 0. If the errors are positively correlated they will tend to approximate a smooth (not necessarily monotone) functional form.

No Predictors Have Been Omitted

Plot residuals versus omitted factors, or against X seperately for each level of a categorical omitted factor. If the current model is correct, these should be random clouds of points centered at 0. If patterns arise, the omitted variables may need to be included in model (Multiple Regression).

Model Fits for All Observations

Plot Residuals versus fitted values. As long as no residuals stand out (either much higher or lower) from the others, the model fits all observations. Any residuals that are very extreme, are evidence of data points that are called outliers. Any outliers should be checked as possible data entry errors. We will cover this problem in detail in Chapter 9.

Tests Involving Residuals

Several of the assumptions stated above can be formally tested based on statistical tests. 

Normally Distributed Errors (Correlation Test)

Using the expected residuals (denoted 
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) obtained to construct a normal probability plot, we can obtain the correlation coefficient between the observed residuals and their expected residuals under normality: 
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The test is conducted as follows:

· 
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 Tabled values in Table B.6, Page 1348 (indexed by  and n)

Note this is a test where we do not wish to reject the null hypothesis. Another test that is more complex to manually compute, but is automatically reported by several software packages is the Shapiro-Wilks test. It’s null and alternative hypotheses are the same as for the correlation test, and P-values are computed for the test.

Errors have Constant Variance (Modified Levene Test)

There are several ways to test for equal variances. One simple (to describe) approach is a modified version of Levene’s test, which tests for equality of variances, without depending on the errors being normally distributed. Recall that due to Central Limit Theorems, lack of normality causes us no problems in large samples, as long as the other assumptions hold. The procedure can be described as follows:

1. Split the data into 2 groups, one group with low X values containing n1 of the observations, the other group with high X values containing n2 observations (n1=n2=n). 

2. Obtain the medians of the residuals for each group, labeling them 
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3. Obtain the absolute deviations for each residual from its group median: 
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4. Obtain the sample mean absolute deviation from the median for each group:
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5. Obtain the pooled variance of the absolute deviations: 
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6. Compute the test statistic: 
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7. Conclude that the error variance is not constant if 
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, otherwise conclude the error variance is constant.

Errors are Independent (When Data Collected Over Time)

When data are collected over time, one common departure from independence is that error terms are positively autocorrelated. That is, the errors that are close to each other in time are similar in magnitude and sign. This can happen when learning or fatigue is occuring over time in physical processes or when long-term trends are occuring in social processes. A test that can be used to determine whether positive autocorrelation (non-independence of errors) exists is the Durbin-Watson test (see Section 12.3, we will consider it in more detail later). The test can be conducted as follows:

· 
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· Decision Rule: (i) Reject 
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 are bounds indexed by: , n, and p-1  (the number of predictors, which is 1 for now). These bounds are given in Table B.7, pages 1349-1350.

F Test for Lack of Fit to Test for Linear Relation Between E{Y} and X
A test can be conducted to determine whether the true regression function is that which is being currently specified. For the test to be conducted, we must have the following conditions hold. The observations Y, conditional on their X level are independendent, normally distributed, and have the same variance 2. Further, the X levels in the sample must have repeat observations at a minimum (preferably more) of one X level. Repeat trials at the same level(s) of the predictor variable(s) are called replications. The actual observations are referred to as replicates.

The null and alternative hypotheses for the simple linear regression model are stated as:
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The null hypothesis states that the mean structure is a linear relation, the alternative says that the mean structure is any structure except linear (this is not simply a test of whether 1=0). The test (which is a special case of the general linear test)  is conducted as follows:

