APPENDIX:

Software Details for Examples in
Categorical Data Analysis

In this appendix we provide details about how to use R, SAS, Stata, and SPSS statisti-
cal software for categorical data analysis, illustrating for the examples in the text. This
supplements the brief description found in Appendix A of the text Categorical Data
Analysis by Alan Agresti, 3rd edition, published by Wiley, 2012). For each package,
the material is organized by chapter of presentation and refers to datasets analyzed
in those chapters. For convenience, data for examples are entered in the form of the
contingency table displayed in the text. In practice, the data would usually be entered
at the subject level. The full data sets are available at

www.stat.ufl.edu/~aa/cda/cda.html

A.1 SAS EXAMPLES

SAS is general-purpose software for a wide variety of statistical analyses. The main
procedures (PROCs) for categorical data analyses are FREQ, GENMOD, LOGISTIC,
NLMIXED, GLIMMIX, and CATMOD. PROC FREQ performs basic analyses for
two-way and three-way contingency tables. PROC GENMOD fits generalized linear
models using ML or Bayesian methods, cumulative link models for ordinal responses,
zero-inflated Poisson regression models for count data, and GEE analyses for marginal
models. PROC LOGISTIC gives ML fitting of binary response models, cumulative link
models for ordinal responses, and baseline-category logit models for nominal responses.
(PROC SURVEYLOGISTIC fits binary and multi-category regression models to sur-
vey data by incorporating the sample design into the analysis and using the method of
pseudo ML.) PROC CATMOD fits baseline-category logit models and can fit a variety
of other models using weighted least squares. PROC NLMIXED gives ML fitting of
generalized linear mixed models, using adaptive Gauss—Hermite quadrature. PROC
GLIMMIX also fits such models with a variety of fitting methods.

The examples in this appendix show SAS code for version 9.22. We focus on basic
model fitting rather than the great variety of options. For more detail, see

Stokes, Davis, and Koch (2012) Categorical Data Analysis Using SAS, 3rd ed.
Cary, NC: SAS Institute.

Allison (1999) Logistic Regression Using the SAS System. Cary, NC: SAS Institute.

For examples of categorical data analyses with SAS for many data sets in my text
An Introduction to Categorical Data Analysis, see the useful site

www.ats.ucla.edu/stat/examples/icda/

set up by the UCLA Statistical Computing Center. A useful SAS site on-line with
details about the options as well as many examples for each PROC is at

support.sas.com/rnd/app/da/stat/procedures/CategoricalDataAnalysis.html,

In SAS, The @Q symbol in an input line indicates that each line of data contains
more than one observation. Input of a variable as characters rather than numbers
requires an accompanying $ label in the INPUT statement.


www.stat.ufl.edu/~aa/cda/cda.html
www.ats.ucla.edu/stat/examples/icda/
support.sas.com/rnd/app/da/stat/procedures/CategoricalDataAnalysis.html

Chapter 1: Introduction

With PROC FREQ for a 1 x 2 table of counts of successes and failures for a bi-
nomial variate, confidence limits for the binomial proportion include Agresti-Coull,
Jeffreys (Bayes), score (Wilson), and Clopper—Pearson exact method. The keyword
BINOMIAL and the EXACT statement yields binomial tests. Table [I] shows code
for confidence intervals for the example in the text section 1.4.3 about estimating the
proportion of people who are vegetarians, when 0 of 25 in a sample are vegetarian.

Table 1: SAS Code for Confidence Intervals for a Proportion

data veg;

input response $ count;

datalines;

no 25

yes O

proc freq data=veg; weight count;

tables response / binomial(ac wilson exact jeffreys) alpha=.05;
run;

Chapters 2—-3: Two-Way Contingency Tables

Table [2 uses SAS to analyze Table 3.2 in Categorical Data Analysis, on education and
belief in God. PROC FREQ forms the table with the TABLES statement, ordering
row and column categories alphanumerically. To use instead the order in which the
categories appear in the data set (e.g., to treat the variable properly in an ordinal
analysis), use the ORDER = DATA option in the PROC statement. The WEIGHT
statement is needed when you enter the cell counts instead of subject-level data. PROC
FREQ can conduct chi-squared tests of independence (CHISQ option), show its es-
timated expected frequencies (EXPECTED), provide a wide assortment of measures
of association and their standard errors (MEASURES), and provide ordinal statistic
(3.16) with a “nonzero correlation” test (CMH1). You can also perform chi-squared
tests using PROC GENMOD (using loglinear models discussed in Chapters 9-10), as
shown. Its RESIDUALS option provides cell residuals. The output labeled “StReschi”
is the standardized residual.

For creating mosaic plots in SAS, seewww.datavis.caland www.datavis.ca/books/vcd/|

Table B analyzes the tea tasting data in Table 3.9 of the textbook. With PROC
FREQ, for 2 x 2 tables the MEASURES option in the TABLES statement provides
confidence intervals for the odds ratio (labeled “case-control” on output) and the
relative risk, and the RISKDIFF option provides intervals for the proportions and their
difference. For tables having small cell counts, the EXACT statement can provide
various exact analyses. These include Fisher’s exact test and its generalization for
I x J tables, treating variables as nominal, with keyword FISHER. The OR keyword


www.datavis.ca
www.datavis.ca/books/vcd/

Table 2: SAS Code for Chi-Squared, Measures of Association, and
Residuals for Data on Education and Belief in God in Table 3.2

data table;
input degree belief $ count @Q;
datalines;
11 9 12 8 1327 14 8 15 47 16 236
2123 2239 238 2449 25179 26 706
3248 338 3419 35104 36 293

3128
proc freq order=data; weight count;
tables degreexbelief / chisq expected measures cmhl;
proc genmod order=data; class degree belief;
model count = degree belief / dist=poi link=log residuals;

gives the odds ratio and its large-sample Wald confidence interval based on (3.2)
and the small-sample interval based on the noncentral hypergeometric distribution
(16.28). Other EXACT statement keywords include unconditional exact confidence
limits for the difference of proportions (keyword RISKDIFF), exact trend tests for
I x 2 tables (TREND), and exact chi-squared tests (CHISQ) and exact correlation
tests for I x J tables (MHCHI). You can use Monte Carlo simulation (option MC) to
estimate exact P-values when the exact calculation is too time-consuming. Table 3]
also uses PROC LOGISTIC to get a profile-likelihood confidence interval for the odds
ratio (CLODDS = PL). PROC LOGISTIC uses FREQ to weight counts, serving the
same purpose for which PROC FREQ uses WEIGHT.

Table 3: SAS Code for Fisher’s Exact Test and Confidence Intervals
for Odds Ratio for Tea-Tasting Data in Table 3.9

data fisher;

input poured guess count QQ;

datalines;

113 121 211 223

proc freq; weight count;
tables poured*guess / measures riskdiff;
exact fisher or / alpha=.05;

proc logistic descending; freq count;
model guess = poured / clodds=pl;



Chapter 4: Generalized Linear Models

PROC GENMOD fits GLMs. It specifies the response distribution in the DIST option
(“poi” for Poisson, “bin” for binomial, “mult” for multinomial, “negbin” for negative
binomial) and specifies the link in the LINK option. For binomial models with grouped
data, the response in the model statements takes the form of the number of “successes”
divided by the number of cases. Table [ illustrates for the snoring data in Table 4.2 of
the textbook. Profile likelihood confidence intervals are provided in PROC GENMOD
with the LRCI option.

Table 4: SAS Code for Binary GLMs for Snoring Data in Table 4.2

data glm;

input snoring disease total QGQ;

datalines;

0 24 1379 2 35 638 4 21 213 5 30 254

proc genmod; model disease/total = snoring / dist=bin link=identity;
proc genmod; model disease/total = snoring / dist=bin link=logit;
proc genmod; model disease/total = snoring / dist=bin link=probit;

Table B uses PROC GENMOD for count modeling of the horseshoe crab data in
Table 4.3 of the textbook. Each observation refers to a single crab. Using width as
the predictor, the first two models use Poisson regression and the third model assumes
a negative binomial distribution.

Table [l uses PROC GENMOD for the overdispersed data of Table 4.7 of the
textbook. A CLASS statement requests indicator (dummy) variables for the groups.
With no intercept in the model (option NOINT) for the identity link, the estimated
parameters are the four group probabilities. The ESTIMATE statement provides an
estimate, confidence interval, and test for a contrast of model parameters, in this case
the difference in probabilities for the first and second groups. The second analysis
uses the Pearson statistic to scale standard errors to adjust for overdispersion. PROC
LOGISTIC can also provide overdispersion modeling of binary responses; see Table [29]
in the Chapter 14 part of this appendix for SAS.

The final PROC GENMOD run in Table [T fits the Poisson regression model with
log link for the grouped data of Tables 4.4 and 5.2. It models the total number of
satellites at each width level (variable “satell”), using the log of the number of cases
as offset.

Chapters 5-7: Logistic Regression and Binary Response
Analyses

You can fit logistic regression models using either software for GLMs or specialized
software for logistic regression. PROC GENMOD uses Newton-Raphson, whereas



Table 5: SAS Code for Poisson and Negative Binomial GLMs for
Horseshoe Crab Data in Table 4.3

data crab;

input color spine width satell weight;
datalines;

3 3 28.3 8 3.05

4 3 22.5 0 1.55

3 2 24.5 0 2.00
proc genmod;
model satell
proc genmod;
model satell
proc genmod;
model satell = width / dist=negbin link=identity ;

width / dist=poi link=log ;

width / dist=poi link=identity ;

Table 6: SAS Code for Overdispersion Modeling of Teratology Data
in Table 4.7

data moore;
input litter group n y @G;
datalines;
1 1101 21114 31129 41 44 5110 10

564141 564 80 574 60 58 4 17 0
proc genmod; class group;
model y/n = group / dist=bin link=identity noint;
estimate ’pil-pi2’ group 1 -1 0 O;
proc genmod; class group;
model y/n = group / dist=bin link=identity noint scale=pearson;

PROC LOGISTIC uses Fisher scoring. Both yield ML estimates, but the SE values
use the inverted observed information matrix in PROC GENMOD and the inverted
expected information matrix in PROC LOGISTIC. These are the same for the logit
link because it is the canonical link function for the binomial, but differ for other links.

Table [ applies PROC GENMOD and PROC LOGISTIC to Table 5.2 of the



textbook, when “y” out of “n” crabs had satellites at a given width level. Profile

likelihood confidence intervals are provided in PROC GENMOD with the LRCI option
and in PROC LOGISTIC with the PLCL option. In PROC GENMOD, the ALPHA =
option can specify an error probability other than the default of 0.05, and the TYPE3
option provides likelihood-ratio tests for each parameter. (In the Chapter 9-10 section
we discuss the second GENMOD analysis of a loglinear model.)

Table 7: SAS Code for Modeling Grouped Crab Data in Tables 4.4
and 5.2

data crab;

input width y n satell; logcases=log(n);
datalines;

22.69 5 14 14

30.41 14 14 72
proc genmod;
model y/n = width / dist=bin link=logit lrci alpha=.01 type3;
proc logistic;
model y/n = width / influence stb;
output out=predict p=pi_hat lower=LCL upper=UCL;
proc print data=predict;
proc genmod;
model satell = width / dist=poi link=log offset=logcases residuals;

With PROC LOGISTIC, logistic regression is the default for binary data. PROC
LOGISTIC has a built-in check of whether logistic regression ML estimates exist. It
can detect complete separation of data points with 0 and 1 outcomes, in which case
at least one estimate is infinite. PROC LOGISTIC can also apply other links, such
as the probit. Its INFLUENCE option provides Pearson and deviance residuals and
diagnostic measures (Pregibon 1981). The STB option provides standardized estimates
by multiplying by sz, V/3/7 (text Section 5.4.7). Following the model statement, Table
[T requests predicted probabilities and lower and upper 95% confidence limits for the
probabilities.

Table 8 uses PROC GENMOD and PROC LOGISTIC to fit a logistic model with
qualitative predictors to the AIDS and AZT study of Table 5.6. In PROC GENMOD,
the OBSTATS option provides various “observation statistics,” including predicted
values and their confidence limits. The RESIDUALS option requests residuals such as
the Pearson and standardized residuals (labeled “Reschi” and “StReschi”). A CLASS
statement requests indicator variables for the factor. By default, in PROC GENMOD
the parameter estimate for the last level of each factor equals 0. In PROC LOGIS-
TIC, estimates sum to zero. That is, dummies take the effect coding (1, —1), with
values of 1 when in the category and —1 when not, for which parameters sum to



0. In the CLASS statement in PROC LOGISTIC, the option PARAM = REF re-
quests (1, 0) indicator variables with the last category as the reference level. Putting
REF = FIRST next to a variable name requests its first category as the reference
level. The CLPARM = BOTH and CLODDS = BOTH options provide Wald and
profile likelihood confidence intervals for parameters and odds ratio effects of explana-
tory variables. With AGGREGATE SCALE = NONE in the model statement, PROC
LOGISTIC reports Pearson and deviance tests of fit; it forms groups by aggregating
data into the possible combinations of explanatory variable values, without overdis-
persion adjustments. Adding variables in parentheses after AGGREGATE (as in the
second use of PROC LOGISTIC in Table B) specifies the predictors used for forming
the table on which to test fit, even when some predictors may have no effect in the
model.

Table 8: SAS Code for Logistic Modeling of AIDS Data in Table 5.6

data aids;
input race $ azt $ y n @@;
datalines;
White Yes 14 107 White No 32 113 Black Yes 11 63  Black No 12 55
proc genmod; class race azt;
model y/n = azt race / dist=bin type3 lrci residuals obstats;
proc logistic; class race azt / param=reference;
model y/n = azt race / aggregate scale=none clparm=both clodds=both;
output out=predict p=pi_hat lower=lower upper=upper;
proc print data=predict;
proc logistic; class race azt (ref=first) / param=ref;
model y/n = azt / aggregate=(azt race) scale=none;

Table @l shows logistic regression analyses for the horseshoe crab data of Table 4.3.
The models refer to a constructed binary variable Y that equals 1 when a horseshoe
crab has satellites and 0 otherwise. With binary data entry, PROC GENMOD and
PROC LOGISTIC order the levels alphanumerically, forming the logit with (1, 0)
responses as log[P(Y = 0)/P(Y = 1)]. Invoking the procedure with DESCENDING
following the PROC name reverses the order. The first two PROC GENMOD state-
ments use both color and width as predictors; color is qualitative in the first model
(by the CLASS statement) and quantitative in the second. A CONTRAST statement
tests contrasts of parameters, such as whether parameters for two levels of a factor are
identical. The statement shown contrasts the first and fourth color levels. The third
PROC GENMOD statement uses an indicator variable for color, indicating whether a
crab is light or dark (color = 4). The fourth PROC GENMOD statement fits the main
effects model using all the predictors. PROC LOGISTIC has options for stepwise se-
lection of variables, as the final model statement shows. The LACKFIT option yields
the Hosmer—Lemeshow statistic. Using the OUTROC option, PROC LOGISTIC can
output a data set for plotting a ROC curve.



