There are two main parts in the analysis:

1. An overall test to see if there is statistical evidence that there exist any differences.
2. A more detailed follow-up analysis to decide which of the populations differ, and to estimate how large the differences are.

Let $r=$ number of levels of the explanatory variable (number of treatment groups for example). Let $n_{i}=$ number of cases (experimental units) in $i^{\text {th }}$ group, and let $n_{T}=\sum_{i=1}^{r} n_{i}$ be the total number of observations.
Let the population mean parameters be $\mu_{i}, i=1, \ldots, r$.
Hypotheses to be tested:
$H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{r}$ vs.
H_{a} : at least two of the means are not equal.
Assumptions:

- Each of the r population distributions is normal.
- The r standard deviations are all equal.
- All n_{T} observations are taken independently.

Let $\mu_{i}=$ the mean sales volume (number of cases) that would be seen in the whole population of stores, similar to those in the study, if Package Design i was used.

Independence assumption really has two parts. We assume the r groups are independent, and that observations within each group are independent.

Alternative hypothesis is the opposite of the null hypothesis.
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{a} : Not H_{0}
Better: H_{a} : For at least one pair of means $\mu_{i}, \mu_{j}, \mu_{i} \neq \mu_{j}$
common error: H_{a} : At least one mean is not equal the the others

Cell-means model
Let $Y_{i j}$ denote the response of the $j^{\text {th }}$ unit in the $i^{\text {th }}$ group $\left(i^{\text {th }}\right.$ level of the factor).

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}, \mathbf{i}=1, \ldots, r ; \mathbf{j}=1, \ldots, n_{i}
$$

where

- the μ_{i} are parameters,
- the errors, $\epsilon_{i j}$, are independent $\mathcal{N}\left(0, \sigma^{2}\right)$

Another way to state the model:
$Y_{i j}$ are independent $\mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mathbf{i}=1, \ldots, r ; \mathbf{j}=1, \ldots, n_{i}$
$1 Y$ is sum of fixed and random components
$2 E\left(Y_{i j}\right)=\mu_{i}$
3 The variance of $Y_{i j}$ is constant, equal to σ^{2}
$4 Y_{i j}$ is normally distributed
5 The $Y_{i j}$ are all independent

Example Kenton Food Company

Suppose we know $\mu_{1}=15, \mu_{2}=16, \mu_{3}=20, \mu_{4}=28, \sigma=1.5$
Two of the observations are:
Y package id

11	1	1
19	2	4

In this hypothetical situation, find the error terms for these two observations.

Answer:

$\epsilon_{11}=Y_{11}-\mu_{1}=11-15=-4$
$\epsilon_{24}=Y_{24}-\mu_{2}=19-16=3$

Cell means model is a linear model
Illustrate why, using a case involving $r=3$ treatments and two replicates per treatment.

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\epsilon
$$

where

$$
\mathbf{Y}=\left(\begin{array}{l}
Y_{11} \\
Y_{12} \\
Y_{21} \\
Y_{22} \\
Y_{31} \\
Y_{32}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad \boldsymbol{\beta}=\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right), \quad \boldsymbol{\epsilon}=\left(\begin{array}{l}
\epsilon_{11} \\
\epsilon_{12} \\
\epsilon_{21} \\
\epsilon_{22} \\
\epsilon_{31} \\
\epsilon_{32}
\end{array}\right) .
$$

Notation for cell and grand means

Let $Y_{i .}=\sum_{j=1}^{n_{i}} Y_{i j}$, be the sum of the observations in Group i, for $i=1, \ldots, r$.

Then the mean of the $i^{\text {th }}$ group is:

$$
\bar{Y}_{i .}=\frac{1}{n_{i}} Y_{i .}
$$

The group means are also called the cell means.
Let $Y_{. .}=\sum_{i=1}^{r} \sum_{j=1}^{n_{i}} Y_{i j}$ be the total of all the observations.
Then the grand mean is:

$$
\bar{Y}_{. .}=\frac{1}{n_{T}} Y_{. .}
$$

