There are two main parts in the analysis:

- 1. An overall test to see if there is statistical evidence that there exist *any* differences.
- 2. A more detailed *follow-up* analysis to decide which of the populations differ, and to estimate how large the differences are.

Let r = number of levels of the explanatory variable (number of treatment groups for example). Let n_i = number of cases (experimental units) in i^{th} group, and let $n_T = \sum_{i=1}^r n_i$ be the total number of observations.

Let the population mean parameters be μ_i , i = 1, ..., r.

Hypotheses to be tested:

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$ vs.

 H_a : at least two of the means are not equal.

Assumptions:

- Each of the *r* population distributions is normal.
- \blacktriangleright The *r* standard deviations are all equal.
- > All n_T observations are taken independently.

Let μ_i = the mean sales volume (number of cases) that would be seen in the whole population of stores, similar to those in the study, if Package Design *i* was used.

Independence assumption really has two parts. We assume the r groups are independent, and that observations within each group are independent.

Alternative hypothesis is the opposite of the null hypothesis.

*H*₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ *H_a*: Not *H*₀ Better: *H_a*: For at least one pair of means $\mu_i, \mu_j, \mu_i \neq \mu_j$

62

Cell-means model

Let Y_{ij} denote the response of the j^{th} unit in the i^{th} group (i^{th} level of the factor).

$$Y_{ij} = \mu_i + \epsilon_{ij}, \ i = 1, ..., r; \ j = 1, ..., n_i$$

where

- the μ_i are parameters,
- ▶ the errors, ϵ_{ij} , are independent $\mathcal{N}(0, \sigma^2)$

Another way to state the model:

 Y_{ij} are independent $\mathcal{N}(\mu_i, \sigma^2)$, $i = 1, \ldots, r$; $j = 1, \ldots, n_i$

- 1 *Y* is sum of fixed and random components
- **2** $E(Y_{ij}) = \mu_i$
- 3 The variance of Y_{ij} is constant, equal to σ^2
- 4 Y_{ij} is normally distributed
- 5 The *Y_{ij}* are all independent

Example Kenton Food Company

Suppose we know $\mu_1 = 15$, $\mu_2 = 16$, $\mu_3 = 20$, $\mu_4 = 28$, $\sigma = 1.5$

Two of the observations are:

 Y
 package
 id

 11
 1
 1

 19
 2
 4

In this hypothetical situation, find the error terms for these two observations.

Answer:

$$\epsilon_{11} = Y_{11} - \mu_1 = 11 - 15 = -4$$

 $\epsilon_{24} = Y_{24} - \mu_2 = 19 - 16 = 3$

Cell means model is a linear model

Illustrate why, using a case involving r = 3 treatments and two replicates per treatment.

 $Y = X\beta + \epsilon,$

where

$$\mathbf{Y} = \begin{pmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \\ Y_{31} \\ Y_{32} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{21} \\ \epsilon_{22} \\ \epsilon_{31} \\ \epsilon_{32} \end{pmatrix}$$

•

Notation for cell and grand means

Let $Y_{i.} = \sum_{j=1}^{n_i} Y_{ij}$, be the sum of the observations in Group *i*, for i = 1, ..., r.

Then the mean of the i^{th} group is:

$$\overline{Y}_{i.} = \frac{1}{n_i} Y_{i.}$$

The group means are also called the *cell means*.

Let $Y_{..} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} Y_{ij}$ be the total of all the observations. Then the *grand mean* is:

$$\overline{Y}_{..} = \frac{1}{n_T} Y_{..}$$