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Abstract: Bayesian shrinkage methods have generated a lot of interest in recent years, espe-

cially in the context of high-dimensional linear regression. Armagan, Dunson and Lee (2013)

propose a Bayesian shrinkage approach using generalized double Pareto priors. They estab-

lish several useful properties of this approach, including the derivation of a tractable three-block

Gibbs sampler to sample from the resulting posterior density. We show that the Markov operator

corresponding to this three-block Gibbs sampler is not Hilbert-Schmidt. We propose a simpler

two-block Gibbs sampler, and show that the corresponding Markov operator is trace class (and

hence Hilbert-Schmidt). Establishing the trace class property for the proposed two-block Gibbs

sampler has several useful consequences. Firstly, it implies that the corresponding Markov chain

is geometrically ergodic, thereby implying the existence of a Markov chain CLT, which in turn

enables computation of asymptotic standard errors for Markov chain based estimates of poste-

rior quantities. Secondly, since the proposed Gibbs sampler uses two-blocks, standard recipes in

the literature can be used to construct a sandwich Markov chain (by inserting an appropriate

extra step) to gain further efficiency and to achieve faster convergence. The trace class prop-

erty for the two-block sampler implies that the corresponding sandwich Markov chain is also

trace class and thereby geometrically ergodic. Finally, it also guarantees that all eigenvalues

of the sandwich chain are dominated by the corresponding eigenvalues of the Gibbs sampling

chain (with at least one strict domination). Our results demonstrate that a minor change in the

structure of a Markov chain can lead to fundamental changes in its theoretical properties. We

illustrate the improvement in efficiency and convergence resulting from our proposed Markov

chains using simulated and real examples.

Keywords and phrases: Bayesian shrinkage, double Pareto prior, trace class operator, geo-

metric ergodicity, sandwich algorithm.
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1. Introduction

Consider the linear model y = Xβ+σε, where y is the n×1 vector of responses, X is the n×p design

matrix, β is the p×1 vector of unknown regression coefficients, σ is an unknown scale parameter, and

the entries of ε are independent standard normal. Classical least squares methods fail when p > n,

and the lasso (Tibshirani, 1996) was developed to estimate β in this case. The well-known Bayesian

interpretation of the lasso (involving i.i.d. Laplace priors on the components of β) has led to a flurry

of recent research concerning the development of prior distributions for (β, σ) that yield posterior

distributions with high (posterior) probability around sparse values of β, i.e., values of β that have

many entries equal to 0. Such prior distributions are referred to as “continuous shrinkage priors ” and

the corresponding models are referred to as “Bayesian shrinkage models.” For an overview, see Polson

and Scott (2010) and Bhattacharya et al. (2015). The posterior distributions associated with these

models are highly intractable and are usually explored using MCMC algorithms.

In this paper, we focus on a Bayesian shrinkage model recently introduced by Armagan, Dunson

and Lee (2013). The model can be specified as follows

y | β, σ2, τ ,λ ∼ Nn
(
Xβ, σ2In

)
β | σ2, τ ,λ ∼ Np

(
0, σ2Dτ

)
τi | λi ∼ Exp

(
λ2
i

2

)
independently for i = 1, 2, . . . , p

λi ∼ Gamma (ζ, η) independently for i = 1, 2, . . . , p with ζ > 0, η > 0

σ2 ∼ Inverse-Gamma (α, ξ) with α ≥ 0, ξ ≥ 0, (1)

where Nd denotes the d-variate normal density, and Dτ is a diagonal matrix with diagonal entries

given by the entries {τj}pj=1 of τ . Also, ζ and α denote the shape parameters, and η and ξ denote

the rate parameters for the Gamma and Inverse-Gamma densities respectively. Hence, the Inverse-

Gamma(α, ξ) prior for σ2 corresponds to the improper Jeffery’s prior when α = 0 and ξ = 0, and its

(improper) density is proportional to 1
σ2 . Straightforward calculations show that the posterior density

corresponding to the improper prior with α = 0 and ξ = 0 is a proper probability density.

It can be shown that for the above model, all the entries of β (given only σ2) are mutually indepen-

dent, and have a generalized double Pareto distribution. As a result, this model is referred to as the

generalized double Pareto shrinkage model. The generalized double Pareto distribution has a spike at
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zero with Student’s t-like heavy tails. This property makes it attractive for robust Bayesian shrinkage.

Armagan, Dunson and Lee (2013) also show that the Normal-Jeffrey’s prior and the Laplace prior

(Bayesian lasso) can be obtained as limiting cases of their class of priors. Note that the parameters

of interest here are (β, σ2), and the τ ’s and λ’s are ‘augmented’ parameters. As discussed below,

these augmented parameters help in the development of a tractable MCMC approach for posterior

computation. We refer the reader to Armagan, Dunson and Lee (2013) for a detailed study of other

useful properties of the class of generalized double Pareto priors.

The joint posterior density of (β, σ2) (the parameters of interest) is intractable in the sense

that it is not feasible to generate direct i.i.d. samples from this density. To explore this posterior

density, Armagan, Dunson and Lee (2013) propose a three-block Gibbs sampler, denoted here by

Φ̃ := {
(
β̃m, σ̃

2
m

)
}∞m=0 (on the state space Rp × R+), driven by the Markov transition density (Mtd)

k̃
(
(β, σ2), (β̌, σ̌2)

)
=

∫
Rp+

∫
Rp+
π
(
σ̌2 | β̌, τ ,λ, y

)
π
(
β̌ | σ2, τ ,λ, y

)
π
(
τ ,λ | β, σ2, y

)
dλ dτ . (2)

Here π(· | ·) denotes the conditional density of the first group of arguments given the second group of

arguments. The one-step dynamics of this Markov chain can be described as follows. To move from

the current state,
(
β̃m, σ̃

2
m

)
, to the next state,

(
β̃m+1, σ̃

2
m+1

)
, first a random sample (τ ,λ) is drawn

from the conditional density given β̃m, σ̃
2
m,y. Then β̃m+1 is generated from the conditional density

given σ̃2
m, τ ,λ,y, and finally σ̃2

m+1 is simulated from the conditional density given β̃m+1, τ ,λ,y. We

refer to Φ̃ as a three-block chain because it involves sampling three sets of parameters, namely β, σ2

and (τ ,λ), from their full conditional distributions. It can be shown that the Gibbs sampling chain

Φ̃ driven by the Mtd k̃, is easy to implement, and involves sampling from standard distributions (see

Section A). However, crucial convergence and functional theoretic properties of the Gibbs sampling

Markov chain Φ̃ have not yet been investigated. The aim of this paper is to investigate these properties,

and to construct alternative Markov chains which have provably better properties than Φ̃.

It is straightforward to show that the Markov chain Φ̃ described above is Harris ergodic with the

appropriate stationary distribution. Harris ergodicity provides justification for using the Markov chain

to construct strongly consistent estimators of intractable posterior expectations. For instance, if h is a

real-valued measurable function, then we can conclude that the estimator h̄m := 1
m+1

∑m
i=0 h

(
β̃m, σ̃

2
m

)
is strongly consistent for the posterior expectation of h (assuming it exists), irrespective of the starting

point of the Markov chain. However, to use the estimator h̄m for practical purposes, it is also required
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to estimate the standard error associated with it. All known methods to compute asymptotically

consistent estimates of standard errors for h̄m require the existence of a Markov chain central limit

theorem (CLT). In particular, we need to establish that

√
m
(
h̄m − Eπh

) d→ N
(
0, c2

)
,

where c2 is a finite positive constant. Currently, there are two standard methods available in the litera-

ture to prove a Markov chain CLT. One of the methods is to prove geometric ergodicity by establishing

a geometric drift condition and an associated minorization condition (Jones and Hobert, 2001; Rosen-

thal, 1995) and the second method is to show that the underlying Markov chain is Hilbert-Schmidt

(see Section 2). Establishing drift and minorization conditions to prove geometric ergodicity can be

challenging. In fact, despite several attempts, we have been unable to prove that Φ̃ is geometrically

ergodic using the standard drift and minorization argument. On the other hand, there is a simple

necessary and sufficient condition for a Markov operator to be Hilbert-Schmidt (see Section 2). We

use this condition to prove that the Markov operator associated with Armagan et al.’s (2013) Gibbs

sampler (Φ̃) is never Hilbert-Schmidt (Theorem 2). While this result does not resolve the question of

whether Φ̃ is geometrically ergodic, it does carry pertinent information about this Markov chain. In

particular, it shows that the absolute value of the corresponding operator either has (at least some)

continuous spectrum, or has a countable set of eigenvalues which are not square-summable.

