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Chapter 1

Introduction to Sports Betting

A wide variety of research in the fields of Economics, Finance, and Statistics has been applied to betting
on sporting events. Two particular streams of research involve betting on horse racing and betting on team
sports. For an excellent literature review, see Sauer (1998) [?]. Betting on horse racing involves betting the
odds on which horse among a group racing will win the race. Various other bets can be made including
place (finish first or second) and show (finish first, second, or third) among others. Betting on team sports
typically involve odds (money line) for each team winning, point spreads allowing for differences in scoring
abilities and Over/Under for total points scored by both teams. In this book, the focus will be on team
sports although some examples involving horse racing will be included. The data are mostly obtained from
the website www.covers.com with other sources being used to supplement when needed.

The point spread is a number of points that one team is favored to win by over another team. In Game
6 of the 2019 NBA Finals, the Golden State Warriors were favored over the Toronto Raptors by 2.5 points
in the game. If the Warriors won by 3 or more points, a bet on the Warriors won. If the Raptors won,
or lost by 2 or fewer points, a bet on the Raptors won. The Raptors won by 4, so a bet on them would
have won, a bet on the Warriors would have lost. Note that there is no possibility of a tie with that point
spread line. While in many newspapers, publications, and internet sites, the favorite is listed with a negative
spread (Warriors -2.5, in this case), we will use the opposite convention as saying the favorite has a positive
advantage as is typically (but not universally) done in the sports betting literature. This makes interpreting
results of various statistical tests more intuitive.

The Over/Under is the total number of points for the two teams. In the same game, the Over/Under
was 211.5 points. The final score was Raptors 114, Warriors 110. The total points were 224, so the Over
bet would have won, and the Under bet would have lost. Note that there is no possibility of a tie on that
Over/Under line.

The Moneyline (odds) makes adjustments to payoffs when betting on teams to win a game “straight
up.” This is widely used in lower scoring sports such as soccer, hockey, and baseball. In Game 7 of the 2019
World Series, the Money Line was Houston Astros -136, Washington Nationals +126. These numbers are
typically (but not always) one positive, the other negative. When teams are very closely matched they can
both be negative. The way to interpret these are as follow. You must bet $136 on Houston to win $100 if
the Astros win the game. If you bet $100 on Washington to win, you will win $126 if the Nationals win.
There are two interpretations of a “unit bet,” the other way of looking at the bet on the favorite is: Bet $100

7



8 CHAPTER 1. INTRODUCTION TO SPORTS BETTING

on Houston and win $100(100/136)=$73.53. This second interpretation makes more sense when considering
“unit bets” (see Woodland and Woodland (1994) [?], Gandar, et al (2002) [?], and Berkowitz, Depken, and
Gandar (2018) [?]). We will discuss the calculations of odds and their conversions to probabilities in the
chapter on probability.

In Major League Baseball (MLB) and the National Hockey League (NHL), there are Over/Under lines
combined with Money Lines. For instance, in the Atlanta Braves/New York Mets baseball game on July
24, 2020, the Over/Under is 7.5 runs with a Money Line of -115 for Over and -110 for Under. That is, a
bet of $115 wins $100 for Over ($100 bet wins $86.96) and a bet of $110 wins $100 for Under bet ($100
bet wins $90.91). These details were first described (to my knowledge) among a series of a paper, comment,
reply, and discussion in Brown and Abraham (2002) [?], Paul and Weinbach (2004) [?], Brown and Abraham
(2004) [?], and Gandar and Zuber (2004a) [?]. The original paper did not include the Money Line regarding
the Over/Under betting strategies and the comment pointed out the omission.

When betting through a legal sportsbook, the “11-10” rule is widely described in the sports betting
literature (see e.g. Vergin and Scriabin (1978) [?]) to determine success probability needed for profitability.
A bettor wages $11 to win $10. If the bettor’s bet is successful, she wins back her $11 bet, plus the $10 from
the sportsbook. If the bet is a “tie” (better known as “push” in betting parlance), she wins back her $11 bet
(gains $0). If her bet is unsuccessful, she loses the $11 she wagered. Let π be the probability she wins the
bet and 1 − π be the probability she loses the bet (ignoring the chance of a push, since in that case, there
was virtually no bet made). Then for a betting strategy to be profitable, we need the expected return E {R}
to be positive. That is, we need the following result, which is often simply reported as .524 in the literature.

E {R} = π(10) + (1 − π) (−11) = π(21) − 11 > 0 ⇒ π >
11

21
= .5238

Example 1.1: Examples of Betting Lines for NFL and MLB

Table ?? gives typical betting lines and results for a subset of a week of NFL games (four games from
Week 6 of 2019 Regular Season). Generally there will be multiple sportsbooks included, each with their own
adjustments on the lines. Only closing lines (at gametime) are included, but opening lines and line histories
are often available as well. Table ?? gives typical betting lines and results for a day of MLB games (four
games from Tuesday, July 16, 2019). NBA would be similar to the NFL and NHL would be similar to MLB.
Note that negative spreads mean that the “home” team is favored, thus, we are still using the common
convention in posting lines.

Note that the Carolina/Tampa Bay NFL game was played at a neutral site at the Tottenham Hotspur
Stadium in London. The spread is still with respect to the “home” team Tampa Bay. For the Thursday
night New York Giants @ New England game, New England won by 35-14=21 points, covering the 16.5
point spread, and the total points 35+14=49 exceeded the 43 point Over/Under line.

The LA Dodgers @ Philadelphia Phillies MLB game was won by the Phillies 9-8. As they were +180, a
$100 bet on Philadelphia would have paid out $180. The total runs scored was 17, well exceeding the 10.0
Over/Under. As the Money Line for the Over bet was -105, a $105 Over bet would have paid out $100 (a
$100 bet would have paid out $95.24).

∇
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Day Away Team Home Team Neutral Home Spread Over/Under Away Score Home Score

Thursday, Oct. 10 NYG NE 0 -16.5 43 14 35
Sunday, Oct. 13 CAR TB 1 +2 47.5 37 26
Sunday, Oct. 13 WAS MIA 0 +6 42 17 16
Sunday, Oct. 13 PHI MIN 0 -3.5 44.5 20 38

Table 1.1: Betting lines for National Football League Games

Day Away Team Home Team Away ML Home ML Over/Under Over ML Under ML Away Score Home Score

Tuesday, July 16 LAD PHI -220 +180 10.0 -105 -116 8 9
Tuesday, July 16 WAS BAL -185 +170 11.5 -103 -120 8 1
Tuesday, July 16 TB NYY +130 -152 10.5 100 -120 3 8
Tuesday, July 16 DET CLE +210 -250 10.5 -115 -106 0 8

Table 1.2: Betting lines for Major League Baseball Games
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Chapter 2

Describing Data

Once data have been collected, it is typically described via graphical and numeric methods. The methods
used to describe the data will depend on its type (nominal, ordinal, or numeric).

Nominal variables have levels that are categorical with no inherent ordering. If we took a game at
random from a season, and observed the home team for that game, that variable would be nominal.

Ordinal variables have levels that are categorical, but do have an inherent ordering. In soccer matches,
the home team can Win, Draw (Tie), or Lose the match, which represents an ordinal outcome.

Numeric variables can be either discrete or continuous. A discrete variable may be the number of
points scored by the home team in a game. A continuous variable may be the time for a horse to complete a
race. When discrete random variables have many possible levels (such as points by a team in a pro basketball
game), they are often treated as if they are continuous.

We also need to distinguish whether the data corresponds to a sample or a population. In this chapter,
we focus purely on describing a set of measurements, not making inferences. First we consider graphical and
numeric descriptions of a single variable. Then we consider pairs of variables.

2.1 Graphical Description of a Single Variable

Depending on the type of measurement, common plots are pie charts, bar charts, histograms, box
plots, and density plots.

Pie charts can be used to describe any variable type. Continuous numeric variables must be collapsed
into “bins” or “buckets.” The size of the sectors of the pie represent the relative frequency of each category.
However, they can be difficult to read when there are many groups and/or low frequency groups.

Bar charts are used to describe nominal or ordinal data. The variable levels are arrayed on the bottom

11



12 CHAPTER 2. DESCRIBING DATA

(or left side) of the plot and bars above (or beside) the levels represent the frequency or relative frequency
of the number of observations belonging to the various categories.

Histograms are used for numeric variables, where the heights of the bars above the bins represent the
frequency or relative frequency of the various bins.

Density plots are used for numeric variables. They represent smoothed histograms describing the location
of the measurements.

Boxplots are used for numeric variables. They identify particular percentiles of a distribution and are
useful in detecting outlying observations and spread in the distribution. A variation on this theme are violin
plots, which vary in width depending on the density of the data.

Example 2.1: Major League Baseball Over/Under Bet Outcomes - 2015-2019

Of 12152 MLB regular season games played during 2015-2019, the “Over” bet won 5759 (.4739), the
“Under” won 5819 (.4789), and there were 574 (.0472) “Pushes.” Figure ?? gives a Bar Chart representing
the frequencies of the three possible outcomes. Clearly there is no tendency for the “Over” or “Under” to
occur more frequently than the other over this period. The percentages by season are given in Figure ??.
There is very little fluctuation over the years.

∇

Example 2.2: Women’s NBA Home Team Spread Differentials - 2010-2019 - Histogram
and Density Plot

For 2037 WNBA games played during the 2010-2019 regular seasons, we obtain the home team’s spread
differential. This is obtained my taking the difference between the home and away teams’ score and sub-
tracting the home team’s “advantage.” Note that this is the same as taking the difference and adding the
home team’s printed line. Positive values imply that the home team covered the spread, while negative
values imply the away team covered, and values of 0, imply a “Push.” Interestingly, the median (defined
below) is 0. A histogram and a smooth density plot are given in Figure ??. The histogram is approximately
symmetric and mound-shaped. A scaled normal distribution with mean 0 and standard deviation equal to
that of the differentials is super-imposed.

∇

Example 2.3: Women’s NBA Over/Under Differentials - 2010-2019 - Boxplot

Figure ?? gives a boxplot for the WNBA Over/Under differentials for the 2010-2019 regular seasons,
where the differential is defined as the difference between total points scored and the Over/Under betting
line. Figure ?? displays side-by-side box plots by season. Note the outliers at the bottom and top of each
plot. The extreme positive differentials tend to be games that went into overtime. The extreme negative
differentials represent games where one or both teams under-performed offensively. The side-by-side boxplots
show that the distribution is fairly consistent over the ten seasons, and that the median hovers around 0.
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Figure 2.1: Bar Chart of Over/Under MLB results for 2015-2019
box
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Figure 2.2: Bar Chart of Over/Under MLB results by season for 2015-2019
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Figure 2.3: Histogram and Smooth Density of Home Team Spread Differentials for WNBA for 2010-2019

The box-plot identifies from bottom to top the following elements.

1. Minimum: Bottom of line at bottom of plot or lowest circle below the line if present.

2. Range for lowest 25% of measurements: Line extends to either the Minimum or 1.5 times the distance
between 75th and 25th percentiles (height of the box), whichever is lowest. Circles represent outlying
measurements.

3. 25th percentile: Bottom line of box

4. Range for the 25th to 50th percent of measurements: Between bottom of box and second horizontal
line

5. Median (50th percentile): Second horizontal line

6. Range for the 50th to 75th percent of measurements: Between second horizontal line and top of box

7. 75th percentile: Top line of the box

8. Range for 75th to 100th percent of measurements: Line extends to either the Maximum or 1.5 times the
distance between 75th and 25th percentiles (height of the box), whichever is lowest. Circles represent
outlying measurements.

A smooth version of a boxplot, which does not separate the measurements into quantiles is a violin
plot. For the Over/Under differential data, one is displayed in Figure ??.

∇

Time series plots are widely used in many areas including economics, finance, climatology, and biology.
These graphs include one or more characteristics being observed in a sequential time order. These plots
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Figure 2.4: Boxplot of Over/Under Differential for WNBA 2010-2019

Figure 2.5: Side-by-side Boxplots of Over/Under Differential by year for WNBA 2010-2019
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Figure 2.6: Violin plot of Over/Under Differential by year for WNBA 2010-2019

can be based on virtually any scale from nanoseconds to millenia. They can be used to detect trend and
cyclical patterns over time. Figure ?? shows the weekly average spread deviations for NFL home teams by
week, separately for the 2010-2019 seasons. The way the response is measured is to take the home team
spread (again, using the convention that the spread is positive for the home team when it is favored) and
subtracting it from the home team’s point differential in the final score. For instance, if the home team’s
spread is +7 and it wins the game by the score 24− 17, then home spread deviation is (24− 17)− (+7) = 0
and the game is a push. Of interest is whether betting lines become more accurate over the course of the
seasons (closing in on 0). Another measure (described in detail below) is the standard deviation, a measure
of the spread in a set of measurements. A plot of the weekly standard deviations is given in Figure ??.

2.2 Numerical Descriptive Measures of a Single Variable

Numerical descriptive measures describe a set of measurements in quantitative terms. When describing a
population of measurements, they are referred to as parameters; when describing a sample of data, they
are referred to as statistics.

In terms of nominal and ordinal data, proportions are generally the numeric measures of interest.
These are simply the fraction of measurements falling into the various possible levels (and must sum to
1). For ordinal variables, the cumulative proportions are also of interest, representing the fraction of
measurements falling in or below the various categories.

Example 2.4: NFL Home Team Point Spread Differential

For the NFL 2006-2019 seasons, there were 3584 games played. The home team covered the spread in
1690 of the games, lost against the spread in 1797 games, and pushed in 97 of the games. The counts and
proportions are given below.
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Figure 2.7: NFL 2006-2019 weekly average home spread deviations

Figure 2.8: NFL 2006-2019 weekly standard deviations of home spread deviations
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R Commands and Output are given below. The table function counts the number of cases that are of
each category, and dividing by their sum converts them to proportions.

R Commands and Output

### R Commands/Output (using previous dataset)

table(nfl_home$home_cover1)

table(nfl_home$home_cover1) / sum(table(nfl_home$home_cover1))

Lose Push Win

1797 97 1690

Lose Push Win

0.50139509 0.02706473 0.47154018

∇

2.2.1 Measures of Central Tendency

There are two commonly reported measures of central tendency, or location for a set of measurements. The
mean is the sum of all measurements divided by the number of measurements, and is reported often as “per
capita” in economic reports. The mean is the “balance point” of a set of measurements in a physical sense.
The median is the point where half of the measurements fall at or below it, and half of the measurements
fall at or above it. It is also the 50th percentile of the set of measurements. Many economic reports state
median values. A third, less reported measure is the mode which really is only appropriate for discrete
variables, and is the value that occurs most often. If you obtain a histogram of discretely measured data,
the mode is the level with the highest bar.

Note that the mean is affected by outlying measurements, as it is the sum of all measurements, evenly
distributed among all of the measurements. The median is more “robust” as it is not affected by the actual
values of individual measurements, only the center of them. The formulas for the population mean µ, based
on a population of N items and the sample mean y for a sample of n items are given below.

Population Mean: µ =

∑N
i=1 yi

N
Sample Mean: y =

∑n
i=1 yi

n

To obtain the median, measurements are ordered from smallest to largest, and the middle observation
(odd population/sample size) or the average of the middle two observations (even population/sample size)
are identified.

Example 2.5: MLB Over/Under Lines

For the 2015-2019 Major League Baseball seasons, there were a total of N = 12152 games with an
Over/Under total of 103983.5 runs. The (population) mean of the Over/Under lines is µ = 103983.5/12152 =
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Figure 2.9: MLB Over/Under Lines 2015-2019

8.557 runs per game. The median is 8.5 runs per game. The results are given below, using functions in R,
as well as a bar chart of the Over/Under lines in Figure ??.

R Commands and Output

sum(mlb_home$OU)

length(mlb_home$OU)

mean(mlb_home$OU)

median(mlb_home$OU)

table(mlb_home$OU)

[1] 103983.5

[1] 12152

[1] 8.556904

[1] 8.5

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

4 52 268 941 1827 1774 2433 2114 1274 557 438 214 118 56 45

13 13.5 14 14.5 15

12 14 7 2 2

Note that the mean (8.557) and median (8.5) are very close, as would be expected for a symmetric
distribution, although this distribution is somewhat skewed to the right.

∇

Outliers are observations that lie “far” away from the others. These may be data that have been
entered erroneously or just individual cases that are quite different from others. As stated above, means
can be affected by outliers, while medians generally are not. A measure of the mean that is not affected by
outliers is the trimmed mean. This is the mean of observations in the “middle” of the measurements. For
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instance, 90% trimmed mean is the mean of the middle 90% of the ordered measurements (removing the
smallest 5% and largest 5%).

2.2.2 Measures of Variability

Along with the “location” of a set of measurements, researchers are also interested in their variability (aka
dispersion). The range is the distance between the largest and smallest measurements (note that this differs
from the standard meaning which would just give the lowest and highest values). The interquartile range
(IQR) is the distance between the 75th percentile (3/4 of measurements lie below it) and the 25th percentile
(1/4 of the measurements lie below it). That is, the IQR measures the range for the middle half of the
ordered measurements.

Measures that are more widely used in making inferences are the variance and its square root, the
standard deviation. In terms of measurements, the variance is approximately the average squared distance
of the individual measurements from the mean (for a population, it is the average). The formulas for the
population and sample variance are given below. Note that unless stated otherwise specifically, software
packages are computing the sample version.

Population Variance: σ2 =

∑N
i=1 (yi − µ)

2

N
Sample Variance: s2 =

∑n
i=1 (yi − y)

2

n − 1

The reason for dividing by n− 1 in the sample variance is to make the estimator an unbiased estimator
for the population variance. That is, when computed across all possible samples, the “average” of the sample
variance will be the population variance. The standard deviation is the positive square root of the variance
and is in the same units as the measurements. The population standard deviation is denoted as σ, the
sample standard deviation is denoted as s. For many (but certainly not all) distributions, approximately
2/3 of the measurements lie within one standard deviation of the mean and approximately 19/20 lie within
two standard deviations of the mean.

Example 2.6: MLB Over/Under Lines and Total Run Outcomes

We compute the range, interquartile range, variance, and standard deviations for the MLB Over/Under
lines and game total runs (outcome). Since we treat each of these as a population, we will make a slight
adjustment to R’s “built-in” functions var and sd, which compute the sample versions by default. Bar
charts of the Over/Under lines and total runs are given in Figure ??. Note that the means and medians
are similar (slightly higher for the actual total runs than the lines) but the variation is much higher for the
actual total runs.

R Commands and Output

> mean_MLB <- rbind(mean(OU), mean(totRuns))

> median_MLB <- rbind(median(OU), median(totRuns))

> range_MLB <- rbind((max(OU)-min(OU)), (max(totRuns)-min(totRuns)))

> IQR_MLB <- rbind((quantile(OU,.75)-quantile(OU,.25)),

+ (quantile(totRuns,.75)-quantile(totRuns,.25)))

> var_MLB <- rbind((N.MLB-1)*var(OU)/N.MLB,(N.MLB-1)*var(totRuns)/N.MLB)

> sd_MLB <- sqrt(var_MLB)
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Figure 2.10: MLB Over/Under lines and total runs 2015-2019

> MLB.out1 <- cbind(mean_MLB, median_MLB, range_MLB, IQR_MLB, var_MLB, sd_MLB)

> colnames(MLB.out1) <- c("mean", "median", "range", "IQR", "variance", "std dev")

> rownames(MLB.out1) <- c("Over/Under Line", "Total Runs")

> round(MLB.out1, 4)

mean median range IQR variance std dev

Over/Under Line 8.5569 8.5 9.5 1.5 1.2637 1.1241

Total Runs 9.0638 9.0 31.0 6.0 20.8377 4.5648

∇

Two other measures of variation are the following. The median absolute deviation (MAD), which
is the median of the absolute deviations from the median, and when data are from a normal (Gaussian)
distribution, should be approximately 0.645σ. The other is the coefficient of variation (CV), which is the
ratio of the standard deviation to the mean (and is often reported as a percentage).

Example 2.7: MLB Over/Under Lines and Total Run Outcomes

Here MAD and CV are computed for the both the Over/Under lines and the total runs. Note that the
MAD for the total runs, when divided by 0.645 is 4.651, while σ = 4.565, so they are very consistent. This
is not so for the Over/Under lines. Also, the coefficient of variation is much higher for actual total runs than
for the O/U lines.

R Commands and Output

> MAD_MLB <- rbind(median(abs(OU-median(OU))),

+ median(abs(totRuns-median(totRuns))))

> MAD_645_MLB <- MAD_MLB / 0.645

> CV_MLB <- sd_MLB / mean_MLB

>

> MLB.out2 <- cbind(MAD_MLB, CV_MLB, MAD_645_MLB, sd_MLB)

> colnames(MLB.out2) <- c("MAD", "CV", "MAD/0.645", "std dev")
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> rownames(MLB.out2) <- c("Over/Under Line", "Total Runs")

> round(MLB.out2, 4)

MAD CV MAD/0.645 std dev

Over/Under Line 0.5 0.1314 0.7752 1.1241

Total Runs 3.0 0.5036 4.6512 4.5648

∇

2.2.3 Higher Order Moments

Two other measures are occasionally reported: skewness and kurtosis. Skewness is used to measure the
symmetry of the distribution, and kurtosis measures the heaviness of the tails of the distribution. Positive
values for skewness correspond to right-skewed distributions, while negative values correspond to left-skewed
distributions. Negative values of kurtosis imply a distribution has fewer extreme values (lighter tails) than a
normal distribution, while positive values imply more extreme values (heavier tails) than a normal distribu-
tion. These measures are reported in many fields, and are especially important in financial modeling. For a
set of measurements, the skewness and kurtosis are computed as follow. Note that technically the kurtosis is
the first part in the following formulas, when we subtract the 3, we have the “excess kurtosis” which should
be around 0 if the data are normally distributed.

Population Skewness:
µ3

σ3
µ3 =

∑N
i=1 (yi − µ)

3

N
Sample Skewness:

m3

s3
m3 =

∑n
i=1 (yi − y)

3

n

Population Kurtosis:
µ4

σ4
−3 µ4 =

∑N
i=1 (yi − µ)

4

N
Sample Kurtosis:

m4

s4
−3 where m4 =

∑n
i=1 (yi − y)

4

n

Example 2.8: MLB Over/Under Lines and Total Run Outcomes

Skewness and kurtosis are computed for the two variables here.

R Commands and Output

> mu3_MLB <- rbind(sum((OU-mean(OU))^3)/N.MLB,

+ sum((teamRuns-mean(teamRuns))^3)/N.MLB)

> skew_MLB <- mu3_MLB / sd_MLB^3

> mu4_MLB <- rbind(sum((OU-mean(OU))^4)/N.MLB,

+ sum((teamRuns-mean(teamRuns))^4)/N.MLB)

> kurt_MLB <- (mu4_MLB / sd_MLB^4) - 3

> MLB.out3 <- cbind(mu3_MLB, skew_MLB, mu4_MLB, kurt_MLB)

> colnames(MLB.out3) <- c("mu3", "skewness", "mu4", "kurtosis")

> rownames(MLB.out3) <- c("Over/Under Line", "Total Runs")

> round(MLB.out3, 4)

mu3 skewness mu4 kurtosis

Over/Under Line 1.0541 0.7421 7.0313 1.4033

Total Runs 32.7771 0.3446 458.4699 -1.9441
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Column
1 2 · · · c Total

Row 1 n11 n12 · · · n1c n1.

2 n21 n22 · · · n2c n2.

...
...

...
...

...
...

r nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c n..

Table 2.1: Contingency Table for Row Variable with r levels, and Column variable with c columns

Skewness is positive for both variables, and is higher for the O/U lines than the total runs (presumably
more “mass” in the upper tail). The kurtosis is positive for O/U lines and negative for total runs, these are
difficult to interpret too closely.

∇

2.3 Describing More than One Variable

So far, we have looked at cases one variable at a time. Now we consider describing relationships when
two variables are observed on each sampling/experimental unit. These can be extended to more than two
variables, but can be harder to visualize. We consider graphical techniques as well as numerical measures.
Keep in mind that variable types (nominal, ordinal, and numeric) will dictate which method(s) is (are)
appropriate.

When both variables are categorical (nominal or ordinal), two methods of plotting them are stacked
bar graphs and cluster bar graphs. For the stacked bar graph, one variable is on the horizontal axis
(one slot for each level) and the other variable is displayed within the bars with subcategories for each of
its levels. In a cluster (grouped) bar graph, one variable forms “major groupings,” while the second variable
is plotted “side-by-side“ within the groupings. Both methods are based on results of a contingency table
also known as a crosstabulation. These are tables where rows are the levels of one categorical variable,
columns are levels of another variable, and numbers within the table are counts of the number of units falling
in that cell (combination of variable levels). Often these are converted into proportions either overall (cell
probabilities sum to 1), or within rows or columns. A contingency table is typically of the form in Table ??.

Example 2.9: WNBA Home Team Spread and Over/Under Outcomes

For the WNBA 2010-2019 seasons, the outcomes of how the home team fares against the spread and the
Over are ordinal with levels “Lose”, “Push”, and “Win”. Group and Stacked bar charts for the proportions
of games falling in the 9 combinations of Home/Over outcomes are given in Figure ??.

R Commands and Output

> OUDiff = teamPts + oppPts - OU

> OverRes = ifelse(OUDiff > 0, "Win", ifelse(OUDiff < 0, "Lose", "Push"))
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Figure 2.11: Outcomes for Over/Home wagers for WNBA 2010-2019 seasons

> HomeDiff = (teamPts - oppPts) - teamSprd

> HomeRes = ifelse(HomeDiff > 0, "Win", ifelse(HomeDiff < 0, "Lose", "Push"))

>

> ## Obtain Table of Counts (Row=Over, Column=Home)

> (OverHome <- table(OverRes,HomeRes))

HomeRes

OverRes Lose Push Win

Lose 501 16 509

Push 14 0 14

Win 502 17 466

> ## Obtain Row (1) and Column (2) Marginal Totals

> margin.table(OverHome,1)

OverRes

Lose Push Win

1026 28 985

> margin.table(OverHome,2)

HomeRes

Lose Push Win

1017 33 989

> ## Obtain Proportions across all Cells

> OverHome/sum(OverHome)

HomeRes

OverRes Lose Push Win

Lose 0.245708681 0.007846984 0.249632173

Push 0.006866111 0.000000000 0.006866111

Win 0.246199117 0.008337420 0.228543404

> ## Obtain Row Proportions (Home w/in Over)

> prop.table(OverHome,1)

HomeRes

OverRes Lose Push Win

Lose 0.48830409 0.01559454 0.49610136

Push 0.50000000 0.00000000 0.50000000

Win 0.50964467 0.01725888 0.47309645

> ## Obtain Column Proportions (Over w/in Home)

> prop.table(OverHome,2)

HomeRes

OverRes Lose Push Win

Lose 0.49262537 0.48484848 0.51466127

Push 0.01376598 0.00000000 0.01415571

Win 0.49360865 0.51515152 0.47118301
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∇

When two variables (labeled x and y) are both numeric, one numeric descriptive measure that is widely
reported is the correlation between the two variables. Technically, this is called the Pearson product
moment coefficient of correlation. This measure is only for the linear, or “straight line” relation between
the two variables. Unlike in Regression (described later), the variables are not necessarily (but can be)
identified as an independent and or dependent variable. The formula for this measure (population and
sample) are given below.

Population Correlation: ρ =
1
N

∑N
i=1 (xi − µx) (yi − µy)

σxσy
=

∑N
i=1 (xi − µx) (yi − µy)

√

∑N
i=1 (xi − µx)

2∑N
i=1 (yi − µy)

2

Sample Correlation: r =
1

n−1

∑n
i=1 (xi − x) (yi − y)

sxsy
=

∑N
i=1 (xi − x) (yi − y)

√

∑N
i=1 (xi − x)

2∑N
i=1 (yi − y)

2

A scatterplot is a plot where each case’s x and y pairs are plotted in two dimensions. When one variable
is the dependent variable, it is labeled y, and plotted on the vertical axis and the independent variable is
labeled x, plotted on the horizontal axis. We are interested in any pattern (linear or possibly nonlinear, or
none at all) between the variables.

Example 2.10: Relation Between Total Points and Over/Under Line - NFL 2010-2019

The correlation between the actual total score and the Over/Under line is r = .2952. There is a positive,
but not particularly strong relation between the two variables. The formula for the ordinary least squares
regression is given below. For this data, we obtain ŷ = 1.8481 + 0.9682x. Thus, for a game with an
Over/Under line of x = 40 points, the predicted total score is 1.8481+0.9682(40)=40.58 points. Later, we
consider tests of the regression coefficients for an “efficient market.”

ŷ = β̂0+β̂1x β̂1 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
β̂0 = y−β̂1x SSE =

n
∑

i=1

(yi − ŷi)
2

=

n
∑

i=1

(

yi −
(

β̂0 + β̂1xi

))2

A plot of the data and the fitted regression equation are given in Figure ??.

R Commands and Output

totPts <- teamPts + oppPts

cor(totPts, OU)
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Figure 2.12: Plot of Total Points versus Over/Under Line - NFL 2010-2019

OU.mod1 <- lm(totPts ~ OU)

summary(OU.mod1)

plot(jitter(totPts,0.3) ~ jitter(OU,0.3), pch=16, cex=.5,

xlab="Over/Under Line", ylab="Total Points",

main="NFL 2010-2019 - Total Points vs Over/Under")

abline(OU.mod1,col="red", lwd=2)

> cor(totPts, OU)

[1] 0.2951634

>

> OU.mod1 <- lm(totPts ~ OU)

> summary(OU.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.84812 2.79255 0.662 0.508

OU 0.96818 0.06197 15.625 <2e-16 ***

Residual standard error: 13.31 on 2558 degrees of freedom

Multiple R-squared: 0.08712, Adjusted R-squared: 0.08676

F-statistic: 244.1 on 1 and 2558 DF, p-value: < 2.2e-16

∇

We often are interested in relationships among more than two numeric variables. Scatterplot and corre-
lation matrices can be constructed to demonstrate the bivariate association of all pairs of variables.

Example 2.11: WNBA 2010-2019 - Point Spread, Over/Under Line and Game Outcomes

Here we consider the following four variables for the WNBA 2010-2109 seasons: Home team spread
(positive means they are favored to win), Over/Under Line, Home team point differential (Home-Visitor),
and total points scored in the game. A scatterplot matrix is given in Figure ?? and the pairwise correlations
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Figure 2.13: Scatterplot matrix of Home team spread, Over/Under line, Home team point differential and
Total points - WNBA 2010-2019

are given below. The correlations between Home team spread and home team point differential (.4277) and
between Over/Under Line and Total points (.4973) are the only values of any reasonable magnitude.

R Commands and Output

homeDiff <- teamPts - oppPts

totPts <- teamPts + oppPts

odds.df <- data.frame(teamSprd, OU, homeDiff, totPts)

plot(odds.df)

cor(odds.df)

> cor(odds.df)

teamSprd OU homeDiff totPts

teamSprd 1.000000000 0.001365649 0.427666583 -0.02335489

OU 0.001365649 1.000000000 0.001845519 0.49727595

homeDiff 0.427666583 0.001845519 1.000000000 -0.01109277

totPts -0.023354890 0.497275950 -0.011092769 1.00000000

∇

When data are highly skewed, individual cases have the ability to have a large impact on the correlation
coefficient. An alternative measure that is widely used is the Spearman Rank Correlation Coefficient (aka
Spearman’s rho). This coefficient is computed by ranking the x and y values from 1 (smallest) to n or N
(largest), and applying the formula for Pearson’s coefficient to the ranks. This way, extreme x or y values
do not have as large of an impact on the coefficient. Also, in many situations, the natural measurements are
the rankings or ordering themselves.

Many series (particularly when measured over time) display spurious correlations, particularly when
both variables tend to increase or decrease together with no causal reason that the two (or more) variables
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move in tandem. For instance, the correlation between annual U.S. internet users (per 100 people) and
electrical power consumption (kWh per capita) for the years 1994-2010 is .7821 (data source: The World
Bank). Presumably increasing internet usage isn’t leading to large increases in electrical consumption, or
vice versa.
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Chapter 3

Probability

In this chapter, we describe the concepts of probability, random variables, probability distributions, and
sampling distributions. There are three commonly used interpretations of probability: classical, relative
frequency, and subjective. Probability is the basis of all methods of statistical inference covered in these
notes.

3.1 Terminology and Basic Probability Rules

The classical interpretation of probability involves listing (or using counting rules to quantify) all possible
outcomes of a random process, often referred to as an “experiment.” The set of all possible outcomes is
referred to as the sample space. It is often (but not necessarily) assumed that each outcome is equally likely.
If a coin is tossed once, it can land either “heads” or “tails,” and unless there is reason to believe otherwise,
we would assume the probability of each possible outcome is 1/2. If a dice is rolled, the possible numbers on
the “up face” are {1,2,3,4,5,6}. Again, unless some external evidence leads us to believe otherwise, we would
assume each side has a probability of landing as the “up face” is 1/6. When dealing a 5 card hand from a
well shuffled 52 card deck, there are 52!

5!(52−5)!
= 2, 598, 960 possible hands. Clearly that would be impossible

to enumerate, but with counting rules it is still fairly easy to assign probabilities to different types of hands.

An event is a pre-specified outcome of an experiment/random process. It can be made up of a single
element or a group of elements of the sample space. If the sample space is made up of N elements and the
event of interest constitutes NE elements of the sample space, the probability of the event is pE = NE/N ,
when all elements are equally likely. If elements are not equally likely, pE is the sum of the probabilities of
the elements constituting the event (where the sum of all the N probabilities is 1).

The relative frequency interpretation of probability corresponds to how often an event of interest
would occur if an experiment were conducted repeatedly. If an unbalanced dice were tossed a very large
number of times, we could observe the fractions of times each number was the “up face.” With modern
computing power, simulations can be run to approximate probabilities of complex events, which could never
be able to be obtained via a model of a sample space.

31



32 CHAPTER 3. PROBABILITY

Over Result
Home Spread Result Lose Push Win Total

Lose 3861 (.2452) 94 (.0060) 3900 (.2476) 7855 (.4988)
Push 128 (.0081) 5 (.0003) 135 (.0086) 268 (.0170)
Win 3849 (.2444) 96 (.0061) 3681 (.2337) 7626 (.4842)
Total 7838 (.4977) 195 (.0124) 7716 (.4899) 15749 (1.0000)

Table 3.1: Counts (proportions) of home team covering spread and Over winning - NBA 2006/07-2018/19
seasons

In cases where a sample space can not be enumerated or an experiment can not be repeated, individuals
often resort to assessing subjective probabilities. For instance, in considering whether the price of a stock
will increase over a specific time horizon, individuals may speculate on the probability based on any market
information available at the time of the assessment. Different individuals may have different probabilities for
the same event. Many studies have been conducted to assess people’s abilities and heuristics used to assign
probabilities to events, see e.g. Kahneman, Slovic, and Tversky (1982) [?], for a large collection of research
on the topic. Pre-game probabilities of teams or individuals winning a sporting event would best be thought
of as subjective probabilities based on recent performances and when based on closing lines, also the wagers
made by the betting public.

Three useful counting tools are the multiplication rule, permutations and combinations. The
multiplication rule is useful when the experiment is made up of k stages, where stage i can end in one of
mi outcomes. Permutations are used when sampling k items from n items without replacement, and order
matters. Combinations are similar to permutations with the exception that order does not matter. The
total possible outcomes for each of these rules is given below.

Multiplication Rule: m1 × m2 × · · · × mk =

k
∏

i=1

mi

Permutations: P n
k = n × (n − 1) × · · · × (n − k + 1) =

n!

(n − k)!
0! ≡ 1

Combinations: Cn
k =

n × (n − 1) × · · · × (n − k + 1)

k × (k − 1) · · · × 1
=

n!

k!(n − k)!

Note that there are k! possible orderings of the k items selected from n items, which is why there are
fewer combinations than permutations.

Example 3.1: NBA Bets, Horse Racing

For a professional basketball game, the home (or away) team can be bet based on the point spread as
well as the over/under. Each of these wagers can end in one of three possible outcomes (Lose, Push, Win).
Thus, there are 3(3) = 9 possible outcomes. Based on the 15749 NBA regular season games during the
2006/07-2018/19 regular seasons, the frequencies (proportions) based on betting on the home team and the
over are given in Table ??.

