DATA FILES for "STATISTICAL METHODS FOR THE SOCIAL SCIENCES,"

By A. Agresti and B. Finlay, Prentice Hall, 4th edition, 2008

This file contains most of the larger data sets from the fourth edition of Statistical Methods for the Social Sciences. Many of these data files are also available in comma-separated text files (.csv) csv data files, thanks to Andrew C. Thomas at Harvard University.

"Student Survey" Data File:

This data file consists of responses of graduate students in the social sciences enrolled in STA 6126 in a recent term at the University of Florida. The headings at the top of this file refer to the variables, GE = gender, AG = age in years, HI = high school GPA (on a four-point scale), CO = college GPA, DH = distance (in miles) of the campus from your home town, DR = distance (in miles) of the classroom from your current residence, TV = average number of hours per week that you watch TV, SP = average number of hours per week that you participate in sports or have other physical exercise,NE = number of times a week you read a newspaper, AH = number of people you know who have died from AIDS or who are HIV+, VE = whether you are a vegetarian (yes, no), PA = political affiliation (D = Democrat, R = Republican, I = independent), PI = political ideology (1 = very liberal, 2 = liberal, 3 = slightly liberal, 4 = moderate, 5 = slightly conservative, 6 = conservative, 7 = very conservative), RE = how often you attend religious services (0 = never, 1 = occasionally, 2 = most weeks, 3 = every week), AB = opinion about whether abortion should be legal in the first three months of pregnancy (yes, no), AA = support affirmative action (yes, no), LD = belief in life after death (yes, no),


subj  ge ag  hi   co   dh    dr  tv  sp  ne ah ve pa pi re ab aa ld  
1     m  32  2.2  3.5  0     5.0  3   5  0   0  n  r  6  2  n  n  y
2     f  23  2.1  3.5  1200  0.3  15  7  5   6  y  d  2  1  y  y  u
3     f  27  3.3  3.0  1300  1.5  0   4  3   0  y  d  2  2  y  y  u 
4     f  35  3.5  3.2  1500  8    5   5  6   3  n  i  4  1  y  y  n 
5     m  23  3.1  3.5  1600  10   6   6  3   0  n  i  1  0  y  n  n 
6     m  39  3.5  3.5  350   3    4   5  7   0  y  d  2  1  y  y  u
7     m  24  3.6  3.7   0    .2   5  12  4   2  n  i  2  1  y  y  y 
8     f  31  3.0  3.0  5000  1.5  5   3  3   1  n  i  2  1  y  y  y 
9     m  34  3.0  3.0  5000  2    7   5  3   0  n  i  1  1  y  y  u
10    m  28  4.0  3.1  900   2    1   1  2   1  y  i  3  0  n  y  y 
11    m  23  2.3  2.6  253   1.5  10 15  1   1  n  r  5  1  n  y  y 
12    f  27  3.5  3.6  190   3    14  3  7   0  n  d  2  1  y  y  u
13    m  36  3.3  3.5  245   1.5  6  15 12   5  n  d  1  1  y  y  y 
14    m  28  3.2  3.2  500   6    3  10  1   2  n  i  4  1  y  n  y
15    f  28  3.0  3.5  3500  1    4   3  1   0  n  d  1  0  y  y  y
16    f  25  3.8  3.3  210   10   7   6  1   0  y  i  2  3  y  y  y
17    f  41  4.0  3.0  1000  15   6   7  3  10  n  i  3  3  n  u  y
18    m  50  3.8  3.8  0     3    5   9  6  10  n  d  2  0  y  n  n 
19    m  71  4.0  3.5  5000  3    6  12  2   2  n  i  2  0  y  n  n 
20    f  28  3.0  3.8  120   1    25  0  0   2  y  d  1  1  y  y  y
21    f  26  3.7  3.7  8000  8    4   4  4   1  n  i  4  1  y  y  y
22    f  27  4.0  3.7  2     2.5  4   2  7   0  n  i  2  1  y  y  y
23    m  31  2.7  3.5  1700  5    7   7  2   0  n  r  7  3  n  n  y
24    f  23  3.7  3.7  2     2    7   4  2   0  n  i  4  0  y  y  y
25    m  23  3.2  3.8  450   4    0   7  7   3  n  i  1  0  y  y  y
26    f  44  3.0  3.0  0     2    2   3  2   3  y  i  3  2  y  y  y
27    m  26  3.7  3.0  1000  3    8   2  7   0  n  d  2  1  y  y  u
28    f  31  3.7  3.8  850  10    10  3  7   0  n  r  5  2  y  n  y 
29    m  24  3.3  3.1  420   2    10  6  5   0  n  d  4  1  y  y  u
30    f  26  3.3  3.3  1200  .75  10  0  3   0  n  r  2  1  y  y  u
31    m  26  3.3  3.5  1000  1.5  0   3  3   3  y  d  2  1  y  y  n 
32    f  32  3.5  3.9  150  12    10  2  0   0  n  d  2  1  n  n  y
33    m  26  3.4  3.4  2000  1.5  2   7 14   0  n  d  2  0  y  y  n 
34    f  22  3.2  2.8  316  2     10  3  5   2  n  i  2  1  y  y  u
35    f  24  3.5  3.9  900  1.75  8   0  0   1  n  d  1  1  y  y  u 
36    m  24  3.6  3.3  250   2    4   6  3   1  n  r  5  3  n  y  y 
37    m  23  3.8  3.7  180  .5    10  5  7   0  n  i  2  0  y  n  u
38    m  33  3.4  3.4  6000  1.5  8   5  6   2  n  i  2  0  y  y  n 
39    m  23  2.8  3.2  950   2    37  10 5   0  n  r  5  2  y  n  y 
40    m  31  3.8  3.5  1100  .75  .5  3  5   2  n  r  6  2  y  n  u
41    m  26  3.4  3.4  1300  1.2  0   8  2   0  n  i  2  1  n  y  n
42    m  28  2.0  3.0  360  .25  10   8  3   0  n  d  3  0  y  y  u
43    f  24  3.8  3.9  1800  2    2   5  4   1  n  r  6  3  n  y  y 
44    m  23  3.0  3.6  900   15  12   0  5   0  n  r  5  0  y  n  n 
45    f  25  3.0  4.0  5000  5   1.5  0  4   0  n  i  4  1  y  y  n
46    f  24  3.0  3.5  300   1   10   5  5   0  n  d  2  0  y  y  n
47    f  27  3.0  3.8  2000  20  28   7 14   2  y  r  3  1  y  y  y 
48    m  24  3.3  3.8  630   1.3  2   3  5   0  n  r  7  3  n  n  y
49    f  26  3.8  4.0  1200  1    0   4  3   1  n  d  2  0  y  y  n
50    f  27  3.0  4.0  580   2    5  15  1   2  n  d  1  1  y  y  n
51    m  32  3.0  3.0  2000  5    5   5  2   1  n  r  5  3  n  y  y
52    f  41  4.0  4.0  0     8    8   4  2   2  n  r  4  1  n  n  y
53    f  29  3.0  3.9  300  3.7   2   5  1  11  n  d  2  1  y  y  y
54    f  50  3.5  3.8  6    6     7   3  7   0  n  d  2  1  y  y  u
55    f  22  3.4  3.7  80   7    10   1  2   2  n  i  2  0  y  y  u
56    f  23  3.6  3.2  375  1.5  5    10 5   0  n  r  6  3  n  n  y
57    m  26  3.5  3.6  2000  .3  16   8  3   0  n  d  4  1  y  y  u
58    m  30  3.0  3.0  1    1.1  1    4  3   0  n  i  3  3  y  n  y
59    f  23  3.0  3.0  112  .5   15   3  3   0  n  i  4  2  y  y  y 
60    f  22  3.4  3.0  650  4    8   16  7   1  n  i  4  1  y  y  y

