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15.1 The Logistic Regression Model
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The simple and multiple linear regression methods we studied in Chapters 10
and 11 are used to model the relationship between a quantitative response
variable and one or more explanatory variables. A key assumption for these
models is that the deviations from the model fit are normally distributed. In
this chapter we describe similar methods that are used when the response
variable has only two possible values.

Our response variable has only two values: success or failure, live or die,
acceptable or not. If we let the two values be 1 and 0, the mean is the propor-
tion of ones, (success). With independent observations, we have the

(page 368). What is here is that we have data on an
. We study how depends on . For example, suppose we

are studying whether a patient lives ( 1) or dies ( 0) after being admit-
ted to a hospital. Here, is the probability that a patient lives, and possible
explanatory variables include (a) whether the patient is in good condition or
in poor condition, (b) the type of medical problem that the patient has, and
(c) the age of the patient. Note that the explanatory variables can be either
categorical or quantitative. Logistic regression is a statistical method for de-
scribing these kinds of relationships.

In Chapter 5 we studied binomial distributions and in Chapter 8 we learned
how to do statistical inference for the proportion of successes in the bino-
mial setting. We start with a brief review of some of these ideas that we will
need in this chapter.

Logistic regressions work with rather than proportions. The odds
ˆare simply the ratio of the proportions for the two possible outcomes. If is

ˆthe proportion for one outcome, then 1 is the proportion for the second

�

� �

Chapter 15: Logistic Regression

1

40

Example 8.1 describes a survey of 17,096 students in U.S. four-year colleges. The re-
searchers were interested in estimating the proportion of students who are frequent
binge drinkers. A student who reports drinking five or more drinks in a row three or
more times in the past two weeks is called a frequent binge drinker. In the notation of
Chapter 5, is the proportion of frequent binge drinkers in the entire population of
college students in U.S. four-year colleges. The number of frequent binge drinkers in
an SRS of size has the binomial distribution with parameters and . The sample
size is 17 096 and the number of frequent binge drinkers in the sample is 3314.
The sample proportion is

3314
ˆ 0 1938

17 096

odds

�

Binomial distributions and odds
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outcome:

ˆ
ODDS

ˆ1

ˆA similar formula for the population odds is obtained by substituting for
in this expression.

When people speak about odds, they often round to integers or fractions.
Since 0.24 is approximately 1/4, we could say that the odds that a college stu-
dent is a frequent binge drinker are 1 to 4. In a similar way, we could describe
the odds that a college student is a frequent binge drinker as 4 to 1.

In Example 8.8 (page 589) we compared the proportions of frequent binge
drinkers among men and women college students using a confidence interval.
There we found that the proportion for men was 0.227 (22.7%) and that the
proportion for women was 0.170 (17.0%). The difference is 0.057, and the 95%
confidence interval is (0 045 0 069). We can summarize this result by saying,
“The proportion of frequent binge drinkers is 5.7% higher among men than
among women.”

Another way to analyze these data is to use logistic regression. The ex-
planatory variable is gender, a categorical variable. To use this in a regression
(logistic or otherwise), we need to use a numeric code. The usual way to do
this is with an For our problem we will use an indicator
of whether or not the student is a man:

1 if the student is a man
0 if the student is a woman

The response variable is the proportion of frequent binge drinkers. For
use in a logistic regression, we perform two transformations on this variable.
First, we convert to odds. For men,

ˆ
ODDS

ˆ1

0 227
1 0 227

0 294
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For the binge-drinking data the proportion of frequent binge drinkers in the sample
ˆis 0 1938, so the proportion of students who are not frequent binge drinkers is

ˆ1 1 0 1938 0 8062

Therefore, the odds of a student being a frequent binge drinker are

ˆ
ODDS

ˆ1

0 1938
0 8062

0 24

indicator variable
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Similarly, for women we have

ˆ
ODDS

ˆ1

0 170
1 0 170

0 205

In simple linear regression we modeled the mean of the response variable
as a linear function of the explanatory variable: . With logistic
regression we are interested in modeling the mean of the response variable
in terms of an explanatory variable . We could try to relate and through
the equation . Unfortunately, this is not a good model. As long as

0, extreme values of will give values of that are inconsistent
with the fact that 0 1.