A trifecta bet in horse racing involves selecting the horses that will finish first, second, and third in the
correct order. In a race with 12 horses starting, there are P 12

3 = 12!
(12−3)! = 12(11)(10) = 1320 ways in which

the horses can finish in the first (win), second (place), and third (show) positions, where order matters.
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A quinella bet involves betting on the two horses that will finish first and second place, where order does
not matter. In this case, again with 12 horses racing, there are C12

2 = 12!
2!(12−2)!

= 12(11)/2 = 66 possible

combinations that can occur.

∇

3.1.1 Basic Probability

Let A and B be events of interest with corresponding probabilities P (A) and P (B), respectively. The Union
of events A and B is the event that either A and/or B occurs and is denoted A ∪ B. Events A and B are
mutually exclusive if they can not both occur as an experimental outcome. That is, if A occurs, B cannot
occur, and vice versa. The Complement of event A, is the event that A does not occur and is denoted
by A or sometimes A′. The Intersection of events A and B is the event that both A and B occur, and is
denoted as A ∩ B or simply AB. In terms of probabilities, we have the following rules.

Union: P (A∪B) = P (A)+P (B)−P (AB) Mutually Exclusive: P (AB) = 0 Complement: P
(

A
)

= 1−P (A)

The probability of an event A or B, without any other information, is referred to as its unconditional
or marginal probability. When information is known whether or not another event has occurred is referred
to as its conditional probability. If the unconditional probability of A and its conditional probability given
B has occurred are equal, then the events A and B are said to be independent. The rules for obtaining
conditional probabilities (assuming P (A) > 0 and P (B) > 0) are given below, as well as probabilities under
independence.

Prob. of A Given B: P (A|B) =
P (AB)

P (B)
Prob. of B Given A: P (B|A) =

P (AB)

P (A)

P (AB) = P (A)P (B|A) = P (B)P (A|B)

A and B independent: P (A) = P (A|B) = P
(

A|B
)

P (B) = P (B|A) = P
(

B|A
)

P (AB) = P (A)P (B)

Example 3.2: NBA Home Team and Over Bet Spread Outcomes

Referring back to Table ??, we define A to be the event that the home team covers the point spread and
event B that the Over bet wins for this “population.”

P (A) =
7626

15749
= .4842 P (B) =

7716

15749
= .4899 P (AB) =

3681

15749
= .2337

P (A ∪ B) = .4842 + .4899− .2337 = .7364
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P (A|B) =
.2337

.4899
=

3681

7716
= .4771 P

(

A|B
)

=
3849 + 96

7838 + 195
= .4911 P (B|A) =

.2337

.4842
=

3681

7626
= .4827

Note that the event that the Home team covers the spread (A) is not independent of whether the Over
bet wins (B). However, there are only small differences among P (A), P (A|B), and P

(

A|B
)

. Similarly,
P (B) and P (B|A) are very close as well.

∇

3.1.2 Bayes’ Rule

Bayes’ rule is used in a wide range of areas to update probabilities (and probability distributions) in light
of new information (data). In the case of updating probabilities of particular events, we start with a set
of events A1, . . . , Ak that represent a partition of the sample space. That means that each element in the
sample space must fall in exactly one Ai. In probability terms this means the following statements hold.

i 6= j : P (Ai ∩ Aj) = 0 P (A1) + · · ·+ P (Ak) = 1

The probability P (Ai) is referred to as the prior probability of the ith portion of the partition, and
in some contexts are referred to as base rates. Let C be an event, such that 0 < P (C) < 1, with known
conditional probabilities P (C|Ai). This leads to being able to “update” the probability that Ai occurred,
given knowledge that C has occurred, the posterior probability of the ith portion of the partition. This
is simply (in this context) an application of conditional probability making use of formulas given above and
the fact that there is a partition of the sample space.

P (Ai ∩ C) = P (Ai)P (C|Ai) P (C) =
k
∑

i=1

P (Ai ∩ C) =
k
∑

i=1

P (Ai)P (C|Ai)

⇒ P (Ai|C) =
P (Ai ∩ C)

P (C)
=

P (Ai)P (C|Ai)
∑k

i=1 P (Ai)P (C|Ai)
i = 1, ..., k

Example 3.3: WNBA Over/Under Results

Consider the WNBA Over/Under bets during the 2010-2019 regular seasons. There were 2039 games
played over those 10 seasons, with 28 pushes, which we remove (where the total points equal the Over/Under
line). We consider the 2011 remaining games. The partition is based on grouping the games based on their
game of the season (based on the home team) into three portions of the 34 game seasons. Thus, A1 is the
event that games are 1-11, A2 is that games are 12-23, and A3 is that games are 24-34. Note that there will
be more games in A2 as it has 12 positions, while A1 and A3 each have 11. Each game falls into exactly one
category. We define C as the event that the total points scored in the game exceeds the Over/Under line,
that is that the “Over” bet wins. The counts and proportions (probabilities) are given in Table ??.
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Week Grp (Ai) Over Wins (C) Over Loses (C) Total Games P (Ai) P (C|Ai) P (Ai ∩ C) P (Ai|C)

1-11 (A1) 339 316 655 .3257 .5176 .1686 .3442
12-23 (A2) 333 375 708 .3521 .4703 .1656 .3381
24-34 (A3) 313 335 648 .3222 .4830 .1556 .3177

Total 985 1026 2011 1.0000 N/A .4898 1.0000

Table 3.2: Counts and probabilities of Week Groups and Over/Under results and Bayes’ Rule calculations

Note that the “prior” probabilities of the week groups and the conditional probability that the Over/Under
bet wins, given week group are computed as follows. Then this leads to the computations of the updated
“posterior” probabilities of the week groups, given knowledge of Over/Under bet winning.

P (A1) =
655

2011
= .3257 P (C|A1) =

339

655
= .5176 P (A1 ∩ C) = .3257(.5176) = .1686

P (A2) =
708

2011
= .3521 P (C|A2) =

333

708
= .4703 P (A2 ∩ C) = .3521(.4703) = .1656

P (A3) =
648

2011
= .3222 P (C|A3) =

313

648
= .4830 P (A3 ∩ C) = .3222(.4830) = .1556

P (C) = .1686 + .1656 + .1556 = .4898

P (A1|C) =
.1686

.4898
= .3442 P (A2|C) =

.1656

.4898
= .3381 P (A3|C) =

.1556

.4898
= .3177

These calculations can be obtained much simpler based on the contingency table, however in many
practical settings the relative base rates P (Ai) and conditional probabilities P (C|Ai) are reported as direct
numbers and not counts (although they can be converted in such a way).

The primary result in terms of betting strategy is that (over the course of this data) the Over bet tends to
win with the highest frequency early in the season, lowest frequency in the middle, and moderate frequency
at the end. Of interest would be if this occurs regularly within individual seasons. We begin with a base
rate (prior probability) for early season as P (A1) = .3257 and update it with knowledge that the game won
the Over bet to a posterior probability of P (A1|C) = .3442.

∇

3.2 Random Variables and Probability Distributions

When an experiment is conducted, or an observation is made, the outcome will not be known in advance, and
is considered to be a random variable. Random variables can be qualitative or quantitative. Qualitative
variables are generally modeled as a list of outcomes and their corresponding counts, as in contingency tables
and cross-tabulations. Quantitative random variables are numeric outcomes and are classified as being either
discrete or continuous, as described previously in describing data.

A probability distribution gives the values a random variable can take on and their corresponding
probabilities (discrete case) or density (continuous case). Probability distributions can be given in tabular,
graphic, or formulaic form. Some commonly used families of distributions are described below.
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3.3 Discrete Random Variables

Discrete random variables can take on a finite, or countably infinite, set of outcomes. We label the random
variable as Y , and its specific outcomes as y1, y2, . . . , yk. Note that in some case there is no upper limit for
k. We denote the probabilities of the outcomes as P (Y = yi) = p(yi), with the following restrictions.

0 ≤ p(yi) ≤ 1
k
∑

i=1

p(yi) = 1 F (yt) = P (Y ≤ yt) =
t
∑

i=1

p(yi) t = 1, . . . , k

Here F (y) is called the cumulative distribution function (cdf). This is a monotonic “step” function
for discrete random variables, and ranges from 0 to 1.

Example 3.4: NBA Point Spread Bets

Suppose a gambler wishes to bet on a NBA team to cover the point spread in a particular game. Further,
suppose that the point spread has a .5 in it (e.g. the team is favored by 7.5 in the game), which rules out a
push for the bet. Then, if the bettor is facing a bookmaker using the 11-10 rule described in Chapter 1, he
will win 100 units if the team wins and will win −110 if the team loses. These are the only two possibilities,
say y1 = 100 and y2 = −110. Then the probabilities are p(y1) and p(y2) = 1 − p(y1).

Suppose (for some random reason), he chose a strategy where he always bet on the home favorite to win,
when the home team is favored by {1.5, 2.5, . . . , 9.5, 10.5}. During the 2006/7-2018/19 NBA regular seasons,
there were 4722 such games, of which the home favorite covered in 2403 of the games and failed to cover in
2319 of them. For this “population” of games, p(y1) = 2403/4722 = .5089 and p(y2) = 2319/4722 = .4911.

∇

Population Numerical Descriptive Measures

Three widely used numerical descriptive measures corresponding to a population are the population mean,
µ, the population variance, σ2, and the population standard deviation, σ. While we have previously
covered these based on a population of individual measurements, we now base them on a probability distri-
bution. Their formulas are given below.

Mean: E{Y } = µY = y1p(y1) + · · ·+ ykp(yk) =
∑

y

yp(y)

Variance: V {Y } = E{(Y − µY )2} = σ2
Y = (y1 − µY )2p(y1) + · · ·+ (yk − µY )2p(yk) =

∑

y

(y − µY )2p(y) =

=
∑

y

y2p(y) − µ2
Y σY = +

√

σ2
Y
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Example 3.5: NBA Point Spread Bets - 2006/07-2018/19

For the NBA point spread betting strategy given in Example 3.4, we have the following mean and
variance if we repeatedly sampled games and their betting outcomes from this probability distribution.

µY =
∑

y

yp(y) = 100(.5089)+ (−110)(.4911) = −3.13

σ2
Y =

∑

y

(y − µY )2p(y) =
∑

y

y2p(y) − µ2
Y = 11031.31− (−3.13)2 = 11021.5131

σY = +
√

11021.5131 = 104.98

A sample of 10000 games is taken from this population (equivalently done by taking 10000 integers
between 1 and 4722 WITH replacement), and observing the payout for each game (100 if Home team
covered, -110 if not). Then the mean and standard deviation of those numbers are computed.

R Commands and Output

## Commands/Output

> payout <- ifelse(teamCover == 1, 100, ifelse(teamCover == -1, -110, 0))

> n.games <- length(payout)

> set.seed(12345)

> sample.game <- sample(1:n.games, size=10000, replace = TRUE)

>

> mean(payout[sample.game])

[1] -3.362

> sd(payout[sample.game])

[1] 104.9925

Note that the mean of the 10000 sampled games is close to the population mean (−3.36 vs −3.13) and
sample standard deviation is close to the corresponding population value (104.99 vs 104.98). If a different
(or no) seed had been used, the samples, and thus their means and standard deviations would change as well
although the population values remain the same for this population of games.

∇

3.3.1 Converting Money Lines and Decimal Odds to Subjective Probabilities

The (subjective) probability that the home team wins a game can be obtained from the Money Lines and/or
Decimal Odds for the two teams in the game. There are various ways to convert them, for an excellent
description see Berkowitz, Depken, and Gandar (2017, [?]). Two methods when there are two teams playing
are basic and Shin normalizations. We will describe them through Major League Baseball Money Lines, in
particular the 2019 World Series Game 7 with Houston and Washington described in Chapter 1 and reviewed
here.
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Example 3.6: MLB Favored Team Outcomes

When the Money Line (ML) is positive, if a bet of 100 is placed on the team and it wins, the bettor
wins ML, and she wins −100 if the team loses. If ML < −100, then if a bet of 100 is placed on the team and
it wins, the bettor wins 100(100/|ML|) and he wins −100 if the team loses. These are referred to as “unit
bets” as in each case, the bettor risks 100 units. Going back to Game 7 of the 2019 World Series described
in Chapter 1, The Houston Astros had a Money Line of −136 and the Washington Nationals’ Money Line
was 126. Thus, if you wagered 100 on Houston and they won, you would win 100(100/|− 136|) = 73.53 and
if they lost, you would win −100. If Washington was bet and they won, the bettor would win 126 and if
they lost, the bettor would win −100.

Let W be the random amount won on a bet. Let ηF represent the predicted (subjective) probability the
favored team wins the game and ηU be the predicted probability the underdog wins. Note that we will use η
to represent predicted probabilities based on Money Lines and Decimal Odds, and use π to represent actual
observed probabilities throughout these notes.

The expected winnings, E{W} are obtained as follow, depending on whether the ML is positive or
negative, based on a 100 unit wager. The goal is to solve for the expected winnings to be 0 (a fair bet).

ML > 100 ⇒ E{W} = ηU(ML) + (1 − ηU) (−100) = 0 ⇒ ηU =
100

100 + ML

ML < −100 ⇒ E{W} = ηF (100(100/|ML|))+(1 − ηF ) (−100) = 0 ⇒ ηF =
100

100 + 100(100/|ML|)
For the Houston/Washington World Series Game 7, this translates as follows.

Washington: ηW =
100

100 + 126
= 0.4425 Houston: ηH =

100

100 + 73.53
= .5763

Note that these η values sum to more than 1, representing the “bookie commission.” Basic normalization
simply divides each of these η values by their sum, which then are scaled to sum to 1.

η∗
F =

ηF

ηF + ηU
η∗

U =
ηU

ηF + ηU
η∗

F + η∗
U = 1

Houston (F): η∗
H =

.5763

.5763 + .4425
=

.5763

1.0188
= .5657 Washington (U): η∗

W =
.4425

1.0188
= .4343

Berkowitz, Depken, and Gandar (2017, [?]), reporting derivations from Gandar et al (2002, [?]) and
Gandar et al (2004, [?]) give this result in one step in terms of βF = |MLF |/100 and βU = MLU/100. This
is Conversion Method 4 in Berkowitz, Depken, and Gandar (2017, [?]). It ends up giving the same subjective
probabilities of favorite and underdog winning as basic normalization.

η∗
F =

βF + βF βU

2βF + βF βU + 1
η∗

U =
1 + βF

2βF + βF βU + 1

This makes use of the notion that the bookmaker would like to have equivalent net revenues, regardless
of who wins the game. Let WF and WU be the number of units wagered on the favorite and underdog,
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respectively through the bookmaker for a total “handle” of WF + WU . If the favorite wins, her revenue
(“hold”) is WU −WF /βF ; if the underdog wins, she earns WF −WU βU . If the bookmaker chooses to balance
her revenue so that her revenue is the same, regardless who wins, she has the following results.

WU − WF /βF = WF − WU βU ⇒ WU (1 + βU ) = WF (1 + 1/βF ) ⇒ WF

WU
=

1 + βU

1 + 1/βF

⇒ WU =
WF (1 + 1/βF )

(1 + βU )

Then her “commission” (c) defined as hold divided by handle is given below, as well as the probabilities
that equate expected revenues for bettors to the negative commission, where RF and RU represent revenues
for betting on the favorite and underdog, respectively. Again let η∗

F and η∗
U be the unknown subjective

probabilities of the favorite and underdog winning, respectively.

c =
WU − WF /βF

WF + WU
=

WF − WUβU

WF + WU
=

WF (1+1/βF )
(1+βU ) − WF /βF

WF

(

1 +
(1+1/βF )
(1+βU)

) =

(1+1/βF )−(1+βU )/βF

1+βU

(1+βU )+(1+1/βF )
1+βU

=

=
1 − βU /βF

2 + βU + 1/βF
=

βF − βU

2βF + βF βU + 1

E{RF} = η∗
F (1/βF )+(1 − η∗

F ) (−1) = −c = − βF − βU

2βF + βF βU + 1
⇒ η∗

F (1 + 1/βF )−1 = − βF − βU

2βF + βF βU + 1

⇒ η∗
F

(

1 + βF

βF

)

=
2βF + βF βU + 1 − βF + βU

2βF + βF βU + 1
=

βF + βU + βF βU + 1

2βF + βF βU + 1
=

βF (1 + βU ) + (βU + 1)

2βF + βF βU + 1
=

(1 + βF ) (1 + βU )

2βF + βF βU + 1
⇒ π∗

F =
βF (1 + βU )

2βF + βF βU + 1
=

βF + βF βU

2βF + βF βU + 1

⇒ η∗
U = 1 − η∗

F =
(2βF + βF βU + 1) − (βF + βF βU )

2βF + βF βU + 1
=

βF + 1

2βF + βF βU + 1

For the 2018 World Series Game 7, we obtain the following values with βF = 1.36 and βU = 1.26.

c =
1.36− 1.26

2(1.36) + 1.36(1.26)+ 1
=

0.10

5.4336
= 0.0184

η∗
F =

1.36 + 1.36(1.26)

2(1.36) + 1.36(1.26)+ 1
=

3.0736

5.4336
= .5657 η∗

U = 1 − .5657 = .4343

As stated previously, this method and basic normalization provide the same subjective probabilities.

Related to the method of basic normalization, in many betting markets, decimal odds are used for
wagering. In these cases, the decimal odds are always greater than 1 and can be obtained directly from the
Money Line. When a team has ML < 100 as in the favorite in most games and both teams in very evenly
matched games, the decimal odds o are oF = 1 + 1/βF and if the underdog has ML > 100, oU = 1 + βU .
If both teams have negative Money Lines, o = 1 + 1/β for each team. The unstandardized probabilities ηF
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and ηU are 1/oF and 1/oU , respectively. Thus, in the 2018 World Series Game 7, with Money Lines −136
for Houston and 126 for Washington, we obtain the following decimal odds.

Houston (F): MLH = −136 βH = 1.36 oH = 1 + 1/1.36 = 1.7353 ηH = 1/1.7353 = .5763

Washington (U): MLW = 126 βW = 1.26 oW = 1 + 1.26 = 2.26 ηW = 1/2.26 = .4425

In much of the betting literature the sum ηF + ηU is referred to as the booksum (see e.g. Strumbelj
(2014), [?]). This notion can extend to events such as horse races with n > 2 competitors where the decimal

odds for the ith entrant is oi, unstandardized probability ηi = 1/oi and booksum equal to η1 + · · · + ηn.
A method to convert decimal odds to standardized probabilities (Shin (1993), [?]) uses the notion that a
fraction, z, of traders (bettors in gambling) have “inside information,” and bookmakers wish to estimate z
and exploit the other bettors to make up for losses to the insiders.

The general case of n > 2 contestants involves an iterative fixed-point computing algorithm with z = 0 set
as a starting value (Strumbelj (2014), [?]). However, the author shows that in the case of n = 2 contestants
in a contest, z can be obtained in closed form and then used to obtain the standardized η∗

F and η∗
U from z

and the unstandardized probabilities ηF = 1/oF and ηU = 1/oU .

The Shin standardized probabilities are obtained as follows for the case with n = 2.

η∗
i =

√

z2

4(1 − z)2
+

η2
i

(1 − z) (ηF + ηU )
− z

2(1 − z)
i = F, U 0 ≤ z ≤ 1

where: z =
[(ηF + ηU ) − 1]

[

(ηF − ηU)
2 − (ηF + ηU)

]

(ηF + ηU)
[

(ηF − ηU)
2 − 1

]

For the 2018 World Series Game 7, we obtain the following values with βF = 1.36 and βU = 1.26.

z =
[(.5763 + .4425)− 1]

[

(.5763− .4425)2 − (.5763 + .4425)
]

(.5763 + .4425)
[

(.5763− .4425)
2 − 1

] =
.0188(−1.0009)

1.0188(−.9821)
=

−0.01882

−1.00056
= .01881

η∗
F =

√

.018812

4(1 − .01881)2
+

.57632

(1 − .01881) (.5763 + .4425)
− .01881

2(1 − .01881)
=

√
.00009 + .33224− .00959 =

= .57648− .00959 = .5669 η∗
U = 1 − .5669 = .4331

Finally, a comparison of basic normalization and Shin’s method is made by comparing the distributions
of predicted probabilities of the winning teams as well as a table of agreement between favorite/winning
teams for all 2430 MLB 2017 regular season games (of which 2397 games had a favorite, that is different
Money Lines). Basic normalization and Shin’s method are always in agreement on whether the home team or
visitor is favored based on whether η∗

H > 0.5 or η∗
H < 0.5 (where η∗

H is the home team’s subjective probability
of winning). The home team has the higher η∗ for 1604/2397 = .6692 of the games. However, the home
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team actually won in only 1295/2397 = .5403 of the games. Thus, the Money Lines tend to give too much
of an advantage to the home team. Much debate in the baseball betting literature has been given to the
“Favorite/Longshot bias (FLB),” going back to the seminal paper on the topic (Woodland and Woodland
(1994), [?]). However, that paper took into account the magnitudes of the pre-game subjective probabilities,
not just Favorite/Underdog.

Among the games the home team won, the average subjective probabilities of winning were .5509 for
basic and .5519 for Shin normalization. Among the games the home team lost, their average subjective
probabilities were .5189 for basic and .5193 for Shin normalization. The correlation between the basic and
Shin probabilities across the 2397 games is .9999998. They give very similar results (at least when there are
two contenders in the match).

Table ?? gives a cross-tabulation of games where the home team was favored (η∗
H > 0.5) or underdog

(η∗
H < 0.5) (rows) and whether the home team won the game or not (columns). Some interesting conditional

probabilities are obtained below where F implies the home team was favored and W implies the home team
won he game. The table can easily be used to obtain similar quantities for visiting teams, since a home team
being favored means the visiting team was underdog; and a home team winning means the visiting team
lost.

P (W |F ) =
939

1604
=

.3917

.6692
= .5854 P (F |W ) =

939

1295
=

.3917

.5403
= .7251

P (W |F) =
356

793
=

.1485

.3308
= .4489 P (F |W) =

665

1102
=

.2774

.4597
= .6035

The last probability is probably the strangest, conditioning that the home team lost the game, there’s a
60.35% chance it was favored. Again, we are not taking into account the magnitude of the Money Line and
thus η∗

H . That will be considered when logistic regression is covered. The “overall accuracy” of the Money
Line can be obtained from the proportions of games where the home team was both favored and won, and
where the home team was both underdog and lost.

Overall Accuracy: P (F ∩W ) + P (F ∩W ) =
939 + 437

2397
=

1376

2397
= .3917 + .1823 = .5741

These last calculations are very similar to those made in diagnostic testing for disease or other charac-
teristics. If the home team winning (W ) is considered the characteristic/disease is present and the home
team being favorite (F ) is considered the diagnostic test result, then P (F |W ) represents the sensitivity
of the test, and P (F |W ) represents the specificity of the test. Further, P (W |F ) represents the positive
predictive value (PPV) and P (W |F ) the negative predictive value (NPV) of the test. Further,
P (W ) represents the prevalence of the characteristic/disease. Just to complete the analogy, we have the
following results (where these calculations can be thought of as special cases of Bayes’ Rule).

Prevalence: P (W ) = .5403 Sens: P (W |F ) = .5854 Spec: P (F |W) = 1 − .6035 = .3905

PPV: P (W |F ) = .5854 NPV: P (W |F ) = 1− .4489 = .5511

∇
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Home Team Home Wins Home Loses Total

Favorite (η∗

H > 0.5) 939 (.3917) 665 (.2774) 1604 (.6692)
Underdog (η∗

H < 0.5) 356 (.1485) 437 (.1823) 793 (.3308)

Total 1295 (.5403) 1102 (.4597) 2397 (1.0000)

Table 3.3: Counts and joint/marginal probabilities of Home Team being Favorite/Underdog and Win-
ning/Losing Game

3.3.2 Linear Functions of Random Variables

Some useful rules among linear functions of random variables are given here. Suppose Y is a random
variable with mean and variance µY and σ2

Y , respectively. Further, suppose that a and b are constants (not
random). Then we have the following results.

E{a + bY } =
∑

y

(a + by)p(y) = a
∑

y

p(y) + b
∑

y

yp(y) = a(1) + bµY = a + bµY

V {a + bY } =
∑

y

((a + by) − (a + bµY ))2p(y) = b2
∑

y

(y − µY )2p(y) = b2σ2
Y σa+bY = |b|σY

Examples where these can be applied involve transforming from inches to centimeters (1 inch = 2.54
cm, 1 cm = 1/2.54=0.3937 inch), from pounds to kilograms (1 kilogram = 2.204623 pounds), from degrees
Fahrenheit to Celsius (deg F = 32 + 1.8 degC), and currency rates (although unlike the previous cases,
these fluctuate over time). These rules do not work for nonlinear functions, such as values raised to powers,
exponentials, or logarithms, although some approximations exist.

Example 3.7: NBA Point Spread Bets - Dollars vs Euros

In Examples 3.4 and 3.5 we considered making 100 unit bets on home favorites with spreads of {1.5, 2.5, . . . , 9.5, 10.5},
based on the 11-10 rule. Based on that strategy, if we had bet $110 on every such game, winning $100
whenever the team covered the spread and losing $110 when they did not, we found that µY = −$3.11,
σ2

Y = 11021.43 and σY = $104.98. As of July 22, 2021 @ 5:51PM UTC, the value of 1 dollar was 0.85 euros.
Suppose instead of betting 110 dollars, 1) we bet 110 euros, or 2) we bet the equivalent of 110 dollars in
euros.

What are the mean and standard deviations of these two bets. Let X1 be the random outcome (in
dollars) for case 1, and X2 be the random outcome (in euros) for case 2. Note here that 1 dollar = 0.85
euros means that 1 euro = 1/0.85 = 1.176 dollars.

Case 1: 110 euros = 129.36 dollars :X1 = 1.2936Y

⇒ µX1 = 1.2936(−3.11) = −4.02 σX1 = |1.2936|(104.98) = 135.80

Case 2: 110 dollars = 93.5 euros :X2 = 0.935Y
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⇒ µX2 = 0.935(−3.11) = −2.91 σX2 = |0.935|(104.98) = 98.16

Thus the effect of increasing the bet to 110 euros (to win 100) has the effect of increasing bet to 129.36
dollars (to win 117.6). When converting units from dollars to euros, the bet of 110 dollars (to win 100)
has the effect of “reducing” the bet to 93.5 euros (to win 85). Note that in the first case the bet has been
increased, and in the second we have simply changed units.

∇

3.3.3 Multivariate Random Variables

In many settings, we are interested in linear functions of a sequence of random variables: Y1, . . . , Yn. Typ-
ically, we have fixed coefficients a1, . . . , an, E{Yi} = µi, V {Yi} = σ2

i , and COV{Yi, Yj} = σij. In the
definition below, we define P (Yi = yi, Yj = yj) = p (yi, yj) as the joint probabilities of the outcomes yi and
yj for the random variables Yi and Yj, respectively (calculations are shown in Example 3.8).

COV{Yi, Yj} = σij = E{(Yi − µi) (Yj − µj)} =
∑

yi

∑

yj

(yi − µi) (yj − µj) p (yi, yj) =
∑

yi

∑

yj

yiyjp (yi, yj)−µiµj

W =

n
∑

i=1

aiYi E{W} = µW =

n
∑

i=1

aiµi V {W} =

n
∑

i=1

a2
i σ

2
i + 2

n−1
∑

i=1

n
∑

j=i+1

aiajσij

If, as in many, but by no means all cases, the Yi values are independent (σij = 0), the variance simplifies
to V {W} =

∑n
i=1 a2

i σ
2
i . A special case is when we have two random variables: X and Y , and a linear

function W = aX + bY for fixed constants a and b. We have means µX , µY , standard deviations σX ,
σY , covariance σXY , and correlation ρXY . Note that the correlation ρXY = σXY / (σXσY ) and is bounded
between −1 and +1.

If the Yi are independent, we have some nice properties involving their distributions and expected values
of functions of them (when the expectations exist).

P (Y1 = y1, . . . , Yn = yn) = p(y1, . . . , yn) = p1(y1) · · ·pn(yn) =

n
∏

i=1

pi(yi)

E{g1(Y1) · · · gn(Yn)} = E{g1(Y1)} · · ·E{gn(Yn)} =

n
∏

i=1

E{gi(Yi)}

In general, we have the following results (whether the random variables are independent or not).
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W = aX +bY E{W} = aµX +bµY V {W} = a2σ2
X +b2σ2

Y +2abσXY = a2σ2
X +b2σ2

Y +2abρXY σXσY

Some special cases include where we have: a = 1, b = 1 (sums), and a = 1, b = −1 (differences). This
leads to the following results.

E{X + Y } = µX + µY V {X + Y } = σ2
X + σ2

Y + 2ρXY σXσY

E{X − Y } = µX − µY V {X − Y } = σ2
X + σ2

Y − 2ρXY σXσY

In financial portfolio analysis, it is often considered to try to optimize a portfolio consisting of two or
more securities. Typically, you would like to maximize the expected gain or reduce the variance (volatility)
of the portfolio. Suppose there are two stocks with random returns X and Y , with mean, variance, and
correlation structure given above. Suppose we set up the portfolio as given below and wish to minimize the
variance of its return.

P = wX + (1 − w)Y 0 ≤ w ≤ 1 E{P } = µP = wµX + (1 − w)µY

V {P } = σ2
P = w2σ2

X + (1 − w)2σ2
Y + 2w(1 − w)σXY = w2σ2

X + (1 − w)2σ2
Y + 2w(1− w)ρXY σXσY =

w2
(

σ2
X + σ2

Y − 2ρXY σXσY

)

− 2w
(

σ2
Y − ρXY σXσY

)

+ σ2
Y

Taking the derivative of the portfolio variance with respect to the weight assigned to stock X (w), and
setting equal to 0 leads to the optimal weights for the two stocks (in terms of minimizing its variance).

dσ2
P

dw
= 2w

(

σ2
X + σ2

Y − 2ρXY σXσY

)

− 2
(

σ2
Y − ρXY σXσY

)

= 0 ⇒ w∗ =
σ2

Y − ρXY σXσY

σ2
X + σ2

Y − 2ρXY σXσY

Technically, to show that this is a minimum, we need to show that the second derivative is positive.

d2σ2
P

dw2
= 2

(

σ2
X + σ2

Y − 2ρXY σXσY

)

If ρXY < 1, this will be strictly positive. If ρXY = 1, it is 2 (σX − σY )
2

and the best would be to choose
the stock with the smaller variance. If they have the same variance, the portfolio variance is the same for
all portfolios.

Example 3.8: NBA Spread/OU Betting Results - 2006/07-2018/19

Consider a betting strategy of always betting against the spread on the home (away) team and on the
over (under) among 15749 NBA games played over the regular seasons 2006/07-2018/19. Assume the bettor
is always wagering 110 based on the 11/10 rule. Pushes are included with payouts of 0 for spread and/or
Over/Under.
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Over Line

Home Spread Lose (yO = −110) Push (yO = 0) Win (yO = 100) Total

Lose (xH = −110) 3864 (.24535) 94 (.00597) 3897 (.24744) 7855 (.49876)
Push (xH = 0) 126 (.00800) 5 (.00032) 135 (.00857) 266 (.01689)

Win (xH = 100) 3851 (.24452) 97 (.00616) 3680 (.23367) 7628 (.48435)

Total 7841 (.49787) 196 (.01245) 7712 (.48968) 15749 (1.0000)

Table 3.4: Counts and joint/marginal probabilities of Home Team spread and Over line bet outcomes

We consider XH to be the payoff when betting on the home team and XA when betting on the away
team. Let YO be the payoff when betting Over and YU be the payoff when betting Under. The joint and
marginal counts and probabilities for the random variables XH and YO are given in Table ??. Note that
when the home team covers, xH = 100, when the away team covers, xH = −110, and if the game is a push,
xH = 0. A similar definition is applied to yO outcomes.

E{XH} = µXH
= (−110)(.49876) + 0(.01689) + 100(.48435) = −6.42 E{X2

H} = 10878.50

⇒ σ2
XH

= 10878.50− (−6.42)2 = 10837.28 σXH
=

√
10837.28 = 104.10

E{YO} = µYO
= (−110)(.49787) + 0(.01245) + 100(.48968) = −5.80 E{Y 2

O} = 10921.03

⇒ σ2
YO

= 10921.03− (−5.80)2 = 10887.39 σYO
=

√
10887.39 = 104.34

E{XHYO} = (−110)(−110)(.24535)+· · ·+100(100)(.23367) = −106.13 σXHYO
= −106.13−(−6.42)(−5.80) = −143.36

ρXHYO
=

−143.36

104.10(104.34)
= −0.0132

We obtain the population mean, variance, and standard deviations of the sum of Home and Over bets
(XH + YO) and the difference between Home and Over bets (XH − YO).

E{XH +YO} = (−6.42)+ (−5.80) = −12.22 V {XH +YO} = 10837.28 +10887.39+2(−143.36) = 21437.95

σXH+YO
= 146.42

E{XH − YO} = (−6.42)− (−5.80) = −0.62 V {XH − YO} = 10837.28+ 10887.39− 2(−143.36) = 22011.39

σXH−YO
= 148.36

Suppose we were interested in the “portfolio” between Home and Over that minimized the variance over
this period.
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w∗ =
σ2

Y − ρXY σXσY

σ2
X + σ2

Y − 2ρXY σXσY
=

10887.39− (−0.0132)(104.10)(104.34)

10837.28 + 10887.39− 2(−0.0132)(104.10)(104.34)
=

11030.77

22011.42
= .5011

Thus, the weights would be virtually the same since the variances are very similar and correlation close
to 0.

∇

3.3.4 Moment-Generating Functions

Moment-generating functions (MGFs) have two important uses in probability when they exist. For the first
use, consider the following infinite sum for ex, with i! ≡ 0 and its first two derivatives with respect to x.

ex =

∞
∑

i=1

xi

i!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

dex

dx
= 0 + 1 +

2x

2!
+

3x2

3!
+ · · · = ex

d2ex

dx2
= 0 + 0 + 1 +

6x

3!
+ · · · = ex

Setting x = tY leads to the following infinite series and its first two derivatives with respect to t.

etY =

∞
∑

i=1

(tY )i

i!
= 1 + tY +

(tY )2

2!
+

(tY )3

3!
+

(tY )4

4!
+ · · · = 1 + tY +

t2Y 2

2
+

t3Y 3

6
+

t4Y 4

24
+ · · ·

detY

dt
= 0 + Y +

2tY 2

2!
+

3t2Y 3

3!
+

4t3Y 4

4!
+ · · · = Y + tY 2 +

t2Y 3

2!
+

t3Y 4

3!
+ · · ·

d2etY

dt2
= 0 + Y 2 +

2tY 3

2!
+

3t2Y 4

3!
+ · · · = Y 2 + tY 3 +

t2Y 4

2!
+ · · ·

Evaluating the last two derivatives at t = 0 yields the following results.

detY

dt
|t=0 = Y

d2etY

dt2
|t=0 = Y 2

Now, we define the moment-generating function as M(t) = E{etY }, for a discrete random variable Y .
The function must exist in a neighborhood of t around 0 to be able to obtain the following non-central
moments of the random variable.
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M(t) = E{etY }
∑

y

etyp(y) =
∑

y

[

∞
∑

i=1

(ty)i

i!

]

p(y)

⇒ dM(t)

dt
|t=0 = M ′(t)|t=0 =

∑

y

yp(y) = E{Y }

M ′′(t)|t=0 =
∑

y

y2p(y) = E{Y 2} M (k)(t)|t=0 =
∑

y

ykp(y) = E{Y k}

The moment-generating function is also useful in determining the distributions of functions of random
variables, as seen for some of the families of random variables described in subsequent sections.

3.4 Common Families of Discrete Probability Distributions

Here we consider some commonly used families of probability distributions for discrete random variables.
These are the binomial, Poisson, and negative binomial families. They are used in many situations of data
being counts of numbers of particular events occurring in an experiment.

3.4.1 Binomial Distribution

A binomial “experiment” is based on a series of Bernoulli trials with the following characteristics.

• The experiment consists of n trials or observations.

• Trial outcomes are independent of one another.

• Each trial can end in one of two possible outcomes, often labeled Success or Failure.

• The probability of Success, π is constant across all trials.

• The random variable, Y , is the number of Successes in the n trials

The case when there is only n = 1 trial is referred to as a Bernoulli experiment and the probability
distribution is called the Bernoulli distribution.

Note that many experiments are well approximated by this model, and thus it has wide applicability.
One problem that has been considered in great detail is the assumption of independence from trial to trial. A
classic paper that looked at the “hot hand” in basketball shooting has led to many studies in sports involving
the topic is Gilovich, Vallone, and Tversky, 1985, [?].

