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Introduction

Suppose we have a set of observed data points assumed to be
a sample from an unknown density function. Our goal is to
estimate the density function from the observed data.
There are two approaches to density estimation,parametric and
nonparametric.

• Parametric approach assumes,data is drawn from a known
distribution.

• Nonparametric approach assumes that the distribution has
a probability density f and then the data is used to estimate
f rather than deciding beforehand if f belongs to any given
parametric family.

Data sets

Two data sets have been repeatedly used in this chapter.

The first comprises the lengths of 86 spells of psychiatric
treatment undergone by patients in a study of suicide risks.
The second data set contains observations of eruptions of Old
Faithful geyser in Yellowstone National Park,USA.

Assumptions

We are given a sample of n real observations X1, ..., Xn whose
underlying density is to be estimated. We denote the density
estimator by f̂ .
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Histograms

It is the oldest and most widely used density estimator. The
bins of the histogram are defined as the intervals [x0 + mh, x0 +
(m + 1)h),for m positive and negative integers, x0 is the origin
and h the bin width. The histogram is then defined by

f̂(x) = (number of Xi in the same bin as x)
nh .

The histogram can be generalized by allowing the bin widths
to vary. Then the estimate becomes

f̂(x) =
(number of Xi in the same bin as x)

n(width of bin containing x)

But there are certain drawbacks in using histograms.

• In procedures like cluster analysis and nonparametric dis-
criminant analysis using a histogram results in inefficient use of
the data.

• The histogram is not continuous so trouble arises when
derivatives are required.

• Choice of origin may have an effect in the interpretation.

• Representing bivariate or trivariate data by histogram is
difficult.
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Naive Estimator

If the random variable X has density f ,then

f(x) = lim
h→0

1

2h
P (x− h < X < x + h). (1)

Thus,

f̂(x) =
[number of X ′

is in (x− h, x + h)]

2hn
. (2)

This is the naive estimator. We define it more clearly by a weight
function as follows.

w(x) =

{ 1
2 if − 1 < x < 1
0 if otherwise

(3)

Then f̂(x) becomes

1

nh

n∑
i=1

w

(
x− xi

h

)
. (4)

Now we try to connect this estimator with the histogram dis-
cussed earlier.

We may consider that the estimate is constructed by placing
a ”box” of width 2h and height (2nh)−1 on each observation
and then summing all these boxes to get the estimate. Let us
now think about histograms of bin width 2h. We assume no
observation lies on the edge of a bin. If x is at the center of the
bin then f̂(x) will be the ordinate of the histogram at x.

But this estimator also has got some drawbacks.

• f̂ is not continuous but has jumps at the points Xi±h and
has zero derivative everywhere else.

3



Kernel Estimator

Replace the earlier weight function by K,where∫ +∞

−∞
K(x)dx = 1

Then

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(5)

is called the Kernel estimator. Here h is the smoothing param-
eter.

The variation in window width has an effect on the estimator.
We see in the figures if h is too small then fine structure is visible
and if h is too large then the important features are sometimes
obscured.

Next we state the elementary properties of the kernel es-
timator.

∗ If K everywhere is nonnegative and satisfies∫ ∞

−∞
K(x)dx = 1

then f̂ will be a probability density.

∗ The estimator f̂ will inherit all the continuous and different
properties of K.

∗ Most commonly used estimator.
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But this estimator also has drawbacks.

• As the window width is fixed so there is a tendency for
spurious noise to appear in the tails of the estimates and if
the estimates are smoothed to deal with this then the essential
features of the main part of the distribution may be masked.
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Nearest Neighbour Method

This is an attempt to adapt smoothing to the ’local’ density
of data. Here we define distance between two points on the line
as

d(x, y) = |x− y|
For each t we define d1(t) ≤ d2(t) ≤ ... ≤ dn(t), which are
the distances from t to the points of the sample. Then the kth
nearest neighbour density estimator is

f̂(t) =
k − 1

2ndk(t)
(6)

In the tails of the distribution the distance dk(t) will be larger
than in the main part and so the problem of undersmoothing in
the tails will be reduced.

Its drawbacks are

• The estimate is not a smooth curve.

• dk(t) will be continuous but its derivatives are not.