1. Begin with n total observations at c distinct levels of X. There are nj observations at the jth of X.    
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2. Let Yij be the ith replicate at the jth level of X     
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3. Fit the Full model (HA):  
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4. Obtain the error sum of squares for the Full model, also known as the Pure Error sum of squares. 
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5. The degrees of freedom for the Full model is dfF= n-c. This is from the fact that the jth level of X, we have nj-1 degrees of freedom, and they sum up to n-c. Also, we have estimated c parameters (
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6. Fit the Reduced model (H0): 
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7. Obtain the error sum of squares for the Reduced model, also known as the Error sum of squares. 
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8. The degrees of freedom for the Reduced model is dfR=n-2. We have estimated two parameters in this model (
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9. Compute the F statistic: 
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10.  Obtain the rejection region: 
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Note that the numerator of the F statistic is also known as the Lack of Fit sum of squares:
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The degrees of freedom can be intuitively thought of as being a result of us fitting a aimple linear regression model of c sample means on X. Note then that the F statistic can be written as:
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Thus, we have partitioned the Error sum of squares for the linear regression model into Pure Error (based on deviations from individual responses to their group means) and Lack of Fit  (based on deviations from group means to the fitted values from the regression model). 

The expected mean squares for MSPE and MSLF are as follows:
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Under the null hypothesis (relationship is linear), the second term for the lack of fit mean square is 0. Under the alternative hypothesis (relationship is not linear), the second term is positive. Thus large values of the F statistic are consistent with the alternative hypothesis.

Remedial Measures

Nonlinearity of Regression Function

Several options apply:

Quadratic Regression Function:  
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   (Places a bend in the data)

Exponential Regression Function:  
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Nonconstant Error Variance

Often transformations can solve this problem. Another option is weighted least squares (Chapter 10, not covered in this course).

Nonindependent Error Terms

One option is to work with a model permitting correlated errors. Other options include working with differenced data or allowing for previously observed Y values as predictors.

Nonnormality of Errors

Nonnormal errors and errors with nonconstant variances tend to occur together. Some of the transformations used to stabilize variances often normalize errors as well. The Box-Cox transformation can (but not necessarily) cure both problems.

Ommission of Important Variables

When important predictors have been ommitted, they can be added in the form of a multiple linear regression model (Chapter 6).

Outliers

When an outlier has been determined to be not due to data entry or recording error and should not be removed from model due to other reasons, indicator variables may be used to classify these observations away from others (Chapter 11), or use of robust methods (Chapter 10, not covered in this class). 

Transformations

See Section 3.9 (pages 126-132) for prototype plots and transformations of Y and/or X that are useful in linearizing the relation and/or stabilizing the variance.  Many times simply taking the logarithm of Y can solve the problems. 

Chapter 4 – Simultaneous Inference and Other Topics

Joint Estimation of 0 and 
We’ve obtained (1-)100% confidence intervals for the slope and intercept parameters in Chapter 2. Now we’d like to construct a range of values (
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) that we believe contains BOTH parameters with the same level of confidence. One way to do this is to construct each individual confidence interval at a higher level of confidence, namely: 

(1-(/2))100% confidence intervals for 0 and 1 seperately. The resulting ranges are called Bonferroni Joint (Simultaneous) Confidence Intervals. 

Joint Confidence Level  (1-)100%        Individual Confidence Level (1-(/2))100%

               90%                                                                95%

               95%                                                                97.5%

               99%                                                                99.5%

The resulting simultaneous confidence intervals, with a joint confidence level of  at least (1-)100% are:
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Simultaneous Estimation of Mean Responses

Case 1: Simultaneous (1-)100% Bounds for the Regression Line (Working-Hotelling’s Approach)
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Case 2: Simultaneous (1-)100% Bounds at g Specific X Levels (Bonferroni’s Approach)
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Simultaneous Prediction Intervals for New Observations

Sometimes we wish to obtain simultaneous prediction intervals for g new outcomes.

Scheffe’s Method: 
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where 
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Bonferroni’s Method:
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Both S and B can be computed before observing the data, and the smallest of the two should be used.