"2005 Statewide Crime" Data File:

The variables for this data set are VI = violent crime rate (number of violent crimes per 100,000 population), VI2 = violent crime rate (number of violent crimes per 10,000 population), MU = murder rate, ME = percent in metropolitan areas, WH = percent white, HS = percent high school graduates, PO = percent below the poverty level. The data are from Statistical Abstract of the United States.


STATE   VI    VI2        MU       ME      WH      HS      PO
AK  	593   59   	6  	65.6  	70.8  	90.2  	8.0
AL  	430   43  	7  	55.4  	71.4  	82.4  	13.7
AR  	456   46  	6  	52.5  	81.3  	79.2  	12.1
AZ  	513   51  	8  	88.2  	87.6  	84.4  	11.9
CA  	579   58  	7  	94.4  	77.2  	81.3  	10.5
CO  	345   34  	4  	84.5  	90.3  	88.3  	7.3
CT  	308   31  	3  	87.7  	85.1  	88.8  	6.4
DE  	658   66  	3  	80.1  	75.3  	86.5  	5.8
FL  	730   73  	5  	89.3  	80.6  	85.9  	9.7
GA  	454   45  	8  	71.6  	66.4  	85.2  	10.8
HI  	270   27  	2  	91.5  	26.5  	88.0  	7.4
ID  	243   24  	2  	66.4  	95.5  	87.9  	9.8
IL  	557   56   	7  	87.8  	79.4  	86.8  	8.5
IN  	353   35   	6  	70.8  	88.7  	87.2  	7.5
IO  	272   27   	2  	61.1  	95.0  	89.8  	6.9
KS  	396   40  	5  	71.4  	89.4  	89.6  	7.1
KY  	262   26   	5  	55.8  	90.4  	81.8  	14.2
LA  	646   65       13  	72.6  	64.1  	78.7  	16.6
MA  	469   47   	2  	91.4  	87.0  	86.9  	7.5
MD  	704   70       10  	86.1  	64.5  	87.4  	6.1
ME  	109   11   	1  	40.2  	97.0  	87.1  	7.6
MI  	511   51   	6  	74.7  	81.4  	87.9  	8.6
MN  	263   26   	3  	70.9  	89.8  	92.3  	5.6
MO  	473   47    	5  	69.4  	85.4  	87.9  	8.6
MS  	326   33   	9  	48.8  	61.3  	83.0  	16.4
MT  	365   36   	3  	54.1  	91.0  	91.9  	9.9
NC  	455   46   	6  	60.2  	74.1  	80.9  	10.7
ND  	78     8        2  	55.9  	92.4  	89.5  	8.4
NE  	289   29   	3  	69.8  	92.1  	91.3  	8.2
NH  	149   15   	1  	59.3  	96.2  	90.8  	5.1
NJ  	366   37   	5  	94.4  	76.9  	87.6  	6.6
NM  	665   66   	6  	75.0  	84.7  	82.9  	14.8
NV  	614   61   	9  	91.5  	82.5  	86.3  	8.7
NY  	465   46   	5  	87.5  	73.9  	85.4  	10.7
OH  	333   33   	5  	77.4  	85.2  	88.1  	9.4
OK  	506   51   	6  	65.3  	78.6  	85.2  	12.4
OR  	296   30   	2  	78.7  	90.9  	87.4  	9.7
PA  	398   40   	5  	77.1  	86.2  	86.5  	8.2
RI  	286   29   	2  	90.9  	89.0  	81.1  	8.2
SC  	794   79   	7  	60.5  	68.3  	83.6  	11.3
SD  	173   17   	1  	51.9  	88.7  	87.5  	7.2
TN  	688   69   	7  	63.6  	80.7  	82.9  	10.6
TX  	553   55   	6  	82.5  	83.3  	78.3  	13.1
UT  	249   25   	3  	88.2  	93.8  	91.0  	7.6
VA  	276   28   	6  	73.0  	73.8  	88.4  	6.6
VT  	110   11   	2  	38.2  	96.9  	90.8  	6.4
WA  	347   35   	3  	82.0  	85.3  	89.7  	7.9
WI  	221   22   	3  	68.3  	90.2  	88.8  	7.2
WV  	258   26   	4  	46.1  	95.2  	80.9  	15.5
WY  	262   26   	3  	65.1  	94.7  	91.9  	7.3
DC     1608  161       44      100.0  	37.4  	86.4  	18.5

"Statewide Crime 2" Data File (Table 9.1):

These data are in Table 9.1 of the 3rd edition, and some of them appear in Table 9.1 of the 4th edition. In the following table, VR = violent crime rate (per 100,000 people in population), MR = murder rate (per 100,000 people in population), M = percent in metropolitan areas, W = percent white, H = percent high school graduates, P = percent with income below the poverty level, S = percent of families headed by a single parent. The data are from Statistical Abstract of the United States and most variables were measured in 1993.