The logistic regression solution to this difficulty is to transform the odds
( (1 )) using the natural logarithm. We use the term for this
transformation. We model the log odds as a linear function of the explanatory
variable:

log
1

Figure 15.1 graphs the relationship between and for some different values
of and . For logistic regression we use logarithms. There are
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statistical model for logistic regression
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tables of natural logarithms, and many calculators have a built-in function
for this transformation. As we did with linear regression, we use for the
response variable. So for men,

log(ODDS) log(0 294) 1 23

and for women,

log(ODDS) log(0 205) 1 59

In these expressions we use as the observed value of the response vari-
able, the log odds of being a frequent binge drinker. We are now ready to build
the logistic regression model.

The is

log
1

where the is a binomial proportion and is the explanatory variable. The
parameters of the logistic model are and .

Logistic regression with an indicator explanatory variable is a very special
case. It is important because many multiple logistic regression analyses focus
on one or more such variables as the primary explanatory variables of interest.
For now, we use this special case to understand a little more about the model.

The logistic regression model specifies the relationship between and .
Since there are only two values for , we write both equations. For men,

log
1

and for women,

log
1

�
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For our binge-drinking example, there are 17 096 students in the sample. The
explanatory variable is gender, which we have coded using an indicator variable with
values 1 for men and 0 for women. The response variable is also an indica-
tor variable. Thus, the student is either a frequent binge drinker or the student is not
a frequent binge drinker. Think of the process of randomly selecting a student and
recording the values of and whether or not the student is a frequent binge drinker.
The model says that the probability ( ) that this student is a frequent binge drinker
depends upon the student’s gender ( 1 or 0). So there are two possible values
for , say and .
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Note that there is a term in the equation for men because 1, but it is
missing in the equation for women because 0.

In general the calculations needed to find estimates and for the param-
eters and are complex and require the use of software. When the ex-
planatory variable has only two possible values, however, we can easily find
the estimates. This simple framework also provides a setting where we can
learn what the logistic regression parameters mean.

The slope in this logistic regression model is the difference between the
log(ODDS) for men and the log(ODDS) for women. Most people are not
comfortable thinking in the log(ODDS) scale, so interpretation of the results
in terms of the regression slope is difficult. Usually, we apply a transformation
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In the binge-drinking example, we found the log odds for men,

ˆ
log 1 23

ˆ1

and for women,

ˆ
log 1 59

ˆ1

The logistic regression model for men is

log
1

and for women, it is

log
1

To find the estimates of and , we match the male and female model equations
with the corresponding data equations. Thus, we see that the estimate of the intercept

is simply the log(ODDS) for the women:

1 59

and the slope is the difference between the log(ODDS) for the men and the log(ODDS)
for the women:

1 23 ( 1 59) 0 36

The fitted logistic regression model is

log(ODDS) 1 59 0 36
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Fitting and interpreting the logistic regression model
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to help us. With a little algebra, it can be shown that

ODDS
1 43

ODDS

The transformation undoes the logarithm and transforms the logistic
regression slope into an in this case, the ratio of the odds that a
man is a frequent binge drinker to the odds that a woman is a frequent binge
drinker. In other words, we can multiply the odds for women by the odds ratio
to obtain the odds for men:

ODDS 1 43 ODDS

In this case, the odds for men are 1.43 times the odds for women.
Notice that we have chosen the coding for the indicator variable so that

the regression slope is positive. This will give an odds ratio that is greater than
1. Had we coded women as 1 and men as 0, the signs of the parameters would
be reversed, the fitted equation would be log(ODDS) 1 59 0 36 , and the
odds ratio would be 0 70. The odds for women are 70% of the odds
for men.

Logistic regression with an explanatory variable having two values is a
very important special case. Here is an example where the explanatory vari-
able is quantitative.