Table 9: SAS Code for Logistic Regression Models with Horseshoe
Crab Data in Table 4.3

data crab;

input color spine width satell weight;

if satell>0 then y=1; if satell=0 then y=0;

if color=4 then light=0; if color < 4 then light=1;
datalines;

2 3 28.3 8 3.05

2 2 245 0 2.00
proc genmod descending; class color;
model y = width color / dist=bin link=logit lrci type3 obstats;
contrast ’a-d’ color 1 0 0 -1;
proc genmod descending;
model y = width color / dist=bin link=logit;
proc genmod descending;
model y = width light / dist=bin link=logit;
proc genmod descending; class color spine;
model y = width weight color spine / dist=bin link=logit type3;
proc logistic descending; class color spine / param=ref;
model y = width weight color spine / selection=backward lackfit outroc=classifl;
proc plot data=classifl; plot _sensit_ * _lmspec_ ;

Table [0 analyzes the clinical trial data of Table 6.9 of the textbook. The CMH
option in PROC FREQ specifies the CMH statistic, the Mantel-Haenszel estimate of a
common odds ratio and its confidence interval, and the Breslow—Day statistic. FREQ
uses the two rightmost variables in the TABLES statement as the rows and columns for
each partial table; the CHISQ option yields chi-square tests of independence for each
partial table. For I x 2 tables the TREND keyword in the TABLES statement pro-
vides the Cochran—Armitage trend test. The EQOR option in an EXACT statement
provides an exact test for equal odds ratios proposed by Zelen (1971). O’Brien (1986)
gave a SAS macro for computing powers using the noncentral chi-squared distribution.

Models with probit and complementary log-log (CLOGLOG) links are available
with PROC GENMOD, PROC LOGISTIC, or PROC PROBIT. PROC SURVEYL-
OGISTIC fits binary regression models to survey data by incorporating the sample
design into the analysis and using the method of pseudo ML (with a Taylor series ap-
proximation). It can use the logit, probit, and complementary log-log link functions.

For the logit link, PROC GENMOD can perform exact conditional logistic anal-
yses, with the EXACT statement. It is also possible to implement the small-sample
tests with mid- P-values and confidence intervals based on inverting tests using mid-P-
values. The option CLTY PE = EXACT|MIDP requests either the exact or mid-P



Table 10: SAS Code for Cochran—Mantel-Haenszel Test and Related
Analyses of Clinical Trial Data in Table 6.9

data cmh;

input center $ treat response count @@ ;
datalines;

ali1lil al?225b a2110 az2227
hi11 4 hi12 2 h21 6 h22 1

)
proc freq; weight count;
tables center*treat*response / cmh chisq;

confidence intervals for the parameter estimates. By default, the exact intervals are
produced.

Exact conditional logistic regression is also available in PROC LOGISTIC with
the EXACT statement.

PROC GAM fits generalized additive models.

Chapter 8: Multinomial Response Models

PROC LOGISTIC fits baseline-category logit models using the LINK = GLOGIT op-
tion. The final response category is the default baseline for the logits. Exact inference
is also available using the conditional distribution to eliminate nuisance parameters.
PROC CATMOD also fits baseline-category logit models, as Table [[1] shows for the
text example on alligator food choice (Table 8.1). CATMOD codes estimates for a
factor so that they sum to zero. The PRED = PROB and PRED = FREQ options
provide predicted probabilities and fitted values and their standard errors. The POP-
ULATION statement provides the variables that define the predictor settings. For
instance, with “gender” in that statement, the model with lake and size effects is
fitted to the full table also classified by gender.

PROC GENMOD can fit the proportional odds version of cumulative logit models
using the DIST = MULTINOMIAL and LINK = CLOGIT options. Table [I2lfits it to
the data shown in Table 8.5 on happiness, number of traumatic events, and race. When
the number of response categories exceeds 2, by default PROC LOGISTIC fits this
model. It also gives a score test of the proportional odds assumption of identical effect
parameters for each cutpoint. Both procedures use the a; + fx form of the model.
Cox (1995) used PROC NLIN for the more general model having a scale parameter.

Both PROC GENMOD and PROC LOGISTIC can use other links in cumulative
link models. PROC GENMOD uses LINK = CPROBIT for the cumulative probit
model and LINK = CCLL for the cumulative complementary log-log model. PROC
LOGISTIC fits a cumulative probit model using LINK = PROBIT.



Table 11: SAS Code for Baseline-Category Logit Models with Alligator
Data in Table 8.1

data gator;
input lake gender size food count;
datalines;
111

e e
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2 51 ;

proc logistic; freq count;

class lake size / param=ref;

model food(ref=’1’) = lake size / link=glogit aggregate scale=none;
proc catmod; weight count;

population lake size gender;

model food = lake size / pred=freq pred=prob;

PROC SURVEYLOGISTIC described above for incorporating the sample design
into the analysis can also fit multicategory regression models to survey data, with links
such as the baseline-category logit and cumulative logit.

You can fit adjacent-categories logit models in CATMOD by fitting equivalent
baseline-category logit models. Table [[3] uses it for Table 8.5 from the textbook, on
happiness, number of traumatic events, and race. Each line of code in the model
statement specifies the predictor values (for the two intercepts, trauma, and race) for
the two logits. The trauma and race predictor values are multiplied by 2 for the first
logit and 1 for the second logit, to make effects comparable in the two models. PROC
CATMOD has options (CLOGITS and ALOGITS) for fitting cumulative logit and
adjacent-categories logit models to ordinal responses; however, those options provide
weighted least squares (WLS) rather than ML fits. A constant must be added to
empty cells for WLS to run. CATMOD treats zero counts as structural zeros, so they
must be replaced by small constants when they are actually sampling zeros.

With the CMH option, PROC FREQ provides the generalized CMH tests of con-
ditional independence. The statistic for the “general association” alternative treats X
and Y as nominal [statistic (8.18) in the text], the statistic for the “row mean scores
differ” alternative treats X as nominal and Y as ordinal, and the statistic for the
“nonzero correlation” alternative treats X and Y as ordinal [statistic (8.19)].

10



Table 12: SAS Code for Cumulative Logit and Probit Models with
Happiness Data in Table 8.5

data gss;

input race $ trauma happy; * race is O=white, 1=black;
datalines;

00

O O O O O O o
O O O O O O O
I e N L

133

ods graphics on;

ods html;
proc genmod; class race;
model happy = trauma race / dist=multinomial link=clogit lrci type3;
effectplot slicefit;

run;
proc logistic data=gss plots=effect(at(race=all)); class race;
model happy = trauma race ;

output out=predict p=hi_hat lower=LCL upper=UCL;

proc print data=predict;

run;

proc logistic data=gss plots=all; class race;
model happiness = trauma race;

run;

ods html close;

ods graphics off;

PROC MDC fits multinomial discrete choice models, with logit and probit links.
One can also use PROC PHREG, which is designed for the Cox proportional hazards
model for survival analysis, because the partial likelihood for that analysis has the
same form as the likelihood for the multinomial model (Allison 1999, Chap. 7; Chen
and Kuo 2001).

11



Table 13: SAS Code for Adjacent-Categories Logit Model Fitted to Table 8.5
on Happiness, Traumatic Events, and Race

data gss;
input race trauma happy count;
count2 = count + 0.00000001;
datalines;

001 7

00215

152 0

153 0

proc catmod order=data; weight count2;
population race trauma;
model happy = (1 0 0 O,

v e v .

. e .

O OO OO OOO OO OO
e
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e e e e
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.

/ ML NOGLS;

Chapters 9-10: Loglinear Models

For details on the use of SAS (mainly with PROC GENMOD) for loglinear modeling
of contingency tables and discrete response variables, see Advanced Log-Linear Models
Using SAS by D. Zelterman (published by SAS, 2002).

Table [I4 uses PROC GENMOD to fit loglinear model (AC, AM, CM) to Table 9.3
from the survey of high school students about using alcohol, cigarettes, and marijuana.

Table uses PROC GENMOD for table raking of Table 9.77 from the text-
book. Note the artificial pseudo counts used for the response, to ensure the smoothed
margins.

Table [I6 uses PROC GENMOD to fit the linear-by-linear association model (10.5)
and the row effects model (10.7) to Table 10.3 in the textbook (with column scores 1,
2, 4, 5). The defined variable “assoc” represents the cross-product of row and column

12



Table 14: SAS Code for Fitting Loglinear Models to High School Drug
Survey Data in Table 9.3

data drugs;

input a ¢ m count QG;

datalines;

111911 11 2 538 12144 1 2 2 456
211 3 212 43 221 2 2 22279

b
proc genmod; class a c m;
model count = a ¢ m a*m a*c c*m / dist=poi link=log lrci type3 obstats;

data rake;
input partyid polviews count;
log_ct = log(count); pseudo = 100/3;
cards;
1 306
279
116
185
312
194
26
134
338

c W W W NNNRFE -
WNERE WNEFE, WN

proc genmod; class partyid polviews;
model pseudo = partyid polviews / dist=poi link=log offset=log_ct
obstats;

scores, which has 8 parameter as coefficient in model (10.5).
Correspondence analysis is available in SAS with PROC CORRESP.

13



Table 16: SAS Code for Fitting Association Models to GSS Data in
Table 10.77

data sex;

input premar birth u v count @@; assoc = u*v ;
datalines;

1111 81 1212 68 131460 141538

proc genmod; class premar birth;

model count = premar birth assoc / dist=poi link=log;
proc genmod; class premar birth;

model count = premar birth premar*v / dist=poi link=log;

Chapter 11: Models for Matched Pairs

Table[I7 analyzes Table 11.1 on presidential voting in two elections. For square tables,
the AGREE option in PROC FREQ provides the McNemar chi-squared statistic for
binary matched pairs, the X? test of fit of the symmetry model (also called Bowker’s
test), and Cohen’s kappa and weighted kappa with SE values. The MCNEM keyword
in the EXACT statement provides a small-sample binomial version of McNemar’s
test. PROC CATMOD can provide the Wald confidence interval for the difference of
proportions. The code forms a model for the marginal proportions in the first row
and the first column, specifying a model matrix in the model statement that has an
intercept parameter (the first column) that applies to both proportions and a slope
parameter that applies only to the second; hence the second parameter is the difference
between the second and first marginal proportions.

PROC LOGISTIC can conduct conditional logistic regression.

Table [ shows ways of testing marginal homogeneity for the migration data in
Table 11.5 of the textbook. The PROC GENMOD code shows the Lipsitz et al.
(1990) approach, expressing the I 2 expected frequencies in terms of parameters for
the (I —1)? cells in the first 7 — 1 rows and I — 1 columns, the cell in the last row and
last column, and I — 1 marginal totals (which are the same for rows and columns).
Here, m11 denotes expected frequency p11, ml denotes p14+ = g1, and so on. This
parameterization uses formulas such as pi14 = g1+ — p11 — p12 — pas for terms in the
last column or last row. CATMOD provides the Bhapkar test (11.15) of marginal
homogeneity, as shown.

Table shows various square-table analyses of Table 11.6 of the textbook on
premarital and extramarital sex. The “symm” factor indexes the pairs of cells that
have the same association terms in the symmetry and quasi-symmetry models. For
instance, “symm” takes the same value for cells (1, 2) and (2, 1). Including this term
as a factor in a model invokes a parameter \;; satisfying \;; = Aj;. The first model
fits this factor alone, providing the symmetry model. The second model looks like the

14



Table 17: SAS Code for McNemar’s Test and Comparing Proportions
for Matched Samples in Table 11.1

data matched;

input first second count QQ;
datalines;

11175 1216 21 54 22 188

5

proc freq; weight count;
tables first*second / agree; exact mcnem;

proc catmod; weight count;
response marginals;
model first*second = (

third except that it identifies “premar” and “extramar” as class variables (for quasi-
symmetry), whereas the third model statement does not (for ordinal quasi-symmetry).
The fourth model fits quasi-independence. The “qi” factor invokes the d; parameters.
It takes a separate level for each cell on the main diagonal and a common value for
all other cells. The fifth model fits a quasi-uniform association model that takes the
uniform association version of the linear-by-linear association model and imposes a
perfect fit on the main diagonal.

The bottom of Table [I9 fits square-table models as logit models. The pairs of cell
counts (ni;,n;;), labeled as “above” and “below” with reference to the main diagonal,
are six sets of binomial counts. The variable defined as “score” is the distance (u; —
u;) = j — 4. The first two cases are symmetry and ordinal quasi-symmetry. Neither
model contains an intercept (NOINT), and the ordinal model uses “score” as the
predictor. The third model allows an intercept and is the conditional symmetry model
mentioned in Note 11.2.

Table20luses PROC GENMOD for logit fitting of the Bradley—Terry model (11.30)
to the baseball data of Table 11.10, forming an artificial explanatory variable for
each team. For a given observation, the variable for team ¢ is 1 if it wins, —1 if
it loses, and O if it is not one of the teams for that match. Each observation lists
the number of wins (“wins”) for the team with variate-level equal to 1 out of the
number of games (“games”) against the team with variate-level equal to —1. The
model has these artificial variates, one of which is redundant, as explanatory variables
with no intercept term. The COVB option provides the estimated covariance matrix
of parameter estimators.

Table 2I] uses PROC GENMOD for fitting the complete symmetry and quasi-
symmetry models to Table 11.13 on attitudes toward legalized abortion.

Table 22 shows the likelihood-ratio test of marginal homogeneity for the attitudes
toward abortion data of Table 11.13, where for instance mI1p denotes pi114+. The
marginal homogeneity model expresses the eight cell expected frequencies in terms
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Table 18: SAS Code for Testing Marginal Homogeneity with Migration
Data in Table 11.5

data migrate;

input then $ now $ count mill mi12 m13 m21 m22 m23 m31 m32 m33 m44 ml m2 m3;

datalines;
ne ne 266
ne mw 15
ne s 61
ne w 28

O O O OO OO O OO K
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proc genmod;
model count = m1l m12 m13 m21 m22 m23 m31 m32 m33 m44 ml m2 m3 /
dist=poi link=identity;
proc catmod; weight count; response marginals;
model then*now = _response_ / freq;
repeated time 2;

of p111, P14, f1+1, H411, 14+, and poge (since pry14 = pq41 = pi44). Note, for
instance, that MH112 = (114 — M111 and M122 = H111 + Mi4++ — H114+ — H141- CATMOD
provides the generalized Bhapkar test (11.37) of marginal homogeneity.