State  VR    MR    M      W      H      P       S  
 AK   761   9.0   41.8   75.2   86.6    9.1     14.3     
 AL   780  11.6   67.4   73.5   66.9   17.4     11.5    
 AR   593  10.2   44.7   82.9   66.3   20.0     10.7    
 AZ   715   8.6   84.7   88.6   78.7   15.4     12.1    
 CA  1078  13.1   96.7   79.3   76.2   18.2     12.5     
 CO   567   5.8   81.8   92.5   84.4    9.9     12.1    
 CT   456   6.3   95.7   89.0   79.2    8.5     10.1    
 DE   686   5.0   82.7   79.4   77.5   10.2     11.4    
 FL  1206   8.9   93.0   83.5   74.4   17.8     10.6    
 GA   723  11.4   67.7   70.8   70.9   13.5     13.0    
 HI   261   3.8   74.7   40.9   80.1    8.0      9.1     
 IA   326   2.3   43.8   96.6   80.1   10.3      9.0    
 ID   282   2.9   30.0   96.7   79.7   13.1      9.5      
 IL   960  11.4   84.0   81.0   76.2   13.6     11.5    
 IN   489   7.5   71.6   90.6   75.6   12.2     10.8    
 KS   496   6.4   54.6   90.9   81.3   13.1      9.9    
 KY   463   6.6   48.5   91.8   64.6   20.4     10.6     
 LA  1062  20.3   75.0   66.7   68.3   26.4     14.9    
 MA   805   3.9   96.2   91.1   80.0   10.7     10.9     
 MD   998  12.7   92.8   68.9   78.4    9.7     12.0    
 ME   126   1.6   35.7   98.5   78.8   10.7     10.6   
 MI   792   9.8   82.7   83.1   76.8   15.4     13.0    
 MN   327   3.4   69.3   94.0   82.4   11.6      9.9     
 MO   744  11.3   68.3   87.6   73.9   16.1     10.9    
 MS   434  13.5   30.7   63.3   64.3   24.7     14.7    
 MT   178   3.0   24.0   92.6   81.0   14.9     10.8    
 NC   679  11.3   66.3   75.2   70.0   14.4     11.1    
 ND    82   1.7   41.6   94.2   76.7   11.2      8.4    
 NE   339   3.9   50.6   94.3   81.8   10.3      9.4    
 NH   138   2.0   59.4   98.0   82.2    9.9      9.2    
 NJ   627   5.3  100.0   80.8   76.7   10.9      9.6    
 NM   930   8.0   56.0   87.1   75.1   17.4     13.8     
 NV   875  10.4   84.8   86.7   78.8    9.8     12.4     
 NY  1074  13.3   91.7   77.2   74.8   16.4     12.7    
 OH   504   6.0   81.3   87.5   75.7   13.0     11.4    
 OK   635   8.4   60.1   82.5   74.6   19.9     11.1     
 OR   503   4.6   70.0   93.2   81.5   11.8     11.3     
 PA   418   6.8   84.8   88.7   74.7   13.2      9.6      
 RI   402   3.9   93.6   92.6   72.0   11.2     10.8    
 SC  1023  10.3   69.8   68.6   68.3   18.7     12.3     
 SD   208   3.4   32.6   90.2   77.1   14.2      9.4     
 TN   766  10.2   67.7   82.8   67.1   19.6     11.2     
 TX   762  11.9   83.9   85.1   72.1   17.4     11.8    
 UT   301   3.1   77.5   94.8   85.1   10.7      10.0    
 VA   372   8.3   77.5   77.1   75.2    9.7     10.3    
 VT   114   3.6   27.0   98.4   80.8   10.0     11.0     
 WA   515   5.2   83.0   89.4   83.8   12.1     11.7    
 WI   264   4.4   68.1   92.1   78.6   12.6     10.4     
 WV   208   6.9   41.8   96.3   66.0   22.2     9.4      
 WY   286   3.4   29.7   95.9   83.0   13.3     10.8     
 DC  2922  78.5  100.0   31.8   73.1   26.4     22.1

"OECD Data" File (Table 3.11), see Exercise 3.6:


nation               GDP   Unemploy   Inequal   Health  Phys    C02   Parlia   FemEcon  
Norway              38454      4.6     6.1      8.6     313     9.9     37.9     87   
Iceland             33051      2.5     I        8.8     362     7.6     33.3     87   
Australia           30331      5.1     12.5     6.4     247     18      28.3     79   
Ireland             38827      4.3     9.4      5.8     279     10.3    14.2     72   
Sweden              29541      5.6     6.2      8       328     5.9     45.3     87   
Canada              31263      6.8     9.4      6.9     214     17.9    24.3     83   
Japan               29251      4.4     4.5      6.4     198     9.7     10.7     65   
United States       39676      5.1     15.9     6.8     256     19.8    15       81   
Switzerland         33040      4.1     9        6.7     361     5.6     24.8     79   
Netherlands         31789      6.2     9.2      6.1     315     8.7     34.2     76   
Finland             29951      8.6     5.6      5.7     316     13      37.5     86   
Luxembourg          69961      4.6     I        6.2     266     22      23.3     68   
Belgium	            31096      8.4     8.2      6.3     449     8.3     35.7     72   
Austria             32276      5.8     6.9      5.1     338      8.6    32.2     75   
Denmark             31914      4.9     8.1      7.5     293     10.1    36.9     84   
France              29300     10.0     9.1      7.7     337     6.2     13.9     79     
Italy               28180      7.7     11.6     6.3     420     7.7     16.1     61     
United Kingdom      30821      4.8     13.8     6.9     230     9.4     18.5     79   
Spain               25047      9.1     10.3     5.5     330     7.3     30.5     65   
New Zealand         23413      3.6     12.5     6.3     237     8.8     32.2     81   
Germany	            28303      9.3     6.9      8.7     337     9.8     30.5     76   
Greece              22205     10.6     10.2     5.1     438     8.7     13       66   
Portugal            19629      7.5     15       6.7     342     5.6     21.3     79   