Regression Through the Origin

Sometimes it is desirable to have the mean response be 0 when the predictor variable is 0 (this is not the same as saying Y must be 0 when X is 0). Even though it can cause extra problems, it is an interesting  special case of the simple regression model.
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We obtain the least squares estimate of 1 (which also happens to be maximum likelihood) as follows:
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The fitted values and residuals (which no longer necessarily sum to 0) are:
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An unbiased estimate of the error variance 2 is:
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Note that we have only estimated one parameter in this regression function.

Note that the following are linear functions of 
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Thus, b1 is an unbiased estimate of the slope parameter 1, and its variance (and thus standard error) can be estimated as follows:
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This can be used to construct confidence intervals for or conduct tests regarding 1.  

The mean response at Xh for this model is:  
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, with mean and variance: 
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This can be used to obtain a confidence interval for the mean response when X=Xh.

The estimated prediction error for a new observation at X=Xh is:
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This can be used to obtain a prediction interval for a new observation at this level of X.

Comments Regarding Regression Through the Origin:

· You should test whether the true intercept is 0 when X=0 before proceeding.

· Remember the notion of constant variance. If you are forcing Y to be 0 when X is 0, you are saying that the variance of Y at X=0 is 0.

· If X=0 is not an important value of X in practice, there is no reason to put this constraint into the model.

· 
[image: image71.wmf]2
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is no longer constrained to be 0, the error sum of squares from the regression can exceed the total corrected sum of squares. The coefficient of determination loses its interpretation of being the proportion of variation in Y that is “explained” by X.

Effects of Measurement Errors

Measurement errors can take on one of three forms. Two of the three forms cause no major problems, one does.

Measurement Errors in Y

This causes no problems as the measurement error in Y  becomes part of the random error term, which represents effects of many unobservable quantities. This is the case as long as the random errors are independent, unbiased, and not coorelated with the level of X.

Measurement Errors in X

Problems do arise when the measurement of the predictor variable is measured with error. This is particularly the case when the observed (reported) Xi* level is the true level Xi plus a random error term. In this case the random error terms are not independent of the reported levels of the predictor variable, causing the estimated regression coefficients to be biased and not consistent. See textbook for a mathematical development. Certain methods have been developed for particular forms of measurement error. See Measurement Error Models by W.A. Fuller for a theoretical treatment of the problem or Applied Regression Analysis by J.O. Rawlings, S.G. Pantula, and D.A. Dickey for a brief description.

Measurement Errors with Fixed Observed X Levels

When working in engineering and behavioral settings, a factor such as temperature may be set by controlling a level on a thermostat. That is, you may set an oven’s cooking temperature at 300, 350, 400, etc. When this is the case and the actual physical temperatures vary at random around these actual observed temperatures, the least squares estimators are unbiased. Further when normality and constant variance assumptions are applied to the “new errors” that reflect the random actual temperatures, the usual tests and confidence intervals can be applied.

Inverse Predictions

Sometimes after we fit (or calibrate) a regression model, we can observe Y values and wish to predict the X levels that generated the outcomes. Let Yh(new)  represent a new value of Y we have just observed, or a desired level of Y we wish to observe. In neither case, was this observation part of the sample. We wish to predict the X level that led to our observation, or the X level that will lead to our desired level. Consider the estimated regression function:
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Now we observe a new outcome Yh(new) and wish to predict the X value corresponding to it, we can use an estimator that solves the previous equation for X. The estimator and its (approximate) estimated standard error are: 
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Then, an approximate (1-)100% Prediction Interval for Xh(new) is:
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Choosing X Levels

Issues arising involving choices of X levels and sample sizes include:

· The “range” of X values of interest to experimenter

· The goal of research: inference concerning the slope, predicting future outcomes, understanding the shape of the relationship (linear, curved,…)

· The cost of collecting measurements

Note that all of our estimated standard errors depend on the number of observations and the spacing of X levels. The more spread out, the smaller the standard errors, generally. However, if we wish to truly understand the shape of the response curve, we must space the observations throughout the set of X values. See quote by D.R. Cox on page 170 of textbook.
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