The probability of any sequence of y Successes and n − y Failures is πy(1 − π)n−y for y = 0, 1, . . . , n.
The number of ways to observe y successes in n trials makes use of combinations described previously. The
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number of ways of choosing y positions from 1, 2, . . . , n is Cn
y = n!

y!(n−y)! =
(

n
y

)

. For instance, there is only

one way observing either 0 or n Successes, there are n ways of observing 1 or n − 1 Successes, and so on.
This leads to the following probability distribution for Y ∼ Bin(n, π).

P (Y = y) = p(y) =

(

n

y

)

πy(1 − π)n−y y = 0, 1, . . . , n 0 ≤ π ≤ 1

Binomial Expansion: (a + b)n =

n
∑

y=0

(

n

y

)

aybn−y ⇒
n
∑

y=0

(

n

y

)

πy(1 − π)n−y = (π + (1 − π))
n

= 1n = 1

Statistical packages and spreadsheets have functions for computing probabilities for the Binomial (and
all distributions covered in these notes). In R, the function dbinom(y,n,π) returns P (Y = y) = p(y) (the
probability “density”) when Y ∼ Bin(n, π).

To obtain the mean and variance of the Binomial distribution, consider the n independent trials indi-
vidually (these are referred to as Bernoulli trials). Let Si = 1 if trial i is a success, and Si = 0 if it is a
Failure. Then Y , the number of Successes is the sum of the independent Si values, leading to the following
results.

E{Si} = 1π+0(1−π) = π E{S2
i } = 12π+02(1−π) = π V {Si} = E{S2

i }−(E{Si})2 = π−π2 = π(1−π)

Y =
n
∑

i=1

Si ⇒ E{Y } = µY =
n
∑

i=1

E{Si} = nπ V {Y } = σ2
Y =

n
∑

i=1

V {Si} = nπ(1−π) σY =
√

nπ(1 − π)

The moment-generating function for the binomial distribution is obtained below and used to obtain the
mean and variance as well.

M(t) = E{etY } =

n
∑

y=0

ety

(

n

y

)

πy(1−π)n−y =

n
∑

y=0

(

n

y

)

(

et
)y

πy(1−π)n−y =

n
∑

y=0

(

n

y

)

(

πet
)y

(1−π)n−y =
(

πet + (1 − π)
)n

M ′(t) = n
(

πet + (1 − π)
)n−1

πet

M ′′(t) = n(n − 1)
(

πet + (1 − π)
)n−2

(πet)2 + n
(

πet + (1 − π)
)n−1

πet

E{Y } = M ′(0) = n (π(1) + (1 − π))
n−1

π(1) = n(1)n−1π = nπ

E{Y 2} = M ′′(0) = n(n − 1) (π(1) + (1 − π))
n−2

(π(1))2 + n (π(1) + (1 − π))
n−1

π(1) = n(n − 1)π2 + nπ

V E{Y } = E{Y 2} − (E{Y })2 = n(n − 1)π2 + nπ − (nπ)2 = nπ − nπ2 = nπ (1 − π)

Consider a case where a binomial experiment is replicated m times with the ith experiment having ni

trials and common probability of success, π. For he ith experiment, Yi is the random number of successes.
This model could be used by a bettor who makes ni wagers in week i for a sport, with presumably π = 0.5
probability of winning on each wager. If we assume the weeks (and wagers within weeks) are independent
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y 6!/(y!(6 − y)!) .5010y .4990(6−y) p(y)

0 1 .01544 .01544
1 6 .01550 .09300
2 15 .01556 .23344
3 20 .01562 .31250
4 15 .01569 .23531
5 6 .01575 .09450
6 1 .01581 .01581

Sum 64 N/A 1

Table 3.5: Probability Distribution for number of Winning Over bets out of n = 6 wagers - NFL 2010-2019

and define W = Y1 + · · ·+ Ym, we have the following moment-generating function for W , the total number
of winning bets during the m weeks.

MW (t) = E{etW} = E{et(Y1+···+Ym)} = E{etY1} · · ·E{etYm} =

n
∏

i=1

E{etYi} =

n
∏

i=1

(

πet + (1 − π)
)ni

=
(

πet + (1 − π)
)

∑

m

i=1
ni

That is, the total winnings is Binomial with n• =
∑m

i=1 ni trials and probability of success π.

Example 3.9: NFL Over/Under Bets 2010-2019 Seasons

During the 2010-2019 NFL seasons, there were 2560 games played. After removing the 27 games in
which the Over/Under bet was a push, there were 2533 games in which the Over/Under wager either won
or lost. Here we consider having bet Over, so if the teams combine for more points than the Over/Under
line, the outcome is considered a success. The Over bet won 1269 times (π = .5010)) and lost 1264 times
((1 − π) = .4990).

Suppose you placed Over bets on a random sample of n = 6 games during this period. Then the number
of wins Y can be modeled as a binomial distribution with π = .5010. The number of winning games of the
6 can take on the values y = 0, 1, . . . , 5, 6. The calculations to obtain p(y) are given in Table ??.

The mean, variance, and standard deviation of the number of successful wagers in the n = 6 bets under
this model are as follow.

µY = nπ = 6(0.5010) = 3.00600 σ2
Y = nπ(1−π) = 6(0.5010)(1−0.5010) = 1.49999 σY =

√
1.49999 = 1.22474

Suppose that a bettor wagers 110 to win 100 on each of the 6 bets. If she wins the bet, she receives
110+100=210, if she loses the bet she receives 0; she pays 110 in advance for each bet. Then her winnings
are W = −660 + 210Y , and her mean, standard deviation, and probability of nonnegative winnings are
obtained below.

E{W} = µW = −660 + 210µY = −660 + 210(3.006) = −28.74 σW = |210|σY = 210(1.22474) = 257.1954

P (W ≥ 0) = P (Y ≥ 4) = .23531 + .09450 + .01581 = .34562
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We take 100000 random samples of 6 games from this population of games (Pushes were removed). The
average winnings was −27.74, the standard deviation was 257.1878, and the fraction of winning samples was
.34641. All of these empirical values are in strong agreement with the theoretical values (as they should be).

R Commands and Output

## Commands/Output

num.samp <- 100000

set.seed(123)

win.games <- numeric(num.samp)

N.games <- length(OU)

n.games <- 6

OU.result <- ifelse(teamPts + oppPts > OU, 1, 0)

sum(OU.result)

for (i1 in 1:num.samp) {

samp.games <- sample(N.games, n.games, replace=F)

win.games[i1] <- sum(OU.result[samp.games])

}

table(win.games)

winnings <- -660+210*win.games

mean(winnings)

sd(winnings)

mean(winnings > 0)

> table(win.games)

win.games

0 1 2 3 4 5 6

1502 9287 23224 31346 23528 9487 1626

>

> winnings <- -660+210*win.games

> mean(winnings)

[1] -27.7404

> sd(winnings)

[1] 257.1878

> mean(winnings > 0)

[1] 0.34641

∇

3.4.2 Multinomial Distribution

A multinomial experiment is an extension of the binomial experiment with the caveat that each of n trials
can end in one of k possible outcomes or categories. The probability of outcome j is πj, and the count of
the number of trials falling in category j is Yj. The following restrictions must hold.

π1 + · · ·+ πk = 1 Y1 + · · ·+ Yk = n ⇒ Yk = n − Y1 − · · · − Yk−1

Note that for the binomial case, we have previously labeled Y1 = Y and Y2 = n − Y where category 1
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represents “Success” and category 2 represents “Failure.” The probability of the experiment resulting in the
observed counts (y1, . . . , yk) is as follows.

p (y1, . . . , yk) =
n!

y1! · · ·yk!
πy1

1 · · ·πyk

k π1 + · · ·+ πk = 1 y1 + · · ·+ yk = n πi ≥ 0 yi ≥ 0

To obtain E{Yj}, V {Yj}, and COV{Yj, Yj′}, we make use of the following dummy variables, extending
the Binomial case.

Ui = 1 if Trial i is in category j, 0 otherwise Wi = 1 if Trial i is in category j′, 0 otherwise

E{Ui} = 1 (πj)+0 (1 − πj) = πj E{U2
i } = 12 (πj)+02 (1 − πj) = πj ⇒ V {Ui} = πj−(πj)

2
= πj (1 − πj)

E{Wi} = πj′ V {Wi} = πj′ (1 − πj′) UiWi = E{UiWi} = 0 ⇒ COV{Ui, Wi} = 0−πjπj′ = −πjπj′

Trials are independent, so that COV{Ui, Ui′} = COV{Ui, Wi′} = COV{Wi, Wi′} = 0.

Yj =

n
∑

i=1

Ui ⇒ E{Yj} = nπj V {Yj} = nπj (1 − πj)

Yj′ =

n
∑

i=1

Wi ⇒ E{Yj′} = nπj′ V {Yj′} = nπj′ (1 − πj′)

COV{Yj , Yj′} =

n
∑

i=1

COV{Ui, Wi} +

n
∑

i=1

∑

i′ 6=i

COV{Ui, Wi′} = −nπjπj′

Example 3.10: EPL Game Outcome Bets 2000/01-2018/19 Seasons

For each English Premier Football (Soccer) League game over the 2000/01-2018/19 seasons, odds for
the Home team, Draw (tie), and Away team were obtained and averaged over various bookmakers from the
website https://www.football-data.co.uk/. These odds were converted to probabilities by basic normalization
for the 19(380) = 7220 games played over that period.

Overall, the Home team won 3556 of the games, 1751 were Draws, and the Away team won 1913 of the
games. These correspond to the following probabilities.

πH =
3556

7220
= 0.4925 πD =

1751

7220
= 0.2425 πA =

1913

7220
= 0.2650

Next, we consider the predicted probabilities of the Home, Draw, and Away that are obtained for each
game. For instance, in the Charlton/Manchester City match from Week 1 of 2000/01 season played at
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Outcome
Favored Home Draw Away Total

Home 2820 (.5696) 1186 (.2395) 945 (.1909) 4951 (1.0000)
Draw 18 (.1593) 32 (.2832) 63 (.5575) 113 (1.0000)
Away 718 (.3330) 533 (.2472) 905 (.4198) 2156 (1.0000)

Total 3556 1751 1913 7220

Table 3.6: Counts (conditional probabilities) of game outcomes by predicted outcomes - EPL 2000/01-
2018/19

Charlton, the average odds for the Home team was 2.14, for the Away team was 2.96, and for the Draw was
3.12. We can convert these to unstandardized probabilities by taking their inverses, and to standardized
probabilities by basic normalization. Recall that we use η to represent predicted (subjective) probabilities.

ηH =
1

2.14
= 0.4673 ηD =

1

3.12
= 0.3205 ηA =

1

2.96
= 0.3418 ⇒ ηH + ηD + ηA = 1.1296

η∗
H =

0.4673

1.1296
= 0.4137 η∗

D =
0.3205

1.1296
= 0.2837 η∗

A =
0.3418

1.1296
= 0.3026

The outcome with the highest predicted probability is treated as the predicted outcome for the game
based on odds posted by oddsmakers. Table ?? contains the distributions of outcomes when the Home,
Draw, and Away are the predicted outcomes.

∇

3.4.3 Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect
of the Poisson family is that the mean and variance are the same. This is one aspect that does not work
for all applications. We use the notation: Y ∼ Poi (λ). The probability distribution is given below. It
can be derived from taking the limit of the Binomial distribution as the number of trial goes to ∞ and the
probability of success on each trial goes to 0, with nπ = λ being the mean.

p(y) =

(

n

y

)

πy(1 − π)n−y nπ = λ ⇒ π =
λ

n

⇒ p(y) =

(

n

y

)(

λ

n

)y (

1 − λ

n

)n−y

Letting n → ∞ :

lim
n→∞

p(y) =
λy

y!
lim

n→∞

n(n − 1) · · · (n − y + 1)(n − y)!

ny(n − y)!

(

1 − λ

n

)n(
n − λ

n

)−y

=
λy

y!
lim

n→∞

n(n − 1) · · · (n − y + 1)

(n − λ)y

(

1 − λ

n

)n

=
λy

y!
lim

n→∞

(

n

n − λ

)

· · ·
(

n − y + 1

n − λ

)(

1 − λ

n

)n
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for fixed y: lim
n→∞

(

n

n − λ

)

= · · · =
(

n − y + 1

n − λ

)

= 1 for fixed a: lim
n→∞

(

1 +
a

n

)n

= ea

⇒ lim
n→∞

p(y) =
e−λλy

y!
y = 0, 1, 2, . . . , λ > 0

Series expansion for ea: ea =

∞
∑

i=0

ai

i!
⇒

∞
∑

y=0

p(y) = e−λ
∞
∑

y=0

λy

y!
= e−λeλ = 1

Thus the probability mass function sums to 1. We give the probability mass function and derive the
mean and variance directly below.

p(y) =
e−λλy

y!
y = 0, 1, . . . ,∞ λ > 0 E{Y } = V {Y } = λ

E {Y } = µY =

∞
∑

y=0

y
e−λλy

y!
= 0 +

∞
∑

y=1

y
e−λλy

y!
= e−λ

∞
∑

y=1

λ(y−1)+1

(y − 1)!
= e−λλ

∞
∑

y=1

λ(y−1)

(y − 1)!
=

e−λλ

∞
∑

z=0

λz

z!
= e−λλeλ = λ where: z = y − 1 = 0, 1, 2, . . .

E{Y (Y − 1)} = E{Y 2} − E{Y } =
∞
∑

y=0

y(y − 1)
e−λλy

y!
= 0 + 0 +

∞
∑

y=2

y(y − 1)
e−λλy

y!
=

e−λ
∞
∑

y=2

λ(y−2) + 2

(y − 2)!
= e−λλ2

∞
∑

y=2

λ(y−2)

(y − 2)!
=

e−λλ2
∞
∑

z=0

λz

z!
= e−λλ2eλ = λ2 where: z = y − 2 = 0, 1, 2, . . .

⇒ E{Y 2} = E{Y (Y −1)}+E{Y } = λ2+λ ⇒ V {Y } = σ2
Y = E{Y 2}−[E{Y }]2 = λ2+λ−(λ)2 = λ

The Poisson model arises by dividing the time/space into n “infinitely” small areas, each having either
0 or 1 Success, with Success probability π = λ/n. Then Y is the number of areas having a success.

The mean and variance for the Poisson distribution are both λ. This restriction can be problematic in
many applications, and the Negative Binomial distribution (described below) is often used when the variance
exceeds the mean.

The moment-generating function for the Poisson distribution is obtained as follows.

M(t) = E{etY } =

∞
∑

y=0

ety e−λλy

y!
=

∞
∑

y=0

(

et
)y e−λλy

y!
=

∞
∑

y=0

e−λ (λet)
y

y!
= e−λ

∞
∑

y=0

(λet)
y

y!
= e−λeλet

= eλ(et−1)

We can also obtain E{Y }, E
{

Y 2
}

, and V {Y } making use of the MGF.
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y p(y) Expected Observed y p(y) Expected Observed

0 0.004427 68.8864 102 7 0.120695 1878.01 1808
1 0.023995 373.3643 296 8 0.081771 1272.352 1324
2 0.065027 1011.817 1123 9 0.049244 766.2386 722
3 0.117482 1828.016 1538 10 0.02669 415.3013 411
4 0.159188 2476.962 2684 11 0.013151 204.6303 210
5 0.17256 2685.027 2590 12 0.00594 92.42468 74
6 0.155879 2425.475 2637 ≥ 13 0.003952 61.49423 41

Table 3.7: Probability Distribution for Number of goals during regulation playing time - NHL 2006/7-2018/9

M ′(t) = λeteλ(et−1) ⇒ E{Y } = M ′(0) = λe0eλ(e0−1) = λ(1)(1) = λ

M ′′(t) = λeteλ(et−1) + λetλeteλ(et−1) = λet
(

1 + λet
)

eλ(et−1)

⇒ E
{

Y 2
}

= M ′′(0) = λ(1 + λ)(1) = λ + λ2

⇒ V {Y } = E
{

Y 2
}

− (E{Y })2 = λ + λ2 − (λ)2 = λ

If we observe independent Poisson random variables Y1, . . . , Yn from n experiments, where Yi ∼ Poi(λi)
and we obtain the sum W = Y1 + · · ·+ Yn, then the moment-generating function for W is obtained below.

MW (t) = E{etW} = E{et
∑

n

i=1
Yi} = E{etY1 · · ·etYn} = E{etY1} · · ·E{etYn}eλ1(et−1) · · · eλn(et−1) = e(

∑

n

i=1
λi)(et−1)

That is, the sum of the independent Poisson random variables is Poisson with mean equal to the sum of
their means.

Example 3.10: NHL Total Goals in Regulation Time

During the 2006/07-2018/19 NHL seasons, games are based on 3 20-minute periods of regulation play.
If the game is tied, a 5-minute sudden death overtime is played with 3 skaters and a goalie for each team.
If still tied after the 5-minute OT, then a shootout is held, with 3 attempts per team to begin, then sudden
death. In any event, there will be one extra assigned goal if the game goes to OT. We consider the numbers of
goals scored in the regulation period of the 15560 NHL games played during these seasons and use a Poisson
distribution to model it. The mean and variance are µY = 5.42 and σ2

Y = 5.23, respectively. While they
are not exactly the same, they are reasonably close. The probability distribution, Expected, and Observed
counts are given in Table ??. The Expected counts are obtained by multiplying the probabilities by the total
number of games (15560). The Observed and Expected Counts are similar, but not a perfect match. In a
later chapter a goodness of fit test is described that can be used to assess the reasonability of the Poisson
approximation to the distribution.

∇
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3.4.4 Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rth success occurs. The random variable Y is the number of trials needed until the rth

success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance are given below.

p(y) =

(

y − 1

r − 1

)

πr (1 − π)
y−r

E {Y } = µY =
r

π
V {Y } = σ2

Y =
r (1 − π)

π2
.

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as follow (see e.g. Agresti (2002) [?] and
Cameron and Trivedi (2005) [?]).

f (y; µ, α) =
Γ
(

α−1 + y
)

Γ (α−1) Γ (y + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)y

Γ(w) =

∫ ∞

0

xw−1e−xdx = (w − 1)Γ (w − 1) .

E {Y } = µ V {Y } = µ (1 + αµ) .

Example 3.11: Home and Away Team Scores - NFL 2010-2019

The number of points scored by the home team and the away team was studied by Cain, Law, and Peel
(2000), [?]. They considered various distributions, including the Poisson and negative binomial for modeling
the predictions based on the point spread and the Over/Under line. We simply use the negative binomial
distribution to model the outcomes here, regression models are considered later.

The number of points for the home team ranged from 0 to 62 while the points for the away team ranged
from 0 to 59. The mean and variance are given below, along with “method of moments” estimates for µ and
α for the negative binomial distribution.

σ2 = µ(1 + αµ) ⇒ α =
σ2/µ − 1

µ

µH = 23.75 σ2
H = 106.88 αH =

106.88/23.75− 1

23.75
= 0.1474 α−1

H = 6.78

µA = 21.54 σ2
A = 97.79 αA =

97.79/21.54− 1

21.54
= 0.1643 α−1

A = 6.08
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Figure 3.1: Probabilities of Home and Away team points versus negative binomial based probabilities - NFL
2010-2019

Plots of the observed probabilities for 0-65 versus the negative binomial based probabilities are given in
Figure ??. There is clearly an association between the probabilities, but they tend to fall a ways from the
line of equality.

∇

3.5 Common Families of Continuous Random Variables

Continuous random variables can take on any values along a continuum. Their distributions are described
as densities, with probabilities being assigned as areas under the curve. Unlike discrete random variables,
individual points have no probability assigned to them. While discrete probabilities and means and variances
make use of summation, continuous probabilities and means and variances are obtained by integration. The
following rules and results are used for continuous random variables and probability distributions. We use
f(y) to denote a probability density function and F (y) to denote the cumulative distribution function.

f(y) ≥ 0

∫ ∞

−∞

f(y)dy = 1 P (a ≤ Y ≤ b) =

∫ b

a

f(y)dy F (y) =

∫ y

−∞

f(t)dt

E{Y } = µY =

∫ ∞

−∞

yf(y)dy V {Y } = σ2
Y =

∫ ∞

−∞

(y − µY )
2
f(y)dy =

∫ ∞

−∞

y2f(y)dy−µ2
Y σY = +

√

σ2
Y

Three commonly applied families of distributions for describing populations of continuous measurements
are the normal, gamma, and beta families, although there are many other families also used in practice.
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The normal distribution is symmetric and mound-shaped. It has two parameters: a mean and variance
(the standard deviation is often used in software packages). Many variables have distributions that are
modeled well by the normal distribution, and many estimators have sampling distributions that are
approximately normal. The gamma distribution has a density over positive values that is skewed to the
right. There are many applications where data are skewed with a few extreme observations. The gamma
distribution also has two parameters associated with it. The beta distribution is often used to model data
that are proportions (or can be extended to any finite length interval). The beta distribution also has two
parameters. All of these families can take on a wide range of shapes by changing parameter values.

Probabilities, quantiles, densities, and random number generators for specific distributions and param-
eter values can be obtained from many statistical software packages and spreadsheets such as EXCEL. We
will use R throughout these notes.

3.5.1 Normal Distribution

The normal distributions, also known as the Gaussian distributions, are a family of symmetric mound-
shaped distributions. The distribution has 2 parameters: the mean µ and the variance σ2, although often it
is indexed by its standard deviation σ. We use the notation Y ∼ N

(

µ, σ2
)

, but note that many statistics
textbooks use the notation Y ∼ N (µ, σ). The probability density function, the mean and variance are given
below. Note that when using functions in most software packages and spreadsheets, including R (dnorm for
density, pnorm for cumulative probability, qnorm for quantiles, and rnorm for random samples), you specify
the standard deviation σ, not the variance σ2. That is, if you want to generate a (pseudo) random sample
of size n = 100 from a normal distribution with mean µ = 200 and variance σ2 = 25, use the command
rnorm(100,200,5).

f(y) =
1√

2πσ2
exp

(

−(y − µ)2

2σ2

)

−∞ < y < ∞,−∞ < µ < ∞, σ > 0 E {Y } = µY = µ V {Y } = σ2
Y = σ2

The mean µ defines the center (median and mode) of the distribution, and the standard deviation σ is
a measure of the spread (µ − σ and µ + σ are the inflection points). Despite the differences in location and
spread of the different distributions in the normal family, probabilities with respect to standard deviations
from the mean are the same for all normal distributions. For −∞ < z1 < z2 < ∞, we have:

P (µ + z1σ ≤ Y ≤ µ + z2σ) =

∫ µ+z2σ

µ+z1σ

1√
2πσ2

exp

(

−(y − µ)
2

2σ2

)

dy =

∫ z2

z1

1√
2π

e−z2/2dz = Φ(z2) − Φ(z1).

Where Z is standard normal, a normal distribution with mean 0, and variance (standard deviation) 1.
Here Φ(z∗) is the cumulative distribution function of the standard normal distribution, up to the point z∗:

Φ(z∗) =

∫ z∗

−∞

1√
2π

e−z2/2dz

These probabilities and critical values can be obtained directly or indirectly from standard tables, statistical
software, or spreadsheets. Note that:

Y ∼ N
(

µ, σ2
)

⇒ Z =
Y − µ

σ
∼ N(0, 1)
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Figure 3.2: Three Normal Densities

This makes it possible to use the standard normal table for any normal distribution. Plots of three normal
distributions are given in Figure ??.

Approximately 68% (.6826) of the probability lies within 1 standard deviation from the mean, 95%
(.9544) lies within 2 standard deviations, and virtually all (.9970) lies within 3 standard deviations.

Example 3.12: Point Spread Differential - WNBA 2010-2019

While point spread differential for the home team is technically discrete, the actual outcomes take on a
wide range of values (−39.0 to 44.0) and is approximately normally distributed with µ = 0.0289 and standard
deviation σ = 12.0472 (σ2 = 145.1350). A frequency histogram and super-imposed N(0.0289, 145.1350) is
given in Figure ??. Notice that in the center, the bar is higher than the normal curve, and in the bins to
the right are below; otherwise the distribution is a reasonably good fit to the data.

Consider the following quantiles (.10, .25, .50, .75, .90) for the WNBA data and the corresponding
N(0.0289, 145.1350) distribution. Also consider the probabilities of the following ranges (< 0.0289 −
2(12.0472) = −24.0655, > 0.0289 + 2(12.0472) = 24.1233, and (−12.0183 = 0.0289 − 12.0472, 0.0289 +
12.0472 = 12.0761)) for the WNBA home point spread differential data and the normal distribution. The

.10th quantile for the data (−14.6) is higher than that for the normal distribution (−15.4), but the other
quantiles are very close. The proportions more than 2 standard deviations above and below the mean are
very similar (.0226 below versus .0228) and (.0260 above versus .0228). The proportions within a standard
deviation of the mean are also close (.6964 versus .6827).
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R Output

### R Output

> ## Quantiles: Theoretical Normal, Actual Distribution

> norm.q <- qnorm(c(.10,.25,.50,.75,.90), mean.sD, sd.sD)

> sprdDiff.q <- quantile(sprdDiff, c(.10,.25,.50,.75,.90))

> quant.out <- cbind(norm.q, sprdDiff.q)

> colnames(quant.out) <- c("Theoretical", "Actual")

> round(quant.out,2)

Theoretical Actual

10% -15.41 -14.6

25% -8.10 -8.0

50% 0.03 0.0

75% 8.15 8.0

90% 15.47 15.5

>

> ## Probabilities: Theoretical Normal, Actual Distribution

> # Theoretical

> tprob <- cbind(

+ pnorm(mean.sD-2*sd.sD, mean.sD, sd.sD),

+ 1-pnorm(mean.sD+2*sd.sD, mean.sD, sd.sD),

+ pnorm(mean.sD+sd.sD, mean.sD, sd.sD) -

+ pnorm(mean.sD-sd.sD, mean.sD, sd.sD))

> # Actual

> aprob <- cbind(

+ mean(sprdDiff <= mean.sD-2*sd.sD),

+ mean(sprdDiff >= mean.sD+2*sd.sD),

+ mean(sprdDiff >= mean.sD-sd.sD & sprdDiff <= mean.sD+sd.sD))

>

> prob.out <- rbind(tprob.out, aprob.out)

> colnames(prob.out) <- c("P(Y < mu-2*sigma)", "P(Y > mu+2*sigma)",

+ "P(mu-sigma < Y < mu+sigma)")

> rownames(prob.out) <- c("Theoretical", "Actual")

> round(prob.out,4)

P(Y < mu-2*sigma) P(Y > mu+2*sigma) P(mu-sigma < Y < mu+sigma)

Theoretical 0.0228 0.0228 0.6827

Actual 0.0226 0.0260 0.6964

∇

The moment-generating function for the normal family is obtained below and involves “completing the
square” inside the exponential in the integral.

M(t) = E{etY } =

∫ ∞

−∞

ety 1√
2πσ2

exp

(

−(y − µ)
2

2σ2

)

dy =

∫ ∞

−∞

1√
2πσ2

exp

(

−
(

y2 + µ2 − 2µy
)2

2σ2
+

ty(2σ2)

2σ2

)

dy =

∫ ∞

−∞

1√
2πσ2

exp

(

−
(

y2 + µ2 − 2µy − 2tyσ2
)

2σ2

)

dy =
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Figure 3.3: Home team spread differential and N(µ=.0289, σ2=145.1350) distribution - WNBA 2010-2019

∫ ∞

−∞

1√
2πσ2

exp

(

−
(

y2 + µ2 − 2(µ + tσ2)y
)

2σ2

)

dy =

∫ ∞

−∞

1√
2πσ2

exp

(

−
(

y2 + (µ + tσ2)2 − 2(µ + tσ2)y − 2µtσ2 − (tσ2)2
)

2σ2

)

dy =

exp

(

2µtσ2 + (tσ2)2

2σ2

)∫ ∞

−∞

1√
2πσ2

exp

(

−(y − (µ + t))
2

2σ2

)

dy =

exp

(

µt +
t2σ2

2

)

(1)

The final integral is 1 since, the integrand is the N(µ + t, σ2) density.

3.5.2 Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale

parameters.

f(y) =
1

Γ(α)βα
yα−1e−y/β y ≥ 0, α > 0, β > 0

∫ ∞

0

wae−y/bdy = Γ(a)ba+1

Here, Γ(α) is the gamma function Γ(α) =
∫∞

0
yα−1e−ydy and is built-in to virtually all statistical

packages and spreadsheets. It also has two simple properties.

α > 1 : Γ(α) = (α − 1) Γ(α − 1) Γ

(

1

2

)

=
√

π
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Figure 3.4: Three Gamma Densities

Thus, if α is an integer, Γ(α) = (α − 1)!. We give the mean and variance as well as their derivation below.

E {Y } = µY = αβ V {Y } = σ2
Y = αβ2

E {Y } = µY =

∫ ∞

0

y
1

Γ(α)βα
yα−1e−y/βdy =

1

Γ(α)βα

∫ ∞

0

yαe−y/βdy =
1

Γ(α)βα
Γ(α + 1)βα+1 =

Γ(α + 1)β

Γ(α)
=

αΓ(α)β

Γ(α)
= αβ

E
{

Y 2
}

=
Γ(α + 2)βα+2

Γ(α)βα
= (α + 1)αβ2 ⇒ V {Y } = σ2

Y = (α + 1)αβ2 − (αβ)2 = αβ2

The second version given here is in terms of shape and rate parameters.

f(y) =
βα

Γ(α)
yα−1e−yβ y > 0, α > 0, β > 0 E {Y } = µY =

α

β
V {Y } = σ2

Y =
α

β2

Note that different software packages use the different parameterizations in generating samples and giving
tail-areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second.
Figure ?? displays three gamma densities of various shapes.

Example 3.13: Total Points - WNBA 2010-2019

When considering the Total Points scored during regular season WNBA 2010-2019 games we see they
are all positive, and skewed to the right. A histogram and smooth gamma density are given in Figure ??.
The mean is 157.57 and the variance is 350.07. Using the second formulation of the gamma distribution,
with µ = α/β and σ2 = α/β2, we obtain the following parameter values for the two distributions based on
the method of moments.

µ2

σ2
=

(α/β)2

α/β2
= α

µ

σ2
=

α/β

α/β2
= β
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Figure 3.5: Total points scored per game WNBA 2010-2019

α =
157.572

350.07
= 70.93 β =

157.57

350.07
= 0.45

Similar to what was done for the WNBA point spread differentials for the normal distribution, we
compare the theoretical quantiles for the total points with the actual quantiles, and compare theoretical
probabilities with observed probabilities. There is very good agreement between the quantiles as well as the
probabilities.

R Output

## R Output

> ## Quantiles: Theoretical Gamma, Actual Distribution

> gamma.q <- qgamma(c(.10,.25,.50,.75,.90), alpha.TP, beta.TP)

> totPts.q <- quantile(totPts, c(.10,.25,.50,.75,.90))

> quant.out <- cbind(gamma.q, totPts.q)

> colnames(quant.out) <- c("Theoretical", "Actual")

> round(quant.out,2)

Theoretical Actual

10\% 134.12 134

25\% 144.58 145

50\% 156.84 157

75\% 169.76 170

90\% 181.98 182

> ## Probabilities: Theoretical Gamma, Actual Distribution

> # Theoretical

> tprob.out <- cbind(

+ pgamma(mean.TP-2*sd.TP, alpha.TP, beta.TP),

+ 1-pgamma(mean.TP+2*sd.TP, alpha.TP, beta.TP),

+ pgamma(mean.TP+sd.TP, alpha.TP, beta.TP) -

+ pgamma(mean.TP-sd.TP, alpha.TP, beta.TP))

> # Actual
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> aprob.out <- cbind(

+ mean(totPts <= mean.TP-2*sd.TP),

+ mean(totPts >= mean.TP+2*sd.TP),

+ mean(totPts >= mean.TP-sd.TP & totPts <= mean.TP+sd.TP))

>

> prob.out <- rbind(tprob.out, aprob.out)

> colnames(prob.out) <- c("P(Y < mu-2*sigma)", "P(Y > mu+2*sigma)",

+ "P(mu-sigma < Y < mu+sigma)")

> rownames(prob.out) <- c("Theoretical", "Actual")

> round(prob.out,4)

P(Y < mu-2*sigma) P(Y > mu+2*sigma) P(mu-sigma < Y < mu+sigma)

Theoretical 0.0160 0.0288 0.6838

Actual 0.0162 0.0294 0.6984

∇

To obtain the moment-generating function, we use the following result from calculus, then derive it
directly using the result. Note that this based on the second formulation of the model.

∫ ∞

0

ya−1e−bydy = Γ(a)b−a see normalizing constant for the gamma density

⇒ M(t) = E{etY } =

∫ ∞

0

ety βα

Γ(α)
yα−1e−yβdy =

βα

Γ(α)

∫ ∞

0

yα−1e−y(β−t)dy =

=
βα

Γ(α)
Γ(α)(β − t)−α =

βα

(β − t)α
=

(

1 − t

β

)−α

Two special cases are the exponential family, where α = 1 and the chi-squared family, with α = ν/2 and
β = 2 for integer valued ν . For the exponential family, based on the second parameterization, the symbol β
is often replaced by θ.

f(y) = θe−yθ E {Y } = µY =
1

θ
V {Y } = σ2

Y =
1

θ2
.

Probabilities for the exponential distribution are trivial to obtain as F (y∗) = 1 − e−y∗θ. Figure ?? gives
three exponential distributions.

For the chi-square family, based on the first parameterization, we have the following.

f(y) =
1

Γ
(

ν
2

)

2ν/2
y

ν
2−1e−y/2 E {Y } = µY = ν V {Y } = σ2

Y = 2ν

Here, ν is the degrees of freedom and we denote the distribution as: Y ∼ χ2
ν. Upper and lower critical

values of the chi-square distribution are available in tabular form, and in statistical packages and spread-
sheets. Probabilities, quantiles, densities, and random samples can be obtained with statistical packages and
spreadsheets. The chi-square distribution is widely used in statistical testing as will be seen later. Figure ??
gives three chi-square distributions.
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Figure 3.6: Three Exponential Densities
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3.5.3 Beta Distribution

The beta distribution can be used to model data that are proportions (or percentages divided by 100). The
traditional model for the beta distribution is given below.

f (y; α, β) =
Γ (α + β)

Γ (α) Γ (β)
yα−1 (1 − y)

β−1
0 < y < 1; α > 0, β > 0

∫ 1

0

wa (1 − w)
b
dw =

Γ (a + 1)Γ (b + 1)

Γ (a + b + 2)

Note that the Uniform distribution is a special case, with α = β = 1. The mean and variance of the beta
distribution are given here along with their derivation.

E {Y } =
α

α + β
V {Y } =

αβ

(α + β + 1) (α + β)
2

E {Y } = µY =

∫ 1

0

y
Γ (α + β)

Γ (α) Γ (β)
yα−1 (1 − y)β−1 dy =

Γ (α + β)

Γ (α) Γ (β)

∫ 1

0

yα(1 − y)β−1dy =

Γ (α + β)

Γ (α)Γ (β)

Γ (α + 1)Γ (β)

Γ (α + β + 1)
=

αΓ (α) Γ (β) Γ (α + β)

Γ (α)Γ (β) (α + β)Γ (α + β)
=

α

α + β

E
{

Y 2
}

=
Γ (α + β)

Γ (α)Γ (β)

Γ (α + 2)Γ (β)

Γ (α + β + 2)
=

(α + 1)α

(α + β + 1)(α + β)

⇒ V {Y } = σ2
Y =

(α + 1)α

(α + β + 1)(α + β)
− α2

(α + β)2
=

((α + 1)α(α + β)) − (α2(α + β + 1))

(α + β)2(α + β + 1)
=

αβ

(α + β)2(α + β + 1)

An alternative formulation of the distribution involves the following re-parameterization.

µ =
α

α + β
φ = α + β ⇒ α = µφ β = (1 − µ)φ

V {Y } = σ2 =
αβ

(α + β)2(α + β + 1)
=

µ(1 − µ)φ2

φ2(φ + 1)
=

µ(1 − µ)

φ + 1
⇒ φ =

µ(1 − µ)

σ2
− 1

Figure ?? gives three Beta distributions.

Example 3.14: Home Team Subjective Win Probabilities - MLB 2015-2019

During the MLB 2015-2019 regular seasons there were 12152 games played. Based on basic normalization,
we computed the home team subjective probability of winning the game based on the Money Lines. The
mean and standard deviation are 0.5341 and 0.0934, respectively. These lead to the following parameters
based on the method of moments.