Statistical inference for logistic regression is very similar to statistical infer-
ence for simple linear regression. We calculate estimates of the model parame-
ters and standard errors for these estimates. Confidence intervals are formed
in the usual way, but we use standard normal -values rather than critical
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The CHEESE data set described in the Data Appendix includes a response variable
called “Taste” that is a measure of the quality of the cheese in the opinions of several
tasters. For this example, we will classify the cheese as acceptable (tasteok 1) if
Taste 37 and unacceptable (tasteok 0) if Taste 37. This is our response vari-
able. The data set contains three explanatory variables: “Acetic,” “H2S,” and “Lactic.”
Let’s use Acetic as the explanatory variable. The model is

log
1

where is the probability that the cheese is acceptable and is the value of Acetic.
The model for estimated log odds fitted by software is

log(ODDS) 13 71 2 25

The odds ratio is 9 48. This means that if we increase the acetic acid content
by one unit, we increase the odds that the cheese will be acceptable by about 9.5

times.
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values from the distributions. The ratio of the estimate to the standard er-
ror is the basis for hypothesis tests. Often the test statistics are given as the
squares of these ratios, and in this case the -values are obtained from the
chi-square distributions with 1 degree of freedom.

A is

SE

The ratio of the odds for a value of the explanatory variable equal to 1
to the odds for a value of the explanatory variable equal to is the

A is obtained by trans-
forming the confidence interval for the slope

( )

In these expressions is the value for the standard normal density curve
with area between and .

To test the hypothesis : 0, compute the

SE

In terms of a random variable having approximately a distribution
with 1 degree of freedom, the -value for a test of against : 0 is

( ).

We have expressed the hypothesis-testing framework in terms of the slope
because this form closely resembles what we studied in simple linear re-

gression. In many applications, however, the results are expressed in terms
of the odds ratio. A slope of 0 is the same as an odds ratio of 1, so we often
express the null hypothesis of interest as “the odds ratio is 1.” This means that
the two odds are equal and the explanatory variable is not useful for predict-
ing the odds.
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Figure 15.2 gives the output from the SAS logistic procedure for the binge-drinking
example. The parameter estimates are given as 1 5869 and 0 3616, the
same as we calculated directly in Example 15.4, but with more significant digits. The
standard errors are 0.0267 and 0.0388. A 95% confidence interval for the slope is

SE 0 3616 (1 96)(0 0388)
0 3616 0 0760
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Confidence intervals and significance tests

Confidence Intervals and Significance Tests
for Logistic Regression Parameters

EXAMPLE 15.6
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DFVariable

INTERCPT
X

1
1

–1.5869
0.3616

0.0267
0.0388

3520.4040
86.6714

0.0001
0.0001 1.436

Parameter
Estimate

Odds
Ratio

Standard
Error

Wald 
Chi-Square

Pr >
Chi-Square

Logistic regression output for the binge-drinking data, for
Example 15.6.
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Macrosiphoniella sanborni

In applications such as these, it is standard to use 95% for the confidence
coefficient. With this convention, the confidence interval gives us the result of
testing the null hypothesis that the odds ratio is 1 for a significance level of
0.05. If the confidence interval does not include 1, we reject and conclude
that the odds for the two groups are different; if the interval does include 1,
the data do not provide enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regres-
sion. Here there is a designed experiment with five different values for the
explanatory variable.
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SE SE 0 2855 0 4376

2
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We are 95% confident that the slope is between 0.2856 and 0.4376. The output pro-
vides the odds ratio 1.436 but does not give the confidence interval. This is easy to
compute from the interval for the slope:

( ) ( )
(1 33 1 55)

For this problem we would report, “College men are more likely to be frequent binge
drinkers than college women (odds ratio 1.44, 95% CI 1.33 to 1.55).”

An experiment was designed to examine how well the insecticide rotenone kills an
aphid, called , that feeds on the chrysanthemum plant.
The explanatory variable is the concentration (in log of milligrams per liter) of the
insecticide. At each concentration, approximately 50 insects were exposed. Each in-
sect was either killed or not killed. We summarize the data using the number killed.
The response variable for logistic regression is the log odds of the proportion killed.
Here are the data:

Concentration (log) Number of insects Number killed

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

If we transform the response variable (by taking log odds) and use least squares,
we get the fit illustrated in Figure 15.3. The logistic regression fit is given in Fig-
ure 15.4. It is a transformed version of Figure 15.3 with the fit calculated using the
logistic model.

