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Abstract

Eaton (1992) considered a general parametric statistical model paired with an improper

prior distribution for the parameter and proved that if a certain Markov chain, constructed

using the model and the prior, is recurrent, then the improper prior is strongly admissible, which

(roughly speaking) means that the generalized Bayes estimators derived from the corresponding

posterior distribution are admissible. Hobert and Robert (1999) proved that Eaton’s Markov

chain is recurrent if and only if its so-called conjugate Markov chain is recurrent (see also

Eaton et al., 2007). The focus of this paper is a family of Markov chains that contains all of the

conjugate chains that arise in the context of a Poisson model paired with an arbitrary improper

prior for the mean parameter. Sufficient conditions for recurrence and transience are developed

and these are used to establish new results concerning the strong admissibility of non-conjugate

improper priors for the Poisson mean.

1 Introduction

There is a well known connection between the admissibility of statistical estimators and the recur-

rence of associated stochastic processes (see, e.g., Brown, 1971; Johnstone, 1984; Eaton, 1992).
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Eaton (1992) considered a general parametric statistical model paired with an improper prior dis-

tribution for the parameter that leads to a proper posterior distribution. Let θ and ν(dθ) denote the

parameter and the improper prior distribution, respectively. Eaton proved that if a certain Markov

chain (constructed using the model and the prior) is recurrent, then the improper prior is strongly

admissible, which means that the generalized Bayes estimator of every bounded function of θ is

almost-ν-admissible under squared error loss. That is, if g(θ) is any bounded function of θ and

δ is any estimator of g(θ) whose mean squared error (MSE) is less than or equal to that of the

generalized Bayes estimator of g(θ) for all θ, then the set of θs for which the MSE of δ is strictly

less than that of the generalized Bayes estimator has ν-measure 0. (See Eaton (2004) for an excel-

lent introduction to this theory.) Strong admissibility is a useful property. Indeed, if the prior ν is

strongly admissible, this means that the statistical model and ν combine to yield a formal posterior

distribution that generates (almost) admissible estimators for a large class of functions of θ, which

means that we might be willing to endorse ν as a good “all purpose” prior to use in conjunction with

this particular statistical model. It is important to keep in mind throughout that Eaton’s condition is

merely sufficient. In particular, it remains unknown whether or not transience of Eaton’s Markov

chain implies that the prior is not strongly admissible. (See Section 7 of Eaton (1992) for more on

this issue.)

Hobert and Robert (1999) showed that Eaton’s Markov chain is recurrent if and only if its so-

called conjugate Markov chain is recurrent (see also Eaton et al., 2007). This is a useful result from

a practical standpoint because the conjugate chain is often much easier to analyze than Eaton’s

(1992) chain. Here we study a set of Markov chains that contains all the conjugate chains that arise

in the context of a Poisson model paired with an arbitrary improper prior. We now describe this set

of chains.

Let {am}∞m=0 be a sequence of strictly positive real numbers such that, for each i ∈ Z+ :=

{0, 1, 2, . . .}, we have
∑∞

j=0
ai+j
j!

< ∞. Define bi = 1
i!

∑∞
j=0

ai+j
j!

. Now let W = {Wn}∞n=0 be a

time homogeneous Markov chain with state space Z+ and transition probabilities given by

pij = P (Wn+1 = j|Wn = i) =
ai+j
i! j! bi

,

for i, j ∈ Z+. The fact that the transition probabilities are all strictly positive implies that the chain

is irreducible and aperiodic. Moreover, since pijbi =
ai+j
i! j!

= pjibj for all i, j ∈ Z+, the chain is

reversible with respect to the sequence {bi}∞i=0. Thus, {bi}∞i=0 is an invariant sequence for W , i.e.,
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for each j ∈ Z+, we have
∞∑
i=0

pijbi = bj .

Because W is irreducible and aperiodic, it follows that W is positive recurrent if and only if∑∞
i=0 bi < ∞ (see, e.g., Billingsley, 1995, Section 8). When this sum diverges, the chain is either

null recurrent or transient, and differentiating between these two possibilities in specific examples

can be quite challenging. This is our focus. We now provide a simple example.

If we take am = m!/2m+1, then for fixed i,
∞∑
j=0

ai+j
j!

=
∞∑
j=0

(i+ j)!

2i+j+1j!
,

which converges (ratio test). Now,
∞∑
i=0

bi =
∞∑
i=0

1

i!

∞∑
j=0

ai+j
j!

=
∞∑
i=0

1

i!

∞∑
j=0

(i+ j)!

2i+j+1j!
=
∞∑
n=0

(1

2

)n+1
n∑
i=0

(
n

i

)
=
∞∑
n=0

1

2
=∞ .

We conclude that the Markov chain W corresponding to am = m!/2m+1 is either null recurrent or

transient. We will return to this example several times throughout the paper.

We now describe the connection between the Markov chain W and the decision theoretic study

of improper priors for a Poisson mean. Suppose that X is a Poisson(λ) random variable; that is,

λ > 0 and P (X = x |λ) = e−λλx

x!
IZ+(x), where IA(·) is the indicator function of the set A. Set

R+ = (0,∞) and let ν : R+ → R+ be such that
∫
R+ ν(λ) dλ = ∞ and

∫
R+ λ

xe−λν(λ) dλ < ∞
for all x ∈ Z+. Under these conditions, ν(λ) can be viewed as an improper prior density for the

parameter λ that yields a proper posterior density given by

π(λ |x) =
e−λλxν(λ)

x!mν(x)
IR+(λ) ,

where, of course, mν(x) := 1
x!

