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7.5 EXAMPLE: MODELING COUNT DATA

We illustrate models for discrete data using the horseshoe crab dataset intro-
duced in Sec. 1.5.1. The response variable for the n = 173 mating female crabs
is y = number of “satellites” — male crabs that group around the female and
may fertilize her eggs. Explanatory variables are the female crab’s color, spine
condition, weight, and carapace width.

7.5.1 Fits to Marginal Distribution of Satellite Counts

To illustrate the Poisson, negative binomial, ZIP, and ZINB distributions in-
troduced in this chapter, we first investigate the marginal distribution of satel-
lite counts. From Sec. 1.5.1, the mean of 2.919 and variance of 9.912 suggest
overdispersion relative to the Poisson.

-----------------------------------------------------------------------

> attach(Crabs) # file Crabs.dat at www.stat.ufl.edu/~aa/glm/data

> hist(y, breaks=c(0:16)-0.5) # Histogram display with sufficient bins

-----------------------------------------------------------------------

The histogram (Figure 7.2) shows a strong mode at 0 but slightly elevated
frequencies for satellite counts of 3 through 6 before decreasing substantially.
Because the distribution may not be unimodal, the negative binomial may
not fit as well as a zero-inflated distribution.

Figure 7.2. Histogram for sample distribution of y = number of horseshoe crab

satellites.
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We fit the Poisson distribution and negative binomial distribution with
quadratic variance (NB2) by fitting GLMs having only an intercept.
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-----------------------------------------------------------------------

> summary(glm(y ~ 1, family=poisson, data=Crabs)) # default link is log

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0713 0.0445 24.07 <2e-16 # exp(1.0713) = 2.919

---

> logLik(glm(y ~ 1, family=poisson, data=Crabs))

’log Lik.’ -494.045

> library(MASS)

> summary(glm.nb(y ~ 1, data=Crabs)) # default link is log

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0713 0.0980 10.93 <2e-16

---

Theta: 0.758, Std. Err.: 0.126

> logLik(glm.nb(y ~ 1, data=Crabs))

’log Lik.’ -383.705

-----------------------------------------------------------------------

The estimated NB2 dispersion parameter8 is γ̂ = 1/0.758 = 1.32. This esti-
mate, the much larger SE (0.0980 vs. 0.0445) for the log mean estimate of
log(2.919) = 1.071, and the much larger log-likelihood also suggest that the
Poisson distribution is inadequate.

Next, we consider zero-inflated models9.

-------------------------------------------------------------------

> library(pscl) # pscl package can fit zero-inflated distributions

> summary(zeroinfl(y ~ 1)) # uses log link

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.50385 0.04567 32.93 <2e-16

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6139 0.1619 -3.791 0.00015

---

Log-likelihood: -381.615 on 2 Df # 2 is model df, not residual df

-------------------------------------------------------------------

The fitted ZIP distribution is a mixture with probability e−0.6139/[1 +
e−0.6139] = 0.351 for the degenerate distribution at 0 and probability
1 − 0.351 = 0.649 for a Poisson with mean e1.50385 = 4.499. The fitted
value of 173[0.351 + 0.649e−4.499] = 62.0 for the 0 count reproduces the ob-
served value of 62. The fitted value for the ordinary Poisson model is only
173e−2.919 = 9.3. The log-likelihood increases substantially when we fit a
zero-inflated negative binomial (ZINB) model.

----------------------------------------------------------------------

8SAS (PROC GENMOD) reports γ̂ as having SE = 0.22.
9Such models can also be fitted with the vglm function in the VGAM package.
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> summary(zeroinfl(y ~ 1, dist="negbin")) # uses log link in pscl lib.

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.46527 0.06834 21.440 < 2e-16

Log(theta) 1.49525 0.34916 4.282 1.85e-05

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7279 0.1832 -3.973 7.1e-05

---

Theta = 4.4605 Log-likelihood: -369.352 on 3 Df

----------------------------------------------------------------------

This distribution is a mixture with probability e−0.7279/[1+ e−0.7279] = 0.326
for the degenerate distribution at 0 and probability 0.674 for a negative
binomial with mean e1.465 = 4.33 and dispersion parameter estimate γ̂ =
1/4.4605 = 0.22.