FIGURE 15.2
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Plot of log odds of percent killed versus concentration for the
insecticide data, for Example 15.7.

Plot of the percent killed versus log concentration with the
logistic fit for the insecticide data, for Example 15.7.
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INTERCPT
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0.3877

57.7757
64.0744

0.0001
0.0001 22.277

Parameter
Estimate

Odds
Ratio

Standard
Error
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Pr >
Chi-Square

Logistic regression output for the insecticide data, for
Example 15.8.
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One of the major themes of this text is that we should present the results
of a statistical analysis with a graph. For the insecticide example we have done
this with Figure 15.4 and the results appear to be convincing. But suppose that
rotenone has no ability to kill . What is the chance
that we would observe experimental results at least as convincing as what we
observed if this supposition were true? The answer is the -value for the test
of the null hypothesis that the logistic regression slope is zero. If this -value
is not small, our graph may be misleading. Statistical inference provides what
we need.
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The output for the analysis of the insecticide data produced by the SAS logistic pro-
cedure is given in Figure 15.5. The model is

log
1

where the values of the explanatory variable are 0 96 1 33 1 63 2 04 2 32. From
the output we see that the fitted model is

log(ODDS) 4 89 3 10

This is the fit that we plotted in Figure 15.4. The null hypothesis that 0 is clearly
rejected ( 64 07, 0 001). We calculate a 95% confidence interval for
using the estimate 3 1035 and its standard error SE 0 3877 given in the
output:

SE 3 1035 (1 96)(0 3877)
3 1035 0 7599

We are 95% confident that the true value of the slope is between 2.34 and 3.86.
The odds ratio is given on the output as 22.277. An increase of one unit in the

log concentration of insecticide ( ) is associated with a 22-fold increase in the odds
that an insect will be killed. The confidence interval for the odds is obtained from the
interval for the slope:

( ) ( )
(10 42 47 63)

Note again that the test of the null hypothesis that the slope is 0 is the same as
the test of the null hypothesis that the odds are 1. If we were reporting the results in
terms of the odds, we could say, “The odds of killing an insect increase by a factor
of 22.3 for each unit increase in the log concentration of insecticide ( 64 07,

0 001; 95% CI 10.4 to 47.6).”
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DFVariable

INTERCPT
ACETIC

1
1

–13.7052
2.2490

5.9319
1.0271

5.3380
4.7947

0.0209
0.0285 9.479

Parameter
Estimate

Odds
Ratio

Standard
Error

Wald 
Chi-Square

Pr >
Chi-Square

Logistic regression output for the cheese data with Acetic as the
explanatory variable, for Example 15.9.
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In Example 15.5 we studied the problem of predicting whether or not the
taste of cheese was acceptable using Acetic as the explanatory variable. We
now revisit this example and show how statistical inference is an important
part of the conclusion.

We estimate that increasing the acetic acid content of the cheese by one
unit will increase the odds that the cheese will be acceptable by about 9 times.
The data, however, do not give us a very accurate estimate. The odds ratio
could be as small as a little more than 1 or as large as 71 with 95% confi-
dence. We have evidence to conclude that cheeses with higher concentrations
of acetic acid are more likely to be acceptable, but establishing the true rela-
tionship accurately would require more data.

The cheese example that we just considered naturally leads us to the next
topic. The data set includes three variables: Acetic, H2S, and Lactic. We exam-
ined the model where Acetic was used to predict the odds that the cheese was
acceptable. Do the other explanatory variables contain additional informa-
tion that will give us a better prediction? We use
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The output for a logistic regression analysis using Acetic as the explanatory variable
is given in Figure 15.6. In Example 15.5 we gave the fitted model:

log(ODDS) 13 71 2 25

From the output we see that because 0 0285, we can reject the null hypoth-
esis that 0. The value of the test statistic is 4 79 with 1 degree of freedom.
We use the estimate 2 2490 and its standard error SE 1 0271 to compute
the 95% confidence interval for :

SE 2 2490 (1 96)(1 0271)
2 2490 2 0131

Our estimate of the slope is 2.25 and we are 95% confident that the true value is
between 0.24 and 4.26. For the odds ratio, the estimate on the output is 9.48. The
95% confidence interval is