"Zagat restaurant rating of Italian restaurants" Data File (See Exercises 3.59, 3.60, and 9.38):


City Restaurant Food Decor Service Cost
Boston Al_Dente  21 14 21 30
Boston Anchovies  18 14 18 20 
Boston Antico_Forno  22 16 18 28
Boston Antonio's_Cucina_Italian  22 14 21 24 
Boston Armani  19 20 17 39
Boston Artu  22 15 19 27
Boston Assagio  23 21 22 31
Boston Bacco  21  20 20 35
Boston Bertucci's  17 14 16 19 
Boston Bricco  23 22 21 45
Boston Caliterra  19 20 21 35
Boston Canestero's  21 14 19 18
Boston Cantina_Italiana  23 16 22 30
Boston Carmen  27 22 22 39
Boston Ciao_Bella  17 16 17 34
Boston Cibo  23 15 21 26
Boston Daily_Catch 24 10 18 27
Boston Davide  22 18 21 44
Boston Davio's  23 23 22 48
Boston Dom's  25 17 23 35
Boston Euno  21 24 22 36
Boston Figs  22 17 18 26
Boston Filippo 20 19 23 33
Boston Five_North_Square  20 17 19 35
Boston Florentine_Cafe  19 21 18 33
Boston Galleria_Umberto  26 7 16 9
Boston Giacomo's  25 16 20 28
Boston Grotto  25 18 22 37
Boston Il_Panino  20 11 15 14
Boston Joe_Tecce's  17 15 17 30
Boston L'Osteria  22 15 19 28
Boston La_Famiglia_Giorgio  18 12 18 22
Boston La_Summa  22 17 21 31
Boston Limoncello  21 18 20 35
Boston Lucca  24 23 23 42
Boston Maggiano's  19 18 19 30
Boston Mamma_Maria  25 23 23 49
Boston Massimino's  23 16 21 27
Boston Maurizio's  24 15 21 36
Boston Monica's  24 19 22 33
Boston Mother_Anna's  21 13 19 27
Boston No_9_Park  27 24 26 61
Boston Pagliuca's 22 14 20 27
Boston Papa_Razzi  18 17 18 28
Boston Piattini  23 19 20 31
Boston Piccolo_Venezia  21 18 18 25
Boston Piccolo_Nido  20 16 22 33
Boston Pomodoro  24 12 17 30
Boston Prezza  26 23 24 49
Boston Ristorante_Fiore  21 21 19 38
Boston Ristorante_Lucia  21 17 20 32
Boston Ristorante_Toscano  20 17 19 40
Boston Ristorante_Villa_Francesca  20 18 20 36
Boston Saraceno  22 21 22 37
Boston Scoozi  17 11 15 20
Boston Sorento's 21 17 16 24
Boston Strega_Ristorante 23 20 22 36
Boston Taranta  24 21 23 37 
Boston Teatro  24 21 21 40
Boston Terramia_Ristorante  25 18 21 42
Boston Trattoria_di_Monica's  24 19 22 33 
Boston Trattoria_Il_Panino  23 17 20 32
Boston Umbria  24 23 23 45
Boston Via_Matta  23 22 22 50
London Al_Duca  18 15 18 80
London Alloro  22 17 20 94
London Aperitivo  17 13 16 60
London Ark 21 21 20 86
London Bertorelli  17 16 17 64
London Brunello  20 26 20 124
London Buona_Sera  17 15 19 46
London Caldesi  22 18 21 78
London Camerino  20 17 23 82
London Cantina_del_Ponte  16 13 14 66
London Caraffini  21 16 21 80
London Caravaggio  17 13 15 84
London Carluccio's  18 14 15 46
London Carpaccio  19 17 18 90
London Cecconi's  22 20 21 108
London Cipriani  20 20 18 134
London Ciro's_Pizza  16 14 15 42
London Clos_Maggiore  24 24 24 86
London Como_Lario  18 13 19 92
London Daphne's  22 20 20 96
London Diverso  20 18 18 78
London Elena's_l'Etoile  22 18 22 80
London Elistano  18 13 17 66
London Essenza  21 14 19 68
London Fiore  24 21 25 96
London Franco's  17 15 19 80
London Frankie's_Italian_Bar  14 14 14 66
London Friends  20 15 19 54
London Getti  18 13 19 66
London Giardinetto  21 16 23 110
London Giovanni's  21 16 20 66
London Harry's_Bar  23 24 25 122
London Il_Convivio  23 21 22 94
London Il_Portico  23 17 25 64
London l'Incontro  19 20 16 102
London La_Famiglia  21 14 20 84
London La_Genova  23 19 26 76
London La_Porchetta_Pizzeria  20 12 17 34
London Latium  22 17 20 80
London Little_Italy 18 11 15 58
London Locanda_Locatelli  25 23 23 108
London Locanda_Ottoemezzo  23 17 21 84
London Luciano  20 17 12 100
London Lucio  25 23 23 94
London Made_in_Italy  20 14 14 50
London Manicomio  21 17 16 78
London Mediterraneo  20 15 17 70
London Mimmo_D'Ischia  21 16 21 90
London Montepeliano  18 17 19 86
London Monza  19 14 18 74
London Oliveto  20 13 16 66
London Olivo  23 16 21 74
London Orso  21 17 20 78
London Osteria_Basilico  23 18 19 66
London Osteria_dell'Arancio  23 22 23 78
London Passione  23 15 20 92
London Pellicano  18 17 18 72
London Pizza_Express  16 13 15 34
London Quirinale  26 20 25 92
London Quo_Vadis  21 21 20 84
London Riccardo's  16 10 14 66
London River_Cafe  26 21 24 120
London Rosmarino  20 18 17 88
London Sale_e_Pepe  23 17 22 78
London San_Lorenzo  20 18 18 104
London Santini  2 19 22 104
London Sardo  21 14 19 76
London Sartoria  20 21 19 94
London Scalini  20 15 18 100
London Signor_Sassi  23 18 23 82
London Spago  21 13 18 74
London Spiga  17 13 14 54
London Spighetta  17 10 17 48
London Strada  18 14 16 42
London Timo  23 16 22 86
London Toto's  23 20 23 102
London Vasco  24 16 22 74
London Verbanella  19 16 21 80
London Volt  17 20 15 88
London Zafferano  25 20 23 112
London Ziani  22 17 21 82
London Zilli_Fish  23 15 19 72
London Zizzi  15 15 14 42
NY Angelo's  23 15 19 43
NY Da_Nico  20 17 18 35
NY Ferrara  22 15 15 18
NY Grotta_Azzurra  17 16 16 47
NY Il_Cortile  23 20 19 50
NY Il_Fornaio  23 14 19 30
NY Il_Palazzo  21 17 20 42
NY La_Mela  18 11 17 35
NY Pellegrino's  22 17 21 40
NY Positano  20 14 18 36
NY Sal_Anthony's 18 17 18 38
NY Taormina  22 19 20 42
NY Umberto's  19 14 17 35
NY Vincent's  21 13 18 33
NY 'ino  24 14 18 25
NY Arturo's_Pizzeria  21 12 16 24
NY Babbo  27 23 25 74
NY Bar_Pitti  22 14 16 36
NY Bellavitae  22 18 19 49
NY Borgo_Antico  17 16 19 40
NY Da_Silvano  20 15 17 60
NY Ennio_&_Michael  19 16 21 44
NY Gonzo  22 17 18 41
NY Gradisca  20 17 17 41
NY Gusto  21 20 18 52
NY Il_Cantinori  22 21 22 59
NY Il_Mulino  27 18 23 83
NY Joe's_Pizza  23 5 12 8
NY John's_Pizzeria  22 12 15 21
NY La_Lanterna_di_Vittorio  19 20 16 27
NY Lupa  25 18 21 50
NY Marinella  23 16 23 41
NY Maurizio_Trattoria  20 16 19 46
NY Minetta_Tavern  18 16 17 41
NY Monte's  19 14 19 37
NY Osso_Buco  17 14 17 35
NY Otto  21 19 19 37
NY Patsy's_Pizzeria  20 12 15 23
NY Piadina  21 18 16 31
NY Piola  19 15 19 24
NY Po  25 16 21 47
NY Risotteria  21 10 18 23
NY Rocco  19 14 18 38
NY Trattoria_Pesce_&_Pasta  18 13 18 31
NY Uno_Chicago_Grill  14 12 13 22
NY Villa_Mosconi  19 15 21 44