Chapter 12: Clustered Categorical Responses: Marginal
Models

Table 23] uses PROC GENMOD to analyze Table 12.1 from the textbook on depres-
sion, using GEE. Possible working correlation structures are TYPE = EXCH for ex-
changeable, TYPE = AR for autoregressive, TYPE = INDEP for independence, and
TYPE = UNSTR for unstructured. Output shows estimates and standard errors un-
der the naive working correlation and based on the sandwich matrix incorporating the
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Table 19: SAS Code Showing Square-Table Analysis of Table 11.6 on
Premarital and Extramarital Sex

data sex;
input premar extramar symm qi count QQ;
unif = premar*extramar;

datalines;

1111 144 1225 2 1335 0 14 450
2125 33 2252 4 2365 2 24 750
3135 84 3265 14 3383 6 34 951
4145 126 427529 4 39525 441045

proc genmod; class symm;
model count = symm / dist=poi link=log; * symmetry;
proc genmod; class extramar premar symm;
model count = symm extramar premar / dist=poi link=log; *QS;
proc genmod; class symm;
model count = symm extramar premar / dist=poi link=log; * ordinal QS;
proc genmod; class extramar premar qi;
model count = extramar premar qi / dist=poi link=log; * quasi indep;
proc genmod; class extramar premar;
model count = extramar premar qi unif / dist=poi link=log;
data sex2; * quasi uniform assoc.
input score below above @Q; trials = below + above;
datalines;
1332 114 2 1251 2840 2290 3 126 0
proc genmod data=sex2;
model above/trials = score / dist=bin link=logit noint;
proc genmod data=sex2;
model above/trials = / dist=bin link=logit noint;
proc genmod data=sex2;
model above/trials = / dist=bin link=logit;

empirical dependence. Alternatively, the working association structure in the binary
case can use the log odds ratio (e.g., using LOGOR = EXCH for exchangeability). The
type 3 option in GEE provides score-type tests about effects. See Stokes et al. (2012)
for the use of GEE with missing data. PROC GENMOD also provides deletion and
diagnostics statistics for its GEE analyses and provides graphics for these statistics.

Table24]uses PROC GENMOD to implement GEE for a cumulative logit model for
the insomnia data of Table 12.3. For multinomial responses, independence is currently
the only working correlation structure.
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Table 20: SAS Code for Fitting Bradley—Terry Model to Baseball Data
of Table 11.10

data baseball;
input wins games boston newyork tampabay toronto baltimore ;

datalines;
1218 1 -1 0 O O
6 18 1 0-1 0 O
1018 1 0 0-1 O
1018 1 0 0 O -1
9 18 0 1 -1 0 O
1118 0 1 0 -1 O
1318 0 1 0 O -1
1218 0 0 1 -1 O
9 18 0 0 1 0 -1
1218 0 0 0 1 -1

proc genmod;
model wins/games = boston newyork tampabay toronto baltimore /
dist=bin link=logit noint covb obstats ;

run;

Chapter 13: Clustered Categorical Responses: Random Ef-
fects Models

PROC NLMIXED extends GLMs to GLMMs by including random effects. Table
analyzes the matched pairs model (13.3) for the change in presidential voting data in
Table 13.1.

Table analyzes the Presidential voting data in Table 13.2 of the text, using a
one-way random effects model.

Table27lfits model (13.11) to the attitudes on legalized abortion data of Table 13.3.
This shows how to set initial values and set the number of quadrature points for Gauss—
Hermite quadrature (e.g., QPOINTS =). One could let SAS fit without initial values
but then take that fit as initial values in further runs, increasing QPOINTS until
estimates and standard errors converge to the necessary precision.

Table 23] above uses PROC NLMIXED for Table 12.1 on depression. Table [24] uses
PROC NLMIXED for ordinal modeling of Table 12.3, defining a general multinomial
log likelihood.

Table shows a correlated bivariate random effect analysis of Table 13.8 on
attitudes toward the leading crowd.

Agresti et al. (2000) showed PROC NLMIXED examples for clustered data, Agresti
and Hartzel (2000) showed code for multicenter trials such as Table 13.7, and Hartzel et
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Table 21: SAS Code for Fitting Symmetry and Quasi-Symmetry Models to
Attitudes toward Legalized Abortion Data of Table 11.13

data gss;
input absingle abhlth abpoor count;
sum = absingle + abhlth + abpoor;

datalines;
11 1466
11 0 39
10 1 3
10 O 1
o1 1 71
01 0 423
00 1 3
00 0 147

proc genmod data=gss; class sum;
model count = sum / dist=poisson link=log;
run;
proc genmod data=gss; class sum;
model count = sum absingle abhlth abpoor / dist=poisson link=log
obstats ;

al. (2001a) showed code for multicenter trials with an ordinal response. The Web site
for the journal Statistical Modelling shows PROC NLMIXED code for an adjacent-
categories logit model and a nominal model at the data archive for Hartzel et al.
(2001Db). See

stat.uibk.ac.at/smij/1.2-HartzelAgrestiCaffo-SASCode.txt

Chen and Kuo (2001) discussed fitting multinomial logit models, including discrete-
choice models, with random effects.

PROC NLMIXED allows only one RANDOM statement, which makes it difficult
to incorporate random effects at different levels. PROC GLIMMIX has more flexibility.
It also fits random effects models and provides built-in distributions and associated
variance functions as well as link functions for categorical responses. It can provide a
variety of fitting methods, including pseudo likelihood methods, but not ML. See

support.sas.com/rnd/app/da/stat/procedures/glimmix.html
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Table 22: SAS Code for Testing Marginal Homogeneity with Attitudes
toward Legalized Abortion Data of Table 11.13

data abortion;
input a b ¢ count m111 mllip mipl mpll mipp m222 QQ;

datalines;
111 466 1 0 0 0 O O 112 3 -1 1 0 0 0 O
121 71 -1 0 1 0 O O 122 3 1-1-1 0 1 O
211 39 -1 0 0 1 0 O 212 1 1-1 0-1 1 O
2 21 423 1 0-1-1 1 O 2 2 2 147 0O 0 0 0 0 1

proc genmod;
model count = m111 mllp mipl mpll mlpp m222 / dist=poi link=identity;
proc catmod; weight count; response marginals;
model axb*c = _response_ / freq;
repeated item 3;

Table 23: SAS Code for Marginal Modeling of Depression Data in
Table 12.1

data depress;

input case diagnose drug time outcome @Q@; * outcome=1 is normal;
datalines;

1 0 0 0 1 1 0 0 1 1 10 0 2 1

340 1 1 0 O 340 1 1 1 O 340 1 1 2 O
proc genmod descending; class case;
model outcome = diagnose drug time drug*time / dist=bin link=logit type3;
repeated subject=case / type=exch corrw;
proc nlmixed qpoints=200;
parms alpha=-.03 betal=-1.3 beta2=-.06 beta3=.48 betad4=1.02 sigma=.066;
eta = alpha + betal*diagnose + beta2kdrug + beta3*time + betad*drug*time + u;
p = exp(eta)/(1 + exp(eta));
model outcome ~ binary(p);
random u ~ normal(0, sigma*sigma) subject = case;

Chapter 14: Other Mixture Models for Categorical Data

PROC LOGISTIC provides two overdispersion approaches for binary data. The
SCALE = WILLIAMS option uses variance function of the beta-binomial form (14.10),
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Table 24: SAS Code for GEE and Random Intercept Cumulative Logit
Analysis of Insomnia Data in Table 12.3

data francom;

input case treat time outcome QQ;
y1=0;y2=0;y3=0;y4=0;

if outcome=1 then yl=1;

if outcome=2 then y2=1;

if outcome=3 then y3=1;

if outcome=4 then y4=1;

datalines;
1 1 0 1 1 1 1 1
239 0 0 4 239 0 1 4

proc genmod; class case;
model outcome = treat time treat*time / dist=multinomial link=clogit;
repeated subject=case / type=indep corrw;
proc nlmixed qpoints=40;
bounds i2 > 0; Dbounds i3 > 0;
etal = il + treat*betal + timexbeta2 + treat*time*beta3d + u;
eta2 = i1 + i2 + treat*betal + timexbeta2 + treat*timexbeta3d + u;
eta3 = il + i2 + i3 + treat*betal + time*beta2 + treat*timex*beta3 + u;
pl = exp(etal) /(1 + exp(etal));
p2 = exp(eta2)/(1 + exp(eta2)) - exp(etal)/(1 + exp(etal));
p3 = exp(etal3)/(1 + exp(eta3)) - exp(eta2)/(1 + exp(etal));
p4 = 1 - exp(eta3)/(1 + exp(etad));
11 = yilxlog(pl) + y2*log(p2) + y3*log(p3) + y4x*log(p4d);
model y1 ~ general(ll);
estimate ’interc2’ il+i2; * this is alpha_2 in model, and il is alpha_1;
estimate ’interc3’ i1+i2+i3; * this is alpha_3 in model;
random u ~ normal(0, sigma*sigma) subject=case;

and SCALE = PEARSON uses the scaled binomial variance (14.11). Table 29l illus-
trates for Table 4.7 from a teratology study. That table also uses PROC NLMIXED
for adding litter random intercepts.

For Table 14.6 on homicides, Table [30] uses PROC GENMOD to fit a negative
binomial model and a quasi-likelihood model with scaled Poisson variance using the
Pearson statistic, and PROC NLMIXED to fit a Poisson GLMM. PROC NLMIXED
can also fit negative binomial models.

The PROC GENMOD procedure fits zero-inflated Poisson regression models.
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Table 25: SAS Code for Fitting Model (13.3) for Matched Pairs to
Table 13.1

data kerryobama;
input case occasion response count;

datalines;
1 01175
1 11175
2 0116
2 10 16
3 00 54
3 1154
4 0 0 188
4 1 0 188

proc nlmixed data=kerryobama qpoints=1000;
eta = alpha + beta*occasion + u;
p = exp(eta)/(1 + exp(eta));
model response ~ binary(p);

random u ~ normal(0, sigma*sigma) subject = case;
replicate count;
run;

Chapter 15: Non-Model-Based Classification and Cluster-
ing

PROC DISCRIM in SAS can perform discriminant analysis. For example, for the
ungrouped horseshoe crab as analyzed above in Table[d you can add code such as

proc discrim data=crab crossvalidate;
priors prop;
class y;
var width color;

the statement “priors prop” sets the prior probabilities equal to the sample size. Al-
ternatively “priors equal” would have equal prior proportions in the two categories.

PROC DISTANCE can form distances such as the Jaccard index between pairs of
variables. Then, PROC CLUSTER can perform a cluster analysis. Table[B1lillustrates
for Table 15.6 of the textbook on statewide grounds for divorce, using the average
linkage method for pairs of clusters with the Jaccard dissimilarity index.
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Table 26: SAS Code for GLMM Analysis of Election Data in Table 13.2

data vote;

input y n;

case = _n_;
datalines;

1 5

16 32

1 4

proc nlmixed;
eta = alpha + u; p = exp(eta) / (1 + exp(eta));
model y ~ binomial(n,p);
random u ~ normal(0,sigma*sigma) subject=case;
predict p out=new;

proc print data=new;

Chapter 16: Large- and Small-Sample Theory for Multino-
mial Models

Exact conditional logistic regression is available in PROC LOGISTIC with the EXACT
statement. It provides ordinary and mid-P-values as well as confidence limits for each
model parameter and the corresponding odds ratio with the ESTIMATE = BOTH
option. Or, you can pick the type of confidence interval you want by specifying
CLTYPE=EXACT or CLTYPE=MIDP. In particular, this enables you to get the
Cornfield exact interval for an odds ratio, or its mid-P adaptation. You can also con-
duct the exact conditional version of the Cochran—Armitage test using the TREND
option in the EXACT statement with PROC FREQ. One can also conduct an asymp-
totic conditional logistic regression, using a STRATA statement to indicate the strat-
ification parameters to be conditioned out. PROC PHREG can also do this (Stokes
et al. 2012). For a 2x2x K table, using the EQOR option in an EXACT statement in
PROC FREQ provides an exact test for equal odds ratios proposed by Zelen (1971).
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Table 27: SAS Code for GLMM Modeling of Opinions in Table 13.3

data new;

input sex poor single any count;
datalines;

1111 342

2 00 0 457
data new; set new;
sex = sex—1; case = _n_;
ql=1; g2=0; resp = poor; output;
ql=0; g2=1; resp = single; output;
ql=0; 92=0; resp = any; output;
drop poor single any;
proc nlmixed qpoints = 50;
parms alpha=0 betal=.8 beta2=.3 gamma=0 sigma=8.6;
eta = alpha + betal*ql + beta2*q2 + gamma*sex + u;
p = exp(eta)/(1 + exp(eta));
model resp ~ binary(p);
random u ~ normal(0,sigma*sigma) subject = case;
replicate count;

A.2 R AND S-PLUS EXAMPLES

R is free software maintained and regularly updated by many volunteers. It is an
open-source version using the S programming language, and many S-Plus functions
also work in R. See www.r-project.org, at which site you can download R and find
various documentation. Our discussion in this Appendix refers to R version 2.13.0.