∫
R+ λ

xe−λν(λ) dλ. We associate with each such improper prior ν(·)
a Markov chain Φν = {Φν

n}∞n=0 with state space Z+ and transition probabilities given by

P (Φν
n+1 = j |Φν

n = i) =

∫
R+

P (X = j |λ) π(λ | i) dλ

=
1

i! j!mν(i)

∫
R+

λi+je−2λν(λ) dλ , (1)

for i, j ∈ Z+. This is the conjugate chain mentioned above. As is typical, it is less complex than

Eaton’s (1992) chain, which has a continuous state space, R+, and Markov transition density given

by

k(v|u) =
∞∑
x=0

π(v |x)P (X = x |u) = e−u−vν(v)
∞∑
x=0

(uv)x

(x!)2mν(x)
.
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Clearly, the transition probabilities in (1) are strictly positive, which implies that the chain is irre-

ducible and aperiodic. Moreover,

P (Φν
n+1 = j|Φν

n = i)mν(i) = P (Φν
n+1 = i|Φν

n = j)mν(j) ,

for i, j ∈ Z+. Hence, Φν is reversible with respect to the sequence {mν(i)}∞i=0. The impropriety

of ν(·) implies that
∑∞

i=0mν(i) = ∞, so Φν is either null recurrent or transient. It follows from

results of Eaton (1992) and Hobert and Robert (1999) that if Φν is null recurrent, then the prior ν

is strongly admissible under squared error loss. Here is the connection: The chain Φν is a member

of the general class of chains described above with

am =

∫
R+

λme−2λν(λ) dλ .

This connection provides motivation for the development of techniques for differentiating between

null recurrence and transience of W when W is not positive recurrent, i.e., when
∑∞

i=0 bi diverges.

Let’s now look at a particular family of improper priors for λ that lead to proper posteriors.

Take ν(λ) = λα−1e−βλ, for α > 0 and β ∈ (−1, 0]. This is basically an improper gamma density,

i.e., for α > 0 and β ∈ (−1, 0], we have∫
R+

λα−1e−βλ dλ =∞ .

The resulting posterior density is proper since, for any x ∈ Z+,∫
R+

λxe−λν(λ) dλ =

∫
R+

λx+α−1e−λ(β+1) dλ <∞ .

Under this improper gamma prior, the posterior density is a (proper) gamma density, which is why

the priors in this family are called conjugate priors. (Warning: The word “conjugate” is used in

two different ways in this paper - one applies to priors and the other to Markov chains.) Again,

the associated Markov chain Φν is a special case of the Markov chain W , and the corresponding

sequence {am}∞m=0 is given by

am =

∫
R+

λme−2λν(λ) dλ =

∫
R+

λm+α−1e−(2+β)λ dλ =
Γ(m+ α)

(2 + β)m+α
.

When α = 1 and β = 0, we have am = m!/2m+1, which is precisely the example discussed earlier

in this section. It is known that the Markov chain Φν is null recurrent when β = 0 and α ∈ (0, 1],

and is transient otherwise. So improper conjugate priors taking the form ν(λ) = λα−1, α ∈ (0, 1],

are strongly admissible. These priors are improper due to their heavy right tails. When α = 1
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we recover the so-called flat prior, which is constant on R+, and when α ∈ (0, 1) the right tail

decreases to 0 at a rate dictated by α, with smaller values of α leading to a faster decrease. The

result concerning the stability of Φν was established by Hobert and Robert (1999) who showed

that when ν is conjugate, Φν can be represented as a branching process with immigration. The

null recurrence/transience results then follow easily from classical theorems in branching process

theory. Unfortunately, when ν is non-conjugate, the branching process representation of Φν breaks

down, and differentiating between null recurrence and transience is much more difficult. In fact,

not much is known about the strong admissibility of improper non-conjugate priors for λ.

Remark 1. Now suppose that, instead of a single observation from the Poisson(λ) distribution,

we have an iid sample of size n, and we want to know if ν(λ) is strongly admissible in this new

situation. Since the sum of these Poisson random variables is a sufficient statistic, we can base our

inference on the sum, which also has a Poisson distribution. In fact, a straightforward calculation

shows that the conjugate Markov chain for this problem is exactly the same as that corresponding

to the case of a single observation with prior ν(λ/n)/n. Hence, if the latter chain is recurrent,

then ν(λ) is strongly admissible in the iid sample case. For example, if ν(λ) = λα−1e−βλ, then

ν(λ/n)/n = n−1(λ/n)α−1e−βλ/n, which is just a slightly different conjugate prior (the factor of

n−α plays no role). Since β = 0 if and only if β/n = 0, the conjugate priors that we identified as

strongly admissible for the single observation case remain so for the iid sample case, which is not

surprising.

Our main contribution is the development of general conditions that can be used to ascertain

whether W (characterized by the sequence {am}∞m=0) is recurrent or transient. In particular, we

prove that a sufficient condition for transience of W is
∞∑
n=1

(n!)2

n3/2a2n
+
∞∑
n=1

n!(n+ 1)!

n3/2a2n+1

<∞ ,

and that a sufficient condition for recurrence of W is

∞∑
n=1

[
n−1∑
i=0

∞∑
j=n

ai+j(j − i)
i!j!

]−1
=∞ .

These conditions are applicable to allW , but they are most useful in situations where
∑∞

i=0 bi =∞.

In the context of our statistical problem, we show that our sufficient conditions are sharp enough to

correctly characterize all of the Φνs associated with improper conjugate priors, which suggests that

they ought to be useful in differentiating between null recurrence and transience when improper
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non-conjugate priors are used, and we demonstrate that this is indeed the case. Of course, as

mentioned above, transience of Φν does not tell us anything about ν (beyond the fact that Eaton’s

theory cannot be used to establish the strong admissibility of ν). Therefore, in the context of

our statistical problem, the sufficient condition for transience is clearly much less useful than the

sufficient condition for recurrence.

We develop these sufficient conditions for recurrence and transience by leveraging a branch of

classical Markov chain theory that is based on connections between reversible Markov chains (on

countable state spaces) and electrical networks (see, e.g., Doyle and Snell, 1984; Peres, 1999). Our

work is analogous to that of Hobert and Schweinsberg (2002) (hereafter “H&S”), who developed a

sufficient condition for strong admissibility of improper priors for a geometric success probability.

The remainder of this paper is organized as follows. In Section 2, we introduce random walks

on networks and explain how they are related to our Markov chain W . Section 3 contains our

development of the sufficient condition for transience, which is based on a result of Lyons (1983).

In Section 4, a result of McGuinness (1991) is employed to develop the sufficient condition for

recurrence. We apply our results in Section 5. There it is shown that certain members of the family

of improper (non-conjugate) inverse gamma priors are strongly admissible, and that the logarithmic

prior ν(λ) = log(1 + λ) is strongly admissible. Finally, Section 6 contains some closing remarks

about our results.