UN Data File (Table 9.13):


These data are from the Human Development report of 2005.  Note however that the
values given are from 2003 except for CO2 which is 2002.

website:  http://hdr.undp.org/statistics/data/rc_2005.cfm

HDI: HDI value; 
Fert: Total Fertility rate (births/woman); 
Cont: Contraceptive prevalence rate (%); 
Cell: Cellular subscribers (per 1000 people); 
Inter: Internet users (per 1000 people); 
GDP: GDP per capita (US$); 
CO2: Carbon dioxide emissions per capita (metric tons);
Life: Life expectancy at birth, female (years); 
Liter: Adult literacy rate (female rate % ages 15 and above);
FemEc: Female economic activity rate (% of male rate, ages 15 and above);

Nation  	HDI	Fert	Cont	Cell    Inter	GDP	CO2	Life	Liter	FemEc
Algeria		0.72	2.5	64	45	..	2090	2.9	72.4	60.1	41
Argentina	0.86	2.4	..	..	..	3524	3.5	78.2	97.2	48
Australia	0.96	1.7	76	719	567	26275	18.3	82.8	..	79
Austria		0.94	1.4	51	879	462	31289	7.8	81.8	..	66
Belgium		0.95	1.7	78	793	386	29096	6.8	82	..	67
Brazil		0.79	2.3	77	264	..	2788	1.8	74.6	88.6	52
Canada		0.95	1.5	75	419	..	27079	16.5	82.4	..	83
Chile		0.85	2	..	511	272	4591	3.6	80.9	95.6	50
China		0.76	1.7	84	215	63	1100	2.7	73.5	86.5	86
Denmark		0.94	1.8	78	883	541	39332	8.9	79.4	..	85
Egypt		0.66	3.3	60	84	44	1220	2.1	72.1	43.6	46
Finland		0.94	1.7	77	910	534	31058	12	81.7	..	87
France		0.94	1.9	75	696	366	29410	6.2	83	..	78
Germany		0.93	1.3	75	785	473	29115	9.8	81.5	..	71
Greece		0.91	1.3	..	902	150	15608	8.5	80.9	88.3	60
India		0.60	3.1	48	25	17	564	1.2	65	47.8	50
Iran		0.74	2.1	73	51	72	2066	5.3	71.9	70.4	39
Ireland		0.95	1.9	..	880	317	38487	11	80.3	..	54
Israel		0.92	2.9	68	961	..	16481	11	81.7	95.6	69
Japan		0.94	1.3	56	679	483	33713	9.4	85.4	..	68
Malaysia	0.80	2.9	55	442	344	4187	6.3	75.6	85.4	62
Mexico		0.81	2.4	68	295	120	6121	3.7	77.5	88.7	49
Netherlands	0.94	1.7	79	768	522	31532	9.4	81.1	..	68
New Zealand	0.93	2	75	648	526	19847	8.7	81.3	..	81
Nigeria		0.45	5.8	13	26	6	428	0.4	43.6	59.4	56
Norway		0.96	1.8	74	909	346	48412	12.2	81.9	..	86
Pakistan	0.53	4.3	28	18	..	555	0.7	63.2	35.2	44
Philippines	0.76	3.2	49	270	..	989	0.9	72.5	92.7	62
Russian Fed.	0.80	1.3	73	249	..	3018	9.9	72.1	99.2	83
Saudi Arabia	0.77	4.1	32	321	67	9532	15	73.9	69.3	29
South Africa	0.66	2.8	56	364	..	3489	7.4	50.2	80.9	59
Spain		0.93	1.3	81	916	239	20404	7.3	83.2	..	58
Sweden		0.95	1.6	78	980	..	33676	5.8	82.4	..	90
Switzerland	0.95	1.4	82	843	398	43553	5.7	83.2	..	67
Turkey		0.75	2.5	64	394	85	3399	3	71.1	81.1	63
United Kingdom	0.94	1.7	84	912	..	30253	9.2	80.6	..	76
United States	0.94	2	76	546	556	37648	20.1	80	..	83
Viet Nam	0.70	2.3	79	34	43	482	0.8	72.6	86.9	91
Yemen		0.49	6.2	21	35	..	565	0.7	61.9	28.5	37