Dr. Laura Thompson has prepared an excellent, detailed manual on the use of R
and S-Plus to conduct the analyses shown in the second edition of Categorical Data
Analysis. You can access this at

https://home.comcast.net/~1thompson221/Splusdiscrete?2.pdf

A good introductory resource about R functions for various basic types of cate-
gorical data analyses is material prepared by Dr. Brett Presnell at the University of
Florida. The sites

www.stat.ufl.edu/~presnell/Courses/sta4504-2000sp/R
and in particular,
www.stat.ufl.edu/~presnell/Courses/sta4d504-2000sp/R/R-CDA.pdf

have details for an introductory course on categorical data analysis with many of the
examples from my books.
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Table 28: SAS Code for GLMM for Leading Crowd Data in Table 13.8

data crowd;
input meml attl mem2 att2 count;
datalines;

111 1458

000 O b54
data new; set crowd;
case=_n_;
x1m=1; x1a=0; x2m=0; x2a=0; var=1; resp=meml; output;
x1m=0; xla=1; x2m=0; x2a=0; var=0; resp=attl; output;
x1m=0; xla=0; x2m=1; x2a=0; var=1; resp=mem2; output;
x1m=0; x1a=0; x2m=0; x2a=1; var=0; resp=att2; output;
drop meml attl mem2 att2;
proc nlmixed data=new;
eta=betalm*xlm + betala*xla + beta2m*x2m + beta2a*x2a + um*var + ua*x(l-var);
p=exp(eta)/(1+exp(eta));
model resp ~ binary(p);
random um ua ~ normal([0,0],[sl*sl, covli2, s2%*s2]) subject=case;
replicate count;
estimate ’mem change’ beta2Zm-betalm; estimate ’att change’ beta2a-betala;

Another useful resource is the website of Dr. Chris Bilder
statistics.unl.edu/faculty/bilder/stat875

where the link to R has examples of the use of R for most chapters of my introductory
text, An Introduction to Categorical Data Analysis. The link to Schedule at Bilder’s
website for Statistics 875 at the University of Nebraska has notes for a course on this
topic following that text as well as R code and output imbedded within the notes.
Thanks to Dr. Bilder for this outstanding resource.

Another good source of examples for Splus and R is Dr. Pat Altham’s at Cam-
bridge, UK,

www.statslab.cam.ac.uk/~pat

Texts that contain examples of the use of R for various categorical data methods
include Statistical Modelling in R by M. Aitkin, B. Francis, J. Hinde, and R. Darnell
(Oxford 2009), Modern Applied Statistics With S-PLUS, 4th ed., by W. N. Venables
and B. D. Ripley (Springer, 2010), Analyzing Medical Data Using S-PLUS by B.
Everitt and S. Rabe-Hesketh (Springer, 2001), Regression Modeling Strategies by F.
E. Harrell (Springer, 2001), and Bayesian Computation with R by J. Albert (Springer,
2009).
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Table 29: SAS Code for Overdispersion Analysis of Teratology Study
Data of Table 4.7

data moore;
input litter group n y QG;
z2=0; z3=0; z4=0;
if group=2 then z2=1; if group=3 then z3=1; if group=4 then z4=1;
datalines;
1 1101 211114 31129 41 44

56 4 14 1 56 4 80 574 60 58 4 17 0
proc logistic;
model y/n = z2 z3 z4 / scale=williams;
proc logistic;
model y/n = z2 z3 z4 / scale=pearson;
proc nlmixed qpoints=200;
eta = alpha + beta2*z2 + beta3*z3 + betad*z4 + u ;
p = exp(eta)/(1 + exp(eta));
model y ~ binomial(n,p) ;
random u ~ normal(0, sigma*sigma) subject=litter;

Chapter 1: Introduction
Univariate binomial and multinomial inference

The function dbinom can generate binomial probabilities, for example, dbinom(6, 10,
0.5) gives the probability of 6 successes in 10 trials with “probability of success”
parameter m = 0.50.

The function prop.test gives the Pearson (score) test and score confidence inter-
val for a binomial proportion, for example, prop.test(6, 10, p=.5, correct=FALSE),
where “correct=FALSE” turns off the continuity correction, which is the default. The
function binom.test gives a small-sample binomial test, for example binom.test(8, 12,
p=0.5, alternative = c(”two.sided”)) gives a two-sided test of Ho: m = 0.50 with 8
successes in 12 trials.

The table function constructs contingency tables.

The function chisq.test can perform the Pearson chi-squared test of goodness-of-fit
of a set of multinomial probabilities. For example, with 3 categories and hypothesized
values (0.4, 0.3, 0.3) and observed counts (12, 8, 10),

> x <- c(12, 8, 10)

> p <- c(0.4, 0.3, 0.3)
> chisq.test(x, p=p)
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Table 30: SAS Code for Fitting Models to Murder Data in Table 14.6

data new;
input white black other response;
datalines;
1070 119 55 0
60 16 5 1
1 0 0 6

data new; set new; count = white; race = 0; output;

count = black; race = 1; output; drop white black other;
data new2; set new; do i = 1 to count; output; end; drop i;
proc genmod data=new2;

model response = race / dist=negbin link=log;
proc genmod data=new2;

model response = race / dist=poi link=log scale=pearson;
data new; set new; case = _n_;
proc nlmixed data = new qpoints=400;

parms alpha=-3.7 beta=1.90 sigma=1.6;

eta = alpha + beta*race + u; mu = exp(eta);

model response ~ poisson(mu);

random u ~ normal(0, sigma*sigma) subject=case;

replicate count;

Chi-squared test for given probabilities

data: x
X-squared = 0.2222, df = 2, p-value = 0.8948

> chisq.test(x, p=p, simulate.p.value=TRUE, B=10000)

Chi-squared test for given probabilities with
simulated p-value (based on 10000 replicates)

data: x
X-squared = 0.2222, df = NA, p-value = 0.8763

The argument “simulate.p.value = TRUE” requests simulation of the exact small-
sample test of goodness of fit, with B replicates. So, the second run above uses
simulation of 10,000 multinomials with the hypothesized probabilities and finds the
sample proportion of them having X? value at least as large as the observed value of
0.2222.
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Table 31: SAS Code for Discriminant Analysis for Table 15.77 on Statewide
Grounds for Divorce

data divorce;

input state $ incompat cruelty desertn non_supp alcohol
felony impotenc insanity separate ;

datalines;
California
Florida
Illinois
Massachusetts
Michigan
NewYork
Texas

1
1
0
1
1
0
1
Washington 1

OrRr P OFRr P, OO
O, P, OFRr P, OO
O O O O O OO
OO OOk, OO
O, P, OmFr = OO
OO OOk, OO
O, OO OO = =
R =, P, Ok, O OO

title Grounds for Divorce;
proc distance data=divorce method=djaccard absent=0 out=distjacc;
var anominal (incompat--separate);
id state;
run;
proc print data=distjacc(obs=8);
id state;
title2 Only 8 states;
run;
proc cluster data=distjacc method=average
pseudo outtree=tree;
id state;
run;
proc tree data=tree horizontal n=7 out=out ;
id state;
run;

For special R functions for confidence intervals for a binomial parameter, see
www.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html

The confidence intervals include the score (Wilson) CI, Blaker’s exact CI, the small-
sample Clopper-Pearson interval and its mid-P adaptation discussed in Section 16.6
of the textbook, and the Agresti—Coull CI and its add-4 special case.

Bayesian inference

See logitnorm.r-forge.r-project.org/ for utilities such as a quantile function for the
logit-normal distribution.
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The hpd function in the TeachingDemos library can construct HPD intervals from
a posterior distribution. The package hdrcde is a more sophisticated package for such
methods. For the informative analysis of the vegetarians example at the end of Section
1.6.4:

library("TeachingDemos")

y <- 0; n <- 25

al <- 3.6; a2 <- 41.4

a<-al+y; b<-a2+n

h <- hpd(gbeta, shapel=a, shape2=b)

Chapters 2—-3: Two-Way Contingency Tables

For creating mosaic plots in R, see www.datavis.caland also the mosaic functions in
the ved and vedFEaxtra libraries; see Michael Friendly’s tutorial at
cran.us.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf| which
also is useful for basic descriptive and inferential statistics for contingency tables. To
construct a mosaic plot for the data in Table 3.2, one can enter

x<- ¢(9,8,27,8,47,236,23,39,88,49,179,706,28,48,89,19,104,293)

data <- matrix(x, nrow=3,ncol=6, byrow=TRUE)

dimnames(data) = list(Degree=c("< HS","HS","College"),Belief=c("1","2","3","4" "5" "6"))
install.packages("vcdExtra")

library("vcdExtra")

StdResid <- c¢(-0.4,-2.2,-1.4,-1.5,-1.3,3.6,-2.5,-2.6,-3.3,1.8,0.0,3.4,3.1,4.7,4.8,-0.8,1.1,-6.7)
StdResid <- matrix(StdResid,nrow=3,ncol=6,byrow=TRUE)

mosaic(data,residuals = StdResid, gp=shading Friendly)

V V.V V V V V.V

Chi-squared and Fisher’s exact test; Residuals

The function chisq.test also can perform the Pearson chi-squared test of independence
in a two-way contingency table. For example, for Table 3.2 of the text, using also the
textitstdres component for providing standardized residuals,

> data <- matrix(c(9,8,27,8,47,236,23,39,88,49,179,706,28,48,89,19,104,293),
ncol=6,byrow=TRUE)
> chisq.test(data)

Pearson’s Chi-squared test

data: data
X-squared = 76.1483, df = 10, p-value = 2.843e-12

> chisq.test(data)$stdres

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.368577 -2.227511 -1.418621 -1.481383 -1.3349600 3.590075
[2,] -2.504627 -2.635335 -3.346628 1.832792 0.0169276 3.382637
[3,] 3.051857 4.724326 4.839597 -0.792912 1.0794638 -6.665195
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As shown above, you can simulate the exact conditional distribution to estimate the
P-value whenever the chi-squared asymptotic approximation is suspect.

Here is code to obtain the profile likelihood confidence interval for the odds ratio
for Table 3.1 on seat-belt use and traffic accidents (using the fact that the log odds
ratio is the parameter in a simple logistic model):

> yes <- c(54,25)
> n <- ¢(10379,51815)
> x <- ¢c(1,0)
>
>

fit <- glm(yes/n ~ x, weights=n, family=binomial(link=logit))

summary (fit)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -7.6361 0.2000 -38.17 <2e-16 *x*x*
b d 2.3827 0.2421 9.84 <2e-16 **x

> confint(fit)

Waiting for profiling to be dome...
2.5 % 97.5 %

(Intercept) -8.055554 -7.268025

X 1.919634 2.873473

> exp(1.919634); exp(2.873473)

[1] 6.818462

[1] 17.69838

The function fisher.test performs Fisher’s exact test. For example, for the tea
tasting data of Table 3.9 in the text,

> tea <- matrix(c(3,1,1,3),ncol=2,byrow=TRUE)
> fisher.test(tea)

The P-value is the sum of probabilities of tables with the given margins that have prob-

ability no greater than the observed table. The output also shows the conditional ML
estimate of the odds ratio (see Sec. 16.6.4) and a corresponding exact confidence inter-

val based on noncentral hypergeometric probabilities. Use fisher.test(tea,alternative= “greater”)
for the one-sided test. For an I x J table called “table,” using

> fisher.test(table, simulate.p.value=TRUE, B=10000)

generates Monte Carlo simulation with B replicates to estimate the exact P-value
based on the exact conditional multiple hypergeometric distribution obtained by con-
ditioning on all row and column marginal totals.

On page 10 of
www.stat.ufl.edu/~presnell/Courses/sta4d504-2000sp/R/R-CDA.pdf

Brett Presnell shows a simple function for finding also the likelihood-ratio statistic G2.
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Confidence intervals for association measures

For parameters comparing two binomial proportions such as the difference of propor-
tions, relative risk, and odds ratio, a good general-purpose method for constructing
confidence intervals is to invert the score test. Such intervals are not available in the
standard software packages. See

www.stat.ufl.edu/~aa/cda/R/two-sample/R2/index.html

for R functions for confidence intervals comparing two proportions with independent
samples, and

www.stat.ufl.edu/~aa/cda/R/matched/R2_matched/index.html

for R functions for confidence intervals comparing two proportions with dependent
samples. Most of these were written by my former graduate student, Yongyi Min, who
also prepared the Bayesian intervals mentioned below. Please quote this site if you
use one of these R functions for confidence intervals for association parameters. We
believe these functions are dependable, but no guarantees or support are available, so
use them at your own risk.

For examples of using R to obtain mid-P confidence intervals for the odds ratio,
see the link to Laura Thompson’s manual at www.stat.ufl.edu/~aa/cda/cda.htmll

Ralph Scherer at the Institute for Biometry in Hannover, Germany, has prepared a
package PropCls on CRAN incorporating many of these confidence interval functions
for proportions and comparisons of proportions. It can be downloaded at

cran.r-project.org/web/packages/PropCIs/index.html

Fay (2010a) described an R package that constructs a small-sample confidence interval
for the odds ratio by inverting the test using the P-value (mentioned in Section 16.6.1)
that was suggested by Blaker (2000), which equals the minimum one-tail probability
plus an attainable probability in the other tail that is as close as possible to, but not
greater than, that one-tailed probability. See

journal.r-project.org/archive/2010-1/RJournal_2010-1_Fay.pdf

Euijung Ryu, a former PhD student of mine who is now at Mayo Clinic, has
prepared R functions for various confidence intervals for the ordinal measure [P(Y'1 >
Y2) + (1/2)P(Y1 = Y2)] that is useful for comparing two multinomial distributions
on an ordinal scale. See

www.stat.ufl.edu/~aa/cda/R/stochastic/ryu-stochastic-code.pdf

for the functions, including the Wald confidence interval as well as score, pseudo-
score, and profile likelihood intervals that are computationally more complex and
require using Joe Lang’s mph.fit function (see below). Also, Euijung has prepared an
R function for multiple comparisons of proportions with independent samples using
simultaneous confidence intervals for the difference of proportions or the odds ratio,
based on the Studentized-range inversion of score tests proposed by Agresti et al.
(2008). See

www.stat.ufl.edu/~aa/cda/R/multcomp/ryu-simultaneous.pdf

Joseph Lang’s mph.fit function just mentioned is a general purpose and very pow-
erful function that can provide ML fitting of generalized loglinear models (Section
10.5.1) and other much more general “multinomial-Poisson homogeneous” models such
as covered in Lang (2004, 2005). These include models that can be specified in terms
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of constraints of the form h(p) = 0, such as the marginal homogeneity model and the
calf infection example in Section 1.5.6 of the text. For details, see

www.stat.uiowa.edu/~ jblang/mph.fitting/index.htm

Joe has also prepared an R program, ci.table, for computing (among other things)
score and likelihood-ratio-test-based (i.e., profile likelihood) intervals for contingency
table parameters. See

www.stat.uiowa.edu/~ jblang/ci.table.documentation/ci.table.examples.htm

Bayesian inference for two-way tables

Surveys of Bayesian inference using R were given by J. H. Park,
cran.r-project.org/web/views/Bayesian.html

and by Jim Albert,
bayes.bgsu.edu/bcwr

The latter is a website for the text Bayesian Computation with R by Albert. It shows
examples of some categorical data analyses, such as Bayesian inference for a 2x2 table,
a Bayesian test of independence in a contingency table, and probit regression.