After studying the joint posterior density of all the parameters, we noticed that a two block Gibbs

sampler, simpler than the three block chain Φ̃, can be used to generate approximate samples from

the posterior distribution of (β, σ2). In particular, let Φ = {
(
βm, σ

2
m

)
}∞m=0 be a Markov chain on the

state space Rp × R+, driven by the Markov transition density

k
(
(β, σ2), (β̌, σ̌2)

)
=

∫
Rp+

∫
Rp+
π
(
β̌, σ̌2 | τ ,λ,y

)
π
(
τ ,λ | β, σ2,y

)
dλ dτ . (3)

To move from the current state,
(
βm, σ

2
m

)
, to the next state,

(
βm+1, σ

2
m+1

)
, we first draw (τ ,λ) from

the conditional density given βm, σ
2
m,y, and then we draw

(
βm+1, σ

2
m+1

)
from the conditional density

given τ ,λ,y. We refer to Φ as a two-block chain because it involves sampling (β, σ2) and (τ ,λ) from

their full conditional distributions. It can again be shown that the two-block Gibbs sampling chain Φ

is easy to implement, and involves sampling from standard distributions (see Section A).

Note that, the only difference between the two-block Gibbs sampler Φ that we propose, and the

three-block Gibbs sampler Φ̃, is the strategy for sampling β and σ2. To be specific, for Φ, we adopt
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a more efficient scheme to sample β and σ2 jointly as a block from the density π
(
β, σ2 | λ, τ ,y

)
,

whereas in Φ̃, each of parameters β and σ2 are drawn separately from their full conditional posterior

distribution. Note that, unlike Φ̃, the Markov chain Φ is reversible, and therefore is simpler to handle

in terms of theoretical analysis. Moreover, there is some theory suggesting that blocking can improve

the performance of a Gibbs sampler, as it is likely to reduce the correlation between successive iterates

of the corresponding Markov chain (Liu, Wong and Kong, 1994).

Indeed, we prove that the Markov operator associated with the Gibbs sampling Markov chain Φ is

trace-class, and hence Hilbert-Schmidt, when the design matrix X has full column rank (Theorem 1).

Our results imply that the absolute value of the operator corresponding to Φ̃ either has (at least some)

continuous spectrum, or has a countable set of eigenvalues which are not square-summable, while the

eigenvalues of the (self-adjoint) operator corresponding to Φ are not only square-summable, but in

fact summable (note that all the aforementioned eigenvalues are less than 1 in absolute value). These

results indicate that the Markov chain Φ is likely to be more efficient than the three-block chain Φ̃ from

Armagan, Dunson and Lee (2013). The simulation and real data experiments in Section 5 strongly

support this assertion. Our results concretely demonstrate that a small change in the structure of a

Markov chain can lead to fundamental changes in its theoretical properties.

Another advantage of the proposed two-block Gibbs sampler Φ is that it can be interpreted as a

basic data augmentation (DA) algorithm with (β, σ2) as the parameter block of interest, and (τ ,λ)

as the augmented parameter block. This enables us to use the Haar PX-DA technique (Liu and Wu,

1999; Hobert and Marchev, 2008) to construct a ‘sandwich’ Markov chain by exploiting an appropriate

group structure in the model (see Section 4). The trace class property for Φ, in conjunction with the

results in Khare and Hobert (2011), implies that the operator corresponding to the sandwich Markov

chain is also trace-class. Consequently, it follows that both Markov chains are geometrically ergodic.

Moreover, for each i ∈ N, the ith largest eigenvalue of the sandwich operator is less than or equal to

the corresponding eigenvalue of the DA operator, with strict inequality for at least one i.

The rest of the paper is organized as follows. In Section 2, we discuss relevant concepts from

functional analysis. Investigation of the Hilbert-Schmidt property for the Markov chains Φ̃ and Φ

is undertaken in Sections 3. The construction of the sandwich algorithm is described in Section 4.

In Section 5 we provide two simulation examples, one with n > p and one with n < p, and a real

data example, to demonstrate the efficiency gain obtained by using our proposed Markov chains (as
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compared to the three-block Gibbs sampler). The supplemental document contains details of the

conditional posterior distributions necessary for analyzing the various Markov chains discussed above,

along with some proofs and relevant mathematical identities.

2. Hilbert-Schmidt and trace class operators

In this section, we review the definitions of Hilbert-Schmidt and trace-class Markov operators, and

provide necessary and sufficient conditions for showing that a given Markov operator is Hilbert-

Schmidt or trace-class. Let (X,A, µ) be a measure space equipped with a countably generated σ-field

A and a σ-finite measure µ. Let π(dx) = π(x)µ(dx) be an intractable probability measure defined on

the above measure space. We assume that π(x) is strictly positive almost everywhere on X. Define

L2
0(π) =

{
f ∈ L2(π) : πf = 0

}
. Then, it follows that L2

0(π) is a separable Hilbert space (see

Proposition 3.4.5 in Cohn (2013)) equipped with the inner product 〈f, g〉L2
0(π) =

∫
X
f(x)g(x)π(dx).

The corresponding norm is given by ‖f‖L2
0(π) =

√
〈f, f〉L2

0(π). Let P (x, dy) = p(x, y)µ(dy) be a Markov

transition density with π as its invariant measure. Then, P defines an operator (also denoted by P

for simplicity of notation), that acts on f ∈ L2
0(π) through

(Pf)(x) =

∫
X

p(x, y)f(y)µ(dy).

The operator P on L2
0(π) is defined to be Hilbert-Schmidt if for every orthonormal sequence {fn}n≥0

for L2
0(π), we have

∞∑
n=0

‖Pfn‖2L2
0(π) <∞.

If P is a positive self-adjoint operator, then P is defined to be trace class if for every orthonormal

sequence {fn}n≥0 for L2
0(π), we have

∞∑
n=0

〈Pfn, fn〉L2
0(π) <∞.

In the current setting, straightforward necessary and sufficient conditions can be derived for the two

notions defined above. In particular, it can be shown that (see for example Jorgens (1982)) P is

Hilbert-Schmidt if and only if∫
X

∫
X

p(x, y)2π(x)

π(y)
µ(dy)µ(dx) =

∫
X

∫
X

(
p(x, y)

π(y)

)2

π(x)π(y)µ(dy)µ(dx) <∞. (4)
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Also, a positive self-adjoint Markov operator P is trace class if and only if∫
X

p(x, x)µ(dx) <∞. (5)

Establishing the Hilbert-Schmidt or trace class property for a Markov operator P has important

implications for the associated Markov chain. If P is Hilbert-Schmidt, then it follows that it is compact,

and its singular values are square-summable. If P (positive, self-adjoint) is trace class, then it again

follows that it is compact, and its singular values are summable (stronger than square-summable). In

either case, if the corresponding Markov chain is Harris ergodic, then compactness implies that the

spectral radius of the Markov operator is less than 1. It follows that the corresponding Markov chain

is geometrically ergodic (see Proposition 2.1 and Remark 2.1 in Roberts and Rosenthal (1997)). On

the other hand, if a Markov operator P is not Hilbert-Schmidt, then it follows that either its absolute

value operator (
√
P ∗P ) does not have a countable spectrum, or it has a countable set of eigenvalues

which are not square-summable.