"House Selling Price" Data File (Excerpt in Table 9.4):

Selling price of homes in Gainesville, Florida, fall 2006, from Alachua County public records. The following table contains data on Price = selling price (dollars), Size = size of home (square feet), Beds = number of bedrooms, Baths = number of bathrooms, New = whether new (1 = yes, 0 = no), and Taxes = annual tax bill (dollars).


case       Taxes  Beds  Baths   New         Price     Size 
1          3104     4   2        0          279900    2048      
2          1173     2   1        0          146500     912 
3          3076     4   2        0          237700    1654 
4          1608     3   2        0          200000    2068 
5          1454     3   3        0          159900    1477 
6          2997     3   2        1          499900    3153 
7          4054     3   2        0          265500    1355 
8          3002     3   2        1          289900    2075 
9          6627     5   4        0          587000    3990 
10         320      3  	2        0          70000     1160         
11         630      3  	2        0          64500     1220         
12         1780     3  	2        0          167000    1690     
13         1630     3  	2        0          114600    1380     
14         1530     3  	2        0          103000    1590     
15         930      3  	1        0          101000    1050     
16         590      2  	1        0          70000      770         
17         1050     3  	2        0          85000     1410         
18         20       3  	1        0          22500     1060         
19         870      2  	2        0          90000     1300         
20         1320     3  	2        0          133000    1500     
21         1350     2  	1        0          90500      820         
22         5616     4   3        1          577500    3949 
23         680      2  	1        0          142500    1170     
24         1840     3  	2        0          160000    1500     
25         3680     4  	2        0          240000    2790     
26         1660     3  	1        0          87000     1030         
27         1620     3  	2        0          118600    1250     
28         3100     3  	2        0          140000    1760     
29         2070     2  	3        0          148000    1550     
30         830      3  	2        0          69000     1120      
31         2260     4  	2        0          176000    2000     
32         1760     3  	1        0          86500     1350         
33         2750     3  	2        1          180000    1840     
34         2020     4  	2        0          179000    2510     
35         4900     3  	3        1          338000    3110     
36         1180     4  	2        0          130000    1760     
37         2150     3  	2        0          163000    1710     
38         1600     2  	1        0          125000    1110     
39         1970     3  	2        0          100000    1360     
40         2060     3  	1        0          100000    1250     
41         1980     3  	1        0          100000    1250     
42         1510     3  	2        0          146500    1480     
43         1710     3  	2        0          144900    1520     
44         1590     3  	2        0          183000    2020     
45         1230     3  	2        0          69900     1010      
46         1510     2  	2        0          60000     1640         
47         1450     2  	2        0          127000     940      
48         970      3  	2        0          86000     1580         
49         150      2  	2        0          50000      860       
50         1470     3  	2        0          137000    1420 
51         1850     3  	2        0          121300    1270 
52         820      2  	1        0          81000      980         
53         2050     4  	2        0          188000    2300     
54         710      3  	2        0          85000     1430         
55         1280     3  	2        0          137000    1380     
56         1360     3   2        0          145000    1240 
57          830     3   2        0           69000    1120 
58         800      3  	2        0          109300    1120 
59         1220     3  	2        0          131500    1900 
60         3360     4  	3        0          200000    2430     
61         210      3  	2        0          81900     1080         
62         380      2  	1        0          91200     1350         
63         1920     4  	3        0          124500    1720     
64         4350     3  	3        0          225000    4050     
65         1510     3  	2        0          136500    1500 
66         4154     3   3        0          381000    2581 
67         1976     3   2        1          250000    2120 
68         3605     3   3        1          354900    2745 
69         1400     3  	2        0          140000    1520     
70         790      2  	2        0          89900     1280         
71         1210     3  	2        0          137000    1620     
72         1550     3  	2        0          103000    1520     
73         2800     3  	2        0          183000    2030     
74         2560     3  	2        0          140000    1390     
75         1390     4  	2        0          160000    1880     
76         5443     3   2        0          434000    2891 
77         2850     2  	1        0          130000    1340     
78         2230     2  	2        0          123000     940      
79         20       2  	1        0          21000      580         
80         1510     4  	2        0          85000     1410         
81         710      3  	2        0          69900     1150         
82         1540     3  	2        0          125000    1380     
83         1780     3  	2        1          162600    1470     
84         2920     2  	2        1          156900    1590     
85         1710     3  	2        1          105900    1200     
86         1880     3  	2        0          167500    1920     
87         1680     3  	2        0          151800    2150     
88         3690     5  	3        0          118300    2200     
89         900      2  	2        0          94300      860         
90         560      3  	1        0          93900     1230         
91         2040     4  	2        0          165000    1140     
92         4390     4  	3        1          285000    2650     
93         690      3  	1        0          45000     1060         
94         2100     3  	2        0          124900    1770     
95         2880     4  	2        0          147000    1860     
96         990      2  	2        0          176000    1060     
97         3030     3  	2        0          196500    1730     
98         1580     3  	2        0          132200    1370     
99         1770     3  	2        0          88400     1560         
100        1430     3  	2        0          127200    1340     

"Florida crime" data file (Table 9.16 or 9.17):

Data for Florida counties. The variables are county, C = crime rate, I = median income, HS = percent completing high school, U = percent urban.
Source: Dr. Larry Winner, University of Florida.