Yongyi Min has prepared some R functions for Bayesian confidence intervals for
2x 2 tables using independent beta priors for two binomial parameters, for the differ-
ence of proportions, odds ratio, and relative risk. See

www.stat.ufl.edu/~aa/cda/R/bayes/index.html

These are evaluated and compared to score confidence intervals in Agresti and Min
(2005).

Chapter 4: Generalized Linear Models

Generalized linear models can be fitted with the glm function:
stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
www.statmethods.net/advstats/glm.html

That function can be used for such things as logistic regression, Poisson regression,
and loglinear models.

Consider a binomial variate y based on n successes with explanatory variable x
and a N x 2 data matrix with columns consisting of the values of y and n — y. For
example, for the logit link with the snoring data in Table 4.2 of the text, using scores
(0, 2, 4, 5), showing also a residual analysis,

snoring <- matrix(c(24,1355,35,603,21,192,30,224), ncol=2, byrow=TRUE)
scores <- c(0,2,4,5)

snoring.fit <- glm(snoring ~ scores, family=binomial(link=logit))
summary (snoring.fit)

vV V VvV VvV

Call:
glm(formula = snoring ~ scores, family = binomial(link = logit))

32


www.stat.uiowa.edu/~jblang/mph.fitting/index.htm
www.stat.uiowa.edu/~jblang/ci.table.documentation/ci.table.examples.htm
cran.r-project.org/web/views/Bayesian.html
bayes.bgsu.edu/bcwr
www.stat.ufl.edu/~aa/cda/R/bayes/index.html
stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
www.statmethods.net/advstats/glm.html

Deviance Residuals:
1 2 3 4
-0.8346 1.2521 0.2758 -0.6845

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -3.86625 0.16621 -23.261 < 2e-16 ***
scores 0.39734 0.05001 7.945 1.94e-15 **x

Signif. codes: 0 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 65.9045 on 3 degrees of freedom
Residual deviance: 2.8089 on 2 degrees of freedom
AIC: 27.061

Number of Fisher Scoring iteratiomns: 4

pearson <- summary.lm(snoring.fit)$residuals # Pearson residuals
hat <- 1lm.influence(snoring.fit)$hat # hat or leverage values
stand.resid <- pearson/sqrt(l - hat) # standardized residuals
cbind(scores, snoring, fitted(snoring.fit), pearson, stand.resid)
scores pearson stand.resid

0 24 1355 0.02050742 -0.8131634 -1.6783847

2 35 603 0.04429511 1.2968557 1.5448873

4 21 192 0.09305411 0.2781891 0.3225535

5 30 224 0.13243885 -0.6736948 -1.1970179

vV V V VvV

D w N e

For the identity link with data in the form of Bernoulli observations, use code such
as

> fit <- glm(y ~ x, family=quasi(variance="mu(l-mu)"),start=c(0.5, 0))
>  summary(fit, dispersion=1)

The fitting procedure will not converge if at some stage of the fitting process, proba-
bility estimates fall outside the permissible (0, 1) range.

The profile likelihood confidence interval is available with the confint function in
R, which is applied to the model fit object.

The glm function can be used to fit Poisson loglinear models and counts and for
rates. For negative binomial models, you can use the glm.nb function in the MASS
library.

stat.ethz.ch/R-manual/R-patched/library/MASS/html/glm.nb.html

However, in the notation of Sec. 4.3.4, this function identifies the dispersion parameter
(which it calls “theta”) as k, not its reciprocal 7. Negative binomial regression can
also be handled by Thomas Yee’s VGAM package mentioned for Chapter 8 below and
by the negbin function in the aod package:

cran.r-project.org/web/packages/aod/aod.pdf
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To illustrate R for models for counts, for the data in Sec. 4.3 on numbers of satellites
for a sample of horseshoe crabs,

> crabs <- read.table("crab.dat",header=T)

> crabs
color spine width satellites weight

1 3 3 28.3 8 3050
2 4 3 22.5 0 1550
3 2 1 26.0 9 2300
4 4 3 24.8 0 2100
5 4 3 26.0 4 2600
6 3 3 23.8 0 2100
173 3 2 24.5 0 2000

> weight <- weight/1000 # weight in kilograms rather than grams
> fit <- glm(satellites ~ weight, family=poisson(link=log), data=crabs)
> summary(fit)

> library(MASS)
> fit.nb <- glm.nb(satell ~ weight, link=log)
> summary(fit.nb)

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.8647 0.4048 -2.136 0.0327 =*
weight?2 0.7603 0.1578  4.817 1.45e-06 *x*x*

Null deviance: 216.43 on 172 degrees of freedom
Residual deviance: 196.16 on 171 degrees of freedom
AIC: 754.64

Theta: 0.931
Std. Err.: 0.168
2 x log-likelihood: -748.644

The function rstandard.glm has a type argument that can be used to request
standardized residuals. That is, you can type

> fit <- glm(... model formula, family, data, etc ...)
> rstandard(fit, type="pearson")

to get standardized Pearson residuals for a fitted GLM. Without the type argument,
rstandard(fit) returns the standardized deviance residuals.

The statmod library at CRAN contains a function glm.scoretest that computes
score test statistics for adding explanatory variables to a GLM.

Statistical Models in S by J. M. Chambers and T. J. Hastie (Wadsworth, Belmont,
California, 1993, p. 227) showed the use of S-Plus in quasi-likelihood analyses using
the quasi and make.family functions.
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Following is an example of the analyses shown for the teratology data, including
the quasi-likelihood approach:

# This borrows heavily from Laura Thompson’s manual at

# https://home.comcast.net/ 1thompson221/Splusdiscrete2.pdf
> rats <- read.table("teratology.dat", header = T)

> rats # Full data set of 58 litters at course website

litter group n y
1 1 110 1
2 2 111 4
3 3 112 9
57 57 4 6 0
58 58 417 0

> rats$group <- as.factor(rats$group)
> fit.bin <- glm(y/n ~ group - 1, weights = n, data=rats, family=binomial)
> summary(fit.bin)

Coefficients: # these are the sample logits
Estimate Std. Error z value Pr(>|z|)
groupl  1.1440 0.1292 8.855 < 2e-16 *xx
group2 -2.1785 0.3046 -7.153 8.51e-13 *x*x*
group3 -3.3322 0.7196 -4.630 3.65e-06 **x
group4 -2.9857 0.4584 -6.514 7.33e-11 **¥x

Null deviance: 518.23 on 58 degrees of freedom
Residual deviance: 173.45 on 54 degrees of freedom
AIC: 252.92

> (pred <- unique(predict(fit.bin, type="response")))
[1] 0.75840979 0.10169492 0.03448276 0.04807692 # sample proportions
> (SE <- sqrt(pred*(1-pred)/tapply(rats$n,rats$group,sum)))
1 2 3 4
0.02367106 0.02782406 0.02395891 0.02097744 # SE’s of proportions

> (X2 <- sum(resid(fit.bin, type="pearson")"2)) # Pearson stat.
[1] 154.707
> phi <- X2/(58 - 4) # estimate of phi for QL analysis
> phi
[1] 2.864945
> SE*sqrt (phi)
1 2 3 4
0.04006599 0.04709542 0.04055320 0.03550674 # adjusted SE’s for proportions

> fit.ql <- glm(y/n ~ group - 1, weights=n, data=rats, family=quasi(link=identity,
variance="mu(l-mu)"),start=unique(predict(fit.bin,type="response")))

> summary(fit.ql) # This shows another way to get the QL results

Coefficients:
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Estimate Std. Error t value Pr(>|t])
groupl 0.75841 0.04007 18.929 <2e-16 **x*
group2 0.10169 0.04710 2.159 0.0353 *
group3 0.03448 0.04055 0.850 0.3989
group4 0.04808 0.03551 1.354 0.1814

(Dispersion parameter for quasi family taken to be 2.864945)

Chapters 5-7: Logistic Regression and Binary Response
Analyses

Logistic Regression

Since logistic regression is a generalized linear model, it can be fitted with the glm
function, as mentioned above.

If y is a binary variable (i.e., ungrouped binomial data with each n = 1), the vector
of y values (0 and 1) can be entered as the response variable. Following is an example
with the horseshoe crab data as a data frame, declaring color to be a factor in order
to set up indicator variables for it (which, by default, choose the first category as the
baseline without its own indicator variable).

> crabs <- read.table("crabs.dat",header=TRUE)

> crabs
color spine width satellites weight
1 3 3 28.3 8 3050
2 4 3 22.5 0 1550
3 2 1 26.0 9 2300
173 3 2 24.5 0 2000

> y <- ifelse(crabs$satellites > 0, 1, 0) # y = a binary indicator of satellites
> crabs$weight <- crabs$weight/1000 # weight in kilograms rather than grams

> fit <- glm(y ~ weight, family=binomial(link=logit), data=crabs)
> summary (fit)

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -3.6947 0.8802 -4.198 2.70e-05 **x
weight 1.8151 0.3767 4.819 1.45e-06 *x*

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 195.7371 on 171 degrees of freedom
AIC: 199.74

> crabs$color <- crabs$color - 1 # color now takes values 1,2,3,4
> crabs$color <- factor(crabs$color) # treat color as a factor
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> fit2 <- glm(y ~ weight + color, family=binomial(link=logit), data=crabs)
> summary (£fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -3.2572 1.1985 -2.718 0.00657 *x*
weight 1.6928 0.3888 4.354 1.34e-05 *xx
color2 0.1448 0.7365 0.197 0.84410
color3 -0.1861 0.7750 -0.240 0.81019
colord -1.2694 0.8488 -1.495 0.13479

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 188.5423 on 168 degrees of freedom
AIC: 198.54

For grouped data, rather than defining the response as the set of success and failure
counts as was done in the Chapter 4 discussion above for the snoring data, one can
instead enter the response in the form y/n for y successes in n trials, entering the
number of trials as the weight. For example, again for the snoring data of Table 4.2,

> yes <- c(24,35,21,30)

> n <- c(1379,638,213,254)

> scores <- ¢(0,2,4,5)

> fit <- glm(yes/n ~ scores, weights=n, family=binomial(link=logit))
>

fit
Coefficients:
(Intercept) scores
-3.8662 0.3973

Degrees of Freedom: 3 Total (i.e. Null); 2 Residual
Null Deviance: 65.9
Residual Deviance: 2.809 AIC: 27.06

The R package glmnet can apparently fit logistic regression to data sets with
very large numbers of variables or observations, and as mentioned below can use
regularization methods such as the lasso:

cran.r-project.org/web/packages/glmnet/index.html

Cochran—Mantel-Haenszel test

The function mantelhaen.test can perform Cochran-Mantel-Haenszel tests for I x J x K
tables:
stat.ethz.ch/R-manual/R-patched/library/stats/html/mantelhaen.test.html

For example, for the clinical trials data in Table 6.9,
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> beitler <- c¢(11,10,25,27,16,22,4,10,14,7,5,12,2,1,14,16,6,0,11,12,1,0,10,10,1,1,4,8,4,6,2,1)
> beitler <- array(beitler, dim=c(2,2,8))
> mantelhaen.test(beitler, correct=FALSE)

Mantel-Haenszel chi-squared test without continuity correction

data: beitler
Mantel-Haenszel X-squared = 6.3841, df = 1, p-value = 0.01151
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:

1.177590 3.869174
sample estimates:
common odds ratio

2.134549

When I = 2 and J = 2, enter “correct=FALSE” so as not to use the continuity
correction. In that case, the output also shows the Mantel-Haenszel estimate Onq
and the corresponding confidence interval for the common odds ratio. With the exact
option,

> mantelhaen.test(beitler, correct=FALSE, exact=TRUE)

R provides the exact conditional test (Sec. 7.3.5) and the conditional ML estimate of
the common odds ratio (Sec. 16.6.6). When I > 2 and/or J > 2, this function provides
the generalized test that treats X and Y as nominal scale (i.e., df = (I —1)(J — 1),
given in equation (8.18) in the text).

Other binary response models

For binary data, alternative links are possible. For example, continuing with the
horseshoe crab data from above,

> fit.probit <- glm(y ~ weight, family=binomial(link=probit), data=crabs)
> summary(fit.probit)
Coefficients:
Value Std. Error t value
(Intercept) -2.238245 0.5114850 -4.375974
weight 1.099017 0.2150722 5.109989

Residual Deviance: 195.4621 on 171 degrees of freedom

For the complementary log-log link with the beetle data of Table 7.1, showing also
the construction of standardized residuals and profile likelihood confidence intervals,

> beetles <- read.table("beetle.dat", header=T)

> beetles

dose number killed
1 1.691 59 6
2 1.724 60 13
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3 1.755 62 18
4 1.784 56 28
5 1.811 63 52
6 1.837 59 53
7 1.861 62 61
8 1.884 60 60

\4

binom.dat <- matrix(append(killed,number-killed) ,ncol=2)

> fit.cloglog <- glm(binom.dat ~ dose, family=binomial(link=cloglog),
data=beetles)

> summary(fit.cloglog) # much better fit than logit

Value Std. Error t value
(Intercept) -39.52250 3.232269 -12.22748
dose 22.01488 1.795086 12.26397

Null Deviance: 284.2024 on 7 degrees of freedom
Residual Deviance: 3.514334 on 6 degrees of freedom

> pearson.resid <- resid(fit.cloglog, type="pearson")
> std.resid <- pearson.resid/sqrt(1-1m.influence(fit.cloglog)$hat)
cbind(dose, killed/number, fitted(fit.cloglog), pearson.resid, std.resid)

\

dose pearson.resid std.resid
1 1.691 0.1016949 0.09582195 0.15325683 0.1772659
2 1.724 0.2166667 0.18802653 0.5677671 0.6694966
3 1.755 0.2903226 0.33777217 -0.7899738 -0.9217717
4 1.784 0.5000000 0.54177644 -0.6274464 -0.7041154
5 1.811 0.8253968 0.75683967 1.2684541 1.4855799
6 1.837 0.8983051 0.91843509 -0.5649292 -0.7021989
7 1.861 0.9838710 0.98575181 -0.1249636 -0.1489834
8 1.884 1.0000000 0.99913561 0.2278334 0.2368981
> confint(fit.cloglog)

2.5% 97.5 %
(Intercept) -46.13984 -33.49923
dose 18.66945 25.68877

Bayesian fitting
Jim Albert in Bayesian Computation with R (Springer 2009, pp. 216-219) presented

an R function, bayes.probit, for implementing his algorithm for fitting probit models
with a Bayesian approach.