2 Random walks on networks

In this section, we define a weighted random walk on a network, and show that a slightly altered

version of the Markov chain W can be represented as such. This representation facilitates our

analysis of W because W and the altered version have the same recurrence/transience properties.

A network is a pair N = [G, c], where G is a simple connected graph with countable vertex set

V (G) and edge set E(G), and c is a function with domain E(G) and range R+. For e ∈ E(G),

c(e) is called the conductance of the edge e. If v and w are vertices of G that are connected by an

edge, then we write v ∼ w and denote the edge connecting v and w by evw. For v ∈ V (G), let

c(v) =
∑

w:v∼w c(evw). A weighted random walk on N is a Markov chain S = {Sn}∞n=0 with state
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space V (G) whose transition probabilities are given by

P (Sn+1 = w|Sn = v) =

c(evw)/c(v) if v ∼ w ,

0 otherwise .

In words, if the chain is currently at the vertex v, then its next move is to one of the vertices

that share an edge with v according to probabilities that are proportional to the conductances of

those edges. Since P (Sn+1 = w|Sn = v)c(v) = c(evw) = P (Sn+1 = v|Sn = w)c(w) for all

(v, w) ∈ V (G)× V (G), the chain S is reversible with respect to the sequence {c(v)}v∈V (G).

The graph G is simple so it has no self loops. Hence, the Markov chain S cannot make tran-

sitions from a vertex in G back to the same vertex. The Markov chain W , however, can make

transitions from any point in Z+ back to the same point. It follows that W cannot be represented

exactly as a weighted random walk on a network. This is why we must consider a slightly altered

version of W that we now describe. Let H be the graph with vertex set Z+ and an edge joining any

two distinct vertices. (We are using H instead of G here because we wish to preserve the generality

of the network N = [G, c].) Let i and j be any two distinct points in Z+ and define the conductance

as follows

d(eij) = pijbi =
ai+j
i! j!

. (2)

Now let T = {Tn}∞n=0 be the weighted random walk on the network M = [H, d], which has

transition probabilities given by

P (Tn+1 = j|Tn = i) =
d(eij)

d(i)
=

pijbi∑
j 6=i pijbi

=
pij

1− pii

for all i 6= j. These are also the transition probabilities of the Markov chain W̃ = {W̃n}∞n=0

obtained from the chain W by removing repeated values, and, moreover, W is recurrent if and only

if W̃ is recurrent (see Section 2 of H&S for details). Therefore, T is recurrent if and only if W is

recurrent, so we can study the stability of W indirectly by studying T .

3 A condition for transience of W

In this section, we develop a sufficient condition for the transience of W by employing a result

of Lyons (1983). Consider again our generic network N = [G, c] from the previous section. If

a ∈ V (G), a flow from a to ∞ is a real-valued function θ defined on V (G) × V (G) such that
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θ(v, w) = 0 unless v ∼ w, θ(v, w) = −θ(w, v) for all v, w ∈ V (G), and
∑

w∈V (G) θ(v, w) = 0 if

v 6= a. The flow is called a unit flow if
∑

w∈V (G) θ(a, w) = 1. The energy of the flow is defined by

E(θ) =
1

2

∑
(v,w):v∼w

θ2(v, w)/c(evw) .

The following theorem is due to Lyons (1983).

Theorem 2. The weighted random walk on the network N = [G, c] is transient if and only if, for

some a ∈ V (G), there exists a unit flow from a to∞ having finite energy.

In our application of Lyons’s (1983) result, we will be concerned with the particular network

M = [H, d] defined in the previous section. We now describe a novel technique for converting

certain partitions of Z+ into flows from 0 to ∞. Let {Bk}∞k=0 denote a partition of Z+ where

B0 = {0}. We assume without loss of generality that all sets in the partition are non-empty. We

assume further that the partition is “monotone” in the sense that if i ∈ Bk and j ∈ B` with k < `,

then i < j. Now define a function θ : Z+ × Z+ → R as follows

θ(i, j) =


|B1|

|Bk||Bk+1|
if i ∈ Bk, j ∈ Bk+1 ,

−|B1|
|Bk−1||Bk|

if i ∈ Bk, j ∈ Bk−1 ,

0 otherwise .

We claim that θ is a flow. The anti-symmetry of θ, i.e., θ(i, j) = −θ(j, i) follows immediately by

construction. Now suppose that k ≥ 1 and that i ∈ Bk. Then we have,
∞∑
j=0

θ(i, j) =
∑

j∈Bk−1

θ(i, j) +
∑

j∈Bk+1

θ(i, j) =
−|B1|
|Bk−1||Bk|

|Bk−1|+
|B1|

|Bk||Bk+1|
|Bk+1| = 0 .

Hence, θ is a flow. Further,
∞∑
j=0

θ(0, j) =
∑
j∈B1

θ(0, j) =
|B1|
|B0||B1|

|B1| = |B1| > 0 .

Therefore, we can make the flow a unit flow from 0 to ∞ by choosing B1 = {1}. We call any

flow constructed using the above technique a partition flow. Here is our main result regarding the

transience of the Markov chain W .

Proposition 3. The Markov chain W (characterized by the sequence {am}∞m=0) is transient if

∞∑
n=1

(n!)2

n3/2a2n
+
∞∑
n=1

n!(n+ 1)!

n3/2a2n+1

<∞ . (3)
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Proof. Let θ denote the unit partition flow from 0 to∞ based on the following partition: B0 = {0},
B1 = {1}, and Bk = {(k − 1)2 + 1, . . . , k2} for k ≥ 2. Note that |Bk| = 2k − 1 for k ≥ 1. We

will show that (3) implies that the energy of this flow is finite, which in turn implies transience by

Theorem 2. We can express the energy of our flow as follows:

E(θ) =
1

2

∞∑
i=0

∞∑
j=0

i! j! θ(i, j)2

ai+j

=
1

2

∞∑
n=1

1

an

n∑
i=0

i! (n− i)! θ(i, n− i)2

=
∞∑
n=1

1

an

bn/2c∑
i=0

i! (n− i)! θ(i, n− i)2 ,

where the last step uses the anti-symmetry of θ, and b·c denotes the floor of the argument. Now fix

n ≥ 50 and fix a non-negative integer i < n/2. Suppose that i ∈ Bk. Then θ(i, n− i)2 6= 0 if and

only if n− i ∈ Bk+1. It follows from the definition of Bk and Bk+1 that in such a case

n = i+ (n− i) ≤ k2 + (k + 1)2 = 2k2 + 2k + 1 .