 County    C     I     HS     U    
ALACHUA   104   22.1   82.7  73.2   
BAKER      20   25.8   64.1  21.5    
BAY        64   24.7   74.7  85.0         
BRADFORD   50   24.6   65.0  23.2  
BREVARD    64   30.5   82.3  91.9    
BROWARD    94   30.6   76.8  98.9  
CALHOUN     8   18.6   55.9    0.0     
CHARLOTTE  35   25.7   75.7  80.2  
CITRUS     27   21.3   68.6  31.0    
CLAY       41   34.9   81.2  65.8      
COLLIER    55   34.0   79.0  77.6  
COLUMBIA   69   22.0   69.0  31.1   
DADE      128   26.9   65.0  98.8     
DESOTO     69   21.0   54.5  44.6  
DIXIE      49   15.4   57.7   0.0   
DUVAL      97   28.5   76.9  98.8       
ESCAMBIA   70   25.2   76.2  85.9   
FLAGLER    34   28.6   78.7  63.1        
FRANKLIN   37   17.2   59.5  30.2    
GADSDEN    52   20.0   59.9  28.8       
GILCHRIST  15   20.6   63.0   0.0  
GLADES     62   20.7   57.4   0.0    
GULF       19   21.9   66.4  35.2      
HAMILTON    6   18.7   58.4   0.0      
HARDEE     57   22.1   54.8  16.7    
HENDRY     47   24.9   56.6  44.7    
HERNANDO   44   22.7   70.5  61.3  
HIGHLANDS  56   21.1   68.2  24.8  
HILLSBOR. 110   28.5   75.6  89.2    
HOLMES      5   17.2   57.1  16.8      
INDIAN R.  58   29.0   76.5  83.0     
JACKSON    32   19.5   61.6  21.7     
JEFFERSON  36   21.8   64.1  22.3   
LAFAYETTE  0    20.7   58.2   0.0    
LAKE       42   23.4   70.6  43.2                      
LEE        59   28.4   76.9  86.1               
LEON      107   27.3   84.9  82.5     
LEVY       45   18.8   62.8   0.0    
LIBERTY     8   22.3   56.7   0.0     
MADISON    26   18.2   56.5  20.3    
MANATEE    79   26.0   75.6  88.7    
MARION     64   22.5   69.6  39.6     
MARTIN     53   31.8   79.7  83.2     
MONROE     89   29.4   79.7  73.2     
NASSAU     42   30.2   71.2  44.9     
OKALOOSA   37   27.9   83.8  84.0     
OKEECH.    51   21.4   59.1  30.1    
ORANGE     93   30.3   78.8  93.1    
OSCEOLA    78   27.3   73.7  66.4   
PALM B.    90   32.5   78.8  94.7    
PASCO      42   21.5   66.9  67.4    
PINELLAS   70   26.3   78.1  99.6   
POLK       84   25.2   68.0  70.3     
PUTNAM     83   20.2   64.3  15.7   
SANTA R.   43   27.6   79.9  57.2    
SARASOTA   58   29.9   71.7  92.1   
SEMINOLE   56   35.6   78.5  44.4  
ST JOHNS   54   29.9   81.3  93.2  
ST LUCIE   58   27.7   84.6  92.8  
SUMTER     37   19.6   64.3  19.3   
SUWANEE    37   19.8   63.8  23.6   
TAYLOR     76   21.4   62.1  41.8   
UNION       6   22.8   67.7   0.0     
VOLUSIA    62   24.8   75.4  83.9   
WAKULLA    29   25.0   71.6   0.0   
WALTON     18   21.9   66.5  20.9   
WASHING.   21   18.3   60.9  22.9

"Mental Impairment" Data File (Table 11.1):

This table refers to Y = mental impairment, X1 = life events, and X2 = SES, for a sample from Alachua County, Florida.
(Source: Dr. Charles Holzer)


 Y      X1     X2   
 17     46     84             
 19     39     97             
 20     27     24             
 20     3      85             
 20     10     15             
 21     44     55              
 21     37     78             
 22     35     91             
 22     78     60              
 23     32     74             
 24     33     67             
 24     18     39              
 25     81     87              
 26     22     95                 
 26     50     40  
 26     48     52   
 26     45     61   
 27     21     45  
 27     55     88  
 27     45     56  
 27     60     70  
 28     97     89  
 28     37     50  
 28     30     90  
 28     13     56  
 28     40     56  
 29      5     40  
 30     59     72  
 30     44     53 
 31     35     38 
 31     95     29 
 31     63     53 
 31     42      7 
 32     38     32 
 33     45     55 
 34     70     58 
 34     57     16 
 34     40     29 
 41     49      3 
 41     89     75

"Anorexia Study" Data File (Table 12.21):

Weights of Anorexic girls, before and after receiving one of three possible therapies - b = cognitive behavioural, f = family therapy, or c = control. (Thanks to Prof. Brian Everitt, Institute of Psychiatry, London, for supplying these data.)


subj  therapy  before   after  
1       b      80.5      82.2   
2       b      84.9      85.6   
3       b      81.5      81.4   
4       b      82.6      81.9
5       b      79.9      76.4
6       b      88.7     103.6
7       b      94.9      98.4
8       b      76.3      93.4   
9       b      81.0      73.4
10      b      80.5      82.1
11      b      85.0      96.7   
12      b      89.2      95.3   
13      b      81.3      82.4   
14      b      76.5      72.5   
15      b      70.0      90.9
16      b      80.4      71.3
17      b      83.3      85.4
18      b      83.0      81.6
19      b      87.7      89.1
20      b      84.2      83.9   
21      b      86.4      82.7   
22      b      76.5      75.7   
23      b      80.2      82.6
24      b      87.8     100.4
25      b      83.3      85.2
26      b      79.7      83.6
27      b      84.5      84.6
28      b      80.8      96.2
29      b      87.4      86.7   
30      f      83.8      95.2
31      f      83.3      94.3
32      f      86.0      91.5
33      f      82.5      91.9
34      f      86.7     100.3
35      f      79.6      76.7   
36      f      76.9      76.8
37      f      94.2     101.6
38      f      73.4      94.9
39      f      80.5      75.2
40      f      81.6      77.8
41      f      82.1      95.5   
42      f      77.6      90.7
43      f      83.5      92.5
44      f      89.9      93.8
45      f      86.0      91.7
46      f      87.3      98.0   
47      c      80.7      80.2
48      c      89.4      80.1
49      c      91.8      86.4
50      c      74.0      86.3
51      c      78.1      76.1
52      c      88.3      78.1
53      c      87.3      75.1
54      c      75.1      86.7
55      c      80.6      73.5
56      c      78.4      84.6
57      c      77.6      77.4
58      c      88.7      79.5
59      c      81.3      89.6
60      c      78.1      81.4
61      c      70.5      81.8   
62      c      77.3      77.3
63      c      85.2      84.2   
64      c      86.0      75.4   
65      c      84.1      79.5
66      c      79.7      73.0   
67      c      85.5      88.3   
68      c      84.4      84.7   
69      c      79.6      81.4   
70      c      77.5      81.2
71      c      72.3      88.2   
72      c      89.0      78.8