( ) ( )
(1 27 70 96)

multiple logistic
regression

FIGURE 15.6
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DFVariable

Criterion
–2 LOG L

Chi-Square for Covariates
16.334 with 3 DF (p=0.0010)

Intercept
Only

   34.795

Intercept
and 

Covariates
18.461

INTERCPT
ACETIC
H2S
LACTIC

1
1
1
1

–14.2604
0.5845
0.6849
3.4684

8.2869
1.5442
0.4040
2.6497

2.9613
0.1433
2.8730
1.7135

0.0853
0.7051
0.0901
0.1905

1.794
1.983

32.086

Parameter
Estimate

Odds
Ratio

Standard
Error

Wald 
Chi-Square

Pr >
Chi-Square

Logistic regression output for the cheese data with Acetic, H2S,
and Lactic as the explanatory variables, for Example 15.10.
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to answer this question. Generating the computer output is easy, just as it
was when we generalized simple linear regression with one explanatory vari-
able to multiple linear regression with more than one explanatory variable in
Chapter 11. The statistical concepts are similar, although the computations
are more complex. Here is the example.

Our initial multiple logistic regression analysis told us that the explana-
tory variables contain information that is useful for predicting whether or not
the cheese is acceptable. Because the explanatory variables are correlated,
however, we cannot clearly distinguish which variables or combinations of
variables are important. Further analysis of these data using subsets of the
three explanatory variables is needed to clarify the situation. We leave this
work for the exercises.
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As in Example 15.9, we predict the odds that the cheese is acceptable. The explana-
tory variables are Acetic, H2S, and Lactic. Figure 15.7 gives the output. The fitted
model is

log(ODDS) Acetic H2S Lactic
14 26 0 58 Acetic 0 68 H2S 3 47 Lactic

When analyzing data using multiple regression, we first examine the hypothesis
that all of the regression coefficients for the explanatory variables are zero. We do
the same for logistic regression. The hypothesis

: 0

is tested by a chi-square statistic with 3 degrees of freedom. This is given in the
output on the line for the criterion “-2 LOG L” under the heading “Chi-Square for
Covariates.” The statistic is 16 33 and the -value is 0.001. We reject and
conclude that one or more of the explanatory variables can be used to predict the
odds that the cheese is acceptable. We now examine the coefficients for each variable
and the tests that each of these is 0. The -values are 0.71, 0.09, and 0.19. None of
the null hypotheses, : 0, : 0, and : 0, can be rejected.

FIGURE 15.7
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ˆ ˆ ˆIf is the sample proportion, then the are (1 ), the ratio of the
proportion of times the event happens to the proportion of times the event
does not happen.

The relates the log of the odds to the explanatory
variable:

log
1

where the response variables for 1 2 are independent binomial ran-
dom variables with parameters 1 and ; that is, they are independent with
distributions (1 ). The explanatory variable is .

The of the logistic model are and .

The is , where is the slope in the logistic regression model.

A is

SE

A is

SE

A is obtained by trans-
forming the confidence interval for the slope

( )

In these expressions is the value for the standard normal density curve with
area between and .

To test the hypothesis : 0, compute the

SE

In terms of a random variable having a distribution with 1 degree of
freedom, the -value for a test of against : 0 is ( ). This
is the same as testing the null hypothesis that the odds ratio is 1.

In the response variable has two possible values,
as in logistic regression, but there can be several explanatory variables.
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(c)
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(a)

(b)

(c)

15.4

(a)

Directory of Public High Technology Corporations

CHAPTER 15 EXERCISES

In the United States approximately 900 people die in bicycle accidents each
year. One study examined the records of 1711 bicyclists aged 15 or older
who were fatally injured in bicycle accidents between 1987 and 1991 and
were tested for alcohol. Of these, 542 tested positive for alcohol (blood
alcohol concentration of 0.01% or higher).

What proportion of the bicyclists tested positive for alcohol?

What are the odds that a fatally injured bicyclist will test positive for
alcohol?

What proportion of the bicyclists did not test positive for alcohol?

What are the odds that a fatally injured bicyclist will not test positive
for alcohol?

How are your answers to parts (a) and (d) related?