Continuing, since i ∈ Bk, we have i ≥ k2 − 2k + 2 and
√
i > k − 1. Hence,

n ≤ 2k2 − 4k + 4 + 6(k − 1) + 3 < 2i+ 6
√
i+ 3 < 2i+ 6

√
n/2 + 3 < 2i+ 6

√
n .

It follows that

θ(i, n− i) 6= 0⇒ i >
n

2
− 3
√
n .

We see that n − i ∈ Bk+1 implies that n < 2(k + 1)2. Thus, 50 ≤ n < 2(k + 1)2, which implies

that k > 4 and

θ(i, n− i) =
1

|Bk||Bk+1|
=

1

(2k − 1)(2k + 1)
≤ 1

2(k + 1)2
<

1

n
.

Using the facts just established, we have that for n ≥ 50,

bn/2c∑
i=0

i! (n− i)! θ(i, n− i)2 ≤ 1

n2

bn/2c∑
i=bn/2−3

√
nc

i! (n− i)!

≤ 1

n2

bn/2c∑
i=bn/2−3

√
nc

bn/2− 3
√
nc!
(
n− bn/2− 3

√
nc
)
!

≤ 4
√
n

n2
bn/2− 3

√
nc!
(
n− bn/2− 3

√
nc
)
! . (4)
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The penultimate inequality follows from the fact that i! (n − i)! is a decreasing function of i for

0 ≤ i ≤ bn/2c. We now look to bound the product of factorials in the last line of (4).

Let hn = bn/2− 3
√
nc/n ∈ (0, 1). Then

n/2− 3
√
n− 1

n
≤ hn ≤

n/2− 3
√
n

n
. (5)

It follows that

4hn(1− hn) ≤
(

1− 6√
n

)(
1 +

6√
n

+
2

n

)
≤ 1− 36

n
+

2

n
≤ 1− 34

n
. (6)

Recall Stirling’s approximation:

√
2πn

(n
e

)n
< n! <

√
2πne2

(n
e

)n
. (7)

Now fix n even. Using Stirling’s approximation in conjunction with (5) and (6), we have

bn/2− 3
√
nc!
(
n− bn/2− 3

√
nc
)
!

(n/2)! (n/2)!
≤ 2n+1e2

√
hn(1− hn)hnhnn (1− hn)n(1−hn)

≤ 2n+1e2
√
hn(1− hn)hn/2−3

√
n−1

n (1− hn)n/2+3
√
n

= 2e2
√

1− hn
hn

(
4hn(1− hn)

)n/2(1− hn
hn

)3
√
n

≤ 2e2
√

1− hn
hn

(
1− 34

n

)n/2(1 + 6√
n

+ 2
n

1− 6√
n
− 2

n

)3
√
n

. (8)

Now recall that if {un} and {vn} are sequences of real numbers such that un →∞ and vn → v for

some v ∈ R, then (
1 +

vn
un

)un
→ ev ,

as n→∞. Hence, (1− 34/n)n/2 → e−17 and(
1 + 6√

n
+ 2

n

1− 6√
n
− 2

n

)3
√
n

→ e36 .

Now combining this with the fact that hn → 1/2, we have that for large enough even n,

bn/2− 3
√
nc!
(
n− bn/2− 3

√
nc
)
!

(n/2)! (n/2)!
≤ 4e21 .

It then follows from (4) that for large enough even n,

bn/2c∑
i=0

i! (n− i)! θ(i, n− i)2 ≤ 16e21

n3/2
(n/2)! (n/2)! . (9)
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Using Stirling’s approximation again, we have that for large enough odd n

1

((n− 1)/2)! ((n+ 1)/2)!
≤ 2nen

π
√
n2 − 1

(n− 1)−(n−1)/2(n+ 1)−(n+1)/2

=
2nenn−n

π
√
n2 − 1

√
n− 1

n+ 1

(
1− 1

n2

)−n/2
≤ 2

2nenn−n

πn
. (10)

The last expression in (10) is precisely twice the Stirling-based upper bound for ((n/2)!)−2 for n

even that we used to get (8). Therefore, proceeding exactly as in the n even case, we find that for

large enough odd n, we have

bn/2c∑
i=0

i! (n− i)! θ(i, n− i)2 ≤ 32e21

n3/2
((n− 1)/2)! ((n+ 1)/2)! . (11)

Combining (9) and (11), it’s clear that E(θ) <∞ if
∞∑
n=1

(n!)2

n3/2a2n
+
∞∑
n=1

n!(n+ 1)!

n3/2a2n+1

<∞ ,

which completes the proof.

Here is an easy extension of Proposition 3.

Corollary 4. Let W and W ′ be Markov chains defined by the sequences {am}∞m=0 and {a′m}∞m=0,

respectively. Suppose that {am}∞m=0 satisfies (3), which implies that W is transient. If there exists

a C > 0 such that a′m ≥ Cam for all m ∈ N, then W ′ is also transient.

Recall that the improper conjugate prior for the Poisson parameter λ takes the form ν(λ) =

λα−1e−βλ, for α > 0 and β ∈ (−1, 0]. Again, Hobert and Robert (1999) used a highly specialized

branching process argument to show that the corresponding Markov chain, Φν , is null recurrent

when β = 0 and α ∈ (0, 1], and is transient otherwise. We now demonstrate that Proposition 3 can

be used to reproduce the transience part of this result. We consider two different cases that lead to

transience. Case I: α ∈ (0, 1] and β ∈ (−1, 0), and Case II: α > 1 and β ∈ (−1, 0]. As shown in

the Introduction, Φν is a special case of the chain W generated by the sequence {am}∞m=0 given by

am =
Γ(m+ α)

(2 + β)m+α
.