"Income, Education, and Racial-Ethnic Status" Data File (Table 13.1 of 4th edition):

This table contains data on annual income (thousands of dollars), number of years of education (where 12 = high school graduate, 16 = college graduate), and Z = racial-ethnic group (Black, Hispanic, White), first expressed as a letter and then with dummy variables for black and Hispanic.


inc educ race z1  z2 
16   10   b   1   0    
18    7   b   1   0    
26    9   b   1   0    
16   11   b   1   0    
34   14   b   1   0    
22   12   b   1   0    
42   16   b   1   0    
42   16   b   1   0    
16    9   b   1   0    
20   10   b   1   0    
66   16   b   1   0    
26   12   b   1   0    
20   10   b   1   0    
30   15   b   1   0    
20   10   b   1   0    
30   19   b   1   0    
32   16   h   0   1   
16   11   h   0   1 
20   10   h   0   1 
58   16   h   0   1 
30   12   h   0   1 
26   10   h   0   1 
20    8   h   0   1 
40   12   h   0   1 
32   10   h   0   1 
22   11   h   0   1 
20   10   h   0   1 
56   14   h   0   1 
32   12   h   0   1 
30   11   h   0   1
30   14   w   0   0   
48   14   w   0   0   
40    7   w   0   0   
84   18   w   0   0   
50   10   w   0   0   
38   12   w   0   0   
30   12   w   0   0   
76   16   w   0   0   
48   16   w   0   0   
36   11   w   0   0   
40   11   w   0   0   
44   12   w   0   0   
30   10   w   0   0   
60   15   w   0   0   
24    9   w   0   0   
88   17   w   0   0   
46   16   w   0   0   
50   16   w   0   0   
50   14   w   0   0   
22   11   w   0   0   
26   12   w   0   0
46   16   w   0   0   
22    9   w   0   0   
24    9   w   0   0   
64   14   w   0   0   
62   16   w   0   0   
24   10   w   0   0   
50   13   w   0   0   
32   10   w   0   0   
34   16   w   0   0   
52   18   w   0   0   
24   12   w   0   0   
22   14   w   0   0   
20   13   w   0   0   
30   14   w   0   0   
24   13   w   0   0   
120  18   w   0   0   
22   10   w   0   0   
82   16   w   0   0   
18   12   w   0   0   
26   12   w   0   0   
104  14   w   0   0
28   12   w   0   0   
32   12   w   0   0   
38   14   w   0   0   
44   12   w   0   0   
22   12   w   0   0   
18   10   w   0   0   
24   12   w   0   0   
56   20   w   0   0

"Fertility and GDP" Data File (Table 14.6):


 Nation      Fertility   GDP
 Algeria      2.5        2090	
 Australia    1.7       26275  
 Austria      1.4       31289       
 Belgium      1.7       29096       
 Brazil       2.3        2788        
 Canada       1.5       27079       
 Chile        2.0        4591        
 China        1.7        1100        
 Denmark      1.8       39332       
 Egypt        3.3        1220        
 Finland      1.7       31058       
 France       1.9       29410       
 Germany      1.3       29115       
 Greece       1.3       15608       
 India        3.1         564	        
 Iran         2.1        2066   
 Ireland      1.9       38487       
 Israel       2.9       16481       
 Japan        1.3       33713       
 Malaysia     2.9        4187        
 Mexico       2.4        6121        
 Netherlands  1.7       31532       
 NewZealand   2.0       19847       
 Nigeria      5.8         428	        
 Norway       1.8       48412  
 Pakistan     4.3         555	        
 Philippines  3.2         989	   
 Russia       1.3        3018   
 SaudiaArabia 4.1        9532        
 SouthAfrica  2.8        3489        
 Spain        1.3       20404       
 Sweden       1.6       33676       
 Switzerland  1.4       43553       
 Turkey       2.5        3399        
 UnitKing     1.7       30253       
 US           2.0       37648       
 VietNam      2.3         482	        
 Yemen        6.2         565    

"U.S. Population Size" Data File (Table 14.8):


decade population
     0 62.95
     1 75.99
     2 91.97
     3 105.71
     4 122.78
     5 131.67
     6 151.33
     7 179.32
     8 203.30
     9 226.54
    10 248.71
    11 281.42    

"Income and Credit Card Possession" Data File (Table 15.1):

Data on annual income (euros), number of subjects at that income level, and number possessing a travel credit card.
Source: Based on data in "Categorical Data Analysis," Quaderni del Corso Estivo di Statistica e Calcolo delle Probabilita;, n. 4., Istituto di Metodi Quantitativi, Universita; Luigi Bocconi, a cura di R. Piccarreta (1993).


Income  n  credit
12     1     0                
13     1     0                
14     8     2               
15    14     2               
16     9     0              
17     8     2               
19     5     1               
20     7     0
21     2     0
22     1     1
24     2     0
25    10     2
26     1     0
29     1     0
30     5     2
32     6     6
34     3     3
35     5     3
39     1     0
40     1     0
42     1     0
47     1     0
60     6     6
65     1     1 

"Maine motor vehicle accident" data file (Table 15.23):

The table classifies subjects by gender, location of accident, seat-belt use, and a response variable having categories (1) not injured, (2) injured but not transported by emergency medical services, (3) injured and transported by emergency medical services but not hospitalized, (4) injured and hospitalized but did not die, (5) injured and died.
Source: Dr. Cristanna Cook, Medical Care Development, Augusta, Maine.


Gender   Location  Seat-Belt    1       2      3      4      5 
 Female    Urban     No        7287    175    720     91    10
                    Yes       11587    126    577     48     8 
           Rural     No        3246     73    710    159    31 
                    Yes        6134     94    564     82    17 
 Male      Urban     No       10381    136    566     96    14 
                    Yes       10969     83    259     37     1
           Rural     No        6123    141    710    188    45 
                    Yes        6693     74    353     74    12