φ =
0.5341(1− 0.5341)

0.09342
− 1 = 27.50 α = 27.50(.5341) = 14.69 β = 27.50(1− .5341) = 12.81

A histogram of the data and the corresponding Beta density are given in Figure ??. As with the previous
examples, we compare the theoretical quantiles and probabilities for the beta densities with the actual values
for this population. They show considerable agreement.

R Output
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Figure 3.8: Three Beta Densities

Figure 3.9: Home team subjective probabilities of winning and Beta(14.69,12.81) density - MLB 2015-2019
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## R Commands

> ## Quantiles: Theoretical Gamma, Actual Distribution

> beta.q <- qbeta(c(.10,.25,.50,.75,.90), alpha.TP, beta.TP)

> teamprob.q <- quantile(teamprob, c(.10,.25,.50,.75,.90))

> quant.out <- cbind(beta.q, teamprob.q)

> colnames(quant.out) <- c("Theoretical", "Actual")

> round(quant.out,4)

Theoretical Actual

10% 0.4124 0.4119

25% 0.4701 0.4714

50% 0.5350 0.5372

75% 0.5990 0.6010

90% 0.6547 0.6512

>

>

> ## Probabilities: Theoretical Beta, Actual Distribution

> # Theoretical

> tprob.out <- cbind(

+ pbeta(mean.TP-2*sd.TP, alpha.TP, beta.TP),

+ 1-pbeta(mean.TP+2*sd.TP, alpha.TP, beta.TP),

+ pbeta(mean.TP+sd.TP, alpha.TP, beta.TP) -

+ pbeta(mean.TP-sd.TP, alpha.TP, beta.TP))

> # Actual

> aprob.out <- cbind(

+ mean(teamprob <= mean.TP-2*sd.TP),

+ mean(teamprob >= mean.TP+2*sd.TP),

+ mean(teamprob >= mean.TP-sd.TP & teamprob <= mean.TP+sd.TP))

>

> prob.out <- rbind(tprob.out, aprob.out)

> colnames(prob.out) <- c("P(Y < mu-2*sigma)", "P(Y > mu+2*sigma)",

+ "P(mu-sigma < Y < mu+sigma)")

> rownames(prob.out) <- c("Theoretical", "Actual")

> round(prob.out,4)

P(Y < mu-2*sigma) P(Y > mu+2*sigma) P(mu-sigma < Y < mu+sigma)

Theoretical 0.0232 0.0201 0.6740

Actual 0.0277 0.0179 0.6796

∇

3.5.4 Functions of Normal Random Variables

First, note that if Z ∼ N(0, 1), then Z2 ∼ χ2
1. Many software packages present Z-tests as (Wald) χ2-tests.

Suppose Y1, ..., Yn are independent with Yi ∼ N (µ, σ) for i = 1, . . . , n. Then the sample mean and
sample variance are computed as follow.

Y =

∑n
i=1 Yi

n
S2 =

∑n
i=1(Yi − Y )2

n − 1

In this case, we obtain the following sampling distributions for the mean and a function of the variance.

Y ∼ N

(

µ,
σ2

n

)

(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2

n−1 Y ,
(n − 1)S2

σ2
are independent.
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Figure 3.10: Three t-densities and z

Note that in general, if Y1, ..., Yn are normally distributed (and not necessarily with the same mean and/or
variance), any linear function of them will be normally distributed, with mean and variance given previously
in the section with linear functions of random variables.

Two distributions associated with the normal and chi-squared distributions are Student’s t and F .
Student’s t-distribution is similar to the standard normal (N(0, 1)), except that it is indexed by its degrees
of freedom and that is has heavier tails than the standard normal. As its degrees of freedom approach
infinity, its distribution converges to the standard normal. Let Z ∼ N (0, 1) and W ∼ χ2

ν, where Z and W
are independent. Then, we have the following result.

Y ∼ N
(

µ, σ2
)

⇒ Z =
Y − µ

σ
∼ N(0, 1) T =

Z
√

W/ν
∼ tν

where the probability density, mean, and variance for Student’s t-distribution are:

f(t) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)√
νπ

(

1 +
t2

ν

)− ν+1
2

E {T} = µT = 0 V {T} =
ν

ν − 2
ν > 2

and we use the notation T ∼ tν . Three t-distributions, along with the standard normal (z) distribution are
shown in Figure ??.

Now consider the sample mean and variance, and the fact they are independent.

Y ∼ N

(

µ,
σ2

n

)

⇒ Z =
Y − µ
√

σ2

n

=
√

n
Y − µ

σ
∼ N(0, 1)



3.5. COMMON FAMILIES OF CONTINUOUS RANDOM VARIABLES 69

W =
(n − 1)S2

σ2
=

∑n
i=1(Yi − Y )2

σ2
∼ χ2

n−1 ⇒
√

W

ν
=

√

(n − 1)S2

σ2(n − 1)
=

S

σ

⇒ T =
Z

√

W/ν
=

√
nY −µ

σ
S
σ

=
√

n
Y − µ

S
∼ tn−1

This result permits us to make inference concerning mean(s) even when the population variance is
unknown and must be estimated.

The F -distribution arises often in Regression and Analysis of Variance applications. If W1 ∼ χ2
ν1

,
W2 ∼ χ2

ν2
, and W1, W2 are independent, then:

F =

[

W1

ν1

]

[

W2

ν2

] ∼ Fν1,ν2 .

where the probability density, mean, and variance for the F -distribution are given below as a function of the
specific point F = f .

f(f) =

[

Γ
((

ν1+ν2

2

))

ν
ν1/2
1 ν

ν2/2
2

Γ (ν1/2) Γ (ν2/2)

][

fν1/2−1

(ν1f + ν2)
(ν1+ν2)/2

]

E {F } = µF =
ν1

ν2 − 2
ν2 > 2 V {F } =

2ν2
2 (ν1 + ν2 − 2)

ν1 (ν2 − 2) (ν2 − 4)
ν2 > 4

Three F -distributions are given in Figure ??.

Critical values for the t, χ2, and F -distributions are given in statistical textbooks and webpages. Prob-
abilities, quantiles, densities, and random samples can be obtained from many statistical packages and
spreadsheets. Technically, the t, χ2, and F distributions described here are central t, central χ2, and cen-
tral F distributions. These will be made use of repeatedly when we make inferences regarding population
parameters.

3.5.5 Bivariate Normal Distribution

The bivariate normal distribution is used to model pairs of variables, we will us X and Y to represent the
variables with the following notation and joint probability density function.

E{X} = µX V {X} = σ2
X = σXX E{Y } = µY V {Y } = σ2

Y = σY Y COV{X, Y } = σXY = ρσXσY

f(x, y) =
1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− 2(x − µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

]}

−∞ < x, y, µX , µY < ∞ σX , σY > 0 − 1 ≤ ρ ≤ 1

We will derive the marginal density for X by integrating over Y , and then obtain the conditional density
of Y |X = x by taing the joint density of X, Y and dividing it by the marginal density of X.
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Figure 3.11: Three F -densities

∫ ∞

−∞

f(x, y)dy =

∫ ∞

−∞

1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− 2(x− µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

]}

dy

We label the normalizing constant as C and complete the square within the exponent. Note that the
last two terms below do not involve y.

= C

∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)

[

ρ2(x − µX)2

σ2
X

− 2(x − µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

+
(x − µX)2

σ2
X

− ρ2(x − µX)2

σ2
X

]}

dy

=
1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− ρ2(x − µX)2

σ2
X

]}

×

∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)

[

ρ2(x − µX)2

σ2
X

− 2(x− µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

]}

dy

We first simplify the constant, then terms within the integrand.

1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− ρ2(x − µX)2

σ2
X

]}

=
1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

−1

2

[

(x − µX)2

σ2
X

]}
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∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)

[

ρ2(x − µX)2

σ2
X

− 2(x − µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

]}

dy =

∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)

[

(y − µY )

σY
− ρ(x − µX)

σX

]2
}

dy =

∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)σ2
Y

[

y −
(

µY + ρ(x − µX)
σY

σX

)]2
}

dy

The integrand represents the exponential portion (kernel) of a normal density for Y with the following
mean and variance.

E{Y } = µY + ρ(x − µX)
σY

σX
V {Y } =

(

1 − ρ2
)

σ2
Y

Thus the integral is equal to the following constant (the reciprocal of the normalizing constant for the
normal density).

∫ ∞

−∞

exp

{

− 1

2 (1 − ρ2)σ2
Y

[

y −
(

µY + ρ(x − µX)
σY

σX

)]2
}

dy =
√

2π (1 − ρ2)σ2
Y

Putting together these two terms, we have the following result.

fX(x) =
1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

−1

2

[

(x − µX)2

σ2
X

]}

×
√

2π (1 − ρ2)σ2
Y =

1
√

2πσ2
X

exp

{

−1

2

(x − µX)2

σ2
X

}

This is the normal density for a random variable X with mean µX and variance σ2
X . Note that the

marginal distribution of Y is normal with mean µY and variance σ2
Y .

Finally, we divide the joint density of X and Y by the marginal density of X to obtain the conditional
density of Y given X = x.

f(x, y)

fX(x)
=

1

2π
√

σ2
X

σ2
Y

(1−ρ2)
exp

{

− 1
2(1−ρ2)

[

(x−µX)2

σ2
X

− 2(x−µX)(y−µy)ρ
σXσY

+ (y−µY )2

σ2
Y

]}

1√
2πσ2

X

exp
{

−1
2

(x−µX )2

σ2
X

} =

1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− 2(x − µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

]

−
[

−1

2

(x − µX)2

σ2
X

]}

=

1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)

[

(x − µX)2

σ2
X

− 2(x − µX)(y − µy)ρ

σXσY
+

(y − µY )2

σ2
Y

−
(

1 − ρ2
)

(x − µX)2

σ2
X

]}

=
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1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)

[

(y − µY )2

σ2
Y

− 2(x − µX)(y − µy)ρ

σXσY
+

(x − µX)2

σ2
X

(

1 −
(

1 − ρ2
))

]}

=

1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)σ2
Y

[

(y − µY )2 − 2(x− µX)(y − µy)ρσY

σX
+

ρ2(x − µX)2σ2
Y

σ2
X

]}

=

1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)σ2
Y

[

(y − µY ) − ρ(x − µX)σY

σX

]2
}

=

1
√

2πσ2
Y (1 − ρ2)

exp

{

− 1

2 (1 − ρ2)σ2
Y

[

(y −
(

µY + ρ(x − µX)
σY

σX

)]2
}

Thus, conditional on X = x, Y is normal with the following conditional distribution.

Y |X = x ∼ N

(

E{Y |X = x} = µY + ρ(x − µX)
σY

σX
, V {Y |X = x} =

(

1 − ρ2
)

σ2
Y

)

Example 3.15: WNBA Team Point Predictions and Outcomes

Based on the point spread and Over/Under, team predicted points were obtained for the population of
WNBA games for the 2010-2019 regular seasons. Labeling the pre-game prediction as X and the team’s
actual points as Y , we obtain the following parameters.

µX = 78.74 σX = 5.86 µY = 78.79 σY = 11.57 ρ = 0.49

Note that the means are virtually identical, but the standard deviation is almost twice as large for actual
points than predicted (the variance is almost four times as high). Histograms of the predicted and actual
team points are given in Figure ??. A scatterplot and ordinary least squares regression line is given in
Figure ??. The equation for the regression line is given below, based on the conditional density of Y .

E{Y |X = x} = µY + ρ(x − µX)
σY

σX
=

(

µY − ρµX
σY

σX

)

+ ρ
σY

σX
x =

(

78.79− 0.49(78.74)
11.57

5.86

)

+ 0.49
11.57

5.86
x = 2.61 + 0.97x

A 3D plot of the bivariate normal density for these parameters is given in Figure ?? and contour plot is
given in given in Figure ??.

Conditional densities for Y with X = 60 to 110 and the marginal density of Y are given in Figure ??
and an ellipsoid containing 95% of the joint density and the observed pairs (X, Y ) are given in Figure ??.

∇
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3.6 Sampling Distributions and the Central Limit Theorem

Sampling distributions are the probability distributions of sample statistics across different random samples
from a population. That is, if we take many random samples, compute the statistic for each sample, then
save that value, what would be the distribution of those saved statistics? In particular, if we are interested
in the sample mean Y , or the sample proportion with a characteristic π̂, we know the following results, based
on independence of elements within a random sample.

Sample Mean: E{Yi} = µ V {Yi} = σ2 E{Y } = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

µ = µ

V {Y } = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

σ2 =
σ2

n
σY =

σ√
n

Sample Proportion: E{Yi} = π V {Yi} = π(1 − π) E{π̂} = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

π = π

V {π̂} = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

π(1 − π) =
π(1 − π)

n
σπ̂ =

√

π(1 − π)

n

The standard deviation of the sampling distribution of a sample statistic (aka estimator) is referred to
as its standard error. Thus σY is the standard error of the sample mean, and σπ̂ is the standard error of
the sample proportion.

When the data are normally distributed, the sampling distribution of the sample mean is also normal.
When the data are not normally distributed, as the sample size increases, the sampling distribution of the
sample mean or proportion tends to normality. The “rate” of convergence to normality depends on how
“non-normal” the underlying distribution is. The mathematical arguments for these results are Central
Limit Theorems.

Sample Mean: Y
·∼ N

(

µ,
σ2

n

)

Sample Proportion: π̂
·∼ N

(

π,
π(1 − π)

n

)

Example 3.15: Sampling Distribution of a Mean - NFL Team Point Predictions and Out-
comes

Based on the NFL point spread and the Over/Under line, we are able to obtain a prediction for each
team’s score in a game. When the team is favored, again we use the convention that its spread is positive.
Let S be the team’s point spread for a game and O represent the Over/Under line for the game. Further,
let P represent the predicted number of points for the team. Note that the dataset has a row for each team
as the “focal team” with twice as many rows as there are games. That is, the dataset is based on “team
games.” The predicted score for the focal team is obtained by taking P = (O + S)/2. For instance if the
focal team is favored by S = +7 and the Over/Under line is O = 42 points, the total score is predicted
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Figure 3.18: Sampling distribution of mean Point prediction errors based on Team spread and Over/Under
line - NFL 2010-2019

to be 42, with the focal team expected to win by 7, making the predicted score for the focal team to be
P = (42 + 7)/2 = 24.5 and their opponent’s predicted score is (42 − 7)/2 = 17.5. We are interested in the
difference between the focal teams’ actual and predicted scores. This can be thought of as the “prediction
error” of the betting lines.

The distribution has a minimum of −26 where the team scored much less than predicted and a maximum
of 41. The median is −0.25 and the mean is 0.21. The lower and upper quartiles are −6.06 and 6.00,
respectively and the standard deviation is 9.41. The distribution is somewhat skewed to the right.

We take 100000 random samples of size n = 9, computing and saving the sample mean for each sample.
The theoretical and empirical (based on the 100000 random samples) mean and standard error of the sample
means are given below and a histogram with the normal density are shown in Figure ??.

Theory: µY = µ = 0.2102 σY =
9.4099√

9
= 3.1366 Empirical: y = 0.2289 sy = 3.1164

The mean and standard deviation are quite close to the corresponding theoretical values, as expected
and the sampling distribution is well approximated by the N(0.2102, 3.13662) distribution.

∇

Example 3.16: Sampling Distribution of a Proportion - NHL Favorites’ Probability of
Winning Game

Next we consider the proportions of NHL favored teams that win the game, based on 100000 random
samples of n = 200. For the population, there were 15320 games with a favorite (different Money Lines for
the two teams) and the favored team won 8972 of the games, so π = 8972/15320 = .5856. The theoretical
and empirical results are given below, and the histogram is given in Figure ??.
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Figure 3.19: Sampling distribution for proportion of games favorite wins - n=200, NHL 2006/07-2018/19

Theory: µπ̂ = π = .5856 σπ̂ =

√

.5856(1− .5856)

200
= .0348 Empirical: π̂ = .5856 sπ̂ = .0346

The empirical mean and standard error, again, are in strong agreement with their theoretical values.
Note that the sample proportion is discrete as it can only take on values 0.000, .005, .010, ..., .990, .995,
1.000, as n = 200. The histogram is clearly bell-shaped like a normal distribution. As n gets larger π̂
becomes more “continuous.”

∇

3.7 Introduction to Bayesian Statistics

In frequentist statistics, parameters such as the mean µ, variance σ2, or proportion π are treated as fixed,
typically unknown values. In Bayesian statistics, parameters are treated as random variables with probability
distributions assigned prior to observing the data (prior distributions) which are updated once data have
been observed (posterior distributions). In this section, we consider a binomial proportion π, a Poisson mean
λ, and a normal mean µ and variance σ2. We consider conjugate prior distributions, which allow for the the
posterior and prior distributions to be of the same family. There are many alternatives to using conjugate
priors and software exists to obtain samples from more complicated posterior distributions.

In general, we have the following structure, where θ is a parameter or a vector of parameters, y is data,
p(θ) is the prior distribution for θ and p(y|θ) is the probability model for the random variable Y , given θ.

p(θ|y) =
p(y, θ)

p(y)
=

p(θ)p(y|θ)
p(y)

∝ p(θ)p(y|θ) θ discrete: p(y) =
∑

p(y|θ)p(θ) continuous: p(y) =

∫

p(y|θ)p(θ)dθ



3.7. INTRODUCTION TO BAYESIAN STATISTICS 79

3.7.1 Bayesian Model for a Binomial Proportion

The beta distribution provides a conjugate prior distribution for a binomial proportion. Also, the beta family
has a lot of flexibility for the shape of the prior distribution based on various belief states corresponding to
π. Consider the following prior distribution for π and the subsequent probability distribution for a binomial
random variable Y where π ∼ Beta (απ, βπ).

p (π) =
Γ (απ + βπ)

Γ (απ) Γ (βπ)
παπ−1(1−π)βπ−1 0 < π < 1 απ, βπ > 0 p (y|n, π) =

(

n

y

)

πy (1 − π)
n−y

y = 0, 1, . . . , n

p (π|y) ∝ p (π) p (y|n, π) ∝ παπ−1(1 − π)βπ−1πy(1 − π)n−y = παπ+y−1(1 − π)βπ+n−y−1

Thus, the posterior distribution for π, given Y = y is a beta distribution with parameters απ + y and
βπ + n − y, respectively.

Example 3.17: Probability that a WNBA Game Total Points Exceeds Over/Under Line

Suppose we are interested in the probability a WNBA game exceeds the Over/Under Line, which will be
denoted as π. We will consider only games that are not “pushes,” as they imply no bet was placed. Consider
the following priors.

• We have no idea, except that 0 < π < 1 and place a uniform prior between 0 and 1 which is a beta
distribution with απ = βπ = 1

• We believe that there is a very good chance (say 90%) that π is between 0.40 and 0.60 and that the
distribution is symmetric around 0.5

For the uniform prior, P (0.40 ≤ θ ≤ 0.60) = .20. Using the pbeta function in R, we can use trial
and error to obtain values απ = βπ such that P (0.40 ≤ π ≤ 0.60) = .90. Based on integer values, when
απ = βπ = 34, P (0.40 ≤ π ≤ 0.60) = .9031. Figure ?? gives the two prior distributions described here.

Once a sample of n games is obtained and y, the number of games which cover the Over bet is observed, we
update the prior for π to obtain its posterior distribution. In a pseudo-random sample of n = 100 games, the
over bet won y = 45 times and lost n−y = 55 times. For the first (uniform) prior, the posterior distribution
for π is beta with α1 = 1 +45 = 46 and β1 = 1 +55 = 56. For the second (concentrated) prior, the posterior
is beta with α2 = 34 + 45 = 79 and β2 = 34 + 55 = 89. Figure ?? gives the two posterior distributions
described here. It should be noted that under the first posterior distribution, P (0.40 ≤ π ≤ 0.60) = .8486,
and for the second it is .9666.

∇

3.7.2 Bayesian Model for a Poisson Mean

The gamma distribution provides a conjugate prior distribution for a Poisson mean. The gamma family can
take on many forms for the shape of the prior distribution based on various belief states corresponding to
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λ. Consider the following prior distribution for λ and the subsequent probability distribution for a Poisson
random variable Y where λ ∼ Gamma (αλ, βλ). Suppose we take a random sample of size n from a Poisson
distribution with mean λ and observe y1, . . . , yn.

p (λ) =
βαλ

λ

Γ (αλ)
λαλ−1e−λβλ λ > 0 αλ, βλ > 0

p (y1, . . . , yn|λ) =

n
∏

i=1

e−λλyi

yi!
=

e−nλλ
∑

n

i=1
yi

∏n
i=1 yi!

yi = 0, 1, . . .

p (λ|y1, . . . , yn) ∝ p (λ) p (y1, . . . , yn|λ) ∝ λαλ−1e−λβλe−λnλ
∑

n

i=1
yi = λαλ+ny−1e−λ(βλ+n)

Thus, the posterior distribution for λ, given Y1 = y1, . . . , Yn = yn is a gamma distribution with param-
eters αλ + ny and βλ + n, respectively.

Example 3.18: Average Total Goals in English Premier League Football Matches 2002-2018
Seasons

In the English Premier League, all matches have an Over/Under total of 2.5 goals. The odds are assigned
to the Over/Under line, depending presumably on the offensive/defensive strengths and weather conditions.
We consider the games where the converted odds (by basic normalization) have probabilities of Over (and
thus Under) between 0.47 and 0.53. Note that the Over and Under probabilities sum to 1, with the Over
probability ranging from 0.3248 to 0.7732. We will place a prior on λ, the mean total number of goals in
such games that is gamma with mean of 2.5 (αλ = 2.5βλ) such that the probability that λ falls between 1
and 4 is approximately 0.70. For αλ = 2.5 and βλ = 1.0, the P (1 ≤ λ ≤ 4) = 0.6929.

Of the games beginning in the 2002/03 season, there were 6458 games with Over/Under odds. Of those
games, 2376 games had Over (and Under) probabilities between 0.47 and 0.53. We take a pseudo-random
sample of n = 50 of these games and observe the mean y = 2.76. This leads to a posterior distribution for
λ as a gamma distribution with α = 2.5 + 50(2.76) = 140.5 and β = 1 + 50 = 51. A plot of the prior and
posterior distributions is given in Figure ??

3.7.3 Bayesian Model for Normal Mean and Variance

If we have a data model for Y being normal with mean µ and variance σ2, we can place priors on µ and
σ2 and sample from their posterior distributions iteratively with the Gibbs sampler. We consider a prior
normal distribution on µ that is normal with mean µµ and variance σ2

µ. For the variance σ2, we consider
a prior Inverse Gamma distribution with parameters aσ2 and bσ2 . Note that if a random variable has an
Inverse Gamma distribution with parameters a and b, its reciprocal is distributed as gamma with parameters
a and b. That is, the precision, τ2 = 1/σ2 is distributed as gamma. The Inverse Gamma density is given
below.

f(x|a, b) =
ba

Γ(a)
x−a−1 exp

(−b

x

)

x > 0 a, b > 0 E{X} =
b

a − 1
(a > 1) V {X} =

b2

(a − 1)2(a − 2)
(a > 2)

We have the following priors and data model.
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µ ∼ N
(

µµ, σ2
µ

)

p(µ) =
1

√

2πσ2
µ

exp

(

−(µ − µµ)
2

2σ2
µ

)

σ2 ∼ IG (aσ2 , bσ2) p
(

σ2
)

=
(bσ2)

aσ2

Γ (aσ2 )

(

σ2
)−a

σ2−1
exp

(−bσ2

σ2

)

p
(

y1, . . . , yn|µ, σ2
)

=
(

2πσ2
)−n/2

exp

(

−
∑n

i=1 (yi − µ)
2

2σ2

)

The joint posterior density of µ and σ2 given observed data y1, . . . , yn is proportional to the products
of their priors (assuming independence) and the likelihood of the data.

p
(

µ, σ2|y1, . . . , yn

)

∝ p(µ)p
(

σ2
)

p
(

y1, . . . , yn|µ, σ2
)

Now, suppose σ2 is known, and we want to obtain the posterior of µ given σ2 and the data. Further, let
σ2

µ be written in terms of the data variance: σ2
µ = σ2/m.

p
(

µ|σ2, y1, . . . , yn

)

∝ exp

(

−(µ − µµ)
2

2σ2/m

)

exp

(

−
∑n

i=1 (yi − µ)
2

2σ2

)

∝ exp

(

− 1

2σ2

[

m (µ − µµ)
2

+

n
∑

i=1

(yi − µ)
2

])

= exp

(

− 1

2σ2

[

mµ2 − 2mµµµ + mµ2
µ +

n
∑

i=1

y2
i − 2µ

n
∑

i=1

yi + nµ2

])

∝ exp

(

− 1

2σ2

[

µ2(m + n) − 2µ

(

mµµ +

n
∑

i=1

yi

)])
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= exp

(

−1

2

[

m + n

σ2
µ2 − 2

mµµ + ny

σ2
µ

])

= exp

(

−1

2

[

1

Vµ
µ2 − 2Mµµ

])

Vµ =
σ2

m + n
Mµ =

mµµ + ny

σ2

⇒ p
(

µ|σ2, y1, . . . , yn

)

∝ exp

(

−1

2

[

1

Vµ
µ2 − 2

MµVµ

Vµ
µ

])

∝ exp

(

−1

2

[

(µ − MµVµ)
2

Vµ

])

Thus, given σ2 and the data y1, . . . , yn, µ has a normal posterior distribution with mean and variance
given below.

E{µ|σ2, y1, . . . , yn} = MµVµ =
mµµ + ny

σ2

σ2

m + n
=

mµµ + ny

m + n
V {µ|σ2, y1, . . . , yn} = Vµ =

σ2

m + n

In general, if we σ2
µ is not parameterized in terms of σ2, we have the following result.

E{µ|σ2, y1, . . . , yn} =

µµ

σ2
µ

+ ny
σ2

1
σ2

µ
+ n

σ2

V {µ|σ2, y1, . . . , yn} =
1

1
σ2

µ
+ n

σ2

Thus, the posterior mean is a weighted average the prior mean and the data mean with weights based on
the prior variance (m) and the data sample size (n). The posterior variance is the data variance σ2 divided
by the sum of the weights.

Now treating µ as known, we obtain the posterior distribution of σ2 and the data y1, . . . , yn. This takes
the product of the prior for σ2 and the likelihood, keeping only terms involving σ2.

p
(

σ2|µ, y1, . . . , yn

)

∝
(

σ2
)−a

σ2−1
exp

(−bσ2

σ2

)

(

σ2
)−n/2

exp

(

−
∑n

i=1 (yi − µ)
2

2σ2

)

∝
(

σ2
)−aσ2−

n
2 −1

exp

(

−bσ2 + 1
2

∑n
i=1 (yi − µ)

2

σ2

)

Thus given µ and and the data y1, . . . , yn, the posterior distribution is distributed Inverse Gamma with
parameters given below.

apost = aσ2 +
n

2
bpost = bσ2 +

1

2

n
∑

i=1

(yi − µ)2

Once the prior parameters have been selected, and the data obtained, the Gibbs Sampler involves the
following steps after setting σ2 = σ2

0 as an initial value where σ2
0 is the sample variance of the data.

Sample µ: µ|σ2, y1, . . . , yn ∼ N

(

mµµ + ny

m + n
,

σ2

m + n

)
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µ σ

Year Mean 2.5% 50% 97.5% Mean 2.5% 50% 97.5%

2006 4.389 -1.877 4.409 10.700 22.527 18.500 22.338 27.632
2007 1.321 -3.593 1.319 6.257 17.567 14.440 17.408 21.524
2008 -1.271 -5.201 -1.269 2.589 13.995 11.496 13.871 17.213
2009 -2.311 -7.500 -2.322 2.949 18.805 15.444 18.632 23.161
2010 2.173 -1.939 2.178 6.292 14.704 12.101 14.569 18.069
2011 -0.739 -5.288 -0.751 3.834 16.343 13.446 16.191 20.063
2012 5.124 -0.292 5.121 10.439 19.214 15.818 19.047 23.650
2013 3.319 -1.711 3.323 8.341 17.971 14.793 17.817 22.037
2014 -1.010 -6.654 -1.030 4.760 20.324 16.720 20.131 25.009
2015 0.595 -4.540 0.593 5.696 18.151 14.893 18.003 22.198
2016 -1.315 -5.529 -1.304 2.886 15.002 12.349 14.884 18.374
2017 2.473 -3.369 2.479 8.221 20.654 17.008 20.472 25.221
2018 2.279 -4.025 2.304 8.464 22.217 18.250 22.028 27.273

Table 3.8: Posterior means and quantiles for NBA Total Points - Over/Under differentials for 2006/07-
2018/19 seasons based on samples of n = 50 games per year

Sample σ2: σ2|µ, y1, . . . , yn ∼ IG

(

aσ2 +
n

2
, bσ2 +

1

2

n
∑

i=1

(yi − µ)
2

)

Note that for sampling the variance, it is generally simpler to sample the precision (1/sigma2) from the
gamma distribution with parameters apost and bpost.

Example 3.19: NBA Actual and Predicted Point Totals from Over/Under Lines - 2006/07-
2018/19

In this example, we consider the difference between the actual combined scores and Over/Under betting
lines for samples of NBA games during the 2006/07 through 20018/19 seasons. We will take samples of
size n = 50 from each season and obtain 25000 MCMC samples from the Gibbs Sampler. We will use
non-informative priors for the mean and variance.

µµ = 0 σ2
µ = 100σ2 =

σ2

0.01
aσ2 = bσ2 = 0.01

The mean and quantiles(.025, .5, .975) for µ and σ are given in Table ??. Note that the distributions
shift quite a bit by season. Samples from the joint posterior distribution of µ and σ and histograms for µ
and σ for 2006/07, 2012/13, and 2018/19 are given in Figure ??.

∇
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Figure 3.23: Posterior samples of (µ, σ), histograms of samples from µ and σ for 2006/07, 2012/13, and
2018/19 seasons for Total Points - Over/Under differential based on samples of n = 50 games per year
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Chapter 4

Inferences Concerning a Single
Population

Researchers often are interested in making statements regarding unknown population means, medians, and
proportions based on sample data. There are two common methods for making inferences: Estimation
and Hypothesis Testing. The two methods are related and make use of the sampling distributions of
the sample mean and proportion when making statements regarding the population mean and proportion.
Inferences regarding a population median are based on the binomial distribution.

Estimation can provide a single “best” prediction of the population parameter, a point estimate,
or it can provide a range of values that hopefully encompass the true population parameter, an interval
estimate. Hypothesis testing involves setting an a priori (null) value for the unknown population parameter,
and measuring the extent to which the sample data contradict that value. Note that a confidence interval
provides a credible set of values for the unknown population parameter, and can be used to test whether
or not the population parameter is the null value. Both methods involve uncertainty as we are making
statements regarding a population based on sample data.

4.1 Inference Concerning a Population Mean

4.1.1 Estimation

For large samples, the sample mean has an approximately normal sampling distribution centered at the
population mean, µ, and a standard error σ/

√
n. When the data are normally distributed, the sampling

distribution is normal for all sample sizes. For normal distributions, 95% of its density lies in the range
(mean +/- 1.96 SD). Thus, when we take a random sample, we obtain the following probability statement
regarding the sample mean.

87
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Y
·∼ N

(

µ, σ2
Y

=
σ2

n

)

⇒ P

(

µ − zα/2
σ√
n

≤ Y ≤ µ + zα/2
σ√
n

)

≈ 1 − α P (Z ≥ za) = a

⇒ 1 − α ≈ P

(

−zα/2 ≤ Y − µ

σ/
√

n
≤ zα/2

)

= P

(

Y − zα/2
σ√
n

≤ µ ≤ Y + zα/2
σ√
n

)

Some commonly used z values are given here, along with the corresponding coverage probabilities (1−α).

1−α = .90 ⇒ α = .10 ⇒ α

2
= .05 ⇒ z.05 = 1.645 1−α = .95 ⇒ z.025 = 1.96 1−α = .99 ⇒ z.005 = 2.576

Note that in the probability statements above, µ is a fixed, unknown in practice constant, and Y is a
random variable that changes from sample to sample. The probability refers to the fraction of the samples
that will provide sample means so that the lower and upper bounds “cover” µ. Also, in practice, σ will be
unknown and need to be replaced by the sample standard deviation.

A Large-Sample (1 − α)100% Confidence Interval for a Population Mean µ is given below, where y and
s are the observed mean and standard deviation from a random sample of size n.

y ± zα/2sY y ± zα/2
s√
n

When the data are normally distributed, for small samples (although this has been shown to work well
for other distributions), replace zα/2 with tα/2,n−1.

y ± tα/2,n−1sY y ± tα/2,n−1
s√
n

Any software package or spreadsheet that is used to obtain a confidence interval for a mean (or difference
between two means) will always use the version based on the t-distribution. There will be settings, when
making confidence intervals for parameters, that there is no justification for using the t-distribution, and we
will make use the z-distribution, as does statistical software packages.

Example 4.1: WNBA Team Predicted and Actual Points

The differences between the actual points scored and predicted points based on the point spread and
Over/Under for 4078 WNBA regular season team-games during 2010-2019 are obtained by taking (Point
Spread + Over/Under)/2, where again the favored team has a positive point spread. We will call these
differences (Actual-Predicted) “team point prediction errors.” These differences are approximately normally
distributed with mean µ = 0.0525 and standard deviation σ = 10.1062. The P -value for the Shapiro-Wilk
test for normality is p = .3548, implying no evidence of non-normality of the differences.
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Year n Mean SD Lower Bound Upper Bound

2010 408 0.2684 10.2038 -0.7247 1.2614
2011 408 -0.9975 9.8182 -1.9531 -0.0420
2012 408 0.1275 9.6650 -0.8132 1.0681
2013 408 -0.8480 10.1696 -1.8378 0.1417
2014 408 0.2990 9.7827 -0.6531 1.2511
2015 408 -0.2892 10.4884 -1.3100 0.7315
2016 408 0.9350 9.9229 -0.0307 1.9008
2017 408 0.2880 10.3358 -0.7179 1.2939
2018 406 0.6613 10.4139 -0.3547 1.6773
2019 408 0.0833 10.1730 -0.9067 1.0734

Table 4.1: Summary statistics and 95% Confidence Intervals for mean team prediction errors by year -
WNBA 2010-2019

Note that the actual scores have mean µA = 78.7876 and standard deviation σA = 11.5745, and the
predicted scores have mean µA = 78.7352 and standard deviation σP = 5.8566, and the correlation between
actual and predicted scores is ρAP = .4878. This leads to the following direct computation of the mean,
variance, and standard deviations among the team point prediction errors Y = A − P based on rules for
linear functions of random variables.

E{Y } = µY = E{A − P } = µA − µP = 78.7876− 78.7352 = 0.0524

V {Y } = σ2
Y = V {A−P } = σ2

A+σ2
P−2ρAP σAσP = 11.57452+5.85662−2(.4878)(11.5745)(5.8566) = 102.1356

⇒ σY = 10.1062

First, we consider this population of team games as a sample from a conceptual population of all possible
team games that could be played. We obtain a 95% Confidence Interval for the population mean as follows
with y = 0.0525, s = 10.1062, n = 4078, and t.025,4078−1 = 1.9605.

y ± t.025,n−1
s√
n

≡ 0.0525± 1.9605
10.1062√

4078
≡ 0.0525± 0.3103 ≡ (−0.2578, 0.3628)

The interval contains 0, showing no evidence of a systematic “bias” in team point predictions. Results
by year are given in Table ??. Only for 2011, when the average team point prediction error was close to −1,
does the 95% Confidence Interval not contain 0.

Now we treat this as a population of games, and consider taking (pseudo) random samples and observing
the properties of the Confidence Intervals in repeated sampling. We take 10000 random samples of size
n = 12, implying a standard error of σY = 10.1062/

√
12 = 2.9174. We count the number of the 10000

sample means that lie in the ranges µ ± zα/2σY for the three values of 1 − α given above.