To further investigate lack of fit, we grouped the counts into ten categories,
using a separate category for each count from 0 to 8 and then combining
counts of 9 and above into a single category. Comparing these with the ZINB
fitted distribution of the 173 observations into these 10 categories, we obtained
X2 = 7.7 for df = 10 − 3 = 7 (since the model has three parameters), an
adequate fit. For the other fits, X2 = 522.3 for the Poisson model, 33.6 for
the ordinary negative binomial model, and 31.3 for the ZIP model. Here are
the fitted counts for the four models:

---------------------------------------------------------------------

count observed fit.p fit.nb fit.zip fit.zinb

0 62 9.34 52.27 62.00 62.00

1 16 27.26 31.45 5.62 12.44

2 9 39.79 21.94 12.63 16.73

3 19 38.72 16.01 18.94 17.74

4 19 28.25 11.94 21.31 16.30

5 15 16.50 9.02 19.17 13.58

6 13 8.03 6.87 14.38 10.55

7 4 3.35 5.27 9.24 7.76

8 6 1.22 4.06 5.20 5.48

9 or more 10 0.55 14.16 4.51 10.43

---------------------------------------------------------------------

The ZIP model tends to be not dispersed enough, having fitted value that is
too small for the counts of 1 and ≥ 9.

7.5.2 GLMs for Crab Satellite Numbers

We now consider zero-inflated negative binomial models with the explanatory
variables from Table 1.3. Weight and carapace width have a correlation of
0.887, and we shall use only weight to avoid issues with collinearity. Darker-
colored crabs tend to be older. Most crabs have both spines worn or broken
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(category 3). When we fit the ZINB main-effects model using weight, color,
and spine condition for each component, with color and spine condition as
qualitative factors, we find that weight is significant in each component but
neither of color or spine condition are. Adding interaction terms does not yield
an improved fit. Analyses using color in a quantitative manner with category
scores {ci = i} gives relatively strong evidence that darker crabs tend to have
more 0 counts. If we use weight wi in both components of the model but
quantitative color only in the zero-component, we obtain:

-------------------------------------------------------------------

> summary(zeroinfl(y ~ weight | weight + color, dist="negbin"))

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8961 0.3070 2.919 0.0035

weight 0.2169 0.1125 1.928 0.0538 .

Log(theta) 1.5802 0.3574 4.422 9.79e-06

Zero-inflation model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8662 1.2415 1.503 0.133

weight -1.7531 0.4429 -3.958 7.55e-05

color 0.5985 0.2572 2.326 0.020

---

Theta = 4.8558 Log-likelihood: -349.865 on 6 Df

-------------------------------------------------------------------

The fitted distribution is a mixture with probability φ̂i of a negative binomial
having mean µ̂i satisfying

log µ̂i = 0.896 + 0.217wi

with dispersion parameter estimate γ̂ = 1/4.8558 = 0.21, and a probability

mass 1− φ̂i at 0 satisfying

logit(1 − φ̂i) = 1.866− 1.753wi + 0.598ci.

The overall fitted mean response at a particular weight and color equals

Ê(yi) = φ̂iÊ(yi | zi = 1) =

(

1

1 + e1.866−1.753wi+0.598ci

)

e0.896+0.217wi .

As weight increases for a particular color, the fitted probability mass at the
0 outcome decreases, and the fitted negative binomial mean increases. Figure
7.3 plots the overall fitted mean as a function of weight for the dark crabs
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(color 4) and as a function of color at the median weight of 2.35 kg.

Figure 7.3. Fitted mean number of horseshoe crab satellites for zero-inflated nega-

tive binomial model, plotted as a function of weight for dark crabs and as a function

of color for median-weight crabs
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If we drop color completely and exclude weight from the NB2 component of
the model, the log-likelihood decreases to −354.7 but we obtain the simple ex-
pression for the overall fitted mean of exp(1.47094)/[1+exp(3.927−1.985wi)].
This has a logistic shape for the increase in the fitted mean as a function of
weight.

If we ignore the zero-inflation and fit an ordinary NB2 model with weight
and quantitative color predictors, we obtain:

-------------------------------------------------------------------

> summary(glm.nb(y ~ weight + color))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1487 0.6424 -0.231 0.817

weight 0.7072 0.1612 4.387 1.15e-05

color -0.1734 0.1199 -1.445 0.148

---

Theta: 0.956 2 x log-likelihood: -746.452 # L = -373.226

-------------------------------------------------------------------

This describes the tendency of the overall mean response to increase with
weight and decrease with color (but not significantly). In not having a sep-
arate component to handle the zero count, the NB2 model has dispersion
parameter estimate γ̂ = 1/0.956 = 1.05 that is much greater than γ̂ for the
NB2 component of ZINB models. The fit is similar to that of the geometric
distribution, which is NB2 with γ = 1. But its log-likelihood of −373.2 is
considerably worse than values obtained for ZINB models.

Unless previous research or theory suggests more-complex models, it seems
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adequate to use a zero-inflated NB2 model with weight as the primary predic-
tor, adding color as a predictor of the mass at 0. In these analyses, however,
we have ignored that the data set contains an outlier – an exceptionally heavy
crab weighing 5.2 kg of medium color that had 7 satellites. As as exercise, you
can fit models without that observation to investigate how the results change.