A poll of 811 adults aged 18 or older asked about purchases that they
intended to make for the upcoming holiday season. One of the questions
asked about what kind of gift they intended to buy for the person on whom
they intended to spend the most. Clothing was the first choice of 487 people.

What proportion of adults said that clothing was their first choice?

What are the odds that an adult will say that clothing is his or her first
choice?

What proportion of adults said that something other than clothing was
their first choice?

What are the odds that an adult will say that something other than
clothing is his or her first choice?

How are your answers to parts (a) and (d) related?

Different kinds of companies compensate their key employees in different
ways. Established companies may pay higher salaries, while new companies
may offer stock options that will be valuable if the company succeeds. Do
high-tech companies tend to offer stock options more often than other
companies? One study looked at a random sample of 200 companies. Of
these, 91 were listed in the ,
and 109 were not listed. Treat these two groups as SRSs of high-tech and non-
high-tech companies. Seventy-three of the high-tech companies and 75 of the
non-high-tech companies offered incentive stock options to key employees.

What proportion of the high-tech companies offer stock options to their
key employees? What are the odds?

What proportion of the non-high-tech companies offer stock options to
their key employees? What are the odds?

Find the odds ratio using the odds for the high-tech companies in the
numerator. Describe the result in a few sentences.

Refer to the previous exercise.

Find the log odds for the high-tech firms. Do the same for the non-high-
tech firms.
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Define an explanatory variable to have the value 1 for high-tech firms
and 0 for non-high-tech firms. For the logistic model, we set the log
odds equal to . Find the estimates and for the parameters

and .

Show that the odds ratio is equal to .

Refer to Exercises 15.3 and 15.4. Software gives 0.3347 for the standard
error of .

Find the 95% confidence interval for .

Transform your interval in (a) to a 95% confidence interval for the odds
ratio.

What do you conclude?

Refer to Exercises 15.3 to 15.5. Repeat the calculations assuming that you
have twice as many observations with the same proportions. In other words,
assume that there are 182 high-tech firms and 218 non-high-tech firms. The
numbers of firms offering stock options are 146 for the high-tech group
and 150 for the non-high-tech group. The standard error of for this
scenario is 0.2366. Summarize your results, paying particular attention
to what remains the same and what is different from what you found in
Exercises 15.3 to 15.5.

There is much evidence that high blood pressure is associated with
increased risk of death from cardiovascular disease. A major study of this
association examined 3338 men with high blood pressure and 2676 men
with low blood pressure. During the period of the study, 21 men in the
low-blood-pressure and 55 in the high-blood-pressure group died from
cardiovascular disease.

Find the proportion of men who died from cardiovascular disease in
the high-blood-pressure group. Then calculate the odds.

Do the same for the low-blood-pressure group.

Now calculate the odds ratio with the odds for the high-blood-pressure
group in the numerator. Describe the result in words.

To what extent do syntax textbooks, which analyze the structure of
sentences, illustrate gender bias? A study of this question sampled sentences
from 10 texts. One part of the study examined the use of the words “girl,”
“boy,” “man,” and “woman.” We will call the first two words juvenile and the
last two adult. Here are data from one of the texts:

Gender (juvenile)

Female 60 48
Male 132 52

Find the proportion of the female references that are juvenile. Then
transform this proportion to odds.

Do the same for the male references.
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(c)

15.9

(a)

(b)

(c)
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What is the odds ratio for comparing the female references to the male
references? (Put the female odds in the numerator.)

Refer to the study of cardiovascular disease and blood pressure in
Exercise 15.7. Computer output for a logistic regression analysis of
these data gives the estimated slope 0 7505 with standard error
SE 0 2578.

Give a 95% confidence interval for the slope.

Calculate the statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate -value.

Write a short summary of the results and conclusions.

The data from the study of gender bias in syntax textbooks given in
Exercise 15.8 are analyzed using logistic regression. The estimated slope
is 1 8171 and its standard error is SE 0 3686.

Give a 95% confidence interval for the slope.

Calculate the statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate -value.

Write a short summary of the results and conclusions.

The results describing the relationship between blood pressure and
cardiovascular disease are given in terms of the change in log odds in
Exercise 15.9.

Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

Write a conclusion using the odds to describe the results.

The gender bias in syntax textbooks is described in the log odds scale in
Exercise 15.10.

Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

Write a conclusion using the odds to describe the results.

To be competitive in global markets, many U.S. corporations are
undertaking major reorganizations. Often these involve “downsizing” or
a “reduction in force” (RIF), where substantial numbers of employees
are terminated. Federal and various state laws require that employees
be treated equally regardless of their age. In particular, employees over
the age of 40 years are in a “protected” class, and many allegations of
discrimination focus on comparing employees over 40 with their younger
coworkers. Here are the data for a recent RIF:

Over 40

Terminated No Yes

Yes 7 41
No 504 765
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(a)

(b)

(c)

(d)
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15.17
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Write the logistic regression model for this problem using the log odds
of a RIF as the response variable and an indicator for over and under
40 years of age as the explanatory variable.

Explain the assumption concerning binomial distributions in terms of
the variables in this exercise. To what extent do you think that these
assumptions are reasonable?

Software gives the estimated slope 1 3504 and its standard error
SE 0 4130. Transform the results to the odds scale. Summarize the
results and write a short conclusion.

If additional explanatory variables were available, for example, a
performance evaluation, how would you use this information to study
the RIF?

The Ping Company makes custom-built golf clubs and competes in the
$4 billion golf equipment industry. To improve its business processes, Ping
decided to seek ISO 9001 certification. As part of this process, a study of
the time it took to repair golf clubs sent to the company by mail determined
that 16% of orders were sent back to the customers in 5 days or less. Ping
examined the processing of repair orders and made changes. Following the
changes, 90% of orders were completed within 5 days. Assume that each
of the estimated percents is based on a random sample of 200 orders. Use
logistic regression to examine how the odds that an order will be filled in 5
days or less has improved. Write a short report summarizing your results.

To devise effective marketing strategies it is helpful to know the
characteristics of your customers. A study compared demographic
characteristics of people who use the Internet for travel arrangements and
of people who do not. Of 1132 Internet users, 643 had completed college.
Among the 852 nonusers, 349 had completed college. Model the log odds of
using the Internet to make travel arrangements with an indicator variable
for having completed college as the explanatory variable. Summarize your
findings.

The study mentioned in the previous exercise also asked about income.
Among Internet users, 493 reported income of less than $50,000 and 378
reported income of $50,000 or more. (Not everyone answered the income
question.) The corresponding numbers for nonusers were 477 and 200.
Repeat the analysis using an indicator variable for income of $50,000 or
more as the explanatory variable. What do you conclude?

A study of alcohol use and deaths due to bicycle accidents collected data on
a large number of fatal accidents. For each of these, the individual who
died was classified according to whether or not there was a positive test for
alcohol and by gender. Here are the data:

Gender (tested positive)

Female 191 27
Male 1520 515
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15.18

15.19

15.20

15.21

(a)

(b)

(c)

15.22

(a)

(b)

(c)

15.23

(a)

(b)

(c)

The following four exercises use the CSDATA data set described in the Data
Appendix. We examine models for relating success as measured by the GPA
to several explanatory variables. In Chapter 11 we used multiple regression
methods for our analysis. Here, we define an indicator variable, say HIGPA, to
be 1 if the GPA is 3.0 or better and 0 otherwise.

H

H

� � �

� �

Use logistic regression to study the question of whether or not gender is
related to alcohol use in people who are fatally injured in bicycle accidents.

In Examples 15.5 and 15.9, we analyzed data from the CHEESE data set
described in the Data Appendix. In those examples, we used Acetic as the
explanatory variable. Run the same analysis using H2S as the explanatory
variable.

Refer to the previous exercise. Run the same analysis using Lactic as the
explanatory variable.

For the cheese data analyzed in Examples 15.9, 15.10, and the two exercises
above, there are three explanatory variables. There are three different logistic
regressions that include two explanatory variables. Run these. Summarize
the results of these analyses, the ones using each explanatory variable alone,
and all three explanatory variables together. What do you conclude?

Use a logistic regression to predict HIGPA using the three high school grade
summaries as explanatory variables.