• From t less than the smallest data point we will have dk(t) =
X(k)(t) and for t > X(n), dk(t) = t − X(n−k+1). Putting in f̂(t)
we see ∫ ∞

−∞
f̂(t)dt = ∞

Thus this estimate is inappropriate if an estimate of the entire
density is required.
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Variable Kernel Method

K is the kernel function and k is a positive integer. dj,k is
the distance from Xj to the kth nearest point in the set of the
other (n− 1) data points. Then the variable kernel estimate is

f̂(t) =
1

n

n∑
j=1

1

hdj,k
K

(
t−Xj

hdj,k

)
(7)

The window width is proportional to dj,k. Therefore the data
points in regions where data is few will have flatter kernels. But
this estimator will be a probability density function if K is, and
will inherit all the properties of K.
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Orthogonal Series Estimators

Orthogonal series estimators approach the density estimation
problem from a different point of view. We explain them by
using an example. Suppose we are trying to estimate a density
f on the unit interval [0, 1]. Define the sequence φν(x) by

φ0(x) = 1

φ2r−1(x) =
√

2cos2πrx

φ2r(x) =
√

2sin2πrx

for r = 1, 2, ....

Then f can be represented as
∑∞

v=0 fνφν,
where for each ν ≥ 0,

fν =

∫ 1

0
f(x)φν(x)dx.

Suppose X is a rv with density f then we can write the above
equation as

fν = Eφν(X)

and hence a natural and unbiased estimator of fν based on sam-
ple X1, ..., Xn is

f̂ν =
1

n

n∑
i=1

φν(Xi)

To get a good estimate of f we need to choose an integer K and
estimate f̂ by

f̂(x) =
K∑

ν=0

f̂νφν(x). (8)
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The choice of K determines the amount of smoothing. A more
general approach to smooth is by using a series of weights λν,
which tends to 0 when ν → 0. We can then write the estimate
as

f̂(x) =
∞∑

ν=0

λν f̂νφν(x).
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Maximized Penalized Likelihood Estimators

We now investigate if it is possible to use standard statistical
techniques to do density estimation. The likelihood of a curve g

as density underlying a set of independent identically distributed
observations is given by

L(g|X1, ..., Xn) =
n∏

i=1

g(Xi)

But the likelihood has no finite maximum over the class of all
densities so to use in density estimation we have to place restric-
tions on the class of densities over which the likelihood is to be
maximized.

One method is to incorporate a term which describes the
roughness. Let R(g) be the functional which quantifies rough-
ness. One possible choice is

R(g) =

∫ ∞

−∞
(g′′)2. (9)

We now define the Penalized log likelihood by

lα(g) =
n∑

i=1

logg(Xi)− αR(g) (10)

where α is a positive smoothing parameter.

The probability density function f̂ is said to be a
maximum penalized likelihood density estimate if it maximizes
lα(g) over the class of all curves g which satisfy

∫ ∞
−∞ g = 1, g(x) ≥

0 for all x,

R(g) < ∞.
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General Weight Function Estimators

It is possible to define a general class of density estimators which
includes several of the estimators discussed before. Suppose that
w(x, y) is a function of two arguments, which in most cases will
satisfy the conditions ∫ ∞

−∞
w(x, y)dy = 1 (11)

and
w(x, y) ≥ 0 for all x and y. (12)

The density estimator is then

f̂(t) =
1

n

n∑
i=1

w(Xi, t). (13)

The above two conditions will ensure that f̂ will be a prob-
ability density function,and f̂ will inherit the smoothness prop-
erties of w.

The histogram can be obtained as

w(x, y) =

{ 1
h(x) if xand y fall in the same bin

0 if otherwise

where h(x) is the width of the bin containing x.

The kernel estimate is obtained as

w(x, y) =
1

h
K

(
y − x

h

)
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Bounded Domains And Directional Data

It is very often the case when the domain of definition is not
the whole real line but an interval bounded on one or both sides.
There are many possible ways to deal with this situation.

§ We can simply calculate the estimate for positive x ignoring
the boundary conditions,and then set f̂(x) to zero for negative
x.

§ We can use an a maximum penalized likelihood method by
constraining g(x) to be zero for negative x.

§ Another possible way is to take logarithms of the data
points. Then the estimate leads to

f̂(x) =
1

x
ĝ(log x) for x > 0.

§ We can augment the data by adding the reflections of all
the points in the boundary,to give the set
{X1,−X1, X2,−X2, ...}. If a kernel estimate f ∗ is used from the
data set of size 2n then we get

f̂(x) =

{
2f ∗(x) for x ≥ 0
0 forx < 0

This estimate corresponds to a general weight function estima-
tor, for x and y > 0,it is

w(x, y) =
1

h
K

(
y − x

h

)
+

1

h
K

(
y + x

h

)
All the above discussed methods can be extended to the case

where the support of the estimator is [a, b]. Transformation
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methods can be based on transformations of the form

Yi = H−1
(

Xi − a

b− a

)
where H is any cumulative pdf strictly increasing on (−∞,∞).
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