3. Properties of the two and three block Gibbs samplers

In this section, we show that the operator associated with the proposed two-block Gibbs sampler

Φ, with Markov transition density k specified in (3) is trace class when the design matrix X has

full column rank. Since the Markov transition density in (3) is strictly positive, it follows that Φ is

Harris ergodic, see (Meyn and Tweedie, 1993, Page 87) and Asmussen and Glynn (2011). Based on

the discussion in Section 2, it follows that the corresponding operator is Hilbert-Schmidt, compact,

and that the two-block chain is geometrically ergodic. We also show that the operator associated with

the three-block Gibbs sampler Φ̃, with Markov transition density k̃ specified in (2), is not Hilbert-

Schmidt. The detailed form of various relevant conditional densities in (2) and (3) is provided the

Supplementary Section A.

Let K be the Markov operator corresponding to the two block sampler Φ, and assuming X has full

column rank, let PX = X(XTX)−1XT be the projection matrix on the column space of X. We prove

the following result.

Theorem 1 Let p < n and rank(X) = p, i.e., X has full column rank. Also let yT (In − PX)y > 0.

Then, the Markov operator K is trace class.



Pal, Khare and Hobert/Markov chains for double Pareto shrinkage priors 8

Remark 1 Note that, yT (In−PX)y = 0 if and only if y lies in the column space of X. Since p < n,

the probability (under the model in (1)) that the n × 1 data vector y lies in the column space of the

n× p matrix X is zero. Hence, before the data are observed, the assumption yT (In − PX)y > 0 holds

with probability 1.

Proof: By (5), to prove the required result, we need to show that

I :=

∫
Rp

∫
R+

k
(
(β, σ2), (β, σ2)

)
dσ2dβ <∞. (6)

By Fubini’s theorem, we get that

I =

∫
Rp+

∫
Rp+

∫
Rp

∫
R+

π
(
β | τ ,λ, σ2,y

)
π
(
σ2 | τ ,λ,y

)
π
(
τ ,λ | β, σ2,y

)
dσ2 dβ dτ dλ.

(7)

To show the finiteness of I, we will first break I as a sum of 2p integrals, and show that each one of

them is finite. To achieve this, we will first integrate out σ2 using the Inverse-Gamma density, and

then using the t-density show that the integral with respect to β of the resulting function is bounded

above by a constant multiple of
p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj ,

which has a finite integral on R+
p × R+

p .

Before proceeding ahead, recall that

β̂ = (XTX +D−1
τ )−1XTy.

Let

∆1 =
(
β − β̂

)T
(XTX +D−1

τ )
(
β − β̂

)
and ∆̂ = (y −Xβ̂)T (y −Xβ̂) + β̂

T
D−1
τ β̂ + 2ξ.
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It follows from (A.2), (A.4), (A.5) and (A.6) that

π
(
β | τ ,λ, σ2,y

)
π
(
σ2 | τ ,λ,y

)
π
(
τ | β, σ2,λ,y

)
π
(
λ | β, σ2,y

)
=

{
|XTX +D−1

τ |
1
2

(
√

2π)pσp
e−

∆1
2σ2

} {
∆̂

n+2α
2

2
n+2α

2 Γ(n+2α
2 )

(σ2)−
n+2α

2 −1e−
∆̂

2σ2

}

×


p∏
j=1

λj√
2π
τ

1
2−1
j e

− 1
2

{
λ2
jτj+

β2
j

σ2
1
τj

}
e
λj |βj |
σ

×


p∏
j=1

(
|βj |
σ + η

)ζ+1

λζj

Γ(ζ + 1)
e
−
( |βj |

σ +η
)
λj


= C2

{
|XTX +D−1

τ |
1
2 ∆̂

n+2α
2 (σ2)−

n+p+2α
2 −1e−

∆1+∆̂+βTD
−1
τ β

2σ2

}

×


p∏
j=1

λjτ
1
2−1
j e−

λ2
j τj

2

×


p∏
j=1

(
|βj |
σ

+ η

)ζ+1

λζj e−ηλj ,


= C2

{
|XTX +D−1

τ |
1
2 ∆̂

n+2α
2 (σ2)−

n+p+2α
2 −1e−

∆1+∆̂+βTD
−1
τ β

2σ2

}

×

 ∑
(δ1,...,δp)∈{0,1}p

η(ζ+1)(p−
p∑
i=1

δi)
p∏
j=1

(
|βj |
σ

)δj(ζ+1)



p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 ,

(8)

where C2 =
(

2
n+2α

2 Γ(n+2α
2 ) (Γ(ζ + 1)2π)

p
)−1

. For arbitrary δ := (δ1, . . . , δp) ∈ {0, 1}p, let

fδ
(
β, σ2,λ, τ

)
:=


|XTX +D−1

τ |
1
2 ∆̂

n+2α
2

Γ

n+p+2α+(1+ζ)
p∑
i=1

δi

2

 (σ2)−
n+p+2α+(1+ζ)

p∑
i=1

δi

2 −1e−
∆1+∆̂+βTD

−1
τ β

2σ2


2−

n+p+2α+(1+ζ)
p∑
i=1

δi

2 ×


p∏
j=1

|βj |δj(ζ+1)




p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 .

(9)

From (8), it is easy to see that (6) holds if we can prove that∫
Rp+

∫
Rp+

∫
Rp

∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2 dβ dτ dλ <∞. (10)
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for arbitrary δ ∈ {0, 1}p. From (9) and the form of the Inverse-Gamma density, it follows that∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2

=


|XTX +D−1

τ |
1
2 ∆̂

n+2α
2

∏p
j=1 |βj |δj(ζ+1)

(
∆1 + ∆̂ + βTD−1

τ β
)n+p+2α+(1+ζ)

p∑
i=1

δi

2


×


p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 . (11)

Note that

(y −Xβ̂)T (y −Xβ̂) + β̂
T
D−1
τ β̂ + 2ξ = yTy − 2β̂

T
XTy + β̂

T
(XTX +D−1

τ )β̂ + 2ξ

= yTy − yTX(XTX +D−1
τ )−1XTy + 2ξ

≤ yTy + 2ξ, (12)

and

∆1 + ∆̂ + βTD−1
τ β ≥

(
β − β̂

)T
(XTX +D−1

τ )
(
β − β̂

)
+ (y −Xβ̂)T (y −Xβ̂) + β̂

T
D−1
τ β̂ +

2ξ

=
(
β − β̂

)T
(XTX +D−1

τ )
(
β − β̂

)
+ yTy − 2β̂

T
XTy + β̂

T
(XTX +D−1

τ )β̂ + 2ξ

=
(
β − β̂

)T
(XTX +D−1

τ )
(
β − β̂

)
+ yTy − yTX(XTX +D−1

τ )−1XTy + 2ξ

≥
(
β − β̂

)T
(XTX +D−1

τ )
(
β − β̂

)
+ yTy − yTX(XTX)−1XTy + 2ξ.

It follows that

∆1 + ∆̂ + βTD−1
τ β =

[
yT (In − PX)y + 2ξ

]{
1 +

(
β − β̂

)T (XTX +D−1
τ )

yT (In − PX)y + 2ξ

(
β − β̂

)}
,

≥
[
yT (In − PX)y + 2ξ

]{
1 +

(
β − β̂

)T ($minIp +D−1
τ )

yT (In − PX)y + 2ξ

(
β − β̂

)}
,

=
[
yT (In − PX)y + 2ξ

]1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j

 , (13)

where $min is the smallest eigenvalue of XTX, ξj =

√
yT (In−PX)y+2ξ

($min+ 1
τj

)νj
, νj = n+2α

p + (1 + ζ)δj .
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From (11), (12), (13) we get that,∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2 (14)

≤


|XTX +D−1

τ |
1
2

(
yTy + 2ξ

)n+2α
2
∏p
j=1 |βj |δj(ζ+1)

(
[yT (In − PX)y + 2ξ]

{
1 +

∑p
j=1

(βj−β̂j)2

νjξ2
j

})n+p+2α+(1+ζ)
p∑
i=1

δi

2


×


p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 .