Penalized likelihood

The Copas smoothing method can be implemented with the R function ksmooth, with
lambda=bandwidth. For example, for the kyphosis example of Sec. 7.4.3,

> x <- c(12, 15, 42, 52, 59, 73, 82, 91, 96, 105, 114, 120, 121, 128, 130,
139, 139, 157, 1, 1, 2, 8, 11, 18, 22, 31, 37, 61, 72, 81, 97,
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112, 118, 127, 131, 140, 151, 159, 177, 206)
y <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0)
> k1 <- ksmooth(x,y,"normal",bandwidth=25)
> k2 <- ksmooth(x,y,"normal",bandwidth=100)
> plot(x,y)
>
>

\4

lines (k1)
lines(k2, 1lty=2)

The brglm function in the MASS library can implement bias reduction using the
Firth penalized likelihood approach for binary regression models, including models
with logit, probit, and complementary log-log links:

cran.r-project.org/web/packages/brglm/index.html

Lasso for binary and count models is available in the R packages glmnet and
glmpath:

cran.r-project.org/web/packages/glmnet/index.html

cran.r-project.org/web/packages/glmpath/index.html
The group lasso is available with the grplasso package:

cran.r-project.org/web/packages/grplasso/index.html

Generalized additive models

For a generalized additive model, R has a gam package:
cran.r-project.org/web/packages/gam/index.html

Thomas Yee’s VGAM library can also handle GAMs:
www.stat.auckland.ac.nz/~yee/VGAM/doc/glmgam. pdf
rss.acs.unt.edu/Rdoc/library/VGAM/html/vgam.html

For example, for the ungrouped horseshoe crab data,

> library(vgam)

> gam.fit <- vgam(y ~ s(weight), family=binomialff(link=logit), data=crabs)

> plot(weight, fitted(gam.fit))

GAMs can also be fitted with the gam function in the mgcv library:
cran.r-project.org/web/packages/mgcv/mgcv. pdf

False discovery rate (FDR)

R packages for FDR are listed at
strimmerlab.org/notes/fdr.html

Chapter 8: Multinomial Response Models

For baseline-category logit models, one can use the multinom function in the nnet
library that has been provided by Venables and Ripley to do various calculations by
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neural nets (see, e.g., p. 230 of Venables and Ripley, 3rd ed.):
cran.r-project.org/web/packages/nnet/nnet.pdf

Statements have the form

> fit <- multinom(y ~ x + factor(z),weights=freq, data=gators)

The VGAM package

Especially useful for modeling multinomial responses is the VGAM package and vglm
function developed by Thomas Yee at Auckland, New Zealand,

www.stat.auckland.ac.nz/~yee/VGAM

This package has functions that can also can fit a wide variety of models including
multinomial logit models for nominal responses and cumulative logit models, adjacent-
categories models, and continuation-ratio models for ordinal responses. For more
details, see “The VGAM package for categorical data analysis,” in Journal of Sta-
tistical Software, vol. 32, pp. 1-34 (2010), www.jstatsoft.org/v32/i10. See also
www.stat.auckland.ac.nz/~yee/VGAM/doc/categorical.pdf| for some basic exam-
ples of its use for categorical data analysis.

Following is an example of the use of wvglm for fitting a baseline-category logit
model to the alligator food choice data in Table 8.1 of the textbook. The data file has
the five multinomial counts for the food choices identified as y1 through y5, with y1
being fish as in the text. The vglm function uses the final category as the baseline, so
to use fish as the baseline, in the model statement we identify the response categories
as (y2, Y3, Y4, Ys, y1). By contrast, the multinom function in the nnet library picks
the first category of the response variable as the baseline. The following also shows
output using it. For both functions, a predictor identified as a factor in the model
statement has its first category as the baseline, so the lake estimates shown here differ
from those in the book, which used the last lake level as the baseline.

> alligators <- read.table("alligators.dat",header=TRUE)
> alligators
lake gender size yl y2 y3 y4 yb

1 1 1 1 7 1 0 0 5
2 1 1 0 4 0 0 1 2
3 1 0 116 3 2 2 3
4 1 0 0 3 0 1 2 3
5 2 1 1 2 2 0 0 1
6 2 1 013 7 6 0 O
7 2 0 1 0 1 0 1 O
8 2 0 0 3 9 1 0 2
9 3 1 1 3 7 1 0 1
10 3 1 0O 8 6 6 3 5
11 3 0 1 2 4 1 1 4
12 3 0 0O 0 1 0 0 O
13 4 1 11310 0 2 2
14 4 1 0 9 0 0 1 2
15 4 0 1 3 9 1 0 1
16 4 0 0 8 1 0 0 1
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> library(VGAM)
> vglm(formula = cbind(y2,y3,y4,y5,yl) ~ size + factor(lake),
family=multinomial, data=alligators)

Coefficients:
(Intercept):1 (Intercept):2  (Intercept):3  (Intercept):4 size:1
-3.2073772 -2.0717560 -1.3979592 -1.0780754 1.4582046
size:2 size:3 size:4 factor(lake)2:1 factor(lake)2:2
-0.3512628 -0.6306597 0.3315503 2.5955779 1.2160953
factor(lake)2:3 factor(lake)2:4 factor(lake)3:1 factor(lake)3:2 factor(lake)3:3
-1.3483253 -0.8205431 2.7803434 1.6924767 0.3926492
factor(lake)3:4 factor(lake)4:1 factor(lake)4:2 factor(lake)4:3 factor(lake)4:4
0.6901725 1.6583586 -1.2427766 -0.6951176 -0.8261962

Degrees of Freedom: 64 Total; 44 Residual
Residual Deviance: 52.47849
Log-likelihood: -74.42948

> library(nnet)
> fit2 <- multinom(cbind(yl,y2,y3,y4,y5) ~ size + factor(lake), data=alligators)
> summary (£fit2)
Call:
multinom(formula = cbind(yl, y2, y3, y4, y5) ~ size + factor(lake),
data = alligators)

Coefficients:

(Intercept) size factor(lake)2 factor(lake)3 factor(lake)4
y2  -3.207394 1.4582267 2.5955898 2.7803506 1.6583514
y3 -2.071811 -0.3512070 1.2161555 1.6925186 -1.2426769
y4 -1.397976 -0.6306179 -1.3482294 0.3926516 -0.6951107
y5 -1.078137 0.3315861 -0.8204767 0.6902170 -0.8261528

Std. Errors:

(Intercept) size factor(lake)2 factor(lake)3 factor(lake)4
y2 0.6387317 0.3959455 0.6597077 0.6712222 0.6128757
y3 0.7067258 0.5800273 0.7860141 0.7804482 1.1854024
y4 0.6085176 0.6424744 1.1634848 0.7817677 0.7812585
y5 0.4709212 0.4482539 0.7296253 0.5596752 0.5575414

Residual Deviance: 540.0803
AIC: 580.0803

The vglm function for ordinal models

The vglm function in the VGAM library can also fit a wide variety of ordinal models.
Many examples of the use of vglm for various ordinal-response analyses are available
at the website for my book, Analysis of Ordinal Categorical Data (2nd ed., 2010),
www.stat.ufl.edu/~aa/ordinal/ord.html, and several of these are also shown below.
For example, for the cumulative logit model fitted to the happiness data of Table 8.5
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of the textbook, entering each multinomial observation as a set of indicators that
indicates the response category, letting race = 0 for white and 1 for black, and letting
traumatic be the number of traumatic events,

> happy <- read.table("happy.dat", header=TRUE)

> happy

race traumatic yl y2 y3
1 0 0 1 0 O
2 0 0 1 0 O
3 0 01 0 0
4 0 0 1 0 O
5 0 0 1 0 O
6 0 01 0 0
7 0 0 1 0 O
8 0 0 0 1 0
94 1 2 0 0 1
95 1 3 01 0
96 1 3 01 0
97 1 3 0 0 1

> library(VGAM)

> fit <- vglm(cbind(yl,y2,y3) ~ race + traumatic,
family=cumulative(parallel=TRUE), data=happy)

> summary (fit)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.51812 0.33819 -1.5320
(Intercept):2 3.40060 0.56481 6.0208
race -2.03612 0.69113 -2.9461
traumatic -0.40558 0.18086 -2.2425

Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2])

Residual Deviance: 148.407 on 190 degrees of freedom
Log-likelihood: -74.2035 on 190 degrees of freedom
Number of Iteratioms: 5

> fit.inter <- vglm(cbind(yl,y2,y3) ~ race + traumatic + racextraumatic,
family=cumulative(parallel=TRUE), data=happy)
> summary(fit.inter)
Coefficients:
Value Std. Error t value

(Intercept):1 -0.43927 0.34469 -1.2744

(Intercept):2 3.52745 0.58737 6.0055

race -3.05662 1.20459 -2.5375

traumatic -0.46905 0.19195 -2.4436
0

race:traumatic 0.60850 .60077 1.0129

Residual Deviance: 147.3575 on 189 degrees of freedom
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Log-likelihood: -73.67872 on 189 degrees of freedom
Number of Iterations: 5

The parallel=TRUE option requests the proportional odds version of the model with
the same effects for each cumulative logit. Then entering fitted(fit) would produce the
estimated probabilities for each category for each observation. Here, we also fitted the
model with an interaction term, which does not provide a significantly better fit.

To use vglm to fit the cumulative logit model not having the proportional odds
assumption, we take out the parallel=TRUE option. Then, we do a likelihood-ratio
test to see if it gives a better fit:

> fit2 <- vglm(cbind(yl,y2,y3) ~ race + traumatic, family=cumulative,
data=happy)
> summary (£fit2)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.56605 0.36618 -1.545821
(Intercept):2  3.48370 0.75950 4.586850

race:1 -14.01877 322.84309 -0.043423
race:2 -1.84673 0.76276 -2.421095
traumatic:1 -0.34091 0.21245 -1.604644
traumatic:2 -0.48356 0.27524 -1.756845

Residual Deviance: 146.9951 on 188 degrees of freedom
Log-likelihood: -73.49755 on 188 degrees of freedom
Number of Iteratioms: 14

> pchisq(deviance(fit)-deviance(fit2) ,df=df.residual (fit)-df.residual(fit2),lower.tail=FALSE)
[1] 0.4936429

Note that the ML effect estimate of race for the first logit is actually —oo, reflecting
the lack of any black subjects in the first happiness category.

For the same data, to fit the cumulative probit model with common effects for
each probit, we use

fit.probit <- vglm(cbind(yl,y2,y3) ~ race + traumatic,
family=cumulative(link=probit, parallel=TRUE), data=happy)
> summary(fit.probit)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.34808 0.200147 -1.7391
(Intercept):2 1.91607 0.282872 6.7736
race -1.15712 0.378716 -3.0554
traumatic -0.22131 0.098973 -2.2361

Residual Deviance: 148.1066 on 190 degrees of freedom

Log-likelihood: -74.0533 on 190 degrees of freedom
Number of Iterations: 5
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To fit the adjacent-categories logit model to the same data, we use

> fit.acat <- vglm(cbind(yl,y2,y3) ~ race + traumatic,
family=acat(reverse=TRUE, parallel=TRUE), data=happy)

> summary(fit.acat)

Coefficients:

Value Std. Error t value
(Intercept):1 -0.49606 0.31805 -1.5597
(Intercept):2 3.02747 0.57392 5.2751
race -1.84230 0.64190 -2.8701
traumatic -0.35701 0.16396 -2.1775

Names of linear predictors: log(P[Y=1]1/P[Y=2]), log(P[Y=2]1/P[Y=3])
Residual Deviance: 148.1996 on 190 degrees of freedom
Log-likelihood: -74.09982 on 190 degrees of freedom

Number of Iterations: 5

To fit the continuation-ratio logit model to the same data, one direction for forming
the sequential logits yields the results:

> fit.cratio <- vglm(cbind(yl,y2,y3) race + traumatic,
family=cratio(reverse=TRUE, parallel=TRUE), data=happy)

> summary(fit.cratio)

Coefficients:
Value Std. Error t value

(Intercept):1 -0.45530 0.32975 -1.3808
(Intercept):2 3.34108 0.56309 5.9335
race -2.02555 0.67683 -2.9927
traumatic -0.38504 0.17368 -2.2170

Names of linear predictors: logit(P[Y<2|Y<=2]), logit(P[Y<3|Y<=3])
Residual Deviance: 148.1571 on 190 degrees of freedom
Log-likelihood: -74.07856 on 190 degrees of freedom

Number of Iteratioms: 5

The more common form of continuation-ratio logit is obtained by instead using RE-
VERSE=FALSE in the model-fitting statement.

Other multinomial functions

For the proportional odds version of cumulative logit models, you can alternatively
use the polr function in the MASS library, with syntax shown next. However, the data
file then needs the response as a factor vector, so we first put the data from the above
examples in that form.

> library(MASS)
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response <- matrix(0,nrow=97,ncol=1)

response <- ifelse(yl==1,1,0)

response <- ifelse(y2==1,2,resp)

response <- ifelse(y3==1,3,resp)

y <- factor(response)

polr(y ~ race + traumatic, data=happy)

Call:

polr(formula = y ~ race + traumatic, data=happy)

V V. V V V V

Coefficients:
race traumatic
2.0361187 0.4055724

Intercepts:
112 213
-0.5181118 3.4005955

Residual Deviance: 148.407
AIC: 156.407

Chapters 9-10: Loglinear Models

Since loglinear models are special cases of generalized linear models with Poisson ran-
dom component and log link function, they can be fitted with the glm function. To il-
lustrate this, the following code shows fitting the models (A, C;, M) and (AC, AM,CM)
for Table 9.3 for the high school survey about use of alcohol, cigarettes and marijuana.
The code also shows forming Pearson and standardized residuals for the homogeneous
association model, (AC, AM,CM). For factors, R sets the value equal to 0 at the first
category rather than the last as in the text examples.