We begin with Case I. It is known (Wendel, 1948) that for every s > 0,

lim
x→∞

Γ(x+ s)

xsΓ(x)
→ 1 . (12)

11



It follows that there exists N = N(α) such that

1

Γ(n+ α)
≤ 2

nα(n− 1)!

for all n > N . Hence, for n > N , we have

(n!)2

n3/2a2n
=

(n!)2(2 + β)2n+α

n3/2Γ(2n+ α)
≤ 2(2 + β)2n+α(n!)2

n3/2(2n)α(2n− 1)!
=

22−α(2 + β)2n+α(n!)2

n1/2nα(2n)!
.

From the inequality
1(
2n
n

) ≤ e
√
πn

22n
, (13)

it follows that, for n > N , we have

(n!)2

n3/2a2n
≤ e
√
π22−α(2 + β)2n+α

22nnα
.

Note that r :=
[
(2 + β)/2

]2 ∈ (0, 1), and hence
∞∑
n=1

rn

nα
<∞ , (14)

which implies that
∞∑
n=1

(n!)2

n3/2a2n
<∞ .

A very similar argument shows that the second summation in (3) is also finite. This takes care of

Case I. We now consider Case II in which α > 1 and β ∈ (−1, 0]. According to (12), for any

α > 1, there exists N = N(α) such that for all n > N , we have

1

Γ(n+ α)
≤ 2

nα−bαcΓ(n+ bαc)
=

2

nα−bαc(n+ bαc − 1)!
≤ 2

nα−1n!
.

Hence, for n > N , we have

(n!)2

n3/2a2n
≤ 2(2 + β)2n+α(n!)2

n3/2(2n)α−1(2n)!
≤ 22n+α+1(n!)2

n3/2(2n)α−1(2n)!
.

Applying (13), it follows that, for n > N , we have

(n!)2

n3/2a2n
≤ 4e

√
π

nα
,

and since α > 1, it follows immediately that
∞∑
n=1

(n!)2

n3/2a2n
<∞ .

A very similar argument shows that the second summation in (3) is also finite. This takes care of

Case II. Therefore, as claimed, Proposition 3 is sharp enough to identify all of the transient versions

of Φν when ν is an improper conjugate prior.

12



Remark 5. The unit flow from 0 to∞ that H&S used to prove their transience result is actually a

partition flow based on the partition in which B0 = {0}, B1 = {1}, and Bk = {2k−1, . . . , 2k − 1}
for k ≥ 2. We have a proof (not presented herein) that the H&S flow cannot work in our case. In

particular, it can be shown that it is impossible to use the H&S flow in conjunction with Theorem 2

to produce a condition for transience of W that reproduces the results of Hobert and Robert (1999)

for conjugate priors.

4 A condition for recurrence of W

In this section, we develop a sufficient condition for the recurrence of W by applying a result of

McGuinness (1991) to the Markov chain T . In order to state McGuinness’s (1991) theorem, we

must introduce a few new concepts. Recall our generic graph G and consider forming a new graph

by subdividing an edge of G. That is, we add vertices u1, . . . , un−1 to G and then replace an edge

e in G between the vertices v and w with edges e1, . . . , en, where e1 connects v to u1, ek connects

uk−1 to uk for 2 ≤ k ≤ n − 1, and en connects un−1 to w. A network Ñ = [G̃, c̃] is said to be a

refinement of the network N = [G, c] if the graph G̃ can be obtained by subdividing some of the

edges of G and if, whenever e ∈ E(G) is replaced by edges e1, . . . , en ∈ E(G̃), we have

n∑
i=1

c̃(ei)
−1 = c(e)−1 . (15)

Let U = {Un}∞n=0 be a partition of V (G) such that, whenever |m − n| ≥ 2, there is no edge

connecting a vertex in Um and a vertex in Un. We call such a partition an N -constriction. Let

τNa (Un) denote the probability that the weighted random walk onN starting at a eventually reaches

a vertex in the set Un. Let En be the set of edges connecting a vertex in Un−1 to a vertex in Un.

Here is McGuinness’s (1991) theorem.

Theorem 6. Let N = [G, c] be a network, and let a ∈ V (G). Then the weighted random walk on

N is recurrent if and only if there exists a refinement Ñ = [G̃, c̃] of N having an Ñ -constriction

U = {Un}∞n=0 such that a ∈ U0, τ Ña (Un) = 1 for all n ∈ N, and

∞∑
n=1

(∑
e∈En

c̃(e)

)−1
=∞ . (16)

Here is our result concerning the recurrence of W .

13



Proposition 7. The Markov chain W (characterized by the sequence {am}∞m=0) is recurrent if

∞∑
n=1

[
n−1∑
i=0

∞∑
j=n

ai+j(j − i)
i!j!

]−1
=∞ . (17)

Proof. We begin by describing a refinement of M = [H, d], call it M̃ = [H̃, d̃]. For all i, j ∈ Z+

such that i+ 1 < j, we add vertices vnij for n = i+ 1, . . . , j − 1. The edge eij is replaced by enij for

n = i+ 1, . . . , j, where ei+1
ij connects i to vi+1

ij , ejij connects vj−1ij to j, and enij connects vn−1ij to vnij
for n = i + 2, . . . , j − 1. For all i, j ∈ Z+ such that i + 1 = j, we add no new vertices to H , but

eij is renamed ejij . The new conductance is defined as

d̃(enij) =
ai+j(j − i)

i!j!

for every i, n, j ∈ Z+ with i < n ≤ j. It follows that for every i, j ∈ Z+ with i < j, we have

j∑
n=i+1

d̃(enij)
−1 =

i!j!

ai+j(j − i)

j∑
n=i+1

1 =
i!j!

ai+j
= d(eij)

−1 .

Thus, (15) is satisfied. (We note that this refinement is similar to that used in Section 3 of H&S,

but our conductances are not the same as those used in H&S.) Now let U0 = {0} and for n ∈ N, let

Un = {n} ∪ {vnij : i < n < j}. It follows from the definition of H̃ that every edge in E(H̃) with

one end in Un has it’s other end in Un−1 or Un+1. Therefore, U = {Un}∞n=0 is an M̃ -constriction.