Now, for δ ∈ {0, 1}p such that at least one δj 6= 0, we get that

1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j


n+p+2α+(1+ζ)

∑p
j=1

δj

2

=

1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j


n+p+2α

2
1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j


(1+ζ)

∑p
j=1

δj

2

=

 p∑
j=1

1

p

(
1 +

(βj − β̂j)2

νjξ2
j

)
n+p+2α

2
1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j


(1+ζ)

∑p
j=1

δj

2

(a)

≥

 p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

)
n+p+2α

2p
 p∑
j=1

(
δj∑p
i=1 δi

)(
1 +

(βj − β̂j)2

νjξ2
j

)
(1+ζ)

∑p
j=1

δj

2

(b)

≥

 p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

)
n+p+2α

2p

 p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

) (1+ζ)δj
2



=

 p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

) 1+(1+ζ)δj+n+2α
p

2

 =

 p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

) 1+νj
2

 ,
where (a) follows from the AM-GM inequality, and (b) follows from a generalized version which says

that ∑m
i=1 aipi∑m
i=1 pi

≥
m∏
i=1

a
pi/

∑m
j=1 pj

i

for non-negative ai and pi with at least one positive pi (Steele, 2004). Also, if
∑p
j=1 δj = 0, (i.e. δj = 0

for all j ∈ 1, 2, . . . , p) then it again follows by the AM-GM inequality that1 +

p∑
j=1

(βj − β̂j)2

νjξ2
j


n+p+2α+(1+ζ)

∑p
j=1

δj

2

≥
p∏
j=1

(
1 +

(βj − β̂j)2

νjξ2
j

) 1+νj
2

. (15)
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Hence (15) holds for all (δ1, δ2, . . . , δp) ∈ {0, 1}p. From (14) and (15) we get that

∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2 ≤


|XTX +D−1

τ |
1
2

(
yTy + 2ξ

)n+2α
2

[yT (In − PX)y + 2ξ]

n+p+2α+(1+ζ)
p∑
i=1

δi

2

p∏
j=1

|βj |δj(ζ+1)(
1 +

(βj−β̂j)2

νjξ2
j

) 1+νj
2

×
p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 . (16)

From (16) and Proposition A2 in the appendix, we get that∫
Rp

∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2 dβ

≤


|XTX +D−1

τ |
1
2

(
yTy + 2ξ

)n+2α
2

[yT (In − PX)y + 2ξ]

n+p+2α+(1+ζ)
p∑
i=1

δi

2

p∏
j=1

C0j√
$min + 1

τj

×
p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 .

≤


(
yTy + 2ξ

)n+2α
2

[yT (In − PX)y + 2ξ]

n+p+2α+(1+ζ)
p∑
i=1

δi

2

p∏
j=1

C0j

√
$max + 1

τj√
$min + 1

τj

×
p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj


≤


(
yTy + 2ξ

)n+2α
2

[yT (In − PX)y + 2ξ]

n+p+2α+(1+ζ)
p∑
i=1

δi

2

p∏
j=1

C0j
√
$max√

$min

×


p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 ,

(17)

where $max denotes the maximum eigenvalue of XTX. Hence we get that

∫
Rp+

∫
Rp+

∫
Rp

∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2 dβ dτ dλ ≤ C3


p∏
j=1

∫
R+

∫
R+

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλjdτj dλj


≤ C3


p∏
j=1

∫
R+

√
2π λ

(1+ζ)−1
j e−ηλjdλj


≤ C3

{√
2π Γ(ζ + 1)

ηζ+1

}p
<∞,
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where

C3 =


(
yTy + 2ξ

)n+2α
2

[yT (In − PX)y + 2ξ]

n+p+2α+(1+ζ)
p∑
i=1

δi

2

p∏
j=1

C0j
√
$max√

$min

 .

�

Let K̃ be the Markov operator corresponding to the three-block sampler Φ̃. A proof of the following

result is provided in Supplemental Section B.

Theorem 2 The Markov operator K̃ is not Hilbert- Schmidt (for all possible values of p and n).

Despite our substantial efforts, the question of whether Theorem 1 holds in the case p > n (which

implies that X does not have full column rank) still remains unresolved. Some key steps of our proof

need $min (the smallest eigenvalue of XTX) to be strictly positive. Note from (11) that∫
Rp

∫
R+

fδ
(
β, σ2,λ, τ

)
dσ2dβ

=


∫

Rp


|XTX +D−1

τ |
1
2 ∆̂

n+2α
2

∏p
j=1 |βj |δj(ζ+1)

(
∆1 + ∆̂ + βTD−1

τ β
)n+p+2α+(1+ζ)

p∑
i=1

δi

2


dβ

×


p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 .(18)

Using the assumption that $min > 0, we are able to show that the β-integral in (18) is bounded

above by a constant (see the last step of (17) and derivation of C0j in the proof of Proposition C2).

This is crucial for the proof, as we know that

∫
Rp+

∫
Rp+


p∏
j=1

λ1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj

 <∞.

However, if $min = 0 (which will be the case if n < p), then the dominant term in the bound that

we can get for this β-integral is a constant multiple of
∏p
j=1 τ

δj(1+ζ)/2
j , and∫

R+

∫
R+

τ
(1+ζ)/2
j λ1+ζ

j τ
1
2−1
j e−

λ2
j τj

2 −ηλj =∞.

Hence, except for the case when all the δj ’s are zero, our proof does not work if XTX is singular. The

above problem still persists even if we assume α > 0 or ξ > 0. Nevertheless, the experiments in Section

5 suggest that the proposed two-block sampler (and the associated sandwich algorithm introduced in

Section 4) is more efficient that the three block sampler in the case p > n as well.
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4. Construction of the sandwich Markov chain

As noted earlier, the two-block Gibbs sampler can be regarded as a Data Augmentation (DA) algorithm

with (β, σ2) as the parameter block of interest, and (τ ,λ) as the augmented parameter block. The

sandwich algorithm is a powerful method for improving the convergence and efficiency of the DA

algorithm. This method was introduced independently by Liu and Wu (1999), who call it “PX-DA”,

and Meng and van Dyk (1999), who call it “Marginal Augmentation” (MA). The basic idea behind the

method is to introduce an additional step in the DA algorithm, which is much cheaper computationally

than the two conditional draws in the DA algorithm, while preserving the stationary distribution and

reversibility. It is often possible to construct a sandwich algorithm that converges much faster than

the underlying DA algorithm while requiring roughly the same computational effort per iteration (see

Liu and Wu (1999); Meng and van Dyk (1999); Marchev and Hobert (2004); Hobert, Roy and Robert

(2011) for examples). The Haar PX-DA algorithm introduced by Liu and Wu (1999), and generalized

by Hobert and Marchev (2008), has been shown by these authors to be the best among a class of

sandwich algorithms in terms of efficiency and operator norm. In this section, we construct a sandwich

Markov chain by adapting the Haar PX-DA algorithm in the current setting.

We start by making appropriate choices for all the necessary ingredients for the Haar PX-DA

algorithm in the current context, and then combining these ingredients to construct the sandwich

Markov chain. In the context of the DA algorithm (two-block Gibbs sampler) described in Section 3,

let us consider V := Rp+ ×Rp+, the space of all possible values of (τ ,λ), and U := Rp ×R+, the space

of all possible values of (β, σ2) . Let G denote the multiplicative group of positive real numbers with

identity element e = 1. Note that G is a unimodular group with Haar measure H(dg) = dg
g . Consider

a group action (from the left) of G on the set V given the following function:

g ? (τ ,λ) = (gτ ,λ)

where gτ = (gτ1, gτ2, . . . , gτp) denotes the scalar multiplication of τ by the number g. Consider the

function χ : G→ R+ defined by χ(g) = gp. Note that

χ(g1g2) = χ(g1)χ(g2) = gp1g
p
2

for all g1, g2 ∈ G, and

χ (g)

∫
V
φ (g ? v) dv =

∫
V
φ (v) dv
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for any g ∈ G and any real valued integrable function φ on V. Hence, χ is a multiplier function, and

the Lebesgue measure on V is relatively left invariant with respect to χ (Edwards, 1995, Page 252).