> drugs <- read.table("drugs.dat",header=TRUE)
drugs
a [ m count

\

1 yes yes yes 911

2 yes yes no 538

3 yes mno yes 44

4 yes no no 456

5 no yes yes 3

6 no yes mno 43

7 no no yes 2

8 no no no 279

> alc <- factor(a); cig <- factor(c); mar <- factor(m)
> indep <- glm(count ~ alc + cig + mar, family=poisson(link=log), data=drugs)
> summary(indep) % loglinear model (A, C, M)
Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 6.29154 0.03667 171.558 < 2e-16 *x**
alc2 -1.78511 0.05976 -29.872 < 2e-16 ***
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cig2 -0.64931 0.04415 -14.707 < 2e-16 ***
mar2 0.31542 0.04244 7.431 1.08e-13 ***

Null deviance: 2851.5 on 7 degrees of freedom
Residual deviance: 1286.0 on 4 degrees of freedom
AIC: 1343.1

Number of Fisher Scoring iterations: 6

> homo.assoc <- update(indep, .~. + alc:cig + alc:mar + cig:mar)
> summary (homo.assoc) # loglinear model (AC, AM, CM)

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 6.81387 0.03313 205.699 < 2e-16 *x**
alc2 -5.52827 0.45221 -12.225 < 2e-16 ***
cig2 -3.01575 0.15162 -19.891 < 2e-16 ***
mar2 -0.52486 0.05428 -9.669 < 2e-16 *x**
alc2:cig2 2.05453 0.17406 11.803 < 2e-16 ***
alc2:mar2 2.98601 0.46468 6.426 1.31e-10 ***
cig2:mar2 2.84789 0.16384 17.382 < 2e-16 *x**

Null deviance: 2851.46098 on 7 degrees of freedom
Residual deviance: 0.37399 on 1 degrees of freedom
AIC: 63.417

Number of Fisher Scoring iteratiomns: 4

> pearson <- summary.lm(homo.assoc)$residuals # Pearson residuals
> sum(pearson~2) # Pearson goodness-of-fit statistic
[1] 0.4011006
> leverage <- 1lm.influence(homo.assoc)$hat # leverage values
> std.resid <- pearson/sqrt(l - leverage) # standardized residuals
> expected <- fitted(homo.assoc) # estimated expected frequencies
> cbind(count, expected, pearson, std.resid)
count expected pearson std.resid
911 910.383170 0.02044342 0.6333249
538 538.616830 -0.02657821 -0.6333249
44 44.616830 -0.09234564 -0.6333249
456 455.383170 0.02890528 0.6333249
3 3.616830 -0.32434090 -0.6333251
43 42.383170 0.09474777 0.6333249
2 1.383170 0.52447895 0.6333251
279 279.616830 -0.03688791 -0.6333249

W N O O wWwN =
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Association models

Following is an example for the linear-by-linear association model and the row effects
and columns effects models (with scores 1, 2, 4, 5) fitted to Table 10.3 on premarital
sex and teenage birth control.

sexdata <- read.table("sex.dat", header=TRUE)
attach(sexdata)

uv <- premarx*birth

premar <- factor(premar); birth <- factor(birth)

LL.fit <- glm(count ~ premar + birth + uv, family=poisson)
summary (LL.fit)

V V. V V V V

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 4.10684 0.08951 45.881 < 2e-16 *xx*
premar2 -1.64596 0.13473 -12.216 < 2e-16 ***
premar3 -1.77002 0.16464 -10.751 < 2e-16 **x
premar4 -1.75369 0.23432 -7.484 7.20e-14 *x**
birth2 -0.46411 0.11952 -3.883 0.000103 *x**
birth3 -0.72452 0.16201 -4.472 7.74e-06 ***
birth4 -1.87966 0.24910 -7.546 4.50e-14 *x**

uv 0.28584 0.02824 10.122 < 2e-16 *xx*

Null deviance: 431.078 on 15 degrees of freedom
Residual deviance: 11.534 on 8 degrees of freedom
AIC: 118.21

Number of Fisher Scoring iterations: 4

>u <- c(1,1,1,1,2,2,2,2,4,4,4,4,5,5,5,5)

> v <- c(1,2,4,5,1,2,4,5,1,2,4,5,1,2,4,5)

> row.fit <- glm(count ~ premar + birth + u:birth, family=poisson)
> summary(row.fit)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|zl)

(Intercept) 4.98722 0.14624 34.102 < 2e-16 *x*x*
premar?2 -0.65772 0.13124 -5.011 5.40e-07 *xx*
premar3 0.46664 0.16266  2.869 0.004120 *x*
premar4 1.50195 0.17952 8.366 < 2e-16 *x**
birth2 -0.31939 0.19821 -1.611 0.107103
birth3 -0.72688 0.20016 -3.632 0.000282 *x*x*
birth4 -1.49032 0.23745 -6.276 3.47e-10 *xx*
birthi:u -0.59533 0.06555 =-9.082 < 2e-16 *x*x*
birth2:u -0.40543 0.06068 -6.681 2.37e-11 *x*x*
birth3:u -0.12975 0.05634 -2.303 0.021276 *
birth4:u NA NA NA NA

Null deviance: 431.078 on 15 degrees of freedom
Residual deviance: 8.263 on 6 degrees of freedom
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AIC: 118.94

Number of Fisher Scoring iteratiomns: 4

> column.fit <- glm(count
> summary(column.fit)

premar + birth + premar:v, family=poisson)

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|zl)

(Intercept) 1.40792 0.26947  5.225 1.74e-07 *x*x*
premar?2 -0.68466 0.29053 -2.357 0.018444 x*
premar3 0.78235 0.22246  3.517 0.000437 x***
premar4 2.11167 0.18958 11.138 < 2e-16 *x**
birth2 0.54590 0.11723  4.656 3.22e-06 ***
birth3 1.59262 0.14787 10.770 < 2e-16 ***
birth4 1.51018 0.16420 9.197 < 2e-16 ***
premarl:v 0.58454 0.05930 9.858 < 2e-16 ***
premar2:v 0.49554 0.07990 6.202 5.57e-10 ***
premar3:v 0.20315 0.06538  3.107 0.001890 =*x*
premaré4:v NA NA NA NA

Null deviance: 431.0781 on 15 degrees of freedom
Residual deviance: 7.5861 on 6 degrees of freedom
AIC: 118.26

Number of Fisher Scoring iteratiomns: 4

The loglin function can fit loglinear models using iterative proportional fitting.
Joseph Lang’s mph.fit function can fit generalized loglinear models (Section 10.5.1)
and other much more general “multinomial-Poisson homogeneous” models such as
covered in Lang (2004, 2005):

www.stat.uiowa.edu/~jblang/mph.fitting/index.htm

Multiplicative models such as RC and stereotype

The gnm add-on package for R, developed by David Firth and Heather Turner at the
Univ. of Warwick, can fit multiplicative models such as Goodman’s RC association
model for two-way contingency tables and Anderson’s stereotype model for ordinal
multinomial responses:

www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software

Thomas Yee’s VGAM package mentioned for Chapter 8 above can also fit Goodman’s
RC association model and Anderson’s stereotype model, as well as bivariate logistic
and probit models for bivariate binary responses.

Nenadic and Greenacre have developed the ca package for correspondence analysis:

www.statmethods.net/advstats/ca.html
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Chapter 11: Models for Matched Pairs
McNemar test

The function mcnemar.test can conduct McNemar’s test for matched pairs. For ex-
ample, for Table 11.1,

ratings <- matrix(c(175, 16, 54, 188), ncol=2, byrow=TRUE,

+ dimnames = 1ist("2004 Election" = c("Democrat", "Republican"),

+ "2008 Election" = c("Democrat", "Republican")))
> mcnemar.test(ratings, correct=FALSE)

where a continuity correction is made unless “correct=FALSE” is specified.

Bradley—Terry models

The Bradley—Terry model can be fitted using the glm function by treating it as a
generalized linear model. It can also be fitted using specialized functions, such as with
the brat function in Thomas Yee’s VGAM library mentioned above:

rss.acs.unt.edu/Rdoc/library/VGAM/html/brat.html
or by Prof. David Firth as described at
www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/software/bradleyterry

www.jstatsoft.org/v12/i01

Chapter 12: Clustered Categorical Responses: Marginal
Models

GEE methods

Laura Thompson’s manual describes several packages for doing GEE analyses. For
instance, in the following code we use the gee function in the gee library to analyze
the opinions about abortion data analyzed in Sec. 13.3.2 with both marginal models
and random effects models.

> abortion
gender response question case

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
4 1 1 1 2
5 1 1 2 2
6 1 1 3 2
7 1 1 1 3
8 1 1 2 3
9 1 1 3 3
5545 0 0 1 1849
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5546 0 0 2 1849
5547 0 0 3 1849
5548 0 0 1 1850
5549 0 0 2 1850
5550 0 0 3 1850

> z1 <- ifelse(abortion$question==1,1,0)
> z2 <- ifelse(abortion$question==2,1,0)
> z3 <- ifelse(abortion$question==3,1,0)

> library(gee)

> fit.gee <- gee(response ~ gender + zl + 22, id=case, family=binomial,
corstr="exchangeable", data=abortion)

> summary(fit.gee)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Exchangeable
Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.125325730 0.06782579 -1.84775925 0.06758212 -1.85442135
gender 0.003437873 0.08790630 0.03910838 0.08784072 0.03913758
z1 0.149347107 0.02814374 5.30658404 0.02973865 5.02198729
z2 0.052017986 0.02815145 1.84779075 0.02704703 1.92324179

Working Correlation

[,1] [,2] [,3]
[1,] 1.0000000 0.8173308 0.8173308
[2,] 0.8173308 1.0000000 0.8173308
[3,] 0.8173308 0.8173308 1.0000000

> fit.gee2 <- gee(response ~ gender + zl + z2, id=case, family=binomial,
+ corstr="independence", data=abortion)

> summary(fit.gee2)

Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent
Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.125407576 0.05562131 -2.25466795 0.06758236 -1.85562596
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gender 0.003582051 0.05415761 0.06614123 0.08784012 0.04077921
z1 0.149347113 0.06584875 2.26803253 0.02973865 5.02198759
z2 0.052017989 0.06586692 0.78974374 0.02704704 1.92324166

Working Correlation

[,11 [,2]1 [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

From the geepack library, the function geeglm performs fitting of clustered data
using the GEE method. See

www.jstatsoft.org/v15/102/paper

for details, including an example for a binary response. Possible working correla-
tion structures include independence, exchangeable, autoregressive (arl), and unstruc-
tured. In addition to the sandwich covariance matrix (which is the default), when the
number of clusters is small one can find a jackknife estimator. Fitting statements have
the form:

> geeglm(y ~ x1 + x2, family=binomial, id=subject, corst=’’exchangeable’’)

The library repolr has a function repolr for GEE methods with ordinal responses:
cran.r-project.org/web/packages/repolr/repolr.pdf

Here is an example for the insomnia data of Table 12.3, using the independence
working correlation structure (Thanks to Anestis Touloumis).

> insomnia<-read.table("insomnia.dat",header=TRUE)
> insomnia<-as.data.frame(insomnia)
> insomnia

case treat occasion outcome

1 1 0 1
1 1 1 1
2 1 0 1
2 1 1 1
3 1 0 1
3 1 1 1
4 1 0 1
4 1 1 1
5 1 0 1
239 0 0 4
239 0 1 4

> library(repolr)
> fit <- repolr(formula = outcome ~ treat + occasion + treat * occasion,
+ subjects="case", data=insomnia, times=c(1,2), categories=4,
corstr = "independence")
> summary (fit$gee)
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Coefficients:
Estimate Naive S.E. Naive z Robust S.E. Robust z
factor(cuts)l -2.26708899 0.2027367 -11.1824294 0.2187606 -10.3633343

factor(cuts)2 -0.95146176 0.1784822 -5.3308499 0.1809172 -5.25691017
factor(cuts)3 0.35173977 0.1726860 2.0368745 0.1784232 1.9713794
treat 0.03361002 0.2368973 0.1418759 0.2384374  0.1409595
occasion 1.03807641 0.2375992 4.3690229 0.1675855 6.1943093
treat:occasion 0.70775891 0.3341759 2.1179234 0.2435197 2.9063728

ML for marginal models

Joseph Lang at the Univ. of lowa has R and S-Plus functions such as mph.fit for ML
fitting of marginal models (when the explanatory variables are categorical and not
numerous) through the generalized loglinear model (10.10). This uses the constraint
approach with Lagrange multipliers.

Chapters 13—-14: Clustered Categorical Responses: Ran-
dom Effects Models

Generalized linear mixed models

The function imer (linear mixed effects in R) in the R package Matriz can be used to

fit generalized linear mixed models. See the Gelman and Hill (2007) text, such as Sec.

12.4. See also the Ime4 package, described injhttp://cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf
These use adaptive Gauss—Hermite quadrature.

The function glmm in the repeated library can fit generalized linear mixed models
using Gauss-Hermite quadrature methods, for families including the binomial and
Poisson:

rss.acs.unt.edu/Rdoc/library/repeated/html/glmm.html

The package glmmAK can also fit them, with a Bayesian approach with priors for the
fixed effects parameters:

cran.r-project.org/web/packages/glmmAK/glmmAK . pdf

The function glmmML in the glmmML package can fit GLMMs with random intercepts
by adaptive Gauss—Hermite quadrature. For instance, in the following code we use
it to analyze the opinions about abortion data analyzed in Sec. 13.3.2 with random
effects models, employing Gauss-Hermite quadrature with 50 quadrature points and a
starting value of 9 for the estimate of o.

> abortion
gender response question case

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
4 1 1 1 2
5 1 1 2 2
6 1 1 3 2
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5548 0 0 1 1850
5549 2 1850
5550 0 0 3 1850

o
o

> z1 <- ifelse(abortion$question==1,1,0)
> z2 <- ifelse(abortion$question==2,1,0)
> z3 <- ifelse(abortion$question==3,1,0)

> library(glmmML)

fit.glmmML <- glmmML(response ~ gender + zl + z2,
cluster=abortion$case, family=binomial, data=abortion,
method = ’ghq’, n.points=50, start.sigma=9)

summary (fit.glmmML)

vV + + VvV

Call: glmmML(formula = response ~ gender + zl + z2, family = binomial,
data = abortion, cluster = abortion$case, start.sigma = 9,
method = "ghq", n.points = 50)

coef se(coef) z Pr(>|zl)
(Intercept) -0.62222 0.3811 -1.63253 1.03e-01
gender 0.01272 0.4936 0.02578 9.79e-01
z1 0.83587 0.1599 5.22649 1.73e-07
z2 0.29290 0.1568 1.86822 6.17e-02

Scale parameter in mixing distribution: 8.788 gaussian
Std. Error: 0.5282

LR p-value for H_0: sigma = 0: O

Residual deviance: 4578 on 5545 degrees of freedom AIC: 4588

The function glmmPQL in the MASS library can fit GLMMs using penalized quasi-
likelihood. The R package MCMCglmm can fit them with Markov Chain Monte Carlo
methods:

cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

For a text on GLMMs using R, see Multivariate Generalized Linear Mized Models
by D. M. Berridge and R. Crouchley, published 2011 by CRC Press. The emphasis is
on multivariate models, using the Sabre software package in R.