Of the 10000 sample means, 9044 (90.44%) lied within µ ± 1.645(2.9174), 9539 (95.39%) within µ ±
1.96(2.9174), and 9913 (99.13%) within µ ± 2.576(2.9174). Had we constructed intervals of the form y ±
zα/2(2.9174) for each sample mean, the coverage rates for µ would have been the same values (90.44%,
95.39%, 99.13%).
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When the population standard error σY = σ/
√

n is replaced by the estimated standard error sY = s/
√

n,
which varies from sample to sample, we find the coverage rates of the intervals decrease. When constructing
intervals of the form y±zα/2s/

√
n, the coverage rates fall to 87.90%, 92.77%, and 97.38%, respectively. This

is a by-product of the fact that the sampling distribution of the standard deviation is skewed right, and its
median is below its mean. Whenever the sample standard deviation is small, the width of the constructed
interval is shortened. When using the estimated standard error, replace zα/2 with the corresponding critical
value for the t-distribution, with n − 1 degrees of freedom: tα/2,n−1. For this case, with n = 12, we obtain
t.05,11 = 1.796, t.025,11 = 2.201, and t.005,11 = 3.106. When z is replaced by the corresponding t values, the
coverage rates for the constructed intervals with the estimated standard errors reach their nominal rates:
90.58%, 95.04%, and 98.88%, respectively.

For the first random sample of the 10000 generated, we observe y = 3.6875 and s = 13.8929. The 95%
Confidence Interval for µ based on the first sample is obtained as follows.

y ± t.025,n−1
s√
n

≡ 3.6875± 2.201

(

13.8929√
12

)

≡ 3.6875± 8.8272 ≡ (−5.1397, 12.5147)

Thus, this interval does contain µ = 0.0525.

∇

Controlling the Error in Estimation with a Fixed Confidence Level

Often, researchers choose the sample size so that the margin of error will not exceed some fixed level
E with high confidence. That is, we want the difference between the sample mean to be within E of the
population mean with confidence level 1 − α. Note that this makes the width of a (1 − α)100% Confidence
Interval be 2E. This can be done in one calculation based on using the z distribution, or more conservatively,
by trivial iteration based on the t-distribution. Either way, we must have an approximation of σ based on
previous research or a pilot study.

z : Ez = zα/2
σ√
n

⇒ n =

(

zα/2σ

Ez

)2

t : Smallest n such that Et ≤ tα/2,n−1
σ√
n

Example 4.2: Estimating Population Mean Team Point Prediction Error

Suppose we want to estimate the population mean of the WNBA point prediction errors within E = 2
points with 95% confidence. We treat the standard deviation as known, σ = 10.1062. The calculation for
the sample size based on the z-distribution is given below, followed by R commands that iteratively solve
for n based on the t-distribution.

z : z.025 = 1.96 n =

(

1.96(10.1062)

2

)2

= 98.09 ≈ 99

R Commands and Output
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## Commands

E <- 2.0

sigma <- 10.1062

alpha <- 0.05

n <- 1

E.t <- E+1

# Keep increasing $n$ until E.t < E

while (E.t >= E) {

n <- n+1

E.t <- qt(1-alpha/2,n-1)*sigma/sqrt(n)

}

cbind(n, E.t)

## Output

> cbind(n, E.t)

n E.t

[1,] 101 1.995091

Since n was needed to be so large, z.025 and t.025,n−1 are very close, and both methods give virtually
the same n (99 and 101, respectively).

∇

4.1.2 Hypothesis Testing

In hypothesis testing, a sample of data is used to determine whether a population mean is equal to some
pre-specified level µ0. It is rare, except in some situations to test whether the mean is some specific value
based on historical level, or government or corporate specified level to have a null value to test. These tests
are more common when comparing two or more populations or treatments and determining whether their
means are equal. The elements of a hypothesis test are given below.

Null Hypothesis (H0) Statement regarding a parameter that is to be tested. Always includes an equality,
and the test is conducted assuming its truth.

Alternative (Research) Hypothesis (HA) Statement that contradicts the null hypothesis. Includes
“greater than” (>), “less than” (<),or “not equal too” (6=)]

Test Statistic (T.S.) A statistic measuring the discrepancy between the sample statistic and the parameter
value under the null hypothesis (where the equality holds).

Rejection Region (R.R.) Values of the Test Statistic for which the Null Hypothesis is rejected. Depends
on the significance level of the test.

P -value Probability under the null hypothesis (at the equality) of observing a Test Statistic as extreme or
more extreme than the observed Test Statistic. Also known as the observed significance level.

Type I Error Rejecting the Null Hypothesis when in fact it is true. The Rejection Region is chosen so
that this has a particular small probability (typically α = P (Type I Error) is the significance level
and is often set at 0.05).
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Type II Error Failing to reject the Null Hypothesis when it is false. Depends on the true value of the
parameter. Sample size is often selected so that it has a particular small probability for an important
difference. β = P (Type II Error).

Power The probability the Null Hypothesis is rejected. When H0 is true the power is π = α, when HA is
true, it is π = 1 − β.

The testing procedure is based on the sampling distribution of Y being approximately normal with mean
µ0 under the null hypothesis. Also, when the data are normal the difference between the sample mean and
µ0 divided by its estimated standard error is distributed as t with n − 1 degrees of freedom.

Y
·∼ N

(

µ0,
σ2

n

)

Y − µ0

s/
√

n
∼ tn−1

When the absolute value of the t-statistic is large, there is evidence against the null hypothesis. Once a
sample is taken (observed), and the sample mean y and sample standard deviation s are observed, the test
is conducted as follows for 2-tailed, upper tailed, and lower tailed alternatives.

2-tailed: H0 : µ = µ0 HA : µ 6= µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: |tobs| ≥ tα/2,n−1 P = 2P (tn−1 ≥ |tobs|)

Upper tailed: H0 : µ ≤ µ0 HA : µ > µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≥ tα,n−1 P = P (tn−1 ≥ tobs)

Lower tailed: H0 : µ ≥ µ0 HA : µ < µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≤ −tα,n−1 P = P (tn−1 ≤ tobs)

The form of the rejection regions are given for 2-tailed, Upper and Lower tailed tests in Figure ??. These
are based on α = 0.05, and n = 16. The vertical lines lie at t.975,15 = −t.025,15 = −2.131 and t.025,15 = 2.131
for the 2-tailed test, t.05,15 = 1.753 for the Upper tailed test, and t.95,15 = −t.05,15 = −1.753 for the Lower
tailed test.

When the Null Hypothesis is false, the test statistic is distributed as non-central t with non-centrality
parameter given below.

H0 : µ = µ0 In reality: µ = µA ∆ =
µA − µ0

σ/
√

n
t =

Y − µ0

S/
√

n

·∼ tn−1,∆

Power probabilities, which depend on whether the test is 2-tailed or 1-tailed can be obtained from
statistical software packages, such as R, but not directly in EXCEL.
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Figure 4.1: Rejection Regions for 2-tailed, Upper and Lower tailed tests, with α = 0.05 and n = 16

2-tailed tests: π = P
(

tn−1,∆ ≤ −tα/2,n−1

)

+ P
(

tn−1,∆ ≥ tα/2,n−1

)

Lower tailed tests: π = P (tn−1,∆ ≤ −tα,n−1) Upper tailed tests: π = P (tn−1,∆ ≥ tα,n−1)

As it is rare to use hypothesis testing regarding a single mean (except in the case where data are paired
differences within individuals), we will demonstrate the procedure based on the WNBA team point prediction
errors (which are paired differences).

Example 4.3: WNBA Team Point Prediction Errors

For the WNBA team point prediction errors, the population mean was µ = 0.0524 points per game
with standard deviation of σ = 10.1062. Note that when conducting the tests in the repeated samples, we
will use the sample standard deviation s, not the population standard deviation σ = 10.1062 in the tests
below. We will demonstrate hypothesis testing regarding a single mean by first testing H0 : µ = 0.0525
versus HA : µ 6= 0.0525, based on random samples of n = 40. Since the null hypothesis is true, if the test
is conducted with a Type I Error rate of α = 0.05, the test should reject the null in approximately 5% of
samples. The distribution of the test statistic is t with n− 1 = 39 degrees of freedom. Further, the P -values
should approximate a Uniform distribution between 0 and 1. We find that 486 (.0486) of the 10000 samples
reject the null hypothesis, in agreement with what is to be expected. A histogram of the observed test
statistics, along with the t-density, and the P -values and the the Uniform density is given in Figure ??. The
two vertical bars on the t-statistic plot are at ±t.025,39 = ±2.023.

Next we consider cases where the null hypothesis is not true. We consider H01 : µ = 0 versus HA1 : µ 6= 0
and H02 : µ = 2.0 versus HA2 : µ 6= 2.0. Since the null value for H01 is closer to the true value µA = 0.0524
than the null value for H02, we will expect that we reject H01 less often for tests based on the same sample
size. That is, the power is higher for H02 than H01. The non-centrality parameters and the corresponding
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Figure 4.2: t-statistics and P -values for testing H0 : µ = 0.0524

power values are given below, based on samples of n = 40. Note that µ01 = 0 is only 0.0328 standard errors
from µ = 0.0524, so the power is only slightly larger than α = 0.05.

∆1 =
0.0524− 0.0

10.1062/
√

40
= 0.0328 π1 = .0501 ∆2 =

0.0524− 2.0

1.058/
√

40
= −1.2188 π2 = .2212

Based on 10000 random samples from the WNBA team point prediction errors, 4.93% rejected H0 : µ = 0,
and for another set of 10000 random samples, 22.79% rejected H0 : µ = 2.0. The histogram of the test
statistics and the non-central t-distribution are given in Figure ?? for testing H0 : µ = 2.

∇

Choosing Sample Size for Fixed Power for an Alternative

Once an important difference µA−µ0 is determined, and an estimate of σ is obtained, the functions involving
the non-central t-distribution can be used iteratively to find the n that makes the power large enough. The
algorithm goes as follows for 2-tailed tests.

1. Choose an important difference µA − µ0 and appropriate σ. Alternatively, the difference can be in
units of σ: (µA − µ0)/σ.

2. Start with a small value for n, and compute the critical values for the t-test: CVLO = −tα/2,n−1,
CVHI = tα/2,n−1.

3. Compute ∆ = (µ0 − µA)/ (σ/
√

n) =
√

n
(

µ0−µA

σ

)

.



4.1. INFERENCE CONCERNING A POPULATION MEAN 95

Figure 4.3: t-statistics and non-central t-distribution for testing H0 : µ = 2.0

4. Obtain the probability the test statistic falls in the Rejection Region, based on the non-central t-
distribution, with n−1 degrees of freedom, and non-centrality parameter ∆: Power = pt(CVLO,n−1,∆)
+ (1-pt(CVHI ,n − 1,∆))

5. Continue increasing n until Power exceeds some specified value (typically 0.80 or higher).

Example 4.4: WNBA Team Point Prediction Errors

Suppose we would like to be able to detect a difference between µA and µ0 of 1.25 points with power of
π = 0.8 when the test is conducted at α = 0.05. In this case, recall σ = 10.1062. Start with n = 3.

t.025,3−1 = 4.303 ∆ =
1.25

10.1062/
√

3
=

√
3

1.25

10.1062
= 0.214

π = P (t3−1,0.214 ≤ −4.303) + P (t3−1,0.0.214 ≥ 4.303) = .0177 + .0344 = .0521

Keep increasing n, which affects the critical t-values (making them smaller in absolute value) and in-
creasing ∆, thus increasing the power of the test, until π ≥ 0.80. It ends up that we would need a sample of
n = 515 to meet the power requirement. The target difference is very small (1.25) relative to the standard
deviation (10.1062) which is why such a large sample would be needed. A plot of the central and non-central
t-distributions for n=25, 100, 300, and 550 is given in Figure ??. The vertical bars give the critical values
for the α = 0.05 level test.

R Commands and Output

## Commands

alpha <- 0.05
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Figure 4.4: Central and non-Central t-distributions for n=25, 100, 300, 550, µ0−µA = 1.25, and σ = 10.1062

power.target <- 0.80

sigma <- sd(teamPts.dev)

n <- 3

mu_diff <- 1.25

Delta <- sqrt(n) * mu_diff / sigma

CV_LO <- qt(alpha/2,n-1)

CV_HI <- qt(1-alpha/2,n-1)

(power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta)))

while (power <= power.target) {

n <- n+1

Delta <- mu_diff/(sigma/sqrt(n))

CV_LO <- qt(alpha/2,n-1)

CV_HI <- qt(1-alpha/2,n-1)

power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta))

}

cbind(n, power)

win.graph(height=5.5, width=7.0)

par(mfrow=c(2,2))

t <- seq(-6,6,0.01)

mu_diff <- 0.25

sigma <- 1.058

for (n in c(25, 100, 300, 550)) {

Delta <- mu_diff/(sigma/sqrt(n))

plot(t,dt(t,n-1),type="l",main=paste("Central and Non-Central t, n=",n))

lines(t,dt(t,n-1,Delta),lty=2)

abline(v=qt(alpha/2,n-1))

abline(v=qt(1-alpha/2,n-1))

}

## Output

> (power <- pt(CV_LO,n-1,Delta) + (1-pt(CV_HI,n-1,Delta)))

[1] 0.05212313

> cbind(n, power)
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n power

[1,] 515 0.8000167

∇

4.2 Inferences Concerning the Population Median

The population median represents the 50th percentile of the distribution. For each sampled observation,
there is a 0.5 probability that it is larger (or smaller) than the median. The number of observations of a
random sample of size n that are above (or below) the median is binomial with n trials, and probability
of success π = 0.5. Let Bα/2,n be the smallest number such that P

(

Y ≤ Bα/2,n|Y ∼ Bin(n, 0.5)
)

≤ α/2.
Then the probability that the number of sample observations falling above or below the median will lie in
the range

(

Lα/2 = Bα/2,n + 1, Uα/2 = n − Bα/2,n

)

will be greater than or equal to 1 − α. This leads to a

(1 − α)100% Confidence Interval for the population median to be the range encompassed by the (Lα/2)
th

ordered observation to the U th
α/2 ordered observation.

A large-sample approximation based on the normal distribution involves taking the range encompassed by
the observations within ranks (n/2)±√

n. This is a result of the standard error of Y being
√

n(0.5)(1 − 0.5),
and using mean plus/minus 2 standard errors for approximate 95% confidence.

Example 4.5: NFL Total Points Over/Under Differential

For the NFL regular seasons in 2010-2019, there were a total of 5120 games. We compute the difference
between the actual total points scored and the over/under betting line. Note the following summary statistics
for the actual total points and the over/under betting lines. Note that the medians (44.0 vs 44.5) and means
(45.29 vs 44.87) are very similar, but the actual scores have much more variation, with standard deviations
(13.93 vs 4.25), and the correlation is only 0.2952. It should be noted that the mean difference is equal to
difference of the means (45.29-44.87=0.42), but the median difference is not necessarily equal to difference
in the medians. In fact, the median difference for the 5120 games is 0.0.

> summary(teamPts+oppPts); sd(teamPts+oppPts)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.00 36.00 44.00 45.29 54.00 105.00

[1] 13.92679

> summary(OU); sd(OU)

Min. 1st Qu. Median Mean 3rd Qu. Max.

33.00 42.00 44.50 44.87 47.50 63.50

[1] 4.245796

> cor(teamPts+oppPts, OU)

[1] 0.2951634

> totPts.dev <- teamPts + oppPts - OU

> summary(totPts.dev)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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Actual Total Points − Over/Under Betting Line
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Figure 4.5: Total points and Over/Under differences - NFL 2010-2019

-39.5000 -9.0000 0.0000 0.4203 9.0000 49.5000

> sd(totPts.dev)

[1] 13.30699

A histogram of the differences is given in Figure ??. The thick vertical line is the population median.

We consider samples of n = 20. For the Bin(20, 0.5) distribution, we have the following cumulative
probabilities.

P (Y ≤ 4) = .0059 P (Y ≤ 5) = .0207 P (Y ≤ 6) = .0577

⇒ Bα/2,n = 5 Lα/2 = 5 + 1 = 6 Uα/2 = 20 − 5 = 15

Thus, once we order the the 20 sampled games, we would take the range encompassed by the 6th through
the 15th games.

The following random sample (ordered) was obtained in R.

> (totPts.dev.sample.order <- sort(totPts.dev.sample)) ## Sample values sorted

[1] -23.0 -17.0 -15.5 -12.0 -11.0 -11.0 -8.5 -8.0 -7.0 -5.5 -3.0 -3.0

[13] -2.0 0.0 1.5 5.0 5.5 15.5 16.5 17.5

> cbind(totPts.dev.sample.order[6],

+ totPts.dev.sample.order[15]) ## 6th and 15th selected

[,1] [,2]

[1,] -11 1.5

For this sample, we obtain the 95% Confidence Interval: (-11, 1.5), which does contain the population
median (0.0). We now obtain 10000 random samples of size n = 20, and count the number that contain 0.0.



4.2. INFERENCES CONCERNING THE POPULATION MEDIAN 99

Note that due to the “discreteness” of the distribution, α = 2(.0207) = .0414, so we expect slightly more
than 95% of the intervals to contain 0.0. Based on the 10000 random samples, 9645 (96.45%) contain the
population mean.

Had we used the large-sample approximation here, which is questionable, with n = 20, we would have
n/2 = 10, and

√
n = 4.47, and L.025 ≈ 10 − 4.47 = 5.53 = 5 and U.025 ≈ 10 + 4.47 = 15. We would still be

selecting the 6th and 15th ordered values.

R Commands and Output

## Commands

pbinom(0:20,20,0.5)

totPts.dev <- teamPts + oppPts - OU

set.seed(4321)

N <- length(totPts.dev)

sample1 <- sample(1:N, 20, replace=FALSE)

totPts.dev.sample <- totPts.dev[sample1]

(totPts.dev.sample.order <- sort(totPts.dev.sample)) ## Sample values sorted

cbind(totPts.dev.sample.order[6],

totPts.dev.sample.order[15]) ## 6th and 15th selected

set.seed(7654)

num.sim <- 10000

num.samp <- 20

med.ci <- matrix(rep(0, 2*num.sim),ncol=2)

for (i in 1:num.sim) {

sample <- sample(1:N, 20, replace=FALSE)

med.ci[i,1] <- sort(totPts.dev[sample])[6]

med.ci[i,2] <- sort(totPts.dev[sample])[15]

}

med.pop <- median(totPts.dev)

sum(med.ci[,1] <= med.pop & med.ci[,2] >= med.pop) / num.sim

## Output

> pbinom(0:20,20,0.5)

[1] 9.536743e-07 2.002716e-05 2.012253e-04 1.288414e-03 5.908966e-03

[6] 2.069473e-02 5.765915e-02 1.315880e-01 2.517223e-01 4.119015e-01

[11] 5.880985e-01 7.482777e-01 8.684120e-01 9.423409e-01 9.793053e-01

[16] 9.940910e-01 9.987116e-01 9.997988e-01 9.999800e-01 9.999990e-01

[21] 1.000000e+00

> (totPts.dev.sample.order <- sort(totPts.dev.sample)) ## Sample values sorted

[1] -23.0 -17.0 -15.5 -12.0 -11.0 -11.0 -8.5 -8.0 -7.0 -5.5 -3.0 -3.0

[13] -2.0 0.0 1.5 5.0 5.5 15.5 16.5 17.5

> cbind(totPts.dev.sample.order[6],

+ totPts.dev.sample.order[15]) ## 6th and 15th selected

[,1] [,2]

[1,] -11 1.5

> med.pop <- median(totPts.dev)

> sum(med.ci[,1] <= med.pop & med.ci[,2] >= med.pop) / num.sim

[1] 0.9611



100 CHAPTER 4. INFERENCES CONCERNING A SINGLE POPULATION

∇

For a hypothesis test of whether the population median is some particular value (as with the mean, this
is rare except in paired data experiments), we can use the sign test. The test makes use of the count of
the number of observations exceeding the null value of the median being a binomial random variable with
n trials, and probability of success π = 0.5 under the null hypothesis H0 : M = M0. There can be 2-tailed
or Upper/Lower tailed alternatives. In each case, let Bobs be the count of the number of observations above
M0. Any observations that are exactly equal to the median are removed and the sample size is adjusted to
the number of cases strictly above or below the median.

2-tailed tests: H0 : M = M0 HA : M 6= M0 T.S. : Bobs R.R. : Bobs ≤ Bα/2,n or Bobs ≥ n−Bα/2,n

Upper tailed tests: H0 : M ≤ M0 HA : M > M0 T.S. : Bobs R.R. : Bobs ≥ n − Bα,n

Lower tailed tests: H0 : M ≥ M0 HA : M < M0 T.S. : Bobs R.R. : Bobs ≤ Bα,n

For large-samples, the approximate normality of the Binomial can be used, and under the null hypothesis,
the number of observations exceeding M0 is approximately normal with mean n/2 and standard deviation
√

n(0.5)(1− 0.5) = 0.5
√

n. Then we can obtain a z-statistic for the tests.

T.S. : zobs =
Bobs − (n/2)

0.5
√

n
R.R.(2) : |zobs| ≥ zα/2 R.R.(U) : zobs ≥ zα/2 R.R.(L) : zobs ≤ z1−α/2 = −zα/2

Example 4.6: NFL Total Points Over/Under Differential

Suppose we wanted to test whether the population median total point differential, M , differs from
M0 = 0 points based on a sample of games. In this instance, the null hypothesis is true. Based on the
sample of n = 20 games obtained previously, we have the following point differential values.

> (totPts.dev.sample.order <- sort(totPts.dev.sample)) ## Sample values sorted

[1] -23.0 -17.0 -15.5 -12.0 -11.0 -11.0 -8.5 -8.0 -7.0 -5.5 -3.0 -3.0

[13] -2.0 0.0 1.5 5.0 5.5 15.5 16.5 17.5

Note that for one game, the point differential was 0, with the actual total points being equal to the
over/under betting line. Now, we have n = 19, and for the Binomial distribution, with n = 19 and π = 0.5,
we obtain the following (partial) cumulative probability distribution. For a 2-tailed test with α = 0.05, we
reject the null hypothesis if Bobs ≤ 4 or if Bobs ≥ 15, with actual α level of .0096+(1− .9904) = .0192. If we
chose to extend the rejection region to include 5 and 14, the actual α level would be .0318+(1−.9682) = .0636.
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y P(Y<=y)

4 0.0096

5 0.0318

6 0.0835

...

12 0.9165

13 0.9682

14 0.9904

The test statistic is Bobs = 6. Note that the 2-sided P -value is P = 2P (Y ≤ 6|Y ∼ Bin(19, 0.5)) =
2(.0835) = .1670.

The large-sample z-statistic would be computed as follows.

zobs =
6 − (19/2)

0.5
√

19
=

−3.5

2.179
= −1.606 2-tailed P -value: P = 2P (Z ≥ 1.606) = 2(.0541) = .1082

The reason for the discrepancy between the P -values is the discreteness of the binomial and the continuity
of the normal approximation. Some authors suggest the following continuity correction. The adding of the
0.5 is to get all the area under 6 for binomial, since 6 is below its expected value. This results in virtually
the same P -value as the exact Binomial. As n gets large, the correction makes little difference.

zobs =
6 + 0.5− (19/2)

0.5
√

19
=

−3.0

2.179
= −1.376 2-tailed P -value: P = 2P (Z ≥ 1.376) = 2(.0843) = .1686

4.3 Inference Concerning a Population Proportion

A single outcome may have two levels, and counts are modeled by the Binomial distribution, or it can have
k > 2 levels and counts are modeled by the Multinomial distribution. Note that the Binomial is a special
case of the Multinomial, however there are many methods that apply strictly to binary outcomes.

4.3.1 Variables with Two Possible Outcomes

In the case of a binary variable, the goal is typically to estimate the proportion π of “successes” in the
population. The sample proportion π̂ = Y/n from a binomial experiment with n trials and Y successes
has a sampling distribution with mean π and standard error

√

π(1 − π)/n. In large samples, the sampling
distribution is approximately normal. One commonly used rule of thumb is that nπ ≥ 5 and n(1 − π) ≥ 5.
When estimating π, the estimated standard error must be used, where π is replaced with π̂. Note that the
standard error is maximized for a given n when π = 1 − π = 0.5, so a conservative case uses π = 0.5 in the
standard error. The large-sample (1 − α)100% Confidence Interval for π and the sample size needed for a
given margin of error, E, are given below.
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(1 − α)100%CI for π : π̂ ± zα/2

√

π̂ (1 − π̂)

n
E = zα/2

√

π (1 − π)

n
⇒ n =

z2
α/2π(1 − π)

E2

In small samples, it has been seen that making an adjustment to the success count and the sample size
performs well. This is referred to as the Wilson-Agresti-Coull method (Agresti and Coull (1998), [?]).
Let y be the observed number of successes in the n trials, then the Confidence Interval is obtained as follows.

ỹ = y + 0.5z2
α/2 ñ = n + z2

α/2 π̃ =
ỹ

ñ
(1 − α)100%CI for π : π̃ ± zα/2

√

π̃ (1 − π̃)

ñ

For α = 0.05, zα/2 = 1.96 ≈ 2 which leads to a simpler way of adding 2 successes and 2 failures to the
sample data, and ỹ = y + 2 and ñ = n + 4.

Exact (1−α)100% Confidence Intervals can be obtained by determining the range of values π for which
P (Y ≤ y|Y ∼ Bin(n, π)) ≥ α/2 and P (Y ≥ y|Y ∼ Bin(n, π)) ≥ α/2. For instance, if we have n = 50
trials (say games) and have y = 22 successes (say the favored team covers the spread), we can compute
P (Y ≤ 22|Y ∼ Bin(n, π)) and P (Y ≥ 22|Y ∼ Bin(n, π)) = 1 − P (Y ≤ 21|Y ∼ Bin(n, π)) for a range of pi
values (say .01 to .99 by .01). For these values we obtain in R the following values for n = 50 and y = 22.

π = 0.29 : P (Y ≤ 22) = .9920 P (Y ≥ 22) = .0170 π = 0.30 : P (Y ≤ 22) = .9877 P (Y ≥ 22) = .0251

π = 0.58 : P (Y ≤ 22) = .0320 P (Y ≥ 22) = .9836 π = 0.59 : P (Y ≤ 22) = .0229 P (Y ≥ 22) = .9887

So for 0.30 and 0.58, both of the “tail probabilities” exceed α/2 = 0.05/2 = .0250, and for 0.29 and 0.59,
one of the probabilities is below .025. Using the prop.test function in R, we obtain the following results,
including a P -value for a hypothesis test of whether π = 0.5 (described below). Note that R uses a finer grid
for the possible π values, and gives a 95% CI for π as (0.3027, 0.5865).

n <- 50

y <- 22

pi_0 <- 0.5

prop.test(y, n, pi_0)

## Output

> prop.test(y, n, pi_0)

1-sample proportions test with continuity correction

data: y out of n, null probability pi_0

X-squared = 0.5, df = 1, p-value = 0.4795

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3026605 0.5865007
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sample estimates:

p

0.44

A Large-sample (Wald) test of whether π = π0 can also be conducted. For instance, a test may be
whether a majority of people favor a political candidate or referendum, or whether a defective rate is below
some tolerance level. Note that in the z-statistic, we use the standard error of π̂ evaluated at the null value
π0, and not the estimated standard error that was used for the Confidence Interval.

ŜE {π̂} =

√

π̂ (1 − π̂)

n
SE {π̂}H0

=

√

π0 (1 − π0)

n

2-tailed test: H0 : π = π0 HA : π 6= π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Upper-tailed test: H0 : π ≤ π0 HA : π > π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower-tailed test: H0 : π ≥ π0 HA : π < π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≤ −zα P = P (Z ≤ zobs)

An alternative large sample test that can be conducted is a likelihood ratio test. This was used in
the football betting literature by Even and Noble (1992) [?] to test whether the probability that the actual
point spread for a game exceeds the Vegas Line is equal to 1/2. This paper was discussed further by Gander,
Zuber, and Russo (1993) [?].

The likelihood ratio test involves evaluating the log of the likelihood function of the parameter π at
the value of π under the null hypothesis (π0) and at the value that maximizes the likelihood (π̂), where the
likelihood is the probability function for the random variable Y (the number of successes in n trials) as a
function of π and the observed number of successes y.

L(π|y) = P (Y = y|n, π) = p(y) =

(

n

y

)

πy(1 − π)n−y

The estimator π̂ can be derived by taking the derivative of L(π|y) with respect to π, setting it equal
to zero, and solving for π̂. However it is easier in the case of the Binomial distribution (and many others)
to work with l = log(L) in obtaining the Maximum Likelihood Estimator (MLE). In the case of the
Binomial distribution, we have the following results.
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l(π|y) = log(L(π|y)) = log

((

n

y

))

+ y log(π) + (n − y) log(1 − π) ⇒ dl

dπ
=

y

π
− n − y

1 − π

Setting the derivative to zero leads to the MLE for π, which we have used directly before in the large-
sample confidence intervals and Wald test.

dl

dπ
=

y

π
− n − y

1 − π
= 0 ⇒ y

π̂
− n − y

1 − π̂
⇒ π̂ =

y

n

The likelihood ratio test takes the difference between the log likelihood evaluated at π0 and evaluated
at π̂ and multiplies the difference by −2. For large samples, under the null hypothesis the statistic is
approximately Chi-square with 1 degree of freedom. We use the natural logarithm when we numerically take
logs (the default in R).

H0 : π = π0 HA : π 6= π0 TS: X2
LR = −2[l(π0) − l(π̂)] RR: X2

LR ≥ χ2
α,1 P = P (χ2

1 ≥ X2
LR)

An exact test can be conducted by use of the binomial distribution and statistical packages by obtaining
the exact probability that the count could be more extreme than the observed count y under the null
hypothesis. See the examples below.

Example 4.7: NBA Point Spread and Over/Under Outcomes

For the 2006/7-2018/9 NBA regular seasons games, the home team covered the spread in 7626 games,
failed to cover the spread in 7855 games, and “pushed” the spread in 268 games. We treat these games as a
sample of the infinite population of games that could be played among NBA teams, and eliminate the 268
“pushes.” The test is whether the true underlying probability that the home team covers is 0.50. Otherwise
bettors could have an advantage over bookmakers. H0 : π = 0.50 versus HA : π 6= 0.50. We will conduct the
large-sample Wald Z-test, the likelihood ratio test, and obtain the exact Binomial P -value.

y = 7626 n = 7626 + 7855 = 15481 π̂ =
7626

15481
= 0.4926

SE {π̂}H0
=

√

π0 (1 − π0)

n
=

√

0.5(1− 0.5)

15481
= 0.0040

zobs =
0.4926− 0.5

0.0040
= −1.85 P = 2P (Z ≥ 1.85) = 2(0.03216) = 0.0643

l(π) = log

((

n

y

))

+ y log(π) + (n − y) log(1 − π) ⇒

l(π0) = log

((

15481

7626

))

+ 7626 log(0.5) + (7855) log(1 − 0.5) = c + (−5285.94) + (−5444.67) = c − 10730.61
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l(π̂) = c + 7626 log(0.4926) + (7855) log(1 − 0.4926) = c + (−5399.65) + (−5329.27) = c − 10728.92

This leads to the likelihood ratio test given below.

TS: χ2
LR = −2[(c−10730.61)−(c−10728.92)] = −2(−1.69) = 3.38 RR: χ2

LR ≥ χ2
.05,1 = 3.84 P = P (χ2

1 ≥ 3.38) = .0660

There is no evidence of a “bias” in terms of the home team covering the spread (at the α = 0.05
significance level). Note that this is a tremendous “sample,” and it would be quite easy to detect even a
very small difference for H0 : π = 0.50. An exact test is given here. Under the null hypothesis, the expected
value of Y is nπ0 = 15481(0.5) = 7740.5. The observed y is 7626, which is 114.5 below its expected value.
Had y been 7855, it would have been 114.5 above its expected value. The exact 2-tailed P -value is obtained
as follows.

P = P (Y ≤ 7626|Y ∼ Bin(15481, 0.5)) + P (Y ≥ 7855|Y ∼ Bin(15481, 0.5)) = 0.03344 + 0.03344 = .0669

A similar test can be done for the “Over/Under” bet. For the Over/Under bet for those seasons, Under
won 7838 times, Over won 7716 times, and there were 195 Pushes. Again, we eliminate the Pushes, and test
H0 : π = 0.50 versus HA : π 6= 0.50, where π is the probability Over wins.

y = 7716 n = 7838+7716 = 15554 π̂ =
7716

15554
= 0.4961 SE {π̂}H0

=

√

π0 (1 − π0)

n
=

√

0.5(1− 0.5)

15554
= 0.0040

zobs =
0.4961− 0.5

0.0040
= −0.975 P = 2P (Z ≥ 0.975) = 2(.1648) = 0.3296

l(π0) = c − 10781.21 l(π̂) = c − 10780.73 TS: χ2
LR = −2(−0.48) = 0.96 P = .3272

Again there is no evidence of a bias. An exact P -value is obtained below.

P = P (Y ≤ 7716|Y ∼ Bin(15554, 0.5)) + P (Y ≥ 7838|Y ∼ Bin(15554, 0.5)) = 0.16597 + 0.16597 = .3319

R Commands and Output

### Commands

nbaou <- read.csv("http://www.stat.ufl.edu/~winner/data/nbaodds201415.csv")

attach(nbaou); names(nbaou)

#### Point Spread Analysis

table(TeamCov)

TeamCov01 <- subset(TeamCov, TeamCov != 0)

table(TeamCov01)
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(Y.Cov <- sum(TeamCov01[TeamCov01 == 1]))

(n.Cov <- length(TeamCov01))

pi.H0 <- 0.50

(pihat.Cov <- Y.Cov / n.Cov)

(se.pihat.Cov.CI <- sqrt(pihat.Cov * (1-pihat.Cov) / n.Cov))

(se.pihat.Cov.H0 <- sqrt(pi.H0 * (1-pi.H0) / n.Cov))

(Z.Cov.H0 <- (pihat.Cov - pi.H0) / se.pihat.Cov.H0)

(p.Cov.H0 <- 2*(1-pnorm(abs(Z.Cov.H0),0,1)))

(pihat.Cov.CI <- pihat.Cov + c(-1.96, 1.96) * se.pihat.Cov.CI)

### Exact Tests

binom.test(Y.Cov,n.Cov,p=0.5,alternative="two.sided")

### Output

> table(TeamCov)

TeamCov

-1 0 1

615 27 588

> TeamCov01 <- subset(TeamCov, TeamCov != 0)

> table(TeamCov01)

TeamCov01

-1 1

615 588

> (Y.Cov <- sum(TeamCov01[TeamCov01 == 1]))

[1] 588

> (n.Cov <- length(TeamCov01))

[1] 1203

> (pihat.Cov <- Y.Cov / n.Cov)

[1] 0.4887781

> (se.pihat.Cov.CI <- sqrt(pihat.Cov * (1-pihat.Cov) / n.Cov))

[1] 0.01441212

> (se.pihat.Cov.H0 <- sqrt(pi.H0 * (1-pi.H0) / n.Cov))

[1] 0.01441575

> (Z.Cov.H0 <- (pihat.Cov - pi.H0) / se.pihat.Cov.H0)

[1] -0.7784504

> (p.Cov.H0 <- 2*(1-pnorm(abs(Z.Cov.H0),0,1)))

[1] 0.4363035

> (pihat.Cov.CI <- pihat.Cov + c(-1.96, 1.96) * se.pihat.Cov.CI)

[1] 0.4605303 0.5170258

> binom.test(Y.Cov,n.Cov,p=0.5,alternative="two.sided")

Exact binomial test

data: Y.Cov and n.Cov

number of successes = 588, number of trials = 1203, p-value = 0.4535

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4601721 0.5174390

sample estimates:

probability of success

0.4887781

∇
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4.3.2 Variables with k > 2 Possible Outcomes

A Multinomial experiment is an extension of the Binomial experiment with the caveat that each of n trials
can end in one of k possible outcomes or categories. The probability of outcome i is πi, and the random
count of the number of trials falling in category i is Yi. The following restrictions must hold.

π1 + · · ·+ πk = 1 Y1 + · · ·+ Yk = n πi ≥ 0 yi ≥ 0

Note that for the Binomial case, we have previously labeled Y1 = Y and Y2 = n − Y where category 1
represents “Success” and category 2 represents “Failure.” The probability of the experiment resulting in the
observed counts (y1, . . . , yk) is as follows.

P (Y1 = y1, . . . , Yk = yk) = p (y1, . . . , yk) where:

p (y1, . . . , yk) =
n!

y1! · · ·yk!
πy1

1 · · ·πyk

k π1 + · · ·+ πk = 1 y1 + · · ·+ yk = n πi ≥ 0 yi ≥ 0

A test can be conducted for H0 : π1 = π10, . . . , πk = πk0, for some specified set of k probabilities
π10, . . . , πk0 that sum to 1. Again this simply extends the binomial test of H0 : π = π0. Once the observed
counts y1, . . . , yk are obtained, the test is conducted as follows.