Using the quantities defined above, based on Hobert and Marchev (2008)’s recipe, we now define the

density fG on G (with respect to the Haar measure) by

fG(g)dg =
π(gτ ,λ)χ(g)

m (τ ,λ)
H(dg), (19)

where m (τ ,λ) =
∫
G
π(gτ ,λ)χ(g)H(dg) is the normalizing constant. From (A.1), we get that

π(τ ,λ) ∝
Πp
j=1λ

1+ζ
j τ

1
2−1
j e−

λ2
j τj

2 −ηλj{
yTy − yTXT

(
XTX +D−1

τ
)−1

XTy + 2ξ
}n

2 +α

|XTX +D−1
τ |

1
2

. (20)

It follows from (19) and (20) that

fG(g) ∝ gp/2−1 e
−g
(∑p

j=1

λ2
j τj

2

)
{
yTy − yTXT

(
XTX + 1

gD
−1
τ

)−1

XTy + 2ξ

}n
2 +α

|XTX + 1
gD
−1
τ |

1
2

. (21)

Note that even if fG is not a standard distribution, it is a univariate density. An efficient and straight-

forward rejection sampler algorithm to sample from fG has been provided in the appendix. Using fG,

we can now define the sandwich Markov chain, denoted by Φ∗ = {(βm, σ2
m)}∞m=0, whose one step

transition from (βm, σ
2
m) to (βm+1, σ

2
m+1) can be described as follows.

Iteration (m+ 1) of the Gibbs sampler:

1. Draw (τ ,λ) by the following method

(a) Draw λ from the distribution π(· | σ2
m,βm,y)

(b) Draw τ from the distribution π(· | λ, σ2
m,βm,y)

2. Draw g according to the density fG.

3. Draw (σ2
m+1,βm+1) by the following procedure

(a) Draw σ2
m+1 from π(· | gτ ,λ,y).

(b) Draw βm+1 from π(· | gτ ,λ, σ2
m+1,y).

Note that the only difference between the DA Markov chain (two-block Gibbs sampler) and the

sandwich Markov chain described above is the univariate draw from the density fG. The rejection
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sampler for fG can be inefficient when both n and p are large, but in all other cases provides efficient

and inexpensive draws from fG. As we will see in Section 5, adding this inexpensive univariate draw

can lead to significant improvement in convergence and efficiency. Also, the following result follows

immediately from Theorem 1 and results in Khare and Hobert (2011).

Corollary 1 If p < n, rank(X) = p and yT (In−PX)y > 0, then the Markov operator corresponding

to the sandwich chain Φ∗ is trace class. Moreover, each eigenvalue of this operator is less than or equal

to by the corresponding eigenvalue of the DA Markov operator K, with at least one strict domination.

5. Examples

In this section, we consider two simulated data examples (one each for n > p and n < p) and a real

data example, to compare the performance (in terms of convergence and efficiency) for all the three

Markov chains discussed in this paper, the three-block Gibbs sampler in Armagan, Dunson and Lee

(2013), the proposed two-block Gibbs sampler in Section 3, and the sandwich Markov chain derived

in Section 4.

5.1. Simulations

We consider a setting with n = 15 < p = 26 for the first simulation, and n = 25 > p = 20 for the

second simulation. For both cases, the respective datasets are generated using a linear model with

only three (true) regression coefficients chosen to be non zero. The elements of the design matrix X

were chosen by generating i.i.d. N(0, 1) random variables. For both subsequently generated datasets,

we fit the generalized double Pareto model in (1) with hyper parameters η = ζ = 1 and ξ = α = 0. To

compare the efficiency performance of the Markov chains, we compute the autocorrelations (up to lag

10) for all the Markov chains for the function (y−Xβ)T (y−Xβ) + σ2. The results are summarized

in Figure 1 for the first simulation, and in Figure 2 for the second simulation. We can clearly see

that for both datasets, the two-block Gibbs sampler has significantly lower autocorrelations than the

three-block Gibbs sampler, and that the magnitude of the autocorrelations for the sandwich Markov

chain is lowest. We also computed the autocorrelations for individual coordinates of β, and they follow

a similar pattern. A related measure of performance for Markov chains is the effective sample size. We

use two different methods (from Kass et al. (1998) and Gong and Flegal (2014)) to compute/estimate
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Simulation n < p Simulation n > p Real data
ESS Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
Three block 7.75 9.19 35.73 30.56 25.82 19.11
Two block DA 13.55 13.94 58.38 61.31 45.79 31.65
Sandwich 23.98 30.16 73.36 81.89 73.41 71.21

Table 1
Effective sample sizes (ESS) out of 100 for the three-block, two-block and sandwich Markov chains

the effective sample sizes for each of the three Markov chains in both simulations. These effective

sample sizes for the three Markov chains (out of 100) for both simulations are provided in the first

four columns of Table 1. While estimating eigenvalues and trace of Markov chains (if they exist) is not

possible/feasible in general, these results provide strong evidence that the two-block Gibbs sampler

and the sandwich Markov chain are much more efficient than the three-block Gibbs sampler.

5.2. Real data example

In this section, we consider the wheat data set from Perez and de los Campos (2014). The data

was obtained from a study which included numerous international trials across a wide variety of

wheat-producing environments. The different environmental conditions specified in these trials were

grouped into four basic sets of environmental categories involving four main agro-climatic regions.

The phenotypic traits, or responses, considered here were the average grain yield (GY) of the wheat

lines evaluated in each of these four categories of environments. The information on the genotypes of

the corresponding ”Wheat lines”, i.e. the binary variables regarding the presence of the genotypes are

also available in the data set. The data set is available in the R package BGLR, and more details can

be found in Perez and de los Campos (2014).

For our analysis, we consider the average grain yield for a particular environmental condition

(there are four to choose from) as the response variable, and 40 binary variables containing genotypic

information as the predictors. We fit the generalized double Pareto model in (1) with hyper parameters

η = ζ = 1 and ξ = α = 0. As with the simulated datasets, we compute the autocorrelations (up to

lag 10) for all the three Markov chains for the function (y − Xβ)T (y − Xβ) + σ2 (see Figure 3).

Effective sample sizes are also computed and are reported in the last two columns of Table 1. We see

that the two-block Gibbs sampler and the sandwich Markov chain are significantly more efficient than

the three block Gibbs sampler.
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Fig 1. Autocorrelation plot for the function (y −Xβ)T (y −Xβ) + σ2 for the simulated data set with n < p.
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Fig 2. Autocorrelation plot for the function (y −Xβ)T (y −Xβ) + σ2 for the simulated data set with n > p.
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Fig 3. Autocorrelation plot for the function (y −Xβ)T (y −Xβ) + σ2 for the wheat data.
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Supplemental Document for “Trace class Markov chains for Bayesian inference with

generalized double Pareto shrinkage priors”

A. Form of relevant densities

In this section, we provide the form of various relevant densities corresponding to the Bayesian shrink-

age model in (1). These are required for constructing the Gibbs sampling Markov chains, and for the

subsequent analysis. The posterior density of (β, τ ,λ, σ2) conditioned on the observed data y is given

by

π(β, τ ,λ, σ2 | y) ∝ e−
(y−Xβ)T (y−Xβ)

2σ2

(
√

2π)nσn
e−

βTD
−1
τ β

2σ2

(
√

2π)pσp

 p∏
j=1

τ
1
2−1
j e−

λ2
j
2 τjλζ+1

j e−ηλj

 (σ2)−α−1e−
ξ

σ2 (A.1)

for every (β, τ ,λ, σ2) ∈ Rp × Rp+ × Rp+ × R+. Based on the joint density in (A.1), the following

conditional distributions can be derived in a straightforward fashion.

• The conditional density of β given τ ,λ, σ2,y is the

Np
(
(XTX +D−1

τ )−1XTy, σ2(XTX +D−1
τ )−1

)
density on Rp. In particular,

π(β | τ ,λ, σ2,y) =
|XTX +D−1

τ |
1
2

(
√

2π)pσp
e−

(β−(XTX+D
−1
τ )−1XT y)

T
(XTX+D

−1
τ )(β−(XTX+D

−1
τ )−1XT y)

2σ2 ,

(A.2)

for β ∈ Rp.