Item response models

Dimitris Rizopoulos from Leuven, Belgium has prepared a package ltm for Item Re-
sponse Theory analyses. This package can fit the Rasch model, the two-parameter
logistic model, Birnbaum’s three-parameter model, the latent trait model with up to
two latent variables, and Samejima’s graded response model:

med.kuleuven.be/biostat/software/software.htm#LatentIRT
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Latent class models

Steve Buyske at Rutgers has prepared a library for fitting latent class models with the
EM algorithm:

www.stat.rutgers.edu/home/buyske/software.html

Beta-binomial and quasi-likelihood analyses

The following shows the beta-binomial and quasi-likelihood analyses of the teratology
data presented in Sec. 14.3.4, continuing with the analyses shown above at the end of
the R discussion for Chapter 4. Beta-binomial modeling is an option with the vglm
function in the VGAM library (using Fisher scoring) and the betabin function in the
aod library. It seems that vglm in VGAM uses Fisher scoring and hence reports SE
values based on the expected information matrix, whereas betabin in aod uses the
observed information matrix. Quasi-likelihood with the beta-binomial type variance
is available with the quasibin function in the aod library. (In the following example,
the random part of the statement specifies the same overdispersion for each group).
For details about the aod package, see

cran.r-project.org/web/packages/aod/aod.pdf

Again, we borrow heavily from Laura Thompson’s excellent manual.

> group <- rats$group
> library(VGAM) # We use Thomas Yee’s VGAM library
> fit.bb <- vglm(cbind(y,n-y) ~ group, betabinomial(zero=2,irho=.2),
data=rats)
# two parameters, mu and rho, and zero=2 specifies O covariates for 2nd
# parameter (rho); irho is the initial guess for rho in beta-bin variance.
> summary(fit.bb) # fit of beta-binomial model

Coefficients:
Value Std. Error t value

(Intercept):1 1.3458 0.24412 5.5130
(Intercept):2 -1.1458 0.32408 -3.5355 # This is logit(rho)
group2 -3.1144 0.51818 -6.0103
group3 -3.8681 0.86285 -4.4830
groupd -3.9225 0.68351 -5.7387

Names of linear predictors: logit(mu), logit(rho)
Log-likelihood: -93.45675 on 111 degrees of freedom

> logit(-1.1458, inverse=T) # This is a function in VGAM
[1] 0.2412571 # The estimate of rho in beta-bin variance

> install.packages("aod") # another way to fit beta-binomial models
> library(aod)

> betabin(cbind(y,n-y) ~ group, random="1,data=rats)

Beta-binomial model
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betabin(formula = cbind(y, n - y) ~ group, random = ~1, data = rats)

Fixed-effect coefficients:

Estimate Std. Error z value Pr(> |z])
(Intercept) 1.346e+00 2.481e-01 5.425e+00 5.799e-08
group2 -3.115e+00 5.020e-01 -6.205e+00 5.485e-10
group3 -3.869e+00 8.088e-01 -4.784e+00 1.722e-06
group4 -3.924e+00 6.682e-01 -5.872e+00 4.293e-09

Overdispersion coefficients:
Estimate Std. Error z value Pr(> z)
phi. (Intercept) 2.412e-01 6.036e-02 3.996e+00 3.222e-05

> quasibin(cbind(y,n-y) ~ group, data=rats) # QL with beta-bin variance
Quasi-likelihood generalized linear model

quasibin(formula = cbind(y, n - y) ~ group, data = rats)

Fixed-effect coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 1.2124 0.2233 5.4294 < le-4
group2 -3.3696 0.5626 -5.9893 < le-4
group3 -4.5853 1.3028 -3.5197 4e-04
group4 -4.2502 0.8484 -5.0097 < le-4

Overdispersion parameter:
phi
0.1923

Pearson’s chi-squared goodness-of-fit statistic = 54.0007

Negative binomial and other count models

As shown above in the Chapter 4 description for R, the glm.nb function in the MASS
library is a modification of the glm function to handle negative binomial regression
models:

stat.ethz.ch/R-manual/R-patched/library/MASS/html/glm.nb.html

The negbin function in the aod package can also handle negative binomial regres-
sion:

cran.r-project.org/web/packages/aod/aod.pdf

Thomas Yee’s VGAM package can also fit zero-inflated Poisson models and nega-
tive binomial models.
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Chapter 15: Non-Model-Based Classification and Cluster-
ing

Discriminant analysis

In the MASS library there is a Ida function for linear discriminant analysis and a gqda
function for quadratic discriminant analysis:

stat.ethz.ch/R-manual/R-patched/library/MASS/html/1da.html
stat.ethz.ch/R-manual/R-patched/library/MASS/html/qda.html

Classification trees

In the tree library,
cran.r-project.org/web/packages/tree/tree.pdf

there is a tree function for binary recursive partitioning, and a prune.tree function
for pruning them.

See also the rpart package and its rpart function for recursive partitioning to
construct classification trees and prune function for pruning them:

cran.r-project.org/web/packages/rpart/index.html

For example, for the horseshoe crab data with width and quantitative color as
predictors,

library(tree)

attach(crabs)

fit <- rpart(y ~ color + width, method="class")
plot(fit)

text(fit)

printcp(fit)

V V.V V V VvV

Classification tree:
rpart(formula = y

color + width, method = "class")

Variables actually used in tree construction:
[1] color width

Root node error: 62/173 = 0.35838

n= 173

CP nsplit rel error xerror xstd
1 0.161290 0 1.00000 1.00000 0.101728
2 0.080645 1 0.83871 1.03226 0.102421
3 0.064516 2 0.75806 0.96774 0.100972
4 0.048387 3 0.69355 0.93548 0.100149
5 0.016129 4 0.64516 0.85484 0.097794
6 0.010000 6 0.61290 0.82258 0.096728
> plotcp(fit)
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> summary (fit)
> plot(fit, uniform=TRUE,
main="Classification Tree for Crabs")
> pfit2 <- prune(fit, cp= 0.02)
> plot(pfit2, uniform=TRUE,
main="Pruned Classification Tree for Crabs")
plot(pfit2, uniform=TRUE,
+ main="Pruned Classification Tree for Crabs")
> text(pfit2, use.n=TRUE, all=TRUE, cex=.8)
> post(pfit2, file = "ptree2.ps",

title = "Pruned Classification Tree for Crabs")
post(pfit2, file = "ptree2.ps",
+ title = "Pruned Classification Tree for Crabs")

Cluster analysis

The dist function in R computes distances to be used in a cluster analysis:

stat.ethz.ch/R-manual/R-patched/library/stats/html/dist.html

The method= “binary” option invokes the Jaccard-type dissimilarity distance discussed
in the text. The method= “manhattan” option invokes Ll-norm distance, which for
binary data is the total number of variables that do not match. The hclust function

can perform basic hierarchical cluster analysis, using inputted distances:

stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

For example, for the text example on election clustering using only the states in Table
15.5, with the manhattan distance and the average linkage method for summarizing

dissimilarities between clusters,

> x <- read.table("election.dat", header=F)
> x
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© 00 ~NO O W N =

= e
= O

-
N
O O OO OO OO OO OO

O OO, OO FH»H OOO O O
OO R PP ELEELERLRORRPLRO
CO R PP RLERE R RROR -
OO0 O0ORrRrRORRLRRLOORO
OCO0OO0ORrOOR LKL OORO
P OR PR ORRELRRERRLRRLRRLRO

-
w
O OO O OO0 OO0 O OoOOo

14 O 0O 0 0 0 0 O

> distances <- dist(x,method="manhattan")

> States <_ C("AZ" IICAII IICOII IIFLII IIILII IIMAII IIMNII
IIMOII s IINMII’ IINYII’ IIDHII s IITXII’ IIVAII’ llell)

> democlust <- hclust(distances,"average")
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> postscript(file="dendrogram-election.ps")
> plot(democlust, labels=states)
> graphics.off ()

Chapter 16: Large- and Small-Sample Theory for Multino-
mial Models

See the discussion for Chapters 1-3 above for information about special R functions
for small-sample confidence intervals for association measures in contingency tables.

Alessandra Brazzale has prepared the hoa package for higher-order asymptotic
analyses, including approximate conditional analysis for logistic and loglinear models:

cran.r-project.org/web/packages/cond/vignettes/Rnews-paper.pdf

www.isib.cnr.it/~brazzale/1lib.html
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A.3 Stata

For examples of categorical data analyses with Stata for many data sets in my text
An Introduction to Categorical Data Analysis, see the useful site

www.ats.ucla.edu/stat/examples/icda/

set up by the UCLA Statistical Computing Center. Specific examples are linked below.
See also A Handbook of Statistical Analyses Using Stata, 4th ed., by S. Rabe-Hesketh
and B. Everitt (CRC Press, 2006). A listing of the extensive selection of categorical
data methods available as of 2002 in Stata was given in Table 3 of the article by R. A.
Oster in the August 2002 issue of The American Statistician (pp. 235-246); the main
focus of that article is on methods for small-sample exact analysis.

Chapter 1: Introduction

The ¢i command can construct confidence intervals for proportions, including Wald,
score (Wilson), Agresti—Coull, Jeffreys Bayes, and Clopper—Pearson small-sample meth-
ods. See

www.stata.com/help.cgi?ci
The bitest command can conduct small-sample tests about a binomial parameter. See

www.stata.com/help.cgi?bitest

Chapters 2—-3: Two-Way Contingency Tables

The tabulate command can construct two-way contingency tables, conduct chi-squared
tests and Fisher’s exact test, and find various measures of association and their stan-
dard errors, including Goodman and Kruskal’s gamma and Kendall’s tau-b. See

www.stata.com/help.cgi?tabulate_twoway
for a summary and a list of options. See
www.ats.ucla.edu/stat/stata/examples/icda/icdast2.htm
for an example.

The ¢s command can construct confidence intervals for the difference of proportions,
relative risk, and odds ratio. See

www.stata.com/help.cgi?cs
and for an example, seejwww.ats.ucla.edu/stat/stata/examples/icda/icdast2.htm)

which also shows how to use logit to obtain an interval for the odds ratio. The cc
command can also construct confidence intervals for odds ratios. See

www.stata.com/help.cgi?cc

and for an example, see www.ats.ucla.edu/stat/stata/examples/icda/icdast3.htm.
For a Stata module for three-way tables, one can use the tab3way command,
ideas.repec.org/c/boc/bocode/s425301.html

with an example at www.ats.ucla.edu/stat/stata/examples/icda/icdast3.htm. See
also www.stata.com/statalist/archive/2009-04/msg00893.html and
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www.stata.com/statalist/archive/2010-04/msg00800.html,
Nicholas Cox has a package tabchi for basic analyses of contingency tables. See
http://www.nd.edu/~rwilliam/statsl/Categorical-Stata.pdf

for a document by Richard Williams that describes this and the use of Stata for basic
analyses for categorical data analysis. In particular, it can generate standardized
(adjusted) residuals, as shown in the example in
www.ats.ucla.edu/stat/stata/examples/icda/icdast2.htm|

Chapter 4: Generalized Linear Models

The glm command can fit generalized linear models such as logistic regression and
loglinear models:

www.stata.com/help.cgi?glm

The link functions (with keywords in parentheses) include log (log), identity (i), logit
(1), probit (p), complementary log-log (c). The families include binomial (b), Poisson
(p), and negative binomial (nb). Newton-Raphson fitting is the default. Code takes
the form

.glm y x1 x2, family(poisson) link(log) Inoffset(time)

for a Poisson model with explanatory variables 1 and x2, and for a binomial variate
y based on n successes,

.glm y x1 x2, family(binomial n) link(logit)
for a logistic model. For examples, see www.ats.ucla.edu/stat/stata/examples/icda/icdast4.htm|

Profile likelihood confidence intervals are available with the plif and logprof (for
logistic regression) commands in Stata. For plif, see article by P. Royston in Stata
Journal, vol. 7, pp. 376-387:

www.stata-journal.com/sjpdf .html?articlenum=st0132

Chapters 5-7: Logistic Regression and Binary Response
Methods

For a summary of all the Stata commands that can perform logistic regression, see
www.stata.com/capabilities/logistic.html,

Once a model has been fitted, the predict command has various options, including
fitted values, the Hosmer—Lemeshow statistic, standardized residuals, and influence
diagnostics.

In particular, other than with the glm command, logistic models can be fitting using
the logistic and logit commands. See

www.stata.com/help.cgi?logistic and www.stata.com/help.cgi?logit.
Code has the form
Jogit y x [fw=count)]

with the option of frequency weights. For examples, see
www.ats.ucla.edu/stat/stata/examples/icda/icdast4.htm)
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and for the horseshoe crab data and AIDS/AZT examples of Chapter 5, see
www.ats.ucla.edu/stat/stata/examples/icda/icdast5.html
For a special command for grouped data, see www.stata.com/help.cgi?glogit

In the glm command, other links, such as probit and cloglog, can be substituted
for the logit. Probit models can also be fitting using probit. See

www.stata.com/help.cgi?probit

Conditional logistic regression can be conducted using the clogit command. See
www.stata.com/help.cgi?clogit.
The ezxlogistic command performs exact conditional logistic regression. See
www.stata.com/help.cgi?exlogistic

FIRTHLOGIT is a Stata module to use Firth’s method for bias reduction in logistic
regression. See

ideas.repec.org/c/boc/bocode/s456948. html

See alsohttp://www.homepages.ucl.ac.uk/~ucakgam/stata.html for information about
a package of penalized logistic regression programs that also includes the lasso as a
special case.

Stata does not seem to currently have Bayesian capability.

Chapter 8: Multinomial Response Models

The command mlogit can fit baseline-category logit models:
www.stata.com/help.cgi?mlogit

The code for a baseline-category logit model takes the form
. mlogit y x1 x2 [fweight=freq]

For the alligator food choice example of the text, but using three outcome categories,
see www.ats.ucla.edu/stat/stata/examples/icda/icdast8.htm,

The command mprobit fits multinomial probit models, for the case of independent
normal error terms. See

http://www.stata.com/help.cgi?mprobit

for details. The command asmprobit allows more general structure for the error terms.
The command ologit can fit ordinal models, such as cumulative logit models:
www.stata.com/help.cgi?ologit

The code for the proportional odds version of cumulative logit models has form
. ologit y x [fweight=freq]

For an example, see www.ats.ucla.edu/stat/stata/examples/icda/icdast8.html The
corresponding command oprobit can fit cumulative probit models. See
www.nd.edu/~rwilliam/oglm

for discussion of a new oglm command by Richard Williams for ordinal models that
include as a special case cumulative link models with logit, probit, and complementary
log-log link. Continuation-ratio logit models can