Ei = nπi0 TS : X2
obs =

k
∑

i=1

(yi − Ei)
2

Ei
RR : X2

obs ≥ χ2
α,k−1 P = P

(

χ2
k−1 ≥ X2

obs

)

Example 4.8: Game Outcomes of EPL Home Favorites 2000/01-2018/19

For each English Premier League game for the seasons beginning in 2000-2018, based on odds converted
to probabilities using basic normalization, we consider the games, where the home team’s (subjective) prob-
ability of winning is at least 1/2. We are now treating these games as a sample of all possible games that
could have been played among EPL teams during these seasons. There are probabilities for home win, away
win, and draw. Another way of declaring that the home team is favored is if its probability was the highest
of the three. Thus, we are choosing a higher threshold for the home team to be considered the favorite here.
We consider the following (somewhat arbitrary) probabilities for the game outcomes (Home team Wins (1)
is 1/2, Draws (2) is 1/3, Loses (3) 1/6). Note that these probabilities were “conjured” before looking at the
data!

The null hypothesis and observed and expected counts are given below, where the categories with
respect to the home team are (Win=1, Draw=2, Lose=3). There were n = 2429 games where the home
team’s probability of winning was at least 1/2.

H0 : π1 = 1/2 = 3/6 π2 = 1/3 = 2/6 π3 = 1/6

E1 = 2429(1/2) = 1214.5 E2 = 2429(1/3) = 809.7 E3 = 2429(1/6) = 404.8 y1 = 1635 y2 = 502 y3 = 292
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Category (i) πi0 Expected # Observed # X2

Win (1) 3/6 1214.5 1635 145.591
Draw (2) 2/6 809.7 502 116.931
Lose (3) 1/6 404.8 292 31.432

Total 1 2429 2429 293.41

Table 4.2: Numbers of Wins/Draws/Losses for EPL home favorites 2000-2018 seasons

The test statistic is X2
obs = 293.95 with k − 1 = 3 − 1 = 2 degrees of freedom (based on R commands

given below). The critical Chi-square value is χ2
.05,2 = 5.991, and the P -value for the test is .0000. There

is strong evidence that the hypothesized distribution is not the true distribution. Calculations are shown in
Table ?? (using hand calculator and different rounding). The observed proportions are given below.

π̂1 =
1635

2429
= 0.673 π̂2 =

502

2429
= 0.207 π̂3 =

292

2429
= 0.120

R Commands and Output

### Commands

epl <- read.csv("http://www.stat.ufl.edu/~winner/data/EPL_2000_2018a.csv")

attach(epl); names(epl)

## Determine if focal team has prob of win >= 1/2 (1 if Yes, 0 if No)

FAVtm <- ifelse(BNtm >= 0.5,1,0)

## Determine game outcome for focal team (1=Win,2=Draw,3=Lose)

OTCMtm <- ifelse(FTGtm>FTGop,1,ifelse(FTGtm==FTGop,2,3))

## Game outcomes for Home Favorites and number of such games

table(OTCMtm[tmHome==1 & FAVtm ==1])

sum(table(OTCMtm[tmHome==1 & FAVtm ==1]))

## Chi-square test for the hypothesis and data

chisq.test(c(1635,502,292),p=c(1/2,1/3,1/6))

### Output

> table(OTCMtm[tmHome==1 & FAVtm ==1])

1 2 3

1635 502 292

> sum(table(OTCMtm[tmHome==1 & FAVtm ==1]))

[1] 2429

> chisq.test(c(1635,502,292),p=c(1/2,1/3,1/6))

Chi-squared test for given probabilities

data: c(1635, 502, 292)

X-squared = 293.95, df = 2, p-value < 2.2e-16

∇

This test is often used when testing whether data come from a particular family of probability distribu-
tions.
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y Expected Observed χ2 y Expected Observed χ2

0 68.89 102 15.92 7 1878.01 1808 2.61
1 373.36 296 16.03 8 1272.35 1324 2.10
2 1011.82 1123 12.22 9 766.24 722 2.55
3 1828.02 1538 46.01 10 415.30 411 0.04
4 2476.96 2684 17.31 11 204.63 210 0.14
5 2685.03 2590 3.36 12 92.42 74 3.67
6 2425.48 2637 18.45 ≥ 13 61.49 41 6.83

Sum 15560 15560 147.24

Table 4.3: Goodness of fit test for Poisson distribution of Number of goals during regulation playing time -
NHL 2006/7-2018/9

• A family of distributions (e.g. Poisson, Negative Binomial, Normal, Gamma, Beta) is considered for
the data.

• Data are sampled and used to estimate the m parameter(s) of the distribution.

• The data are placed in k mutually exclusive and exhaustive ranges of values.

• The observed counts ni and the expected counts under the hypothesized distribution are obtained
(expected counts should be ≥ 5)

• The chi-square statistic is computed and has k − 1 − m degrees of freedom under the null hypothesis
that the distribution is appropriate for the data.

Example 4.9: NHL Total Goals in Regulation Time

Referring back to Exercise 3.10, we considered total goals in regulation time for the 15560 games played
during the 2006/07-2018/19NHL seasons. The mean and variance are µY = 5.42 and σ2

Y = 5.23, respectively.
While they are not exactly the same, they are reasonably close. The probability distribution, Expected, and
Observed counts are given in Table ??. The Expected counts are obtained by multiplying the probabilities
by the total number of games (15560). The Observed and Expected Counts are similar, but not a perfect
match.

Here we conduct a goodness of fit test is described that can be used to assess the reasonability of the
Poisson approximation to the distribution. Table ?? gives the counts, and their expected counts (15560p(y))
under the Poisson distribution with λ = 5.42 for the occurrences of 0 goals, 1 goal, ..., ≥ 13 goals. We do
not include the probabilities that are given in Table ??. The test statistic is X2

obs = 147.24 with degrees of
freedom k − 1 − m = 14 − 1 − 1 = 12. The critical value for α = 0.05 is χ2

.05,12 = 21.026, and the P -value

is P
(

χ2
12 ≥ 147.24

)

= .0000. There is strong evidence that the Poisson distribution is not a good fit for the
distribution of total goals.

R Commands and Output

### Commands

nhldata <- read.csv("data/nhl20062018_opponent_ML.csv")

attach(nhldata); names(nhldata)

## Games where the focal team was home team
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nhl_home <- nhldata[home == 1,]

detach(nhldata); attach(nhl_home)

## Total Score and TS in Regulation

totScore <- teamScore + oppScore

totScoreReg <- ifelse(ot==1,totScore-1,totScore)

## Table of counts of Total Scores in Reg and mean, variance, n

(tScoreTable <- table(totScoreReg)) # freq dist of total goals in reg

(lambda <- mean(totScoreReg))

var(totScoreReg)

n.games <- length(totScoreReg)

## Poisson probs for 0-12 and 13+

pois.dist13p <- c(dpois(0:12, lambda),1-sum(dpois(0:12, lambda)))

# Observed and Expected counts for 0-12 and 13+

tScoreObs <- c(tScoreTable[1:13],n.games-sum(tScoreTable[1:13]))

tScoreExp <- n.games*pois.dist13p

# Chi-square Goodness of fit test

k <- length(tScoreObs)

m <- length(lambda)

X2.df <- k-1-m

X2.obs <- sum((tScoreObs-tScoreExp)^2/tScoreExp)

X2.05 <- qchisq(.95,X2.df)

X2.p <- 1-pchisq(X2.obs, X2.df)

X2.out <- cbind(X2.obs, X2.df, X2.05, X2.p)

colnames(X2.out) <- c("X2 stat", "DF", "X2(.05)", "P-value")

round(X2.out, 4)

### Output

> (lambda <- mean(totScoreReg))

[1] 5.415938

> round(X2.out, 4)

X2 stat DF X2(.05) P-value

[1,] 147.027 12 21.0261 0

∇

Example 4.10: Point Spread Differential - WNBA 2010-2019

In Example 3.12, the normal distribution was used to model the point spread differential with respect to
the home team for WNBA games for the 2010-2019 regular seasons. The mean of the differentials ((Home
Pts - Away Pts) - Spread) is 0.0289 points and the standard deviation is 12.0472. Again, we are treating
these data as a sample from a conceptual population of games. We will consider bins in terms of the mean
(µ = 0.03) and standard deviation (σ = 12.05).

(−∞, µ − 2.4σ], (µ− 2.4σ, µ− 2.0σ], . . . , (µ − 0.4σ, µ], (µ, µ+ 0.4σ), . . . , [µ + 2.0σ, µ + 2.4σ), [µ + 2.4σ,∞)

The range of point spread differentials is broken into the following k = 14 categories:

(∞,−28.88], (−28.88,−24.07], . . . , (24.12, 28.94], (28.94,∞).
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Range Observed Expected X2

(−∞) − (−28.88) 19 16.71478 0.3124
(−28.88) − (−24.07) 27 29.67274 0.2407
(−24.07) − (−19.25) 58 65.34824 0.8263
(−19.25) − (−14.43) 117 122.8913 0.2824
(−14.43) − (−9.61) 201 197.3461 0.0677
(−9.61) − (−4.79) 284 270.6219 0.6613
(−4.79) − 0.029 344 316.9049 2.3166

0.029 − 4.85 308 316.9049 0.2502
4.85 − 9.67 269 270.6219 0.0097
9.67 − 14.49 177 197.3461 2.0977
14.49 − 19.30 113 122.8913 0.7961
19.30 − 24.12 69 65.34824 0.2041
24.12 − 28.94 28 29.67274 0.0943
28.94 −∞ 25 16.71478 4.1068

Total 2039 2039 12.2664

Table 4.4: Goodness-of-fit test for WNBA 2010-2019 home spread point differential by a normal distribution

Table ?? gives the observed and expected counts, and computations for the chi-square goodness-of-fit test.
The degrees of freedom are 14-1-2=11, with critical chi-square value of χ2

.05,11 = 19.675 and P -value

P
(

χ2
11 ≥ 12.2664

)

= .3440. The data are consistent with a normal distribution. R commands and out-
put are given below.

R Commands

### Commands

wnba <- read.csv("data\\wnba_20102019_focal.csv")

attach(wnba); names(wnba)

wnba_home <- wnba[home == 1,]

detach(wnba); attach(wnba_home)

## teamSpDev = (Home Points - Away Points) - Home Spread

summary(teamSpDev)

(mn.hsd <- mean(teamSpDev))

(sd.hsd <- sd(teamSpDev))

## Create the bin cutoffs

z.bin <- c(seq(-2.4,2.4,0.4),10) # The 10 is to pick up > 2.4

y.bin <- mn.hsd + sd.hsd*z.bin # convert to units of y

k <- length(y.bin)

n <- length(teamSpDev)

## Obtain cumulative counts below bin cut-offs and convert to bin counts

y.obs.cum <- y.exp.cum <- rep(0,k)

for (i1 in 1:k) {

y.obs.cum[i1] <- sum(teamSpDev <= y.bin[i1])

y.exp.cum[i1] <- n * (pnorm(z.bin[i1]))

}

y.obs <- c(y.obs.cum[1], diff(y.obs.cum))

y.exp <- c(y.exp.cum[1], diff(y.exp.cum))

## Compute Chi-square statistic and obtain critical value, P-value

X2.obs.exp <- (y.obs-y.exp)^2/y.exp

X2.DF <- k-1-2
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X2.TS <- sum(X2.obs.exp)

X2.CV <- qchisq(.95,X2.DF)

X2.PV <- 1-pchisq(X2.TS,X2.DF)

## Set up and print output

table.out <- cbind(y.bin,y.obs,y.exp,X2.obs.exp)

colnames(table.out) <- c("cell top", "observed", "expected", "chi-square")

test.out <- cbind(X2.DF,X2.TS,X2.CV,X2.PV)

colnames(test.out) <- cbind("df", "Test Stat", "X2(.05,df)", "P(>TS)")

round(table.out,4)

round(test.out,4)

### Output

> round(table.out,4)

cell top observed expected chi-square

[1,] -28.8843 19 16.7148 0.3124

[2,] -24.0654 27 29.6727 0.2407

[3,] -19.2466 58 65.3482 0.8263

[4,] -14.4277 117 122.8913 0.2824

[5,] -9.6088 201 197.3461 0.0677

[6,] -4.7899 284 270.6219 0.6613

[7,] 0.0289 344 316.9049 2.3166

[8,] 4.8478 308 316.9049 0.2502

[9,] 9.6667 269 270.6219 0.0097

[10,] 14.4856 177 197.3461 2.0977

[11,] 19.3044 113 122.8913 0.7961

[12,] 24.1233 69 65.3482 0.2041

[13,] 28.9422 28 29.6727 0.0943

[14,] 120.5008 25 16.7148 4.1068

> round(test.out,4)

df Test Stat X2(.05,df) P(>TS)

[1,] 11 12.2664 19.6751 0.344

>

∇

4.4 Estimation and Testing for a Single Variance

When the data are normal (and independent), then a multiple of the sample variance follows a Chi-square
distribution with n − 1 degrees of freedom. That is, we have the following results.

Y1, ..., Yn ∼ N(µ, σ2) ⇒ (n − 1)S2

σ2
∼ χ2

n−1 ⇒ P

(

χ2
1−α/2,n−1 ≤

(n − 1)S2

σ2
≤ χ2

α/2,n−1

)

= 1 − α

This leads to a rule for a (1 − α)100% Confidence Interval for σ2 (and thus for σ), as well as a test of
whether σ2 is equal to some null value σ2

0 . Consider a Confidence Interval, then a test, where S2 is a random
variable (sample variance), and s2 is a particular value from an observed sample.
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1− α = P

(

χ2
1−α/2,n−1 ≤

(n − 1)S2

σ2
≤ χ2

α/2,n−1

)

= P

(

(n − 1)S2

χ2
1−α/2,n−1

≥ σ2 ≥ (n − 1)S2

χ2
α/2,n−1

)

⇒ (1 − α)100% Confidence Interval for σ2:

[

(n − 1)s2

χ2
α/2,n−1

,
(n − 1)s2

χ2
1−α/2,n−1

]

2-Tailed test: H0 : σ2 = σ2
0 HA : σ2 6= σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR :
{

X2
obs ≤ χ2

1−α/2,n−1

}

∪
{

X2
obs ≥ χ2

α/2,n−1

}

P = 2 min
[

P
(

χ2
n−1 ≤ X2

obs

)

, P
(

χ2
n−1 ≥ X2

obs

)]

Upper-Tail test: H0 : σ2 ≤ σ2
0 HA : σ2 > σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR : X2
obs ≥ χ2

α,n−1 P = P
(

χ2
n−1 ≥ X2

obs

)

Lower-Tail test: H0 : σ2 ≥ σ2
0 HA : σ2 < σ2

0 TS : X2
obs =

(n − 1)s2

σ2
0

RR : X2
obs ≤ χ2

1−α,n−1 P = P
(

χ2
n−1 ≤ X2

obs

)

Clearly, as in the case of a single mean, most practical situations will involve estimation rather than
testing unless there is some focal null value σ2

0 of interest. A plot of the Chi-Square distribution with 15
degrees of freedom along with χ2

.975,15 = 6.262 and χ2
.025,15 = 27.488 is given in Figure ??.

Example 4.11: NBA Home Spread Differential 2006/07-2018/19

We now consider the Home Spread Differential for the population of N = 15749 NBA regular season
games during the 2006/07-2018/19 seasons. Positive values imply the home team covered the spread, negative
values imply the away team covered, and 0 implies a push. The population mean and variance are −0.1701
and 11.83622 = 140.096, respectively. A histogram of the Home Spread Differentials is given in Figure ??
with the normal distribution superimposed.

Then 10000 random samples of size n = 16 are obtained and s2 is obtained for each sample. The 95%
Confidence Interval for σ2 is computed for each sample. A histogram of the quantity (n−1)s2/σ2 is given in
Figure ?? along with the density for the Chi-square distribution with 15 degrees of freedom. There are fewer
values under the peak and more in the tails than we would expect if Home Spread Differentials were exactly
normally distributed, however the fit still seems quite good. The first sample yielded a sample variance
of s2 = 96.0573. This leads to the following Confidence Interval computed below, and it does include the
population variance σ2 = 140.105.
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Figure 4.6: Chi-Square Distribution with 15 degrees of freedom
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Figure 4.7: Histogram of NBA Home Spread Differentials - 2006/07-2018/19 Regular Seasons
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Figure 4.8: Histogram of Scaled Variance and Chi-Square(15) Density - NBA Home Spread Differential
2006/07-2018/19

n = 16 s2 = 96.0573 χ2
.975,15 = 6.262 χ2

.025,15 = 27.488

[

15(96.0573)

27.488
,
15(96.0573)

6.262

]

≡ [52.418, 230.096]

The coverage rate of the 10000 Confidence Intervals is 93.16%, not so far from the nominal 95%. Of
the 6.84% intervals that did not include σ2, 3.54% fell entirely above 140.105 and 3.30% fell entirely below
140.105.

R Commands and Output

## Commands

nba.data <- read.csv("http://www.stat.ufl.edu/~winner/data/nba20062018.csv")

attach(nba.data); names(nba.data)

nba.home <- nba.data[home == 1,]

detach(nba.data); attach(nba.home)

## Create Home Spread Differential and summary stats (spread is coded as negative means favored)

hmSprdDiff <- teamPts-oppPts+spread

(N.HSD <- length(hmSprdDiff))

(mu.HSD <- mean(hmSprdDiff))

### Population SD (Uses N as denominator, not N-1)

(sigma.HSD <- sd(hmSprdDiff)*sqrt((N.HSD-1)/N.HSD))

summary(hmSprdDiff)

## Histogram of HSD

hsd.seq <- seq(-50,55,length=10000)

win.graph(height=5.5, width=7.0)

hist(hmSprdDiff, breaks=100, freq=FALSE, main="NBA 2006/07-2018/19",

xlab="Home Spread Differential", ylab="Density")

lines(hsd.seq,dnorm(hsd.seq,mu.HSD,sigma.HSD))

### Begin taking 10000 samples of size n=16
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num.samp <- 10000 # Number of samples

n.samp <- 16 # Number of games per sample

var.samp <- rep(0, num.samp) # Holder for sample variances

set.seed(12345)

for (i1 in 1:num.samp) {

samp.games <- sample(N.HSD, n.samp, replace=FALSE)

var.samp[i1] <- var(hmSprdDiff[samp.games])

}

var.samp[1]

scale.var.samp <- (n.samp-1)*var.samp/(sigma.HSD^2)

range(scale.var.samp)

# Histogram and Chi-square Density

scv.seq <- seq(0,52,length=10000)

win.graph(height=5.5, width=7.0)

hist(scale.var.samp, breaks=100, freq=FALSE, xlim=c(0,52),

main="NBA 2006/07-2018/19",

xlab="Scaled Variance", ylab="Density")

lines(scv.seq,dchisq(scv.seq,n.samp-1))

# Coverage Rate

X2.LO <- qchisq(.025,n.samp-1)

X2.HI <- qchisq(.975,n.samp-1)

mean((n.samp-1)*var.samp/X2.HI <= sigma.HSD^2 &

(n.samp-1)*var.samp/X2.LO >= sigma.HSD^2)

mean((n.samp-1)*var.samp/X2.HI >= sigma.HSD^2)

mean((n.samp-1)*var.samp/X2.LO <= sigma.HSD^2)

## Output

> (N.HSD <- length(hmSprdDiff))

[1] 15749

> (mu.HSD <- mean(hmSprdDiff))

[1] -0.170106

> ### Population SD (Uses N as denominator, not N-1)

> (sigma.HSD <- sd(hmSprdDiff)*sqrt((N.HSD-1)/N.HSD))

[1] 11.83618

> summary(hmSprdDiff)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-48.5000 -8.0000 0.0000 -0.1701 7.5000 55.0000

> var.samp[1]

[1] 96.05729

> mean((n.samp-1)*var.samp/X2.HI <= sigma.HSD^2 &

+ (n.samp-1)*var.samp/X2.LO >= sigma.HSD^2)

[1] 0.9316

>

> mean((n.samp-1)*var.samp/X2.HI >= sigma.HSD^2)

[1] 0.0354

> mean((n.samp-1)*var.samp/X2.LO <= sigma.HSD^2)

[1] 0.033

∇
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4.5 The Bootstrap

In many applications, individual measurements are not normally distributed and the sample size is not large
enough to justify the use of the Central Limit Theorem. Further, in many practical settings, the sampling
distribution of an estimator is unknown (such as a median or coefficient of variation). The bootstrap makes
use of the sample that is obtained (and is assumed to be representative of the population of measurements
in terms of its cumulative distribution function (CDF)) to approximate the sampling distribution of the
estimator of interest. The classic reference is Efron and Tibshirani (1993) [?], and for an introduction to
Mathematical Statistics based on resampling methods, see Chihara and Hesterberg (2011) [?].

The process involves resampling from the sample data, with replacement, many times and computing
the estimate for each resample, and saving the values. The samples are each of size n, the size of the original
sample. Note that when estimating the sampling distribution of the sample mean, the mean of the resampled
means will be very close to the sample mean of the original sample. That implies that the bootstrap will not
directly estimate the mean of the sampling distribution (which is the population mean). The spread, bias,
and skewness of the bootstrap distribution do reflect those of the target sampling distribution, where bias
refers to the difference between the mean of the bootstrap distribution and the population mean.

4.5.1 Bootstrap Inferences Concerning the Population Mean and Standard De-
viation

When trying to estimate a population mean (particularly with nonnormal data with a small sample size), a
bootstrap confidence interval for the population mean µ can be obtained from the central (1−α)100% values
of the bootstrap sample estimates. This is a very simple approach, as all that is needed to be computed and
saved are the sample means from each of the resamples (see e.g. Chihara and Hesterberg (2011), [?] Section
5.3). Once the means are obtained, the α/2 and 1−α/2 quantiles are identified. Note that this interval will
not typically be symmetric around the sample mean, unless the sample data are highly symmetric. We can
follow the same approach regarding the standard deviation.

Example 4.12: NFL Betting Home Underdogs Strategy

Suppose we are interested in the returns of the following betting strategy of betting on NFL home
underdogs and (and pick ’ems). We define the following strategy based on the “11-10” betting rule, with
formulas given below. We are treating these weekly returns as a sample of a conceptual population of weekly
games.

• Each week, we will place 1100 units worth of bets on the strategy.

• We will identify all games where the home team is not favored, with ki being the number of such games
for week i.

• We will use weights that have higher weights for teams “catching the most points,” where Sij is the
number of points received in game j of week i.

• We will observe the returns as a percentage of our bet for that week, where Ri is the return for week i.



118 CHAPTER 4. INFERENCES CONCERNING A SINGLE POPULATION
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Figure 4.9: Histogram of Weekly Returns for Home Underdog Betting Strategy - NFL 2006-2019 regular
seasons

Betting weight on game j on week i: wij =
Sij + 1

∑ki

j=1 (Sij + 1)

ki
∑

j=1

wij = 1

Bet on game j on week i: Bij = 1100wij

Return on game j on week i: If Win: Rij = 2100wij If Lose: Rij = 0 If Push: Rij = 1100wij

Return percentage for week i: Ri = 100

(

∑ki

j=1 Rij − 1100

1100

)

A histogram of the returns for n = 238 weeks for the 2006-2019 regular seasons is given Figure ??. The
returns are somewhat uniformly distributed between −100% and 90% with mean of −4.197% and standard
deviation of 47.926%. The number of games per week meeting the strategy’s requirement ranged from 1 (2
weeks) to 11 (2 weeks). Thus, the variance and standard deviation of the individual measurements should
not be constant.

Suppose we wish to estimate the population mean of the returns of this strategy. While the “sample” is
large (n = 238) which implies sampling distribution for the sample mean should be approximately normal.
However, the sampling distribution of the scaled variance may not be approximately distributed as Chi-
square.

As a reference point, we first compute “normal” based confidence interval for µ and σ using the traditional
methods. Note that t.025,237 = 1.970, χ2

.975,237 = 196.253, and χ2
.025,237 = 281.533.

95% CI for µ: −4.197±1.970

√

47.9262

238
≡ −4.197±1.970(3.107) ≡ −4.197±6.120 ≡ (−10.317, 1.923)

(n−1)s2 = (238−1)47.9262 = 544365.65 ⇒ 95% CI for σ2:

(

544365.65

281.533
,
544365.65

196.253

)

≡ (1933.577, 2773.795)
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⇒ 95% CI for σ:
(√

1933.577,
√

2773.795
)

≡ (43.972, 52.667)

We then draw B = 10000 random resamples with replacement from the 238 returns, and compute
the sample mean and standard deviation for each resample, labeled y∗

i and s∗i , respectively for the ith

resample. Finally we obtain the 2.5%-ile and 97.5%-ile from the resample means, for intervals that we can
be approximately 95% confident will contain µ and σ.

R Commands and Output

## Commands

#############################################################

### Bootstrap sample mean and standard deviation

# Set the seed, n, number of bootstrap samples, and holders for mean, sd

set.seed(123)

B <- 10000

n.wk <- length(R.week)

boot.mn <- rep(0,B)

boot.sd <- rep(0,B)

data.mn <- mean(R.week) # Original sample mean

data.sd <- sd(R.week) # Original sample sd

# Normal based Confidence Intervals

norm.mn.ci <- data.mn + qt(c(.025,.975),n.wk-1) * data.sd/sqrt(n.wk)

norm.sd.ci <- c(sqrt((n.wk-1)*data.sd^2/qchisq(.975,n.wk-1)),

sqrt((n.wk-1)*data.sd^2/qchisq(.025,n.wk-1)))

# Take samples and obtain means and SDs

for (i1 in 1:B) {

sample1 <- sample(1:n.wk,n.wk,replace=TRUE)

boot.mn[i1] <- mean(R.week[sample1])

boot.sd[i1] <- sd(R.week[sample1])

}

# Bootstrap Quantile Confidence Intervals

boot.mn.ci.q <- quantile(boot.mn, c(.025,.975))

boot.sd.ci.q <- quantile(boot.sd, c(.025,.975))

# Set-up and print output

mn.out <- cbind(data.mn,norm.mn.ci[1],norm.mn.ci[2],

mean(boot.mn),boot.mn.ci.q[1],boot.mn.ci.q[2], sd(boot.mn))

sd.out <- cbind(data.sd,norm.sd.ci[1],norm.sd.ci[2],

mean(boot.sd),boot.sd.ci.q[1],boot.sd.ci.q[2], sd(boot.sd))

mn.sd.out <- rbind(mn.out, sd.out)

colnames(mn.sd.out) <- c("Data", "Norm LB", "Norm UB",

"Boot Mean", "Boot LB", "Boot UB", "Boot SD")

rownames(mn.sd.out) <- c("Mean", "Std Dev")

round(mn.sd.out, 3)

# Histograms of Bootstrap Samples

win.graph(height=5.5, width=7.0)

hist(boot.mn, breaks=50, xlab="Mean Return (%)",

main="Bootstrap Means")

abline(v=boot.mn.ci.q[1], lty=2)

abline(v=boot.mn.ci.q[2], lty=3)

abline(v=mean(boot.mn), lty=4)

abline(v=data.mn, lty=5)

legend("topleft", c("Boot LB", "Boot UB", "Boot Mean", "Data Mean"),

lty=2:5)
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Mean Return (%)

F
re

q
u
e
n
c
y

−15 −10 −5 0 5

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Boot LB

Boot UB

Boot Mean

Data Mean

Figure 4.10: NFL home underdog betting strategy returns - Bootstrap means

Bootstrap SDs
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Figure 4.11: NFL home underdog betting strategy returns - Bootstrap standard deviations

win.graph(height=5.5, width=7.0)

hist(boot.sd, breaks=50, xlab="Std Dev Return (%)",

main="Bootstrap SDs")

abline(v=boot.sd.ci.q[1], lty=2)

abline(v=boot.sd.ci.q[2], lty=3)

abline(v=mean(boot.sd), lty=4, lwd=2)

abline(v=data.sd, lty=5, lwd=2)

legend("topleft", c("Boot LB", "Boot UB", "Boot Mean", "Data Mean"),

lty=2:5)

## Output

> round(mn.sd.out, 3)

Data Norm LB Norm UB Boot Mean Boot LB Boot UB Boot SD

Mean -4.197 -10.317 1.923 -4.112 -10.246 2.035 3.113

Std Dev 47.926 43.972 52.666 47.796 44.222 51.299 1.803

A histogram of the bootstrap means is given in Figure ?? and a histogram of the bootstrap standard
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deviations is given in Figure ??. The sample mean for the original sample is y = −4.197. The mean of the
B = 10000 resample means is y∗ = −4.112, which is very close to y. The sample standard deviation for
the original sample is s = 47.926, while the mean of the resample standard deviations is s∗ = 47.796, again
very close to the observed value. The approximate 95% confidence interval for µ is (−10.246, 2.035). The
approximate 95% confidence interval for the standard deviation is (44.222, 51.299). Both of the bootstrap
percentile confidence intervals are very similar to their normal based counterparts.

The standard deviation of the resample means and standard deviations are referred to as the bootstrap
standard errors. Note that the confidence interval for the mean is not of the form y∗ ± t.025,238−1sy∗, which
is of the following form, where t.025,237 = 1.970.

−4.112± 1.970(3.113) ≡ −4.112± 6.133 ≡ (−10.245, 2.021)

Of the 10000 sample means, 2.51% of the sample means fall below the lower bound −10.245, and 2.53% fall
above the upper bound 2.021. The “t-type” interval goes inside both of the lower and upper bounds of the
bootstrap interval. The lower bound of the bootstrap percentile interval is 1.970 bootstrap standard errors
below the mean of the resample means, and the upper bound is 1.975 standard errors above it. In some
cases the asymmetry and discrepancy will be much larger.

∇

This approach of obtaining an approximate Confidence Interval for a parameter works well for many
types of estimators/parameters. It is particularly useful when the bootstrap sample estimators have an
approximately continuous distribution. When the distribution of bootstrap sample estimators have a discrete
sampling distribution, the method does not work well. Consider estimating the population median in the
average shot length example. Once we have our sample of n observations, the median is the “middle” of the
n observed values. When we take bootstrap samples, the median will always be one of the n observations
in the original sample when n is odd. Thus, there are only n possible values the sample median for each
resample can take on in the case of odd n. For even n, where the sample median is the average of the middle
two observations will also have relatively few possible outcomes.

A second approach that is specific to estimating a population mean makes use of a t-type statistic
computed for each resample. This is referred to as Bootstrap t Confidence Intervals, (see e.g. Chihara
and Hesterberg (2011), [?] Section 7.5). In this method, once the original sample of size n is taken, obtain the
sample mean y and standard deviation s. Then for each of B resamples, compute the mean y∗

i and standard
deviation s∗i , where i represents the ith resample. Then compute a t-type statistic for each resample, making
use of the original sample mean as follows.

t∗i =
y∗

i − y

s∗i /
√

n
=

√
n

(

y∗
i − y

s∗i

)

i = 1, . . . , B

Once the B values of t∗i are computed, obtain the α/2 quantile and the (1−α/2) quantiles, say (Q∗
L, Q∗

U).
Note that Q∗

L will be negative and Q∗
U will be positive, and not necessarily of the same magnitude. The

(1 − α)100% Confidence Interval for µ will be of the following form.

Lower Bound: y − Q∗
U

s√
n

Upper Bound: y − Q∗
L

s√
n
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Figure 4.12: Histogram of t∗ values and t24 Density - NFL home underdog betting strategy Data

Example 4.12: NFL Betting Home Underdogs Strategy

We apply this method to the same sample and resamples used previously for the NFL home underdog
betting strategy returns.

R Commands and Output

## Commands

boot.t <- (boot.mn - data.mn)/(boot.sd / sqrt(n.wk))

Q_L <- quantile(boot.t,0.025)

Q_U <- quantile(boot.t,0.975)

mu_L <- data.mn - Q_U*data.sd/sqrt(n.wk)

mu_U <- data.mn - Q_L*data.sd/sqrt(n.wk)

q.out <- cbind(Q_L, Q_U, mu_L, mu_U)

colnames(q.out) <- c("Q_L", "Q_U", "mu_L", "mu_U")

round(q.out, 3)

win.graph(height=5.5, width=7.0)

hist(boot.t,breaks=40,freq=F,

main=expression(paste("Histogram of ",t^"*"," and ",t[237]," Density")))

t.seq <- seq(-4,4,.01)

lines(t.seq,dt(t.seq,n.wk-1))

abline(v=c(Q_L,Q_U),lwd=2)

## Output

> round(q.out, 3)

Q_L Q_U mu_L mu_U

2.5% -1.945 2.03 -10.503 1.846

A histogram of the t∗ values and the t237 density are given in Figure ??. The distribution of the t∗ values
is fairly symmetric, with Q∗

L and Q∗
U being −1, 945 and 2.030, respectively for α = 0.05. The original sample

mean and standard deviation are −4.197 and 47.926 respectively, leading to the following 95% Confidence
Interval for µ.
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(

−4.197− 2.030
47.926√

238
, 8.188− (−1.945

47.926√
238

)

≡ (−4.197− 6.306,−4.197+ 6.042) ≡ (−10.476, 1.845)

Note that the interval is not symmetric about y, it adds a smaller term to the upper end than the
term it subtracts from the lower end. This reflects the fact that the data are slightly left-skewed. The
bootstrap estimate of the bias is the difference from the average of the resample means and the overall
sample mean: y∗ − y = 0.085. This bias is small relative to the standard error of the bootstrap estimator:
0.085/3.113=0.0273.

∇
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Chapter 5

Comparing Two Populations: Means,
Medians, Proportions and Variances

While estimating the mean or median of a population is important, many more applications involve compar-
ing two or more treatments or populations. There are two commonly used designs: independent samples
and paired samples. Independent samples are used in controlled experiments when a sample of exper-
imental units is obtained, and randomly assigned to one of two treatments or conditions. That is, each
unit receives only one of the two treatments. These are often referred to as Completely Randomized or
Parallel Groups or Between Subjects designs in various fields of study. Paired samples can involve the
same experimental unit receiving each treatment, or units being matched based on external criteria, then
being randomly assigned to the two treatments within pairs. These are often referred to as Randomized
Block or Crossover or Within Subjects designs.

In observational studies, independent samples can be taken from two existing populations, or elements
within two populations can be matched based on external criteria and observed. In each case, the goal is to
make inferences concerning the difference between the two means or medians based on sample data.

5.1 Independent Samples

In the case of independent samples, assume we sample n1 units or subjects in treatment 1 which has a
population mean response µ1 and population standard deviation σ1. Further, a sample of n2 elements from
treatment 2 is obtained where the population mean is µ2 and standard deviation is σ2. Measurements within
and between samples are independent. Regardless of the distributions of the individual measurements, we
have the following results based on linear functions of random variables, in terms of the means of the two
random samples. The notation used is Y1i is the ith unit (replicate) from sample 1, and Y2i is the ith unit
(replicate) from sample 2. In the case of independent samples, these two random variables are independent.

Y 1 =

∑n1

i=1 Y1i

n1
=

n1
∑

i=1

(

1

n1

)

Y1i ⇒ E{Y 1} = µ1 V {Y 1} =
σ2

1

n1
E{Y 2} = µ2 V {Y 2} =

σ2
2

n2
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E{Y 1−Y 2} = E{Y 1}−E{Y 2} = µ1−µ2 V {Y 1−Y 2} = V {Y 1}+V {Y 2}−2COV{Y 1, Y 2} =
σ2

1

n1
+

σ2
2

n2
+0

If the data are normally distributed, Y 1 − Y 2 is also normally distributed. If the data are not normally
distributed, Y 1 − Y 2 will be approximately normally distributed in large samples. As in the case of a single
mean, how large of samples are needed depends on the shape of the underlying distributions.

The problem arises again that the variances will be unknown and must be estimated. For large sample
sizes n1 and n2, we have the following approximation for the sampling distribution of Z.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2
1

n1
+

S2
2

n2

·∼ N(0, 1)

⇒ P





(

Y 1 − Y 2

)

+ z1−α/2

√

S2
1

n1
+

S2
2

n2
≤ µ1 − µ2 ≤

(

Y 1 − Y 2

)

+ zα/2

√

S2
1

n1
+

S2
2

n2



 ≈ 1 − α

Example 5.1: NHL and EPL Players’ BMI

Body Mass Indices for all National Hockey League (NHL) and English Premier League (EPL) football
players for the 2013/4 season were obtained. Identifying the NHL as league 1 and EPL as league 2 we have
the following population parameters. Note the NHL differs slightly from previous examples as the heights
have not been “tweaked” to make them less discrete here.