• The conditional density of σ2 given β, τ ,λ,y is the

Inverse-Gamma

(
n+ p+ 2α

2
,

(y −Xβ)T (y −Xβ) + βTD−1
τ β + 2ξ

2

)
density. In particular,

π(σ2 | β, τ ,λ,y) =

(
(y −Xβ)T (y −Xβ) + βTD−1

τ β + 2ξ
)n+p+2α

2

2
n+p+2α

2 Γ(n+p+2α
2 )

(σ2)−
n+p+2α

2 −1

× e−
(y−Xβ)T (y−Xβ)+βTD

−1
τ β+2ξ

2σ2 ,

(A.3)

for σ2 ∈ R+.
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• The conditional density of σ2 given τ ,λ,y is the

Inverse-Gamma

(
n+ 2α

2
,

(y −Xβ̂)T (y −Xβ̂) + β̂
T
D−1
τ β̂ + 2ξ

2

)

density, where β̂ = (XTX +D−1
τ )−1XTy. In particular,

π(σ2 | τ ,λ,y) =

(
(y −Xβ̂)T (y −Xβ̂) + β̂

T
D−1
τ β̂ + 2ξ

)n+2α
2

2
n+2α

2 Γ(n+2α
2 )

(σ2)−
n+2α

2 −1

× e−
(y−Xβ̂)T (y−Xβ̂)+β̂TD

−1
τ β̂+2ξ

2σ2 ,

(A.4)

for σ2 ∈ R+.

• Given β, σ2,λ and y, the variables τ1, τ2, · · · , τp are conditionally independent, and the condi-

tional density of τj given β, σ2,λ and y is Generalized Inverse Gaussian
(

1
2 , λ

2
j ,
β2
j

σ2

)
. In particular

π(τ | β, σ2,λ,y) =

p∏
j=1

(
λjσ

|βj |

) 1
2 1

2K 1
2

(
λj |βj |
σ

)τ 1
2−1
j e

− 1
2

{
λ2
jτj+

β2
j

σ2
1
τj

}

=

p∏
j=1

1√
2π
λjτ

1
2−1
j e

− 1
2

{
λ2
jτj+

β2
j

σ2
1
τj

}
e
λj |βj |
σ

(A.5)

for τ ∈ Rp+.

• Given β, σ2 and y, the variables λ1, λ2, · · · , λp are conditionally independent, and the conditional

density of λj given β, σ2 and y is Gamma
(
ζ + 1,

|βj |
σ + η

)
. In particular

π(λ | β, σ2,y) =

p∏
j=1

(
|βj |
σ + η

)ζ+1

λζj

Γ(ζ + 1)
e
−
( |βj |

σ +η
)
λj

(A.6)

for λ ∈ Rp+.

Note that samples can be easily generated from all the conditional densities in (A.2), (A.3), (A.4) and

(A.5) by using standard statistical software (such as R).
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B. Proof of Theorem 2

Proof By (4), to prove the required result, we need to show that

Ĩ :=

∫
Rp

∫
R+

∫
Rp

∫
R+

k̃2
(
(β, σ2), (β̌, σ̌2)

) π (β, σ2 | y
)

π
(
β̌, σ̌2 | y

)dβ dσ2 dβ̌ dσ̌2 =∞. (B.7)

From (2) we get that

k̃2
(
(β, σ2), (β̌, σ̌2)

)
=

[∫
Rp+

∫
Rp+
π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
dτ dλ

]2

=

∫
Rp+

∫
Rp+

∫
Rp+

∫
Rp+
π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
π
(
σ̌2 | β̌, τ̌ , λ̌,y

)
π
(
β̌ | τ̌ , λ̌, σ2,y

)
π
(
τ̌ , λ̌ | β, σ2,y

)
dτ dλdτ̌ dλ̌.

(B.8)

It follows from (B.8) that

Ĩ =

∫
Rp

∫
R+

∫
Rp

∫
R+

∫
Rp+

∫
Rp+

∫
Rp+

∫
Rp+
π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
π
(
σ̌2 | β̌, τ̌ , λ̌,y

)
π
(
β̌ | τ̌ , λ̌, σ2,y

)
π
(
τ̌ , λ̌ | β, σ2,y

) π (β, σ2 | y
)

π
(
β̌, σ̌2 | y

)
dτ dλdτ̌ dλ̌ dβ dσ2 dβ̌ dσ̌2. (B.9)

Now, a straightforward rearrangement of conditional densities shows that

π
(
σ̌2 | β̌, τ̌ , λ̌,y

)
π
(
β̌ | τ̌ , λ̌, σ2,y

)
π
(
τ̌ , λ̌ | β, σ2,y

) π (β, σ2 | y
)

π
(
β̌, σ̌2 | y

)
= π

(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ , λ̌ | β̌, σ̌2,y

)
.

It follows from (B.9), and by using Fubini’s theorem (for exchanging the order of integration) that

Ĩ =

∫
Rp+

∫
Rp+

∫
Rp+

∫
Rp+

∫
Rp

∫
Rp

∫
R+

∫
R+

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
π
(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ , λ̌ | β̌, σ̌2,y

)
dσ2 dσ̌2 dβ dβ̌ dτ dλ dτ̌ dλ̌

(B.10)

We will now show that for arbitrarily fixed τ ,λ, τ̌ , λ̌, the integrand in (B.10) has an infinite integral

as a function of β, σ2, β̌, σ̌2. This will be done by obtaining an appropriate lower bound, and then
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integrating out σ2, σ̌2 and β using the Inverse-Gamma and t-densities. Finally, it will be shown, using

the properties of the t-density again, that the resulting function of β̌ has infinite integral over Rp. For

ease of exposition, we will use the following notations in the subsequent analysis.

β̂ = (XTX +D−1
τ )−1XTy β̂∗ = (XTX +D−1

τ̌ )−1XTy (B.11)

∆̃1 =
(
β̌ − β̂

)T
(XTX +D−1

τ )
(
β̌ − β̂

)
∆1∗ =

(
β − β̂∗

)T
(XTX +D−1

τ̌ )
(
β − β̂∗

)
∆̃ = (y −Xβ̌)T (y −Xβ̌) + β̌

T
D−1
τ β̌ + 2ξ ∆̃∗ = (y −Xβ̌)T (y −Xβ̌) + β̌

T
D−1
τ̌ β̌ + 2ξ

From (A.2), (A.3), (A.5), (A.6) and (B.11), we get that

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
π
(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ , λ̌ | β̌, σ̌2,y

)
= C1

{
∆̃

n+p+2α
2 e−

∆̃
2σ̌2

(σ̌2)
n+p+2α

2 +1

} |XTX +D−1
τ |

1
2 e−

∆̃1
2σ2

σp




p∏
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j τ

− 1
2

j e
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jτj+
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j
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(
η +
|βj |
σ
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{
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2 e−

∆1∗
2σ2

σp

}∆̃
n+p+2α

2
∗ e−

∆̃∗
2σ2

(σ2)
n+p+2α

2 +1




p∏
j=1

λ̌ζ+1
j τ̌

− 1
2

j e
− 1

2

(
λ̌2
j τ̌j+

(β̌j)2

σ̌2τ̌j

)
−ηλ̌j

(
η +
|β̌j |
σ̌

)ζ+1
 ,

≥ C1 f1

(
τ ,λ, τ̌ , λ̌

) ∆̃
n+p+2α

2 e−
∆̃+

ˇβ
T
D
−1
τ̌

ˇβ
2σ̌2

(σ̌2)
n+p+2α

2 +1

×
∆̃

n+p+2α
2

∗ e−
∆̃1+∆1∗+∆̃∗+βTD

−1
τ β

2σ2

(σ2)
n+p+2α

2 +p+1


(B.12)

where

C1 =

[
2
n+p+2α

2 Γ

(
n+ p+ 2α

2

)
{2πΓ (ζ + 1)}p

]−2

,

and

f1

(
τ ,λ, τ̌ , λ̌

)
= η2p(ζ+1)


p∏
j=1

λζ+1
j τ

− 1
2

j e−
λ2
j τj

2 −ηλj




p∏
j=1

λ̌ζ+1
j τ̌

− 1
2

j e−
λ̌2
j τ̌j

2 −ηλ̌j


|XTX +D−1

τ̌ |
1
2 |XTX +D−1

τ |
1
2 .