Summarize the results of the hypothesis test that the coefficients for all
three explanatory variables are zero.

Give the coefficient for high school math grades with a 95% confidence
interval. Do the same for the two other predictors in this model.

Summarize your conclusions based on parts (a) and (b).

Use a logistic regression to predict HIGPA using the two SAT scores as
explanatory variables.

Summarize the results of the hypothesis test that the coefficients for
both explanatory variables are zero.

Give the coefficient for the SAT math score with a 95% confidence
interval. Do the same for the SAT verbal score.

Summarize your conclusions based on parts (a) and (b).

Run a logistic regression to predict HIGPA using the three high school
grade summaries and the two SAT scores as explanatory variables. We
want to produce an analysis that is similar to that done for the case study
in Chapter 11.

Test the null hypothesis that the coefficients of the three high school
grade summaries are zero; that is, test : 0.

Test the null hypothesis that the coefficients of the two SAT scores are
zero; that is, test : 0.

What do you conclude from the tests in (a) and (b)?
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15.24

(a)

(b)

(c)

15.25

(a)

(b)

(c)

the reversal of the direction of a comparison or an
association when data from several groups are combined to form a single
group

In this exercise we investigate the effect of gender on the odds of getting a
high GPA.

Use gender to predict HIGPA using a logistic regression. Summarize
the results.

Perform a logistic regression using gender and the two SAT scores to
predict HIGPA. Summarize the results.

Compare the results of parts (a) and (b) with respect to how gender
relates to HIGPA. Summarize your conclusions.

In Examples 9.9 and 9.10 (pages 617 and 618) we studied an example
of Simpson’s paradox,

. The data concerned two hospitals, A and B, and whether or not
patients undergoing surgery died or survived. Here are the data for all
patients:

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

And here are the more detailed data where the patients are categorized as
being in good condition or poor condition:

Good condition Poor condition

Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192

Total 600 600 Total 1500 200

Use a logistic regression to model the odds of death with hospital as the
explanatory variable. Summarize the results of your analysis and give
a 95% confidence interval for the odds ratio of Hospital A relative to
Hospital B.

Rerun your analysis in (a) using hospital and the condition of the
patient as explanatory variables. Summarize the results of your analysis
and give a 95% confidence interval for the odds ratio of Hospital A
relative to Hospital B.

Explain Simpson’s paradox in terms of your results in parts (a) and (b).
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Notes 59

Logistic regression models for the general case where there are more than two
possible values for the response variable have been developed. These are
considerably more complicated and are beyond the scope of our present study. For
more information on logistic regression, see A. Agresti,

, Wiley, 1996; and D. W. Hosmer and S. Lemeshow,
, Wiley, 1989.

This example is taken from a classical text written by a contemporary of R. A. Fisher,
the person who developed many of the fundamental ideas of statistical inference
that we use today. The reference is D. J. Finney, , Cambridge
University Press, 1947. Although not included in the analysis, it is important to note
that the experiment included a control group that received no insecticide. No aphids
died in this group. We have chosen to call the response “dead.” In the text the
category is described as “apparently dead, moribund, or so badly affected as to be
unable to walk more than a few steps.” This is an early example of the need to make
careful judgments when defining variables to be used in a statistical analysis. An
insect that is “unable to walk more than a few steps” is unlikely to eat very much of
a chrysanthemum plant!

Data from Guohua Li and Susan P. Baker, “Alcohol in fatally injured bicyclists,”
, 26 (1994), pp. 543–548.

The poll is part of the American Express Retail Index Project and is reported in
, December 2000, pp. 38–40.

Based on Greg Clinch, “Employee compensation and firms’ research and
development activity,” , 29 (1991), pp. 59–78.

From Monica Macaulay and Colleen Brice, “Don’t touch my projectile: gender bias
and stereotyping in syntactic examples,” , 73, no. 4 (1997), pp. 798–825.

Based on Robert T. Driescher, “A quality swing with Ping,” , August
2001, pp. 37–41.

From Karin Weber and Weley S. Roehl, “Profiling people searching for and
purchasing travel products on the World Wide Web,” , 37
(1999), pp. 291–298.

See Note 3.