N1 = 717 µ1 = 26.500 σ1 = 1.455 N2 = 526 µ2 = 23.019 σ2 = 1.713

A plot of the two population histograms, along with normal densities is given in Figure ??. Both
distributions are well approximated by the normal distribution, with the NHL having a substantially higher
mean and EPL having a slightly higher standard deviation.

We take 100000 independent random samples of sizes n1 = n2 = 20 from the two populations, each time
computing and saving y1, s1, y2, s2. A histogram of the 100000 sample mean differences and the superimposed
Normal density with mean µ1 − µ2 = 3.481 and standard error 0.503 (calculation given below) is shown in
Figure ??. The mean of the 100000 mean differences y1 − y2 is 3.482 with standard deviation (standard
error) 0.494. Both are very close to their theoretical values (as they should be). Then we compute the
following quantity (and interval), counting the number of samples for which it contains µ1 − µ2, and its
average estimated variance (squared standard error).

(y1 − y2)±1.96

√

s2
1

20
+

s2
2

20
µ1−µ2 = 26.500−23.019 = 3.481

√

σ2
1

n1
+

σ2
2

n2
=

√

1.4552

20
+

1.7132

20
= 0.503
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Histogram of NHL BMI and N(26.50,1.45) Density
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Histogram of EPL BMI and N(23.02,1.71) Density
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Figure 5.1: Distributions of NHL and EPL players Body Mass Index

Of the intervals constructed from each sample mean difference and its estimated standard error (using
s1, s2 in place of σ1, σ2), the interval contains the true mean difference (3.481) for 94.606% of the samples, very
close to the nominal 95% coverage rate. If we replace z.025 = 1.96 with the more appropriate t.025,n1+n2−2 =
t.025,38 = 2.0244, the coverage rate increases to 95.349%. Note that virtually all software packages will
automatically use t in place of z, however, there are various statistical methods that always use the z case.

The average of the estimated variance of y1 − y2: s2
1/n1 + s2

2/n2 is 0.2524, while its theoretical value
is σ2

1/n1 + σ2
2/n2 = 0.2525. Note that the variance of the estimated difference is unbiased, not so for the

standard error.

R Commands and Output

## Commands

bmi.sim <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_nba_ebl_bmi.csv",

header=TRUE)

attach(bmi.sim); names(bmi.sim)

N.nhl <- 717 # # of NHL players

N.epl <- 526 # # of EPL players

bmi.nhl <- NHL_BMI[1:N.nhl]

bmi.epl <- EPL_BMI[1:N.epl]

(mu.nhl <- mean(bmi.nhl)); (sigma.nhl <- sd(bmi.nhl))

(mu.epl <- mean(bmi.epl)); (sigma.epl <- sd(bmi.epl))
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Histogram of Mean Differences and N(3.48,0.50) Density
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Figure 5.2: 100000 sample mean differences (n1 = n2 = 20) for NHL and EPL BMI values and Normal
Density
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par(mfrow=c(2,1))

hist(bmi.nhl, breaks=30, xlim=c(18,32), freq=F,

main="Histogram of NHL BMI and N(26.50,1.45) Density")

bmi.x <- seq(18,32,.01)

lines(bmi.x, dnorm(bmi.x, mu.nhl, sigma.nhl))

hist(bmi.epl, breaks=30, xlim=c(18,32), freq=F,

main="Histogram of EPL BMI and N(23.02,1.71) Density")

lines(bmi.x, dnorm(bmi.x, mu.epl, sigma.epl))

num.sim <- 100000

n.nhl <- 20

n.epl <- 20

(mu.meandiff <- mu.nhl - mu.epl)

(sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl))

set.seed(6677)

ybar.s.nhl <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.epl <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(bmi.nhl,n.nhl,replace=F)

y2 <- sample(bmi.epl,n.nhl,replace=F)

ybar.s.nhl[i,1] <- mean(y1)

ybar.s.nhl[i,2] <- sd(y1)

ybar.s.epl[i,1] <- mean(y2)

ybar.s.epl[i,2] <- sd(y2)

}

meandiff <- ybar.s.nhl[,1] - ybar.s.epl[,1]

mean(meandiff)

sd(meandiff)

par(mfrow=c(1,1))

hist(meandiff, breaks=100, xlim=c(min(meandiff)-0.01, max(meandiff)+0.01),

freq=F, main="Histogram of Mean Differences and N(3.48,0.50) Density")

diff.x <- seq(min(meandiff)-0.01, max(meandiff)+0.01,length.out=1000)

lines(diff.x, dnorm(diff.x, mu.meandiff, sigma.meandiff))

se.meandiff <- sqrt(ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)

mean(se.meandiff^2)

sigma.meandiff^2

diff.lo.z <- meandiff + qnorm(.025,0,1) * se.meandiff

diff.hi.z <- meandiff + qnorm(.975,0,1) * se.meandiff

sum(diff.lo.z <= mu.meandiff & diff.hi.z >= mu.meandiff) / num.sim

diff.lo.t <- meandiff + qt(.025,n.nhl+n.epl-2) * se.meandiff

diff.hi.t <- meandiff + qt(.975,n.nhl+n.epl-2) * se.meandiff

sum(diff.lo.t <= mu.meandiff & diff.hi.t >= mu.meandiff) / num.sim

### Output

> (mu.nhl <- mean(bmi.nhl)); (sigma.nhl <- sd(bmi.nhl))

[1] 26.50015

[1] 1.454726

> (mu.epl <- mean(bmi.epl)); (sigma.epl <- sd(bmi.epl))

[1] 23.01879

[1] 1.713098

> (mu.meandiff <- mu.nhl - mu.epl)

[1] 3.481361

> (sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl))

[1] 0.5025401

> mean(meandiff)

[1] 3.482383
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> sd(meandiff)

[1] 0.4944524

> mean(se.meandiff^2)

[1] 0.2524164

> sigma.meandiff^2

[1] 0.2525466

> sum(diff.lo.z <= mu.meandiff & diff.hi.z >= mu.meandiff) / num.sim

[1] 0.94606

> sum(diff.lo.t <= mu.meandiff & diff.hi.t >= mu.meandiff) / num.sim

[1] 0.95349

∇

This logic leads to a large-sample test and Confidence Interval regarding µ1−µ2 once estimates y1, s1, y2, s2

have been observed in an experiment or observational study. The Confidence Interval and test are given be-
low. Typically, zα/2 is replaced with tα/2,ν, where ν is the degrees of freedom, which depends on assumptions
involving the variances (see below).

Large Sample (1 − α)100% CI for µ1 − µ2: (y1 − y2) ± zα/2

√

s2
1

n1
+

s2
2

n2

2-tail: H0 : µ1−µ2 = ∆0 HA : µ1−µ2 6= ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Upper tail: H0 : µ1−µ2 ≤ ∆0 HA : µ1−µ2 > ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower tail: H0 : µ1−µ2 ≥ ∆0 HA : µ1−µ2 < ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2
1

n1
+

s2
2

n2

RR : zobs ≤ zα P = P (Z ≤ zobs)

Example 5.2: Gender Classification from Physical Measurements

A study in forensics used measurements of the length and breadth of the scapula from samples of 95
male and 96 female Thai adults (Peckmann, Scott, Meek, Mahakkanukrauh (2017), [?]). The measurements
were length and breadth of glenoid cavity (LGC and BGC, in mm, respectively). Summary data for the two
samples for BGC are given below.

nm = 95 ym = 27.87 sm = 2.04 nf = 96 yf = 23.77 sf = 1.85
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ym − yf = 27.87− 23.77 = 4.10 sY m−Y f
=

√

2.042

95
+

1.852

96
= 0.282

A 95% Confidence Interval for the population mean difference, µm − µf is given below.

(

ym − yf

)

± z.025

√

s2
1

n1
+

s2
2

n2
≡ 4.10± 1.960(0.282) ≡ 4.10± 0.553 ≡ (3.55, 4.65)

The interval is very far away from 0, making us very confident that the population mean is higher for
males than females. To test whether the population means differ (which they clearly do from the Confidence
Interval), we conduct the following 2-tailed test with α = 0.05.

H0 : µm−µf = 0 HA : µm−µf 6= 0 T.S. : zobs =
4.10− 0

0.282
= 14.54 R.R. : |zobs| ≥ 1.960 P = 2P (Z ≥ 14.54) ≈ 0

∇

5.2 Small–Sample Tests

In this section we cover small–sample tests without going through the detail given for the large–sample
tests. In each case, we will be testing whether or not the means (or medians) of two distributions are equal.
There are two considerations when choosing the appropriate test: (1) Are the population distributions of
measurements approximately normal? and (2) Was the study conducted as an independent samples (parallel
groups) or paired samples (crossover) design? The appropriate test for each situation is given in Table ??.
We will describe each test with the general procedure and an example.

The two tests based on non–normal data are called nonparametric tests and are based on ranks, as
opposed to the actual measurements. When distributions are skewed, samples can contain measurements
that are extreme (usually large). These extreme measurements can cause problems for methods based on
means and standard deviations, but will have less effect on procedures based on ranks.

Design Type
Parallel Groups Crossover

Normally Distributed Data 2–Sample t–test Paired t–test
Non–Normally Distributed Data Wilcoxon Rank Sum test Wilcoxon Signed–Rank Test

(Mann–Whitney U–Test)

Table 5.1: Statistical Tests for small–sample 2 group situations
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5.2.1 Independent Samples (Completely Randomized Designs)

Completely Randomized Designs are designs where the samples from the two populations are independent.
That is, subjects are either assigned at random to one of two treatment groups (possibly active drug or
placebo), or possibly selected at random from one of two populations (as in Example 5.1, where we had NHL
and EPL players and in Example 5.2 where they measured males and females). In the case where the two
populations of measurements are normally distributed, the 2–sample t–test is used. Note that it also works
well for reasonably large sample sizes when the measurements are not normally distributed. This procedure
is very similar to the large–sample test from the previous section, where only the critical values for the
rejection region changes. In the case where the populations of measurements are not approximately normal,
the Wilcoxon Rank–Sum test (or, equivalently the Mann–Whitney U–test) is commonly used. These tests
are based on comparing the average ranks across the two groups when the measurements are ranked from
smallest to largest, across groups.

2–Sample Student’s t–test for Normally Distributed Data

This procedure is identical to the large–sample test, except the critical values for the rejection regions are
based on the t–distribution with ν = n1 + n2 − 2 degrees of freedom. We will assume the two population
variances are equal in the 2–sample t–test. If they are not, simple adjustments can be made to obtain an
appropriate test, which will be given below. We then ‘pool’ the 2 sample variances to get an estimate of the
common variance σ2 = σ2

1 = σ2
2 . This estimate, that we will call s2

p is calculated as follows:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0

2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).

3. T.S.: tobs = (y1−y2)
√

s2
p

(

1
n1

+ 1
n2

)

4. R.R.: |tobs| > tα/2,n1+n2−2 or tobs > tα,n1+n2−2 or tobs < −tα,n1+n2−2 (which R.R. depends on which
alternative hypothesis you are using).

5. p-value: 2P (tn1+n2−2 > |tobs|) or P (tn1+n2−2 > tobs) or P (tn1+n2−2 < tobs) (again, depending on
which alternative you are using).

Example 5.3: Comparison of Two Instructional Methods

A study was conducted (Rusanganwa (2013) [?]) to compare two instructional methods: multimedia
(treatment 1) and traditional (treatment 2) for teaching physics to undergraduate students in Rwanda.
Subjects were assigned at random to the two treatments. Each subject received only one of the two methods.
The numbers of subjects who completed the courses and took two exams were n1 = 13 for the multimedia
course and n2 = 19 for the traditional course. The primary response was the post-course score on an
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examination. We will conduct the test H0 : µ1 − µ2 = 0 vs HA : µ1 − µ2 6= 0, where the null hypothesis is
no difference in the effects of the two methods. The summary statistics are given below.

n1 = 13 y1 = 11.10 s1 = 3.47 n2 = 19 y2 = 8.35 s2 = 2.45

First, compute s2
p, the pooled variance:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(13 − 1)(3.47)2 + (19 − 1)(2.45)2

13 + 19 − 2
=

252.54

30
= 8.42 (sp = 2.90)

Now conduct the (2-sided) test as described above with α = 0.05 significance level:

• H0 : µ1 − µ2 = 0

• HA : µ1 − µ2 6= 0

• T.S.: tobs = (y1−y2)
√

s2
p

(

1
n1

+ 1
n2

)

= (11.10−8.35)
√

8.42( 1
13 + 1

19 )
= 2.75

1.04 = 2.633

• R.R.: |tobs| ≥ tα/2,n1+n2−2 = t.05/2,13+19−2 = t.025,30 = 2.042

• P -value: 2P (T ≥ |tobs|) = 2P (t30 ≥ 2.633) = 0.0132

Based on this test, reject H0 (for any α ≥ .0132), and conclude that the population mean post course scores
differ under these two conditions. The 95% Confidence Interval for µ1−µ2 is 2.75±2.042(1.04) ≡ (0.62, 4.88)
which does not contain 0.

Below we generate samples that have the same means and standard deviation and use t.test function
in R to conduct the 2-sample t-test.

R Commands and Output

## Commands

rp <- read.csv("http://www.stat.ufl.edu/~winner/data/rwanda_physics.csv")

attach(rp); names(rp)

t.test(score ~ trt.y, var.equal=T) # t-test with single y-var and trt id

## Output

> t.test(score ~ trt.y, var.equal=T)

Two Sample t-test

data: score by trt.y

t = 2.6323, df = 30, p-value = 0.01327

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.6163295 4.8826179

sample estimates:

mean in group 1 mean in group 2

11.100000 8.350526
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∇

When the population variances are not equal, there is no justification for pooling the sample vari-
ances to better estimate the common variance σ2. In this case the estimated standard error of Y 1 − Y 2 is
√

s2
1/n1 + s2

2/n2. An adjustment is made to the degrees of freedom for an approximation to a t-distribution
of the t-statistic.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2
1

n1
+

S2
2

n2

·∼ tν ν =

[

S2
1

n1
+

S2
2

n2

]2

[

(S2
1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

]

The test is referred to as Welch’s Test, and the degrees of freedom Satterthwaite’s Approximation.
Statistical software packages automatically compute the approximate degrees of freedom. The approximation
extends to more complex models as well. Once the samples are obtained, and the sample means and standard
deviations are computed, the (1 − α)100% Confidence Interval for µ1 − µ2 is computed as follows.

(y1 − y2) ± tα/2,ν

√

s2
1

n1
+

s2
2

n2
ν =

[

s2
1

n1
+

s2
2

n2

]2

[

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

]

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0

2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).

3. T.S.: tobs = (y1−y2)
√

s2
1

n1
+

s2
2

n2

4. R.R.: |tobs| ≥ tα/2,ν or tobs ≥ tα,ν or tobs ≤ −tα,ν (which R.R. depends on which alternative hypothesis
you are using).

5. p-value: 2P (tν ≥ |tobs|) or P (tν ≥ tobs) or P (tν ≤ tobs) (again, depending on which alternative you are
using).

Example 5.4: Abdominal Quilting to Reduce Drainage in Breast Reconstruction Surgery

A study considered the effect of abdominal suture quilting on abdominal drainage during breast recon-
struction surgery (Liang, et al, (2016), [?]). A group of n1 = 27 subjects (controls) received the standard
DIEP procedure, while a group of n2 = 26 subjects (study) received the DIEP procedure along with the
suture quilting. The response measured was the amount of abdominal drainage during the surgery (in ml).
The summary data are given below, note that the sample standard deviations are substantially different,
and these are relatively large sample sizes. Side-by-side box plots are given in Figure ??.
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Figure 5.3: Abdominal drainage in breast reconstruction surgery, DIEP procedure with and without abdom-
inal suture quilting.
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n1 = 27 y1 = 527.78 s1 = 322.07 n2 = 26 y2 = 238.31 s2 = 242.66

The estimated mean difference, standard error, and degrees of freedom are computed below.

y1 − y2 = 527.78− 238.31 = 289.47 sY 1−Y 2
=

√

322.072

27
+

242.662

26
= 78.14

ν =

[

322.072

27 + 242.662

26

]2

[

(322.072/27)2

27−1
+ (242.662/26)2

26−1

] = 48.25 t.025,48.25 = 2.010

The 95% Confidence Interval for µ1 − µ2 and test statistic and P -value for testing H0 : µ1 − µ2 = 0
versus HA : µ1 − µ2 6= 0 are given below. There is strong evidence that the suture quilting reduces blood
loss during surgery.

95% CI for µ1 − µ2: 289.47± 2.010(78.14) ≡ 289.47± 157.06 ≡ (132.41, 446.53)

T.S.: tobs =
289.47

78.14
= 3.705 P (t48.25 ≥ 3.705) = .0005

R Commands and Output

## Commands

quilt <- read.csv("http://www.stat.ufl.edu/~winner/data/breast_diep.csv")

attach(quilt); names(quilt)

plot(totvol ~ factor(trt), main="Box Plots by Treatment - Breast Surgery Study")

t.test(totvol ~ trt, var.equal=F)

## Output

> t.test(totvol ~ trt, var.equal=F)

Welch Two Sample t-test

data: totvol by trt

t = 3.7043, df = 48.25, p-value = 0.0005452

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

132.3707 446.5695

sample estimates:

mean in group 1 mean in group 2

527.7778 238.3077

∇
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Wilcoxon Rank-Sum Test for Non-Normally Distributed Data

The idea behind this test is as follows. We have samples of n1 measurements from population 1 and n2

measurements from population 2. We rank the n1 +n2 measurements from 1 (smallest) to n1 +n2 (largest),
adjusting for ties by averaging the ranks the measurements would have received if they were different. We then
compute T1, the rank sum for measurements from population 1, and T2, the rank sum for measurements from
population 2. This test is mathematically equivalent to the Mann–Whitney U–test. To test for differences
between the two population distributions, we use the following procedure, where to be able to use the table
on the webpage, n1 ≥ n2.

1. H0 : The two population medians are equal (M1 = M2)

2. HA : The medians are not equal (M1 6= M2)

3. T.S.: T = min(T1, T2)

4. R.R.: T ≤ T0, where values of T0 given in tables in many statistics texts and on the web for various
levels of α and sample sizes.

For one-sided tests to show that the distribution of population 1 is shifted to the right of population 2
(M1 > M2), we use the following procedure (simply label the distribution with the suspected higher mean
as population 1):

1. H0 : The median for population 1 is less than or equal the median for population 2 (M1 ≤ M2)

2. HA : The median for population 1 is larger than the median for population 2 (M1 > M2)

3. T.S.: T = T2

4. R.R.: T ≤ T0, where values of T0 are given in tables in many statistics texts and on the web for various
levels of α and various sample sizes.

Example 5.5: Apple Procyanidin B-2 for Hair Growth

A study was conducted to determine whether procyanidin B-2 from apples is effective in hair growth
(Kamimura, Takahishi, and Watanabe (2000), [?]). Based on a small trial, with n1 = 19 treatment subjects
and n2 = 10 control subjects, Table ?? gives the 6 month change in total hairs, along as their ranks from
smallest (most negative) to largest. Note that the ranks sum to 1+2+...+29=29(29+1)/2=435. Normal
probability plots are given in Figure ??, there is evidence of outlying cases in each group.

For a 2-tailed test, based on sample sizes of n1 = 19 and n2 = 10, we will reject H0 for T = min(Tc, Tt) ≤
107. Since T = min(86, 349) = 86, we reject H0, and can conclude that the median hair growth differs be-
tween the treatment and control conditions. The table used is available on the class web site and necessitates
that n1 ≥ n2.

R Commands and Output
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Figure 5.4: Change in total hairs - procyanidin B-2 from apples study

Trt TotalDif Rank Trt TotalDif Rank
1 0.3 8 2 3.5 13
1 1.4 10 2 5 17
1 3 12 2 7.3 20.5
1 3.7 14 2 18.3 29
1 -1.5 4 2 14.5 28
1 -2 3 2 6.7 19
1 0 7 2 9 25
1 4.8 16 2 -0.7 5.5
1 2.4 11 2 7.8 22
1 -11.3 1 2 -4 2

2 6 18
2 4.5 15
2 8 23
2 11.4 26
2 1 9
2 7.3 20.5
2 8.5 24
2 -0.7 5.5
2 13.5 27

Total Tc = 86 Tt = 349

Average Tc/nc = 8.60 Tt/nt = 18.37

Table 5.2: Total Growth measurements (and ranks) for Procyanidin B-2 from Apple Hair Growth Experiment
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## Commands

apphair <- read.table("http://www.stat.ufl.edu/~winner/data/apple_hair.dat",

header=F, col.names=c("hair.trt","total0","total6","totaldiff",

"term0", "term6", "termdiff"))

attach(apphair)

hair.trt.f <- factor(hair.trt, levels=1:2, labels=c("placebo", "PC2"))

plot(totaldiff ~ hair.trt.f)

par(mfrow=c(1,2))

qqnorm(totaldiff[hair.trt==1],main="Control")

qqline(totaldiff[hair.trt==1])

qqnorm(totaldiff[hair.trt==2],main="Treatment")

qqline(totaldiff[hair.trt==2])

wilcox.test(totaldiff ~ hair.trt)

## Output

> wilcox.test(totaldiff ~ hair.trt)

Wilcoxon rank sum test with continuity correction

data: totaldiff by hair.trt

W = 31, p-value = 0.003565

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(0.3, 1.4, 3, 3.7, -1.5, -2, 0, 4.8, :

cannot compute exact p-value with ties

Note that the W represents the difference between the Rank Sum for each group and its minimum (low
average rank group) or maximum (high average rank group) possible value. In this example, if all of the
Controls fell below all of the Treatments, the rank sums would be as follow.

Control: 1+2+. . .+10 =
10(11)

2
= 55 Treatment: 11+. . .+29 = 435−55 = 380 W = 86−55 = 380−349 = 31

∇

For large samples, it’s difficult to find tables that contain the critical values (this example pushed the
limits, in fact). The rank sums are approximately normal in large samples, so a normal approximation can
be used. Let T be the rank sum for group 1 (the test is symmetric, so the statistic will have the same
absolute value, no matter which group gets labeled as 1). The expected value and standard deviation of T
under the null hypothesis M1 = M2 and the test statistic are given here.

n. = n1 + n2 T = T1 µT =
n1(n. + 1)

2
σT =

√

n1n2(n. + 1)

12
zobs =

T − µT

σT

The critical values for the Rejection Region are based on whether the test is 2-tailed or upper tailed and
α, as in other large-sample z-tests.
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HA : M1 6= M2 R.R.|zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|) HA : M1 > M2 R.R.zobs ≥ zα P = P (Z ≥ zobs)

Example 5.5: Apple Procyanidin B-2 for Hair Growth

To use the large-sample approximation, let the treatment group be treatment 1 (again, the conclusions
do not depend on this for a 2-tailed test).

n1 = 19 n2 = 10 n. = 29 T = 349 µT =
19(30)

2
= 285 σT =

√

19(10)(30)

12
= 21.79

zobs =
349 − 285

21.79
= 2.937 P = 2P (Z ≥ 2.937) = .0033

The rank sum for the treatment group is much larger than we would have expected under the null
hypothesis of no treatment effect.

∇

5.2.2 Paired Sample Designs

In paired samples (aka crossover) designs, subjects receive each treatment, thus acting as their own control.
They may also have been matched based on some characteristics. Procedures based on these designs take
this into account, and are based in determining differences between treatments after “removing” variability
in the subjects (or pairs). When it is possible to conduct them, paired sample designs are more powerful
than independent sample designs in terms of being able to detect a difference (reject H0) when differences
truly exist (HA is true), for a fixed sample size.

Paired t–test for Normally Distributed Data

In paired sample designs, each subject (or pair) receives each treatment. In the case of two treatments
being compared, we compute the difference in the two measurements within each subject (or pair), and test
whether or not the population mean difference is 0. When the differences are normally distributed, we use
the paired t–test to determine if differences exist in the mean response for the two treatments. Then this is
simply a 1-sample problem on the differences.

Let Y1 be the score in condition 1 for a randomly selected subject, and Y2 be the score in condition 2
for the subject. Let D = Y1 − Y2 be the difference. Further, suppose the following assumptions and their
corresponding results. Note that the differences across subjects (or pairs) are considered to be independent.

E{Y1} = µ1 V {Y1} = σ2
1 E{Y2} = µ2 V {Y2} = σ2

2 COV{Y1, Y2} = σ12
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⇒ E{D} = µ1 − µ2 = µD V {D} = σ2
D = σ2

1 + σ2
2 − 2σ12

D =

∑n
i=1 Di

n
E{D} = µD V {D} =

σ2
D

n
For large n: D

·∼ N

(

µD,
σ2

D

n

)

Normality holds for any sample sizes if the individual measurements (or the differences) are normally
distributed.

It should be noted that in the paired case n1 = n2 by definition. That is, we will always have equal
sized samples when the experiment is conducted properly. We will always be looking at the n = n1 = n2

differences, and will have n differences, even though there were 2n = n1 +n2 measurements made. From the
n differences obtained in a sample, we will compute the mean and standard deviation, which we will label
as d and sd.

d =

∑n
i=1 di

n
s2
d =

∑n
i=1(di − d)2

n − 1
sd =

√

s2
d sD =

sd√
n

A (1 − α)100% Confidence Interval for the population mean difference µD is given below.

d ± tα/2,n−1sD ≡ d ± tα/2,n−1
sd√
n

The test procedure is conducted as follows.

1. H0 : µ1 − µ2 = µD = 0

2. HA : µD 6= 0 or HA : µD > 0 or HA : µD < 0 (which alternative is appropriate should be clear from
the setting).

3. T.S.: tobs = d
s

D

= d
(

sd√
n

)

4. R.R.: |tobs| ≥ tα/2,n−1 or tobs ≥ tα,n−1 or tobs ≤ −tα,n−1 (which R.R. depends on which alternative
hypothesis you are using).

5. p-value: 2P (tn−1 ≥ |tobs|) or P (tn−1 ≥ tobs) or P (tn−1 ≤ tobs) (again, depending on which alternative
you are using).

Example 5.6: Comparison of Two Analytic Methods for Determining Wine Isotope

A study was conducted to compare two analytic methods for determining 87Sr/86Sr isotope ratios in
wine samples (Durante, et al (2015), [?]). These are used in geographic tracing of wine. The two methods
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sample id microwave lowtemp diff(m-l)
1 0.70866 0.70861 0.000050000
2 0.708762 0.708792 -0.00003000
3 0.708725 0.708734 -0.00000900
4 0.708668 0.708662 0.000006000
5 0.708675 0.70867 0.000005000
6 0.708702 0.708713 -0.00001100
7 0.708647 0.708661 -0.00001400
8 0.708677 0.708667 0.000010000
9 0.709145 0.709176 -0.00003100
10 0.709017 0.709024 -0.00000700
11 0.70882 0.708814 0.000006000
12 0.709402 0.709364 0.000038000
13 0.709374 0.709378 -0.00000400
14 0.709508 0.709517 -0.00000900
15 0.70907 0.709063 0.000007000
16 0.709061 0.709079 -0.00001800
17 0.709096 0.709039 0.000057000
18 0.70872 0.7087 0.000020000

Mean 0.708929 0.708926 0.000003667

SD 0.000287 0.000288 0.000024646

Table 5.3: 87SR/86SR Isotope ratios for 18 wine samples by Microwave and Low Temperature Methods

are microwave (method 1) and low temperature (method 2). The data, and the differences (microwave -
lowtemp) are given in Table ??.

The 95% Confidence Interval for µD is computed below, where t.025,18−1 = 2.110. First we multiply
the mean and standard deviations of the differences by 100000 (remove first 5 0s after decimal). This is

legitimate as they are of the same units. This leads to d
∗

= 0.3667 and s∗
D

= 2.46466.

0.3667± 2.110
2.4646√

18
≡ 0.3667± 2.110(0.5809) ≡ 0.3667± 1.2257 ≡ (−0.8590, 1.5924)

In the original units the interval is of the form of (-.00000859,.000015924). Since the interval contains
0, there is no evidence that one method tends to score higher (or lower) than the other on average.

We will conduct the test of whether there is a difference in the true mean determinations between the
two methods (with α = 0.05) by completing the steps outlined above.

1. H0 : µ1 − µ2 = µD = 0

2. HA : µD 6= 0

3. T.S.: tobs = 0.3667
(

2.4646√
18

) = 0.3667
0.5809 = 0.631

4. R.R.: tobs > tα/2,n−1 = t.025,17 = 2.110



5.2. SMALL–SAMPLE TESTS 143

5. P -value: 2P (t17 ≥ 0.631) = .5364

There is definitely no evidence that the two methods differ in terms of determinations of wine isotope ratios.

R Commands and Output

## Commands

wine1 <- read.csv("http://www.stat.ufl.edu/~winner/data/wine_isotope.csv")

attach(wine1); names(wine1)

mean(microwave); sd(microwave)

mean(lowtemp); sd(lowtemp)

cor(microwave,lowtemp)

## Brute Force Computations

diff <- microwave - lowtemp ## Obtain differences

n.diff <- length(diff) ## Obtain n of diffs

mean.diff <- mean(diff) ## Obtain mean of diffs

sd.diff <- sd(diff) ## Obtain SD of diffs

se.diff <- sd.diff/sqrt(length(diff)) ## Obtain Std Error of mean

t.diff <- mean.diff/se.diff ## t-statistic

pt.diff <- 2*(1-pt(abs(t.diff),n.diff-1))## P-value

t.025 <- qt(.975,n.diff-1) ## Critical t-value

muD.LO <- mean.diff-t.025*se.diff ## Lower Bound CI

muD.HI <- mean.diff+t.025*se.diff ## Upper Bound CI

diff.out <- cbind(mean.diff, sd.diff, se.diff, t.diff, pt.diff, muD.LO,

muD.HI)

colnames(diff.out) <- c("mean","SD","Std Err", "t", "P(>|t|)","LB","UB")

round(diff.out,9)

## t.test Function

t.test(microwave, lowtemp, paired=TRUE)

## Output

> mean(microwave); sd(microwave)

[1] 0.7089294

[1] 0.0002870958

> mean(lowtemp); sd(lowtemp)

[1] 0.7089257

[1] 0.0002878604

> cor(microwave,lowtemp)

[1] 0.9963286

> round(diff.out,9)

mean SD Std Err t P(>|t|) LB UB

[1,] 3.667e-06 2.4646e-05 5.809e-06 0.6311987 0.5363058 -8.589e-06 1.5923e-05

> t.test(microwave, lowtemp, paired=TRUE)

Paired t-test

data: microwave and lowtemp

t = 0.6312, df = 17, p-value = 0.5363

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.589364e-06 1.592270e-05

sample estimates:
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mean of the differences

3.666667e-06

∇

Wilcoxon Signed–Rank Test for Paired Data

A nonparametric test that is often conducted in paired sample designs is the Wilcoxon Signed-Rank test.
Like the paired t-test, the signed-rank test takes into account that the two treatments are being assigned to
the same subject (or pair). The test is based on the difference in the measurements within each subject (pair).
Any subjects (pairs) with differences of 0 (measurements are equal under both treatments) are removed and
the sample size is reduced. The test statistic is computed as follows.

1. For each pair, subtract measurement 2 from measurement 1.

2. Take the absolute value of each of the differences, and rank from 1 (smallest) to n (largest), adjusting
for ties by averaging the ranks they would have had if not tied.

3. Compute T+, the rank sum for the positive differences from step 1, and T−, the rank sum for the
negative differences.

To test whether or not the population distributions are identical, we use the following procedure:

1. H0 : The two population distributions have equal Medians (M1 = M2)

2. HA : The Medians Differ (M1 6= M2)

3. T.S.: T = min(T+, T−)

4. R.R.: T ≤ T0, where T0 is a function of n and α and given in tables in many statistics texts and on
the web.

For a one-sided test, if you wish to show that the distribution of population 1 is shifted to the right of
population 2 (M1 > M2), the procedure is as follows:

1. H0 : The two population distributions have equal Medians (M1 = M2)

2. HA : Distribution 1 is shifted to the right of distribution 2 (M1 > M2)

3. T.S.: T = T−

4. R.R.: T ≤ T0, where T0 is a function of n and α and given in tables in many statistics texts and on
the web.
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Note that if you wish to use the alternative M1 < M2, use the above procedure with T+ replacing T−. The
idea behind this test is to determine whether the differences tend to be positive (M1 > M2) or negative
(M1 < M2), where differences are ‘weighted’ by their magnitude.

Example 5.7: Water Consumption by Cats under Still and Flowing Sources

A small pilot study was conducted to compare the daily amount of water consumed (mL) when presented
with still or flowing water (Pachel and Neilson (2010) [?]). Each of n = 9 cats was observed 2 days each under
each condition, and the mean for each condition was computed for each cat. Data are given in Table ??,
along with ranks. We will test whether there is evidence that the true medians differ (even though this is
clearly a very small sample).

Cat (i) still flowing di=flowing-still |di| rank(|di|)
1 157.5 164.5 7 7 2
2 84.5 51.5 -33 33 6
3 134.0 250.0 116 116 9
4 74.0 139.0 65 65 7
5 108.0 113.0 5 5 1
6 107.5 124.5 17 17 4
7 106.0 95.5 -10.5 10.5 3
8 163.0 70.5 -92.5 92.5 8
9 54.0 30.5 -23.5 23.5 5

Table 5.4: Average daily water consumed by cats in still and flowing conditions

Based on Table ??, we get T+ (the sum of the ranks for positive differences) and T− (the sum of the
ranks of the negative differences), as well as the test statistic T , as follows:

T+ = 2 + 9 + 7 + 1 + 4 = 23 T− = 6 + 3 + 8 + 5 = 22 T = min(T+, T−) = min(23, 22) = 22

Note that short of there having been a tie, this is the closest T+ and T− could be. We can then use
the previously given steps to test for differences in the medians of the true distributions for the 2 water
conditions.

1. H0 : The two population medians (M1 = M2)

2. HA : One distribution is shifted to the right of the other (M1 6= M2)

3. T.S.: T = min(T+, T−) = 22

4. R.R.: T ≤ T0, where T0 = 5 is based on 2-sided alternative , α = 0.05, and n = 9.

Since T = 22 does not fall in the rejection region, we cannot reject H0, and we fail to conclude that the
medians differ. Note that the P -value is thus larger than 0.05, since we fail to reject H0 (in fact it is 1).

R Commands and Output

## Commands
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still <- c(157.5, 84.5, 134, 74, 108, 107.5, 106, 163, 54)

flowing <- c(164.5, 51.5, 250, 139, 113, 124.5, 95.5, 70.5, 30.5)

wilcox.test(still, flowing, paired=TRUE)

## Output

> wilcox.test(still, flowing, paired=TRUE)

Wilcoxon signed rank test

data: still and flowing

V = 22, p-value = 1

alternative hypothesis: true location shift is not equal to 0

∇

In large-samples, the rank-sums T+ and T− have approximately normal sampling distributions. By

definition, T+ +T− = 1 + · · ·+n = n(n+1)
2 . Under the null hypothesis H0 : M1 = M2, we have the following

mean and variance for T+ and T−.

µT =
n(n + 1)

4
σT =

√

n(n + 1)(2n + 1)

24
zobs =

T − µT

σT

The usual rules for rejection regions and P -values apply. If the alternative is HA : M1 > M2 use T = T+

and reject H0 if zobs ≥ zα. If the alternative is HA : M1 < M2 use T = T− and reject H0 if zobs ≥ zα. For
HA : M1 6= M2, use either T+ or T−, and reject if |zobs| ≥ zα/2.

Example 5.8: Efficiency Comparison of Recreational and Professional Bettors

An economic study was conducted, comparing recreational and professional bettors’ efficiencies (Bruce,
Johnson, and Peirson (2012), [?]). They considered race attendees as Recreational bettors and remote (on-
line) bettors as Professional bettors. The authors had aggregate returns (amount won divided by amount
bet) data for both groups on n = 2057 races. The difference (remote - attendee) was obtained for each race.
There were 963 negative differences (attendees outperformed remote bettors) and 1094 positive differences.
The rank sum information is given below.

T+ = 1167023.5 T− = 949629.5 T+ + T− = 2116653 = 1 + · · ·+ 2057 µT =
2057(2058)

4
= 1058326.5

σT =

√

2057(2057 + 1)(2(2057) + 1)

24
= 26941.34 zobs =

1167023.5− 1058326.5

26941.34
= 4.03

There is strong evidence of a difference in the two groups. Note the authors also present the mean and
the standard deviation of the differences. The 95% Confidence Interval for µD is (.0287,.0671), an advantage
in aggregate return of about 2.9% to 6.7%.
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yr = 0.8659 ya = 0.8180 d = 0.0479 sd = 0.4448
sd√
n

=
0.4448√

2057
= 0.0098

0.0479± 1.96(0.0098) ≡ (0.0287, 0.0671)

∇

5.3 Power and Sample Size Considerations

In this section, issues of power and sample size are considered in the 2-Sample Location problem. Power
refers to the probability of rejecting the null hypothesis. When H0 is true, it should be α, and when the
alternative is true, it will depend on the magnitude of the difference, the variability and the sample sizes.
Once power has been considered empirically, sample size computations will be made based on distributional
results.