The last inequality is obtained by replacing
(
η +

|βj |
σ

)
and

(
η +

|β̌j |
σ̌

)
with just η in the appropriate

places.
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From (B.12), and the form of the Inverse-Gamma density, we get that∫
R+

∫
R+

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ ,λ | β, σ2,y

)
π
(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ , λ̌ | β̌, σ̌2,y

)
dσ2 dσ̌2

≥ [{2πΓ (ζ + 1)}p]−2
f1

(
τ ,λ, τ̌ , λ̌

) 
∆̃

n+p+2α
2[

∆̃ + β̌
T
D−1
τ̌ β̌

]n+p+2α
2

×
∆̃

n+p+2α
2

∗[
∆̃1 + ∆1∗ + ∆̃∗ + βTD−1

τ β
]n+p+2α

2 +p


2pΓ

(
n+p+2α

2 + p
)

Γ
(
n+p+2α

2

) . (B.13)

Let β̂∗∗ = (XTX +D−1
τ̌ +D−1

τ )−1XTy. A straightforward computation shows that

∆1∗ + βTD−1
τ β =

(
β − β̂∗

)T
(XTX +D−1

τ̌ )
(
β − β̂∗

)
+ βTD−1

τ β

=
(
β − β̂∗∗

)T
(XTX +D−1

τ̌ +D−1
τ )

(
β − β̂∗∗

)
+(

β̂∗∗ − β̂∗
)T

(XTX +D−1
τ̌ )

(
β̂∗∗ − β̂∗

)
+ β̂

T

∗∗D
−1
τ β̂∗∗

= f2 (τ , τ̌ ) +
(
β − β̂∗∗

)T
(XTX +D−1

τ̌ +D−1
τ )

(
β − β̂∗∗

)
, (B.14)

where

f2 (τ , τ̌ ) =
(
β̂∗∗ − β̂∗

)T
(XTX +D−1

τ̌ )
(
β̂∗∗ − β̂∗

)
+ β̂

T

∗∗D
−1
τ β̂∗∗.

Hence, by (B.14) and the form of the multivariate-t distribution (see for example Kotz and Nadarajah

(2004)), we get that∫
Rp

1[
∆̃1 + ∆1∗ + ∆̃∗ + βTD−1

τ β
]n+p+2α

2 +p
dβ

=

∫
Rp

1[
∆̃1 + ∆̃∗ + f2 (τ , τ̌ ) +

(
β − β̂∗∗

)T
(XTX +D−1

τ̌ +D−1
τ )

(
β − β̂∗∗

)]n+p+2α
2 +p

dβ

=
Γ
(
n+2p+2α

2

)√
π
p|XTX +D−1

τ̌ +D−1
τ |−

1
2

Γ
(
n+p+2α

2 + p
) [

∆̃1 + ∆̃∗ + f2 (τ , τ̌ )
]n+p+2α

2 + p
2

. (B.15)
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It follows from (B.13) and (B.15) that∫
Rp

∫
R+

∫
R+

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ | β, σ2,λ,y

)
π
(
λ | β, σ2,y
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π
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β | τ̌ , λ̌, σ2,y
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π
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σ2 | β̌, τ̌ , λ̌,y

)
π
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τ̌ | β̌, σ̌2, λ̌,y

)
π
(
λ̌ | β̌, σ̌2,y

)
dσ2 dσ̌2 dβ

≥ f1

(
τ ,λ, τ̌ ,λ′

) 
∆̃

n+p+2α
2 ∆̃

n+p+2α
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∗[
∆̃ + β̌

T
D−1
τ̌ β̌
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2


2p
√
π
p|XTX +D−1

τ̌ +D−1
τ |−

1
2[

∆̃1 + ∆̃∗ + f2 (τ , τ̌ )
]n+p+2α

2 + p
2

 [{2πΓ (ζ + 1)}p]−2

(B.16)

Note that

β̌
T
D−1
τ̌ β̌

∆̃
=

β̌
T
D−1
τ̌ β̌

(y −Xβ̌)T (y −Xβ̌) + β̌
T
D−1
τ β̌ + 2ξ

≤ β̌
T
D−1
τ̌ β̌

β̌
T
D−1
τ β̌

≤ max
1≤j≤p

(
τj
τ̌j

)
,

(B.17)

and

∆̃1

∆̃∗
=

(
β̌ − β̂

)T
(XTX +D−1

τ )
(
β̌ − β̂

)
(y −Xβ̌)T (y −Xβ̌) + β̌

T
D−1
τ̌ β̌ + 2ξ

≤

(
β̌ − β̂

)T
(XTX +D−1

τ )
(
β̌ − β̂

)
+ β̂

T
D−1
τ β̂ + (y −Xβ̂)T (y −Xβ̂)

(y −Xβ̌)T (y −Xβ̌) + β̌
T
D−1
τ̌ β̌ + 2ξ

=
(y −Xβ̌)T (y −Xβ̌) + β̌

T
D−1
τ β̌

(y −Xβ̌)T (y −Xβ̌) + β̌
T
D−1
τ̌ β̌ + 2ξ

≤ 1 +
β̌
T
D−1
τ β̌

β̌
T
D−1
τ̌ β̌

≤ 1 + max
1≤j≤p

(
τ̌j
τj

)
. (B.18)

From (B.16), (B.17), (B.18) and the fact

∆̃∗ = (y −Xβ̌)T (y −Xβ̌) + β̌
T
D−1
τ̌ β̌ + 2ξ ≥ β̂

T

∗D
−1
τ̌ β̂∗ + (y −Xβ̂∗)T (y −Xβ̂∗) + 2ξ
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(since β̂∗ minimizes ∆̃∗ as a function of β̌), it follows that∫
Rp

∫
R+

∫
R+

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ | β, σ2,λ,y

)
π
(
λ | β, σ2,y

)
π
(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ | β̌, σ̌2, λ̌,y

)
π
(
λ̌ | β̌, σ̌2,y

)
dσ2 dσ̌2 dβ

≥ f3

(
τ ,λ, τ̌ , λ̌

) 1[
∆̃1 + ∆̃∗ + f2 (τ , τ̌ )

] p
2

 , (B.19)

where

f3

(
τ ,λ, τ̌ , λ̌

)
= [{2πΓ (ζ + 1)}p]−2

f1

(
τ ,λ, τ̌ , λ̌

) 
2p
√
π
p|XTX +D−1

τ̌ +D−1
τ |−

1
2[

1 + max1≤j≤p

(
τj
τ̌j

)]n+p+2α
2


1[

2 + max1≤j≤p

(
τ̌j
τj

)
+ f2(τ ,τ̌ )

β̂
T

∗D
−1
τ̌ β̂∗+(y−Xβ̂∗)T (y−Xβ̂∗)+2ξ

]n+p+2α
2

 .

Let β̂∗∗∗ = (2XTX +D−1
τ +D−1

τ ′ )−12XT y. Note that

∆̃1 + ∆̃∗ + f2 (τ , τ̌ )

=
(
β̌ − β̂

)T
(XTX +D−1

τ )
(
β̌ − β̂

)
+ (y −Xβ̌)T (y −Xβ̌) + β̌

T
D−1
τ̌ β̌ + 2ξ + f2 (τ , τ̌ )

=
(
β̌ − β̂

)T
(XTX +D−1

τ )
(
β̌ − β̂

)
+
(
β̌ − β̂∗

)T
(XTX +D−1

τ̌ )
(
β̌ − β̂∗

)
+

(y −Xβ̂∗)T (y −Xβ̂∗) + β̂
T

∗D
−1
τ β̂∗ + 2ξ + f2 (τ , τ̌ )

=
(
β̌ − β̂∗∗∗

)T
(2XTX +D−1

τ +D−1
τ̌ )

(
β̌ − β̂∗∗∗

)
+
(
β̂∗∗∗ − β̂

)T
(XTX +D−1

τ )
(
β̂∗∗∗ − β̂

)
+
(
β̂∗∗∗ − β̂∗

)T
(XTX +D−1

τ̌ )
(
β̂∗∗∗ − β̂∗

)
+(y −Xβ̂∗)T (y −Xβ̂∗) + β̂

T

∗D
−1
τ β̂∗ + 2ξ + f2 (τ , τ̌ ) ,

=
(
β̌ − β̂∗∗∗

)T
(2XTX +D−1

τ +D−1
τ̌ )