Moreover, 0 ∈ U0 and a straightforward argument (middle of page 1220) in H&S applies directly

to our situation and shows that τ M̃0 (Un) = 1 for all n ∈ N. Now, for every n ≥ 1 we have

∑
e∈En

d̃(e) =
n−1∑
i=0

∞∑
j=n

d̃(enij) =
n−1∑
i=0

∞∑
j=n

ai+j(j − i)
i!j!

.

The result now follows immediately from Theorem 6.

Remark 8. Recall that W is positive recurrent if
∑∞

i=1 bi < ∞, and is null recurrent or transient

otherwise. Proposition 7 is applicable regardless of the value of
∑∞

i=1 bi, but its real value resides

in cases where this sum diverges.

Here is the analogue of Corollary 4.

Corollary 9. Let W and W ′ be Markov chains defined by the sequences {am}∞m=0 and {a′m}∞m=0,

respectively. Suppose that {am}∞m=0 satisfies (17), which implies that W is recurrent. If there exists

a C > 0 such that a′m ≤ Cam for all m ∈ N, then W ′ is also recurrent.
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Remark 10. Corollary 9 can be viewed as a generalization of a result in Eaton et al. (2007) that

holds in the context of the Poisson problem. Indeed, let ν(λ) be a prior such that the corresponding

Φν is (null) recurrent. Suppose that ν ′(λ) is another prior for which ν ′(λ) = g(λ) ν(λ) where

g : R+ → R+ is bounded. Then together, Theorems 4 & 8 of Eaton et al. (2007) imply that Φν′ is

also (null) recurrent. Here is the connection with Corollary 9. If ν ′(λ) = g(λ) ν(λ) where g ≤ C,

then ν ′(λ) ≤ Cν(λ) and

a′m =

∫
R+

λme−2λν ′(λ) dλ ≤ C

∫
R+

λme−2λν(λ) dλ = Cam ,

which is precisely the condition in Corollary 9. Of course, Corollary 9 is more general. Firstly,

even if ν ′/ν is unbounded, it’s still possible that a′m ≤ Cam for all m. Secondly, Corollary 9 holds

for general sequences, a′m and am, not only those associated with the Poisson problem.

We now demonstrate that the results in this section can be can be used to show that the Markov

chain Φν corresponding to the improper conjugate prior with β = 0 and α ∈ (0, 1] is null recurrent.

Again, the sequence {am}∞m=0 associated with this conjugate prior is given by

am =
Γ(m+ α)

2m+α
.

Because Γ(x) is an increasing function for x ≥ 2, it follows that for any m ≥ 2 and any α ∈ (0, 1)

we have
Γ(m+ α)

2m+α
< 21−αΓ(m+ 1)

2m+1
.

Consequently, if we could use Proposition 7 to prove recurrence when β = 0 and α = 1, then it

would follow immediately by Corollary 9 that we also have recurrence when β = 0 and α ∈ (0, 1).

This is our plan. Assume now that β = 0 and α = 1 so that am = m!/2m+1. When we write

Z ∼ NB(r, p), we mean that the random variable Z has a negative binomial distribution with

parameters r ∈ N and p ∈ (0, 1) and

P (Z = z) =

(
r + z − 1

z

)
pr(1− p)zIZ+(z) .
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Recall that E(Z) = r(1− p)/p. We have

∞∑
j=n

ai+j(j − i)
i!j!

=
∞∑
j=n

ai+jj

i!j!
−
∞∑
j=n

ai+ji

i!j!

=
∞∑
j=n

j(i+ j)!

i!j!2i+j+1
− i

∞∑
j=n

(i+ j)!

i!j!2i+j+1

= (i+ 1)
∞∑

k=n−1

(i+ k + 1)!

(i+ 1)!k!2i+k+2
− i

∞∑
j=n

(i+ j)!

i!j!2i+j+1

= (i+ 1)
∞∑

k=n−1

(
i+ k + 1

k

)
2−i−k−2 − i

∞∑
j=n

(
i+ j

j

)
2−i−j−1

= (i+ 1)P (Zi+2 ≥ n− 1)− iP (Zi+1 ≥ n) ,

where Zi ∼ NB(i, 1/2) for i ∈ N. Now let U ∼ NB(i + 1, 1/2), V ∼ NB(1, 1/2), and assume U

and V are independent. Then U + V ∼ NB(i + 2, 1/2). For every n ≥ 2 and 0 ≤ i ≤ n − 1, we

have by Markov’s inequality that

∞∑
j=n

ai+j(j − i)
i!j!

≤ i+ 2

n− 1
+ i
(
P (U + V ≥ n− 1)− P (U ≥ n)

)
. (18)

Since U ≥ n implies that U + V ≥ n− 1, it follows by independence of U and V that

P (U + V ≥ n− 1)− P (U ≥ n) = P (U + V ≥ n− 1, U < n)

= P
(
]n−1k=0 {V ≥ n− 1− k, U = k}

)
=

n−1∑
k=0

P (U = k)P (V ≥ n− 1− k)

=
n−1∑
k=0

(
i+ k

k

)
2−i−k−12−(n−k−1)

=
n−1∑
k=0

(
i+ k

k

)
2−i−n

=

(
i+ n

n− 1

)
2−i−n .

The last step follows from a repeated application of the fact that
(
n
r

)
+
(
n
r−1

)
=
(
n+1
r

)
(Pascal’s
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identity), and noting that
(
i
0

)
=
(
i+1
0

)
. Combining this with (18) we have

∞∑
j=n

ai+j(j − i)
i!j!

≤ i+ 2

n− 1
+ i

(
i+ n

n− 1

)
2−i−n

=
i+ 2

n− 1
+ n

i

i+ 1

(
i+ n

n

)
2−i−n

≤ i+ 2

n− 1
+ 2n

(
i+ n

n

)
2−i−n−1

=
i+ 2

n− 1
+ 2nP (U ′ = i) ,

where U ′ ∼ NB(n+ 1, 1/2). Hence, for any n ≥ 2, we have

n−1∑
i=0

∞∑
j=n

ai+j(j − i)
i!j!

≤
n−1∑
i=0

(
i+ 2

n− 1
+ 2nP (U ′ = i)

)
≤ (n+ 1)(n+ 2)− 2

2(n− 1)
+ 2n

≤ 2(n+ 2) + 2n .