5.3.1 Empirical Study of Power

To compare the power of the independent sample t-test and the Wilcoxon Rank-Sum test, we return to
the populations of NHL/EPL players’ BMI and the Female and Male marathon runner’s speeds. The BMI
distributions were approximately normal, while the marathon speeds were right skewed.

Example 5.9: Small-Sample Inference Comparing BMI for NHL and EPL Players

The means and standard deviations of the BMI levels for NHL and EPL players are given below,
along with the mean and variance of the sampling distribution of Y n − Y e. Note that as each distribution
is approximately normal, its sampling distribution will be very close to a normal distribution, even with
relatively small samples. Further, the variances are not equal, although they are not too far apart. Refer
back to Figure ?? for a histogram of 100000 random samples’ mean differences of n1 = n2 = 20.

BMI: µn = 26.50 σn = 1.45 µe = 23.02 σe = 1.71 E{Y n − Y e} = 26.50− 23.02 = 3.48

V {Y n − Y e} =
1.452

nn
+

1.712

ne

We compare the coverage rates of small sample Confidence Intervals based on equal variance and unequal
variance assumptions, as well as their widths for samples of nn = ne = 10. The unequal variance case will
always be wider, as the sample mean difference and estimated standard error will be the same as the
equal variance case, but will have fewer degrees of freedom. Due to the equivalence of the 2-tailed test and
Confidence Interval for testing H0 : µn−µe = 0, we can also observe the empirical power of the two methods.
The process is conducted as follows.
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1. Sample 10 players from NHL and 10 players from EPL

2. Compute yn, sn , ye, se

3. Compute the sample mean difference yn − ye and its estimated standard error
√

s2
n

10
+

s2
e

10

4. Compute the approximate degrees of freedom for the unequal variance case (Satterthwaite’s approxi-
mation)

5. Obtain the 95% Confidence Intervals for µn − µe

6. Determine whether the Confidence Intervals contain 3.48 (true value) and whether they contain 0
(Testing µn − µe = 0)

7. Obtain the width of the intervals

The equal variance Confidence Intervals contained µn −µe = 3.48 in 95.18% of the samples, the unequal
variance CI’s covered in 95.36% of the samples. Based on equal sample sizes, (and will typically always be
the case) the unequal case will always have wider intervals and thus higher coverage rates at the cost of being
wider. The average width of the equal variance CI’s was 2.9291 versus 2.9597 for the unequal case. The
unequal case was only about 1% wider on average due to how similar the population standard deviations
are. The equal variance case rejected H0 : µn − µe = 0 in favor of HA : µn − µe 6= 0 in 99.08% of the
samples, while the unequal variance case did so in 98.91%. Neither ever rejected with a negative t-statistic.
The mean difference was very large, so it’s not surprising to have such high power.

R Commands and Output

## Commands

bmi.sim <- read.csv("http://www.stat.ufl.edu/~winner/data/nhl_nba_ebl_bmi.csv",

header=TRUE)

attach(bmi.sim); names(bmi.sim)

## Obtain populations and mu and sigma for each

N.nhl <- 717 # # of NHL players

N.epl <- 526 # # of EPL players

bmi.nhl <- NHL_BMI[1:N.nhl]

bmi.epl <- EPL_BMI[1:N.epl]

(mu.nhl <- mean(bmi.nhl)); (sigma.nhl <- sd(bmi.nhl))

(mu.epl <- mean(bmi.epl)); (sigma.epl <- sd(bmi.epl))

## Set up and run samples and ybar and s arrays

num.sim <- 100000

n.nhl <- 10

n.epl <- 10

(mu.meandiff <- mu.nhl - mu.epl)

(sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl))

set.seed(1122)

ybar.s.nhl <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.epl <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(bmi.nhl,n.nhl,replace=F)

y2 <- sample(bmi.epl,n.nhl,replace=F)

ybar.s.nhl[i,1] <- mean(y1)

ybar.s.nhl[i,2] <- sd(y1)
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ybar.s.epl[i,1] <- mean(y2)

ybar.s.epl[i,2] <- sd(y2)

}

## End of sampling

## Generate sample mean differences SE’s and CI’s

## ev=equal variances, uv=unequal variances

meandiff <- ybar.s.nhl[,1] - ybar.s.epl[,1]

se.meandiff <- sqrt(ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)

df.uv1 <- (ybar.s.nhl[,2]^2/n.nhl + ybar.s.epl[,2]^2/n.epl)^2

df.uv2 <- ((ybar.s.nhl[,2]^2/n.nhl)^2/(n.nhl-1)) +

((ybar.s.epl[,2]^2/n.epl)^2/(n.epl-1))

df.uv <- df.uv1 / df.uv2

df.ev <- n.nhl + n.epl - 2

meandiff.LB.ev <- meandiff + qt(.025,df.ev) * se.meandiff

meandiff.UB.ev <- meandiff + qt(.975,df.ev) * se.meandiff

meandiff.LB.uv <- meandiff + qt(.025,df.uv) * se.meandiff

meandiff.UB.uv <- meandiff + qt(.975,df.uv) * se.meandiff

## Obtain Coverage rates, widths, power (H0:mu1-mu2=0)

sum(meandiff.LB.ev <= mu.meandiff & meandiff.UB.ev >= mu.meandiff) / num.sim

sum(meandiff.LB.uv <= mu.meandiff & meandiff.UB.uv >= mu.meandiff) / num.sim

mean(meandiff.UB.ev-meandiff.LB.ev)

mean(meandiff.UB.uv-meandiff.LB.uv)

sum(meandiff.LB.ev >= 0) / num.sim

sum(meandiff.LB.uv >= 0) / num.sim

sum(meandiff.UB.ev <= 0) / num.sim

sum(meandiff.UB.uv <= 0) / num.sim

## Output

> (mu.nhl <- mean(bmi.nhl)); (sigma.nhl <- sd(bmi.nhl))

[1] 26.50015

[1] 1.454726

> (mu.epl <- mean(bmi.epl)); (sigma.epl <- sd(bmi.epl))

[1] 23.01879

[1] 1.713098

> (mu.meandiff <- mu.nhl - mu.epl)

[1] 3.481361

> (sigma.meandiff <- sqrt(sigma.nhl^2/n.nhl + sigma.epl^2/n.epl))

[1] 0.7106991

> sum(meandiff.LB.ev <= mu.meandiff & meandiff.UB.ev >= mu.meandiff) / num.sim

[1] 0.95178

> sum(meandiff.LB.uv <= mu.meandiff & meandiff.UB.uv >= mu.meandiff) / num.sim

[1] 0.95362

> mean(meandiff.UB.ev-meandiff.LB.ev)

[1] 2.929125

> mean(meandiff.UB.uv-meandiff.LB.uv)

[1] 2.959715

> sum(meandiff.LB.ev >= 0) / num.sim

[1] 0.9903

> sum(meandiff.LB.uv >= 0) / num.sim

[1] 0.98914

> sum(meandiff.UB.ev <= 0) / num.sim

[1] 0

> sum(meandiff.UB.uv <= 0) / num.sim

[1] 0

∇

Example 5.10: Small-Sample Inference for Female and Male Marathon Speeds
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Comparisons among Female and Male marathon speeds are now made. Unlike the NHL/EPL Body
Mass Indices, these speeds are not approximately normally distributed, but are rather skewed to the right,
refer to Figure ??. The population means and standard deviations are given below, along with the mean
and standard error of the sampling distribution of the sample mean Y f − Y m.

µf = 5.840 σf = 0.831 µm = 6.337 σf = 1.058

E{Y f − Y m} = −0.497 SE{Y f − Y m} =

√

0.8312

nf
+

1.0582

nm

We will consider fairly small samples, nf = nm = 6, and first repeat the comparisons made in BMI
example, and further compare the t-tests with the Wilcoxon Rank-Sum test in terms of power for testing
H0 : µf − µm ≥ 0 vs HA : µf − µm < 0. The equal variance Confidence Interval covered µf − µm = 0.497 in
94.86% of samples, the unequal case covered in 95.33%, so even with these small samples, and the skewed
distributions, the t-based Confidence Intervals performed well. In terms of concluding HA : µf − µm < 0,
the equal variance t-test correctly rejected H0 in 20.67% of samples, the unequal variance t-test in 19.58%,
and the Wilcoxon Rank-Sum test in 19.04%.

R Program and Output

## Commands

## Read data from website and attach data frame and obtain variable names

rr.mar <- read.csv(

"http://www.stat.ufl.edu/~winner/data/rocknroll_marathon_mf2015a.csv")

attach(rr.mar); names(rr.mar)

f.mph <- mph[Gender=="F"]

m.mph <- mph[Gender=="M"]

(mu.f <- mean(f.mph)); (sigma.f <- sd(f.mph))

(mu.f <- mean(f.mph)); (sigma.f <- sd(f.mph))

(mu.m <- mean(m.mph)); (sigma.m <- sd(m.mph))

num.sim <- 100000

n.f <- 6; n.m <- 6

(mu.meandiff <- mu.f - mu.m)

(sigma.meandiff <- sqrt(sigma.f^2/n.f + sigma.m^2/n.m))

set.seed(3344)

ybar.s.f <- matrix(rep(0,2*num.sim),ncol=2)

ybar.s.m <- matrix(rep(0,2*num.sim),ncol=2)

ranksum.fm <- matrix(rep(0,2*num.sim),ncol=2)

for (i in 1:num.sim) {

y1 <- sample(f.mph,n.f,replace=F)

y2 <- sample(m.mph,n.m,replace=F)

ybar.s.f[i,1] <- mean(y1)

ybar.s.f[i,2] <- sd(y1)

ybar.s.m[i,1] <- mean(y2)

ybar.s.m[i,2] <- sd(y2)

ranksum.fm [i,1] <- sum(rank(c(y1,y2))[1:n.f])

ranksum.fm [i,2] <- sum(rank(c(y1,y2))[(n.f+1):(n.f+n.m)])

}
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meandiff <- ybar.s.f[,1] - ybar.s.m[,1]

se.meandiff <- sqrt(ybar.s.f[,2]^2/n.f + ybar.s.m[,2]^2/n.m)

df.uv1 <- (ybar.s.f[,2]^2/n.f + ybar.s.m[,2]^2/n.m)^2

df.uv2 <- ((ybar.s.f[,2]^2/n.f)^2/(n.f-1)) +

((ybar.s.m[,2]^2/n.m)^2/(n.m-1))

df.uv <- df.uv1 / df.uv2

df.ev <- n.f + n.m - 2

meandiff.LB.ev <- meandiff + qt(.025,df.ev) * se.meandiff

meandiff.UB.ev <- meandiff + qt(.975,df.ev) * se.meandiff

meandiff.LB.uv <- meandiff + qt(.025,df.uv) * se.meandiff

meandiff.UB.uv <- meandiff + qt(.975,df.uv) * se.meandiff

## Obtain Coverage rates, widths, power (H0:mu1-mu2=0 HA:mu1-mu2<0)

sum(meandiff.LB.ev <= mu.meandiff & meandiff.UB.ev >= mu.meandiff) / num.sim

sum(meandiff.LB.uv <= mu.meandiff & meandiff.UB.uv >= mu.meandiff) / num.sim

mean(meandiff.UB.ev-meandiff.LB.ev)

mean(meandiff.UB.uv-meandiff.LB.uv)

t.uv.ev <- meandiff / se.meandiff

rr.t.uv <- qt(.05,df.uv)

rr.t.ev <- qt(.05,df.ev)

rr.t1.w <- 28 ## From Wilcoxon Rank-sum w/ n1=n2=6

sum(t.uv.ev <= rr.t.uv) / num.sim

sum(t.uv.ev <= rr.t.ev) / num.sim

sum(ranksum.fm[,1] <= rr.t1.w) / num.sim

## Output

> (mu.f <- mean(f.mph)); (sigma.f <- sd(f.mph))

[1] 5.839839

[1] 0.8310405

> (mu.m <- mean(m.mph)); (sigma.m <- sd(m.mph))

[1] 6.336979

[1] 1.057687

> (mu.meandiff <- mu.f - mu.m)

[1] -0.49714

> (sigma.meandiff <- sqrt(sigma.f^2/n.f + sigma.m^2/n.m))

[1] 0.5491402

> sum(meandiff.LB.ev <= mu.meandiff & meandiff.UB.ev >= mu.meandiff) / num.sim

[1] 0.94856

> sum(meandiff.LB.uv <= mu.meandiff & meandiff.UB.uv >= mu.meandiff) / num.sim

[1] 0.95331

> mean(meandiff.UB.ev-meandiff.LB.ev)

[1] 2.383104

> mean(meandiff.UB.uv-meandiff.LB.uv)

[1] 2.45255

> sum(t.uv.ev <= rr.t.uv) / num.sim

[1] 0.19584

> sum(t.uv.ev <= rr.t.ev) / num.sim

[1] 0.20669

> sum(ranksum.fm[,1] <= rr.t1.w) / num.sim

[1] 0.19042

∇
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5.3.2 Power Computations

To obtain the sample sizes needed to detect an important difference in means, the non-central t-distribution
can be used in a similar manner to what was done for the one-sample problem. The only difference is that
instead of looking for an important difference from some pre-specified null mean, we are interested in the
difference between two population means. First, consider the case of independent samples. This is generally
done under the assumption of equal variances.

H0 : µ1 − µ2 = 0 µ1 − µ2 = (µ1 − µ2)A 6= 0 ∆ =
(µ1 − µ2)A

σ
√

2
n

t =
Y 1 − Y 2
√

S2
p

(

2
n

)

∼ t2(n−1),∆

If σ is known (or well approximated), researchers can choose an important difference (µ1 − µ2)A, and
determine the sample size that gives a reasonable power π to detect it based on a test with significance
level α. In other situations, an important effect size δ = (µ1 − µ2)A /σ can be obtained, which measures
the difference in means in standard deviation units. Once the important effect size is chosen, beginning
with small n, the power π is determined and the process continues until the desired power is obtained. The
process works as follows for a 2-tailed test.

1. Determine important effect size δ = (µ1 − µ2)A /σ and set the significance level α and desired power
π.

2. Starting with (say) n1 = n2 = n = 2, obtain the degrees of freedom 2(n − 1) and critical value
tα/2,2(n−1).

3. Compute the non-centrality parameter ∆ = δ√
2/n

.

4. Obtain πn: the probability the non-central t is greater than tα/2,2(n−1) or less than −tα/2,2(n−1).

5. If πn exceeds the desired π, stop. Otherwise, increment n by 1 and repeat the process.

In the case of 1-tailed tests, the Rejection Region is in only 1-tail, with area α and only one of the tail
area probabilities is computed.

Example 5.11: Power Calculation for Comparison of Female and Male Marathon Speeds

Using numbers similar to those observed in the populations of marathon runners, suppose we want to be
able to detect a difference (µf − µm)A = −0.5 and that σf = σm = σ = 0.94 (we are just averaging the true
standard deviations for computational purposes). We then obtain the following results. We will start with
nf = nm = n = 6, since the power was so low (approximately 0.20) for the lower-tailed t-test in Example
5.10.

δ =
−0.50

0.94
= −0.532 ∆6 =

−0.532
√

2/6
= −0.921 df = 2(6 − 1) = 10 − t.05,10 = −1.812

For the lower-tailed test HA : µf − µm < 0, for these sample sizes, reject the null of no difference
if tobs ≤ −1.812. Now we find the probability under the non-central t-density with 6+6-2=10 degrees of
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freedom and non-centrality parameter -0.921 that is below -1.812. The power turns out to be 0.216 (see
R output below). Using the R functions qt for quantiles and pt for lower tail probabilities (cumulative
distribution function), the relevant probabilities (powers) can be obtained. Samples of size nf = nm = 45
would be needed for the power to reach 0.8.

R Commands and Output

## Commands

## Set parameters, alpha, chosen power, for starting sample size (n0)

m1_m2_A <- -0.50

sigma <- 0.94

n0 <- 6

alpha <- 0.05

power.star <- 0.80

(delta <- m1_m2_A / sigma)

(crit_val <- qt(.05,2*(n0-1)))

(power.lt <- pt(crit_val,2*(n0-1),delta/sqrt(2/n0)))

## Set up holders for power and sample size and row and sample size start values

power.out <- numeric()

n.out <- numeric()

i <- 0

n <- n0

## Loop until power exceeds chosen power

while (power.lt < power.star) {

i <- i+1

n <- n+1

crit_val <- qt(alpha,2*(n-1))

power.lt <- pt(crit_val,2*(n-1),delta/sqrt(2/n))

power.out[i] <- power.lt

n.out[i] <- n

}

## Print Sample sizes and corresponding powers

cbind(n.out, power.out)

## Output

> (delta <- m1_m2_A / sigma)

[1] -0.5319149

> (crit_val <- qt(.05,2*(n0-1)))

[1] -1.812461

> (power.lt <- pt(crit_val,2*(n0-1),delta/sqrt(2/n0)))

[1] 0.2161749

> cbind(n.out, power.out)

n.out power.out

[1,] 7 0.2402697

[2,] 8 0.2636261

...

[38,] 44 0.7968277

[39,] 45 0.8047651

Had this been a 2-tailed test with HA : µf − µm 6= 0, the Rejection Region would be |tobs| ≥ tα/2,2(n−1).
Below are the R Commands and Output that computes the power for the 2-tailed test (it only contains the
initial calculation, the loop part is similar to the lower-tail test). Samples of n = 57 females and males would
be needed for the power to reach 0.80.



154CHAPTER 5. COMPARING TWO POPULATIONS: MEANS, MEDIANS, PROPORTIONS AND VARIANCES

R Commands and Output

## Commands

####### 2-Tailed Test

## Set parameters, alpha, chosen power, for starting sample size (n0)

m1_m2_A <- -0.50

sigma <- 0.94

n0 <- 6

alpha <- 0.05

power.star <- 0.80

(delta <- m1_m2_A / sigma)

(crit_val_lo <- qt(.05/2,2*(n0-1)))

(crit_val_hi <- qt(1-.05/2,2*(n0-1)))

(power.2t <- pt(crit_val_lo,2*(n0-1),delta/sqrt(2/n0)) +

(1-pt(crit_val_hi,2*(n0-1),delta/sqrt(2/n0))))

## Output

> (delta <- m1_m2_A / sigma)

[1] -0.5319149

> (crit_val_lo <- qt(.05/2,2*(n0-1)))

[1] -2.228139

> (crit_val_hi <- qt(1-.05/2,2*(n0-1)))

[1] 2.228139

> (power.2t <- pt(crit_val_lo,2*(n0-1),delta/sqrt(2/n0)) +

+ (1-pt(crit_val_hi,2*(n0-1),delta/sqrt(2/n0))))

[1] 0.1329802

> cbind(n.out, power.out)

n.out power.out

[1,] 7 0.1505426

...

[50,] 56 0.7967349

[51,] 57 0.8037961

∇

In terms of the paired t-test, when testing H0 : µD = 0 vs HA : µD 6= 0, there may be a specific difference
µDA that would like to be detected with a specified power π. This is very similar to the 1-sample problem
in the previous chapter. Define the following terms, where µDA is the mean difference under HA and σD is
the standard deviation of the differences.

tobs =
d

sd/
√

n
=

√
n

d

sd
δ =

µDA

σD
∆ =

√
nδ

Again δ is the effect size and ∆ is the non-centrality parameter. The degrees of freedom for the paired
t-test is n − 1. The process generalizes directly from the independent samples method described above.

Example 5.12: Water Consumption by Cats under Still and Flowing Sources

In the pilot study of cats drinking flowing versus still water, the standard deviation of the differences
was approximately 60 ml. Suppose the researchers would like to detect a true mean difference of µDA = 30
mL with power π = 0.75. In this setting δ = 30/60 = 0.5 and ∆ =

√
n(0.5). Beginning with the authors’



5.4. METHODS BASED ON RESAMPLING 155

original sample of n = 9, we obtain the power then iterate until π ≥ 0.75. The R program and output are
given below, for n = 9, π = 0.263. A sample of n = 30 would be needed to reach π = 0.75.

R Commands and Output

## Commands

mu_DA <- 30

sigma_D <- 60

n0 <- 9

alpha <- .05

power.star <- 0.75

(delta <- mu_DA / sigma_D)

(crit_val_lo <- qt(alpha/2,n0-1))

(crit_val_hi <- qt(1-alpha/2,n0-1))

(power.2t <- pt(crit_val_lo,n0-1,sqrt(n0)*delta) +

(1-pt(crit_val_hi,n0-1,sqrt(n0)*delta)))

power.out <- numeric()

n.out <- numeric()

i <- 0

n <- n0

## Loop until power exceeds chosen power

while (power.2t < power.star) {

i <- i+1

n <- n+1

crit_val_lo <- qt(.05/2,n-1)

crit_val_hi <- qt(1-.05/2,n-1)

power.2t <- pt(crit_val_lo,n-1,sqrt(n)*delta) +

(1-pt(crit_val_hi,n-1,sqrt(n)*delta))

power.out[i] <- power.2t

n.out[i] <- n

}

## Print Sample sizes and corresponding powers

cbind(n.out, power.out)

## Output

> (power.2t <- pt(crit_val_lo,n0-1,sqrt(n0)*delta) +

+ (1-pt(crit_val_hi,n0-1,sqrt(n0)*delta)))

[1] 0.2627461

> cbind(n.out, power.out)

n.out power.out

[1,] 10 0.2931756

...

[20,] 29 0.7386963

[21,] 30 0.7539647

∇

5.4 Methods Based on Resampling

In this section, two methods for comparing two means are considered. These are the Bootstrap and
Randomization/Permutation Tests.
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5.4.1 The Bootstrap

The bootstrap method is the same principle as in the one-sample case. In terms of independent samples,
take resamples within each group with replacement, then take the difference between the two group means
in each subsample. This will be illustrated below. In terms of paired samples, the one-sample methods are
used on the observed paired differences from the original sample.

For the Bootstrap t Intervals, for each resample, compute y∗
1i, s

∗
1i, y

∗
2i, s

∗
2i for the ith resample, and

compute t∗i as below, where n1, y1, s1, n2, y2, s2 are the sizes, means, and standard deviations of the original
samples.

t∗i =
(y∗

1i − y∗
2i) − (y1 − y2)

√

s∗2
1i

n1
+

s∗2
2i

n2

i = 1, . . . , B

Once the B t∗i statistics are obtained the α/2 and 1 − α/2 quantiles are obtained and labeled Q∗
L and

QU , respectively. The (1 − α)100% Bootstrap t CI for µ1 − µ2 is of the following form.

(y1 − y2) − Q∗
U

√

s2
1

n1
+

s2
2

n2
, (y1 − y2) − Q∗

L

√

s2
1

n1
+

s2
2

n2

Example 5.13: Anthropometric Measurements of Lahoul and Kulu Kanets in Punjab

A study sampled 30 Lahoul Kanet adults and 60 Kulu Kanet adults, making various physical measure-
ments (Holland (1902) [?]). The author reported on 7 characteristics among each subject. Consider the
variable cubit (cm), given in Table ??. The summary statistics from the samples are given below.

nL = 30 yL = 44.657 sL = 2.056 nK = 60 yK = 45.298 sK = 1.692 yL − yK = −0.641

We take 10000 resamples of 30 Lahoul and 60 Kulu Kanets, obtaining the means for each group and
the difference. Then, obtaining the bootstrap mean and standard error for the differences, along with the
bootstrap percentile intervals from the 2.5 and 97.5 percentiles of the resampled mean differences. The
mean of the 10000 mean differences is -0.639, the bootstrap standard error is 0.427, and the 95% bootstrap
percentile Confidence Interval is (-1.458, 0.212). A histogram of the resample mean differences and a normal
probability plot are given in Figure ??.

R Commands and Output

## Commands

kanet <- read.fwf("http://www.stat.ufl.edu/~winner/data/kanet.dat",

width=c(18,2,rep(8,7)), col.names=c("name","kgroup","age","stature",

"armspan","sitheight","knlheight","cubit","leftfoot"))

attach(kanet)
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Lahoul Lahoul Kulu Kulu Kulu Kulu
45.2 44.3 44.8 46.6 44.9 43.2
46.9 46.6 45.7 43.3 46.1 45.7
44.7 42.4 44.4 44.9 47.5 46.4
46.3 42.7 45.8 44.6 44.9 49.3
43.4 44.9 44.6 45.3 49.2 46.1
43.3 42.3 44.3 44.6 43.7 44.7
39.6 43.5 45.4 47.8 46.0 45.1
45.6 42.9 44.3 44.0 43.7 43.4
43.6 46.8 44.8 47.8 45.4 45.6
44.2 46.2 43.2 47.8 45.0 47.7
47.4 43.9 46.5 44.9 42.8 50.3
48.2 46.8 45.0 45.1 47.1 42.1
45.0 43.3 46.8 44.3 45.7 46.2
45.4 42.5 41.9 45.5 45.2 44.1
42.9 48.9 44.9 43.8 42.5 45.6

Table 5.5: Cubit lengths (cm) for samples of 30 Lahoul Kanets and 60 Kulu Kanets

cubit

tapply(cubit,kgroup,mean)

tapply(cubit,kgroup,sd)

L.cubit <- cubit[kgroup==1]

K.cubit <- cubit[kgroup==2]

set.seed(97531)

num.boot <- 10000

boot.ybar1 <- rep(0,num.boot)

boot.ybar2 <- rep(0,num.boot)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

for (i in 1:num.boot) {

y1 <- sample(L.cubit, n.L, replace=T)

y2 <- sample(K.cubit, n.K, replace=T)

boot.ybar1[i] <- mean(y1); boot.ybar2[i] <- mean(y2)

}

meandiff <- boot.ybar1-boot.ybar2

mean(meandiff)

sd(meandiff)

quantile(meandiff,c(.025,.975))

par(mfrow=c(1,2))

hist(meandiff,breaks=30)

abline(v=(mean(L.cubit)-mean(K.cubit)),lwd=2)

qqnorm(meandiff); qqline(meandiff)

## Output

> tapply(cubit,kgroup,mean)

1 2

44.65667 45.29833

> tapply(cubit,kgroup,sd)

1 2

2.055889 1.692305
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Histogram of meandiff
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Figure 5.5: Histogram and Normal Probability Plot for Bootstrap Resample Mean Differences (Lahout -
Kulu)

> mean(meandiff)

[1] -0.6386542

> sd(meandiff)

[1] 0.4273809

> quantile(meandiff,c(.025,.975))

2.5% 97.5%

-1.4583750 0.2116667

For the 95% Bootstrap t Confidence Interval, the .025 quantile of t∗ is QL = −1.715 and the .975 quantile
is QU = 1.830 and the resulting 95% Confidence Interval is (-1.437, 0.103).

R Commands and Output

## Commands

## Bootstrap t CIs - Chihara and Hesterberg, Sec.7.5, p.198-200

set.seed(97531)

num.boot <- 10000

boot.ybar.s.L <- matrix(rep(0,2*num.boot),ncol=2)

boot.ybar.s.K <- matrix(rep(0,2*num.boot),ncol=2)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

mean.L <- mean(L.cubit)

mean.K <- mean(K.cubit)

sd.L <- sd(L.cubit)
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sd.K <- sd(K.cubit)

for (i in 1:num.boot) {

y1 <- sample(L.cubit, n.L, replace=T)

y2 <- sample(K.cubit, n.K, replace=T)

boot.ybar.s.L[i,1] <- mean(y1); boot.ybar.s.K[i,1] <- mean(y2)

boot.ybar.s.L[i,2] <- sd(y1); boot.ybar.s.K[i,2] <- sd(y2)

}

t.star <- ((boot.ybar.s.L[,1]-boot.ybar.s.K[,1])-(mean.L-mean.K)) /

sqrt((boot.ybar.s.L[,2]^2/n.L)+(boot.ybar.s.K[,2]^2/n.L))

(Q_L <- quantile(t.star, 0.025))

(Q_U <- quantile(t.star, 0.975))

((mean.L - mean.K) - Q_U * sqrt((sd.L^2/n.L) + (sd.K^2/n.K)))

((mean.L - mean.K) - Q_L * sqrt((sd.L^2/n.L) + (sd.K^2/n.K)))

## Output

> (Q_L <- quantile(t.star, 0.025))

2.5%

-1.715131

> (Q_U <- quantile(t.star, 0.975))

97.5%

1.830131

> ((mean.L - mean.K) - Q_U * sqrt((sd.L^2/n.L) + (sd.K^2/n.K)))

-1.436502

> ((mean.L - mean.K) - Q_L * sqrt((sd.L^2/n.L) + (sd.K^2/n.K)))

0.1032235

∇

5.4.2 Randomization/Permutation Tests

Randomization/Permutation tests consider the observed responses as being made up of a treatment/population
mean and a random error term. That is, Yij = µi + εij, i = 1, 2; j = 1, . . . , nij. The random error term is
unique to the experimental unit that it corresponds to, and could be due to any number of factors. If there
are no differences in the treatment/population means (µ1 = µ2), then all of the observed values could have
come from either treatment/population on any number of randomizations by the experimenter or nature.
The process of randomization and permutation tests is as follows for the independent sample t-test.

1. Compute a statistic from the original data that measures a discrepancy between the sample data and
the null hypothesis, such as y1 − y2.

2. Generate many permutations (N) of the original samples to the two groups and compute and save the
statistic for each permutation.

3. Count the number of permutations for which the statistic is as or more extreme than the original
sample’s value.

4. The P -value is (Count+1)/(N+1) the proportion of the statistics as or more extreme than the original
(including the original).
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Example 5.14: Cubit Lengths of Lahout and Kulu Kanets

To illustrate the test, consider the lengths of the cubits of the Lahout and Kulu Kanets. In Example
5.14, the mean difference from the original samples was yL − yK = −0.641. Suppose there is no difference
in the two cultures’ tendencies to generate different cubit lengths and they are due to randomness among
individuals who “nature” randomized to the cultures. Then consider 9999 permutations of these 90 cubit
lengths to the nL Lahouts and nK Kulus. Of N = 9999 permutation samples, 1207 were as large as the
observed difference in absolute value, for a P -value of (1207+1)/(9999+1) = .1208. Thus, there is no evidence
to reject the null hypothesis that µL = µK . A histogram of the permutation mean differences with a vertical
line at the observed mean difference is given in Figure ??.

R Commands and Output

## Commands

kanet <- read.fwf("http://www.stat.ufl.edu/~winner/data/kanet.dat",

width=c(18,2,rep(8,7)), col.names=c("name","kgroup","age","stature",

"armspan","sitheight","knlheight","cubit","leftfoot"))

attach(kanet)

L.cubit <- cubit[kgroup==1]

K.cubit <- cubit[kgroup==2]

(TS.obs <- mean(L.cubit) - mean(K.cubit))

## Set up and obtain Permutation Samples

set.seed(24680)

num.perm <- 9999

TS <- rep(0,num.perm)

n.L <- length(L.cubit)

n.K <- length(K.cubit)

n.LK <- n.L + n.K

for (i in 1:num.perm) {

perm <- sample(1:n.LK,n.LK,replace=F) # Permutation of 1:90

ybar1 <- mean(cubit[perm[1:n.L]]) # First 30 assigned L

ybar2 <- mean(cubit[perm[(n.L+1):n.LK]]) # Last 60 assigned K

TS[i] <- ybar1 - ybar2

}

## Count # permutations where |TS| >= |TS.obs| and obtain 2-tail P-value

(num.exceed <- sum(abs(TS) >= abs(TS.obs)))

(p.val.2tail <- (num.exceed+1) / (num.perm+1))

hist(TS,breaks=30, xlab="MeanL - MeanK",

main="Randomization Distribution for Cubit Length")

abline(v=TS.obs,lwd=2)

## Output

> (TS.obs <- mean(L.cubit) - mean(K.cubit))

[1] -0.6416667

> (num.exceed <- sum(abs(TS) >= abs(TS.obs)))

[1] 1207

> (p.val.2tail <- (num.exceed+1) / (num.perm+1))

[1] 0.1208

∇
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Randomization Distribution for Cubit Length
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Figure 5.6: Randomization Distribution for Lahout and Kulu Kanet cubit measurements

For paired samples, if there is no difference in the means of the two treatments, then the 2 observed
measurements on each unit or pair could have just as easily appeared under either of the two treatments.
The process for the Randomization/Permutation test goes as follows.

1. Compute a statistic from the original data that measures a discrepancy between the sample data and
the null hypothesis, such as d.

2. Generate many permutations (N) of the signs of the observed differences, where for each unit, its
sign is changed with probability 0.5 (in effect switching the observed scores for the two treatments).

Compute and save the mean difference d
∗
.

3. Count the number of permutations for which the statistic is as or more extreme than the original
sample’s value.

4. The P -value is (Count+1)/(N+1) the proportion of the statistics as or more extreme than the original
(including the original).

Example 5.15: Home Field Advantage in English Premier League Football (2012)

The English Premier League has 20 football clubs. Each club plays the remaining 19 clubs twice each
season (once at home, once away). If clubs are labeled in alphabetical order from 1:20, then let y1jk = Hj−Ak

j < k be the score differential (Home-Away) when club j played at home versus club k. Further, let
y2jk = Aj − Hk j < k be the score differential (Away-Home) when club j played away versus club k. Then:
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djk = y1jk − y2jk = (Hj − Ak) − (Aj − Hk) = (Hj + Hk) − (Aj + Ak)

That is, djk represents the total home versus away differential for the two matches played between clubs

j and k. There are

(

20
2

)

= 190 pairs of clubs. If there is no home field differential, then µD = 0. Here we

conduct a 2-tailed permutation test for a home field differential. There is overwhelming evidence of a home
field advantage. None of the permutation means is close to the observed mean d = 0.6368. A histogram of
the randomization distribution and observed mean differential (vertical line) is given in Figure ??.

R Commands and Output

## Commands

epl2012 <- read.csv("http://www.stat.ufl.edu/~winner/data/epl_2012_home_perm.csv",

header=T)

attach(epl2012); names(epl2012)

### Obtain Sample Size and Test Statistic (Average of d.jk)

(n <- length(d.jk))

(TS.obs <- mean(d.jk))

### Choose the number of samples and initialize TS, and set seed

N <- 9999; TS <- rep(0,N); set.seed(86420)

### Loop through samples and compute each TS

for (i in 1:N) {

ds.jk <- d.jk # Initialize d*.jk = d.jk

u <- runif(n)-0.5 # Generate n U(-0.5,0.5)’s

u.s <- sign(u) # -1 if u.s < 0, +1 if u.s > 0

ds.jk <- u.s * ds.jk

TS[i] <- mean(ds.jk) # Compute Test Statistic for this sample

}

summary(TS)

(num.exceed1 <- sum(TS >= TS.obs)) # Count for 1-sided (Upper Tail) P-value

(num.exceed2 <- sum(abs(TS) >= abs(TS.obs))) # Count for 2-sided P-value

(p.val.1sided <- (num.exceed1 + 1)/(N+1)) # 1-sided p-value

(p.val.2sided <- (num.exceed2 + 1)/(N+1)) # 2-sided p-value

### Draw histogram of distribution of TS, with vertical line at TS.obs

hist(TS,breaks=seq(-.7,.7,.02), xlab="Mean Home-Away",

main="Randomization Distribution for EPL 2012 Home Field Advantage")

## Output

> (n <- length(d.jk))

[1] 190

> (TS.obs <- mean(d.jk))

[1] 0.6368421

> (num.exceed1 <- sum(TS >= TS.obs)) # Count for 1-sided (Upper Tail) P-value

[1] 0

> (num.exceed2 <- sum(abs(TS) >= abs(TS.obs))) # Count for 2-sided P-value

[1] 0

> (p.val.1sided <- (num.exceed1 + 1)/(N+1)) # 1-sided p-value

[1] 1e-04

> (p.val.2sided <- (num.exceed2 + 1)/(N+1)) # 2-sided p-value

[1] 1e-04
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Randomization Distribution for EPL 2012 Home Field Advantage

Mean Home−Away

F
re

q
u
e
n
c
y

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Figure 5.7: Randomization Distribution for Home-Away Mean Differential - EPL 2012

∇