(
β̌ − β̂∗∗∗

)
+ f4 (τ , τ̌ ) , (B.20)

where

f4 (τ , τ̌ ) =
(
β̂∗∗∗ − β̂

)T
(XTX +D−1

τ )
(
β̂∗∗∗ − β̂

)
+
(
β̂∗∗∗ − β̂∗

)T
(XTX +D−1

τ̌ )
(
β̂∗∗∗ − β̂∗

)
+(y −Xβ̂∗)T (y −Xβ̂∗) + β̂

T

∗D
−1
τ̂ β̂∗ + 2ξ + f2 (τ , τ̌ ) .
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From (B.19) and (B.20), we get that∫
Rp

∫
Rp

∫
R+

∫
R+

π
(
σ̌2 | β̌, τ ,λ,y

)
π
(
β̌ | τ ,λ, σ2,y

)
π
(
τ | β, σ2,λ,y

)
π
(
λ | β, σ2,y

)
π
(
β | τ̌ , λ̌, σ2,y

)
π
(
σ2 | β̌, τ̌ , λ̌,y

)
π
(
τ̌ | β̌, σ̌2, λ̌,y

)
π
(
λ̌ | β̌, σ̌2,y

)
dσ2 dσ̌2 dβ dβ̌

≥ f3

(
τ ,λ, τ̌ , λ̌

) ∫
Rp


1[

f4 (τ , τ̌ ) +
(
β̌ − β̂∗∗∗

)T
(2XTX +D−1

τ +D−1
τ̌ )

(
β̌ − β̂∗∗∗

)] p2 dβ̌


≥

f3

(
τ ,λ, τ̌ , λ̌

)
[f4 (τ , τ̌ )]

p
2

∫
Rp


1[

1 +
(
β̌ − β̂∗∗∗

)T
(2XTX+D−1

τ +D−1
τ̌ )

f4(τ ,τ̌ )

(
β̌ − β̂∗∗∗

)] p2 dβ̌


= ∞ (B.21)

for every (τ ,λ, τ̌ , λ̌) ∈ Rp+×Rp+×Rp+×Rp+. The fact that the last integral is infinite follows by noting

that the multivariate t-distribution with 1 degree of freedom does not have a finite mean (Kotz and

Nadarajah, 2004). Hence, it follows from (B.7), (B.10) and (B.21) that the Markov operator K̃ is not

Hilbert-Schmidt. �

C. Mathematical identities

Proposition C1 Suppose the random variable U has a t−distribution with scale parameter κ, location

parameter ϑ and degrees of freedom ν. Then for ω < ν,

E (|U |ω) ≤ (2|ϑ|)ω + κω

[
(4ν)

ω
2

Γ(ω+1
2 )Γ(ν−ω2 )
√

2Γ(ν2 )

]
.

Proof If the random variable U has a t−distribution with scale parameter κ, location parameter ϑ

and degrees of freedom ν then U = ϑ + κ T where T is a standard t-distribution with ν degrees of

freedom. Hence

E (|U |ω) = E (|ϑ+ κ T |ω) ≤ E ((2|ϑ|)ω 1ϑ≥κT ) + E ((2κ|T |)ω 1ϑ≤κT )

≤ (2|ϑ|)ω + (2 κ)ωE (|T |ω)

= (2|ϑ|)ω + (2 κ)ωE

(
|Z|ω

(W/ν)
ω
2

)
,

where Z and W are independent with Z ∼ N(0, 1) and W is χ2 with ν degrees of freedom. Hence we
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get that

E (|U |ω) ≤ (2|ϑ|)ω + (2
√
ν κ)ωE (|Z|ω)E

(
1

W
ω
2

)
= (2|ϑ|)ω + (2

√
ν κ)ω

[
2
ω
2 Γ(ω+1

2 )
√
π

] [
Γ(ν−ω2 )

2
ω
2 Γ(ω2 )

]
= (2|ϑ|)ω + κω

[
(4ν)

ω
2

Γ(ω+1
2 )Γ(ν−ω2 )
√
πΓ(ω2 )

]
. (C.22)

�

Proposition C2 Let ζ > 0, δj ∈ {0, 1}, β̂j = eTj β̂, i.e. the jth component of β̂, ξj =

√
yT (In−PX)y+2ξ

($min+ 1
τj

)νj

and νj = n+2α
p + (1 + ζ)δj then there is a finite constant C0j such that,∫

R

|βj |(1+ζ)δj[
1 +

(βj−β̂j)2

νjξ2
j

] 1+νj
2

dβj ≤
C0j√

$min + 1
τj

,

where $min is the smallest eigenvalue of XTX.

Proof Note that ∫
R

|βj |(1+ζ)δj[
1 +

(βj−β̂j)2

νjξ2
j

] 1+νj
2

dβj = ξj
Γ(

νj
2 )
√
π νj

Γ(
νj+1

2 )
E
(
|Uj |(1+ζ)δj

)
,

where Uj follows a t-distribution with scale ξj , location β̂j and degrees of freedom νj . Using Proposition

C1 and the fact δj ∈ {0, 1}, we get that∫
R

|βj |(1+ζ)δj[
1 +

(βj−β̂j)2

νjξ2
j

] 1+νj
2

dβj = ξj
Γ(

νj
2 )
√
π νj

Γ(
νj+1

2 )

[
E
(
|Uj |(1+ζ)

)]δj

≤ ξj
Γ(

νj
2 )
√
π νj

Γ(
νj+1

2 )

[(
2|β̂j |

)1+ζ

+ ξj
1+ζ(4νj)

1+ζ
2

Γ( ζ+2
2 )Γ(n+2α

2p )
√
πΓ( (1+ζ)

2 )

]δj
.

Since we are assuming XTX is a positive definite matrix, $min > 0. Note that |β̂j | ≤
√
β̂
T
β̂ =√

yTX(XTX +D−1
τ )−2XTy ≤

√
yTX(XTX)−2XTy, since the positive definite matrix (XTX)(XTX+

D−1
τ )−2(XTX) = (Ip + (XTX)−1/2D−1

τ (XTX)−1/2)−1 has all eigenvalues bounded by 1. Recall that

ξj =

√
yT (In−PX)y+2ξ

($min+ 1
τj

)νj
≤
√

yT (In−PX)y+2ξ
$min νj

. Hence, we get that

∫
R

|βj |(1+ζ)δj[
1 +

(βj−β̂j)2

νjξ2
j

] 1+νj
2

dβj ≤
C0j√

$min + 1
τj

,
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where

C0j =

√
yT (In − PX)y + 2ξ

νj

Γ(
νj
2 )
√
π νj

Γ(
νj+1

2 )(2
√

yTX(XTX)−2XTy

)1+ζ

+

(√
yT (In − PX)y + 2ξ

$min νj

)1+ζ

(4νj)
1+ζ

2

Γ( ζ+2
2 )Γ(n+2α

2p )
√
πΓ( (1+ζ)

2 )

δj .
�

D. Rejection sampling approach to sample from fG

Note that the extra step density fG (with respect to the Lebesgue measure on R+ is given by

fG(g) = K
gp/2−1 e

−g
(∑p

j=1

λ2
j τj

2

)
{
yTy − yTXT

(
XTX + 1

gD
−1
τ

)−1

XTy + 2ξ

}n
2 +α

|XTX + 1
gD
−1
τ |

1
2

,

where K is an appropriate normalizing constant. In the case when XTX is a positive definite matrix,

we get

fG(g) ≤ K∗{
yTy − yTXT (XTX)

−1
XTy + 2ξ

}n
2 +α

|XTX| 12
f∗(g),

where K∗ is appropriate constant and f∗ is a Gamma density with shape parameter p
2 and rate

parameter 1
2

∑p
j=1 λ

2
jτj . Hence a rejection sampler algorithm based on the Gamma distribution can

easily be implemented.
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