Finally, we have
∞∑
n=2

[ n−1∑
i=0

∞∑
j=n

ai+j(j − i)
i!j!

]−1
≥

∞∑
n=2

1

4n+ 4
=∞ ,

which implies that the Markov chain is (null) recurrent by Proposition 7. Therefore, as claimed, our

results are sharp enough to identify all of the null recurrent versions of Φν when ν is an improper

conjugate prior.

5 Examples

5.1 Improper inverse gamma priors

Consider another family of improper priors for λ that lead to proper posteriors. Take ν(λ) =

λγ−1e−θ/λ, for γ ≥ 0 and θ > 0. This is an improper inverse gamma density, i.e., for γ ≥ 0 and

θ > 0, we have ∫
R+

λγ−1e−θ/λ dλ =∞ .

The resulting posterior density is proper since, for any x ∈ Z+,∫
R+

λxe−λν(λ) dλ =

∫
R+

λx+γ−1e−λ−θ/λ dλ <∞ .
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In fact, the posterior density is generalized inverse Gaussian. When we write V ∼ GIG(φ, a, b),

we mean that φ ∈ R, a, b > 0, and the random variable V has density

f(v) =
aφ/2

2bφ/2Kφ

(√
ab
)vφ−1e−av2 − b

2v IR+(v) ,

where Kφ is the modified Bessel function of the second kind. So the posterior is GIG(x+γ, 2, 2θ).

We now investigate the stability of the Markov chains Φν associated with this new family of priors.

Fix γ ∈ [0, 1] and θ > 0. The ratio of this improper inverse gamma prior to the improper conjugate

prior with α = 1 and β = 0 is
λγ−1e−θ/λ

λ1−1
= λγ−1e−θ/λ ,

which is bounded. Hence, it follows from Corollary 9 (or the results in Eaton et al. (2007)) that

the associated Φν is null recurrent. So improper inverse gamma priors taking the form ν(λ) =

λγ−1e−θ/λ, γ ∈ [0, 1] and θ > 0, are strongly admissible. Just like the conjugate priors, these

priors are improper due to their heavy right tails. When γ = 1, the prior increases from 0 to 1 as

λ increases. When γ ∈ [0, 1), the prior is unimodal, converging to 0 at the origin and at ∞, and

achieving its maximum when λ = θ/(1 − γ). Note that when γ = 0, the right tail decreases like

1/λ, a rate not attained by any of the improper conjugate priors.

Now assume that γ > 1 and θ > 0. We have

am =

∫
R+

e−2λλmν(λ) dλ =
2θ

m+γ
2 Km+γ(

√
8θ)

2
m+γ

2

.

A standard bound for the ratio of Bessel functions (Segura, 2023, Theorem 1) gives us

Kν(2
√

2θ)

Kν−1(2
√

2θ)
>

(ν − 1)√
2θ

. (19)

Assume m ≥ 2. Repeated application of (19) leads to the inequality

Km+γ(2
√

2θ) >
(m+ γ − 1)(m+ γ − 2) · · · (2 + γ − bγc)K2+γ−bγc(2

√
2θ)

(2θ)
m+bγc−2

2

.

Define

g(γ, θ) =
2

4+γ−bγc
2 θ

γ−bγc+2
2 K2+γ−bγc(2

√
2θ)

Γ(2 + γ − bγc)
.

So, for m ≥ 2, we have

am > 2
4+γ−bγc

2 θ
γ−bγc+2

2
(m+ γ − 1)(m+ γ − 2) · · · (2 + γ − bγc)K2+γ−bγc(2

√
2θ)

2m+γ

= g(γ, θ)
(m+ γ − 1)(m+ γ − 2) · · · (2 + γ − bγc)Γ(2 + γ − bγc)

2m+γ

= g(γ, θ)
Γ(m+ γ)

2m+γ
.
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Hence, for m ≥ 2, am > Ca′m where {a′m}∞m=0 is the sequence associated with the conjugate prior

with α = γ > 1 and β = 0. It follows from Corollary 4 that Φν is transient whenever γ > 1

and θ > 0. We conclude that it is not possible to use Eaton’s (1992) results to establish the strong

admissibility of the improper inverse gamma prior when γ > 1 and θ > 0.

5.2 A logarithmic improper prior

Recall that the flat prior, i.e., the conjugate prior with α = 1 and β = 0, is strongly admissible, but

any conjugate prior with α > 1 leads to a transient Φν . This suggests that it might be interesting to

consider the improper prior ν(λ) = log(1+λ) since it’s increasing, but it increases slower than any

conjugate prior with α > 1 and β = 0. We now use Proposition 7 to show that Φν corresponding

to ν(λ) = log(1 + λ) is recurrent, which implies that this prior is strongly admissible. We start by

noting that

am =

∫
R+

λme−2λ log(1 + λ) dλ =
m!

2m+1
E(log(1 +X)) ,

where X ∼ Gamma(m+ 1, 2). Thus, by Jensen’s inequality, we have

am <
m!

2m+1
log
(
(m+ 3)/2

)
<

m!

2m+1
log(m+ 3) .

Thus, by Proposition 7, the Markov chain Φν corresponding to the logarithmic prior is recurrent if

∞∑
n=1

(
n−1∑
i=0

∞∑
j=n

(i+ j)!(j − i) log(i+ j + 3)

2i+j+1i!j!

)−1
=∞ .

As we did previously, let U ∼ NB(i+ 1, 1/2), V ∼ NB(1, 1/2), and assume U and V are indepen-

dent. Recall that U + V ∼ NB(i+ 2, 1/2). Fix n ≥ 2. We have

∞∑
j=n

(i+ j)!(j − i) log(i+ j + 3)

2i+j+1i!j!

=
∞∑
j=n

j(i+ j)! log(i+ j + 3)

2i+j+1i!j!
− i

∞∑
j=n

(i+ j)! log(i+ j + 3)

2i+j+1i!j!

= (i+ 1)
∞∑

k=n−1

P (U + V = k) log(i+ k + 4)− i
∞∑
j=n

P (U = j) log(i+ j + 3)

= (i+ 1)E
[

log(i+ U + V + 4)1{U+V≥n−1}
]
− iE

[
log(i+ U + 3)1{U≥n}

]
.

Using Jensen’s inequality, we have

E
[

log(i+ U + V + 4)1{U+V≥n−1}
]
≤ E

[
log(i+ U + V + 4)

]
≤ log(2i+ 6) .

19



Hence,

∞∑
j=n

(i+ j)!(j − i) log(i+ j + 3)

2i+j+1i!j!

≤ log(2i+ 6) + i
(

E
[

log(i+ U + V + 4)1{U+V≥n−1}
]
− E

[
log(i+ U + 3)1{U≥n}

])
. (20)

Now, since

{U + V ≥ n− 1} = {U ≥ n} ]
(
]n−1k=0 {V ≥ n− 1− k, U = k}

)
,

it follows that

E
[

log(i+ U + V + 4)1{U+V≥n−1}
]
− E

[
log(i+ U + 3)1{U≥n}

]
= E

[(
log(i+ U + V + 4)− log(i+ U + 3)

)
1{U≥n}

]
+

n−1∑
k=0

E
[

log(i+ U + V + 4)1{V≥n−1−k,U=k}
]
. (21)

Now, by independence of U and V and Jensen’s inequality, we have

E
[(

log(i+U + V + 4)− log(i+ U + 3)
)
1{U≥n}

]
= E

[
E
[(

log(i+ U + V + 4)− log(i+ U + 3)
)
1{U≥n}

∣∣U]]
≤ E

[(
log(i+ U + E(V ) + 4)− log(i+ U + 3)

)
1{U≥n}

]
= E

[(
log(i+ U + 5)− log(i+ U + 3)

)
1{U≥n}

]
= E

[
log

(
1 +

2

i+ U + 3

)
1{U≥n}

]
≤ log

(
1 +

2

i+ n+ 3

)
≤ 2

i+ n+ 3
, (22)
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where the last line follows from the fact that log(1 + x) ≤ x for x > 0. Again using the indepen-

dence of U and V , we have
n−1∑
k=0

E
[

log(i+ U + V + 4)1{V≥n−1−k,U=k}
]

=
n−1∑
k=0

E
[

log(i+ k + V + 4)1{V≥n−1−k,U=k}
]

=
n−1∑
k=0

E
[

log(i+ k + V + 4)1{V≥n−1−k}
]
P (U = k)

=
n−1∑
k=0

(
∞∑

s=n−1−k

log(i+ k + s+ 4)2−s−1

)
P (U = k)

=
n−1∑
k=0

(
∞∑
t=0

log(i+ n+ t+ 3)2−t−1

)
2−(n−k−1)P (U = k)

= E
[

log(i+ n+ V + 3)
] n−1∑
k=0

(
i+ k

k

)
2−i−n

≤ log(i+ n+ 4)
n−1∑
k=0

(
i+ k

k

)
2−i−n

= log(i+ n+ 4)

(
i+ n

n− 1

)
2−i−n , (23)

where the penultimate inequality is Jensen’s, and the last line follows from the argument based on

Pascal’s identity that was used in the previous section. Let U ′ ∼ NB(n + 1, 1/2). By combining

(20), (21), (22), and (23), we obtain
n−1∑
i=0

∞∑
j=n

(i+ j)!(j − i) log(i+ j + 3)

2i+j+1i!j!

≤
n−1∑
i=0

(
log(2i+ 6) +

2i

i+ n+ 3
+ i log(i+ n+ 4)

(
i+ n

n− 1

)
2−i−n

)

≤ n log(2n+ 6) + 2n+ 2n log(2n+ 4)
n−1∑
i=0

(
i+ n

i

)
2−i−n−1

≤ n log(2n+ 6) + 2n+ 2n log(2n+ 4)P (U ′ ≤ n− 1)

≤ 5n log(2n+ 6) .

Thus,
∞∑
n=4

(
n−1∑
i=0

∞∑
j=n

(i+ j)!(j − i) log(i+ j + 3)

2i+j+1i!j!

)−1
≥

∞∑
n=4

1

5n log(2n+ 6)
≥ 1

10

∞∑
n=4

1

n log(n)
=∞ .
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Therefore, as claimed, Φν corresponding to ν(λ) = log(1 + λ) is (null) recurrent, and this prior is

strongly admissible.

6 Discussion

An obvious question concerning our two sufficient conditions is as follows: Does there exist a gap

between them, i.e., are there chains that satisfy neither of the conditions? While we strongly suspect

that there do exist examples of W that don’t satisfy either of the sufficient conditions, we have yet

to come across one. In particular, note that every version of W analyzed in this paper does satisfy

one of the two conditions. We leave the existence/nonexistence of a gap as an open problem.

It might be possible to extend our work on the Poisson problem to the multivariate case. Specif-

ically, suppose that instead of observing a single observation from the Poisson distribution, we

observe multiple independent Poisson random variables with different means. We could then con-

sider prior distributions for the corresponding vector of unknown means and attempt to use Eaton’s

(1992) theory to develop conditions for strong admissibility. There has been some work on this

problem (Lai, 1996), but, as far as we know, the associated conjugate chain has not been analyzed.

Acknowledgment. The authors are grateful to two anonymous reviewers for helpful comments

and suggestions that led to an improved version of the paper.

References

BILLINGSLEY, P. (1995). Probability and Measure. 3rd ed. Wiley, New York.

BROWN, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value

problems. The Annals of Mathematical Statistics, 42 855–904.

DOYLE, P. J. and SNELL, J. L. (1984). Random Walks and Electric Networks. The Carus Mathe-

matical Monographs, 22.

EATON, M. L. (1992). A statistical diptych: Admissible inferences-recurrence of symmetric

Markov chains. The Annals of Statistics, 20 1147–1179.

22



EATON, M. L. (2004). Evaluating improper priors and the recurrence of symmetric Markov chains:

An overview. In A Festschrift to Honor Herman Rubin (A. Dasgupta, ed.), vol. 45 of The IMS

Lecture Notes Series. IMS, Beachwood, Ohio.

EATON, M. L., HOBERT, J. P. and JONES, G. L. (2007). On perturbations of strongly admissible

prior distributions. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 43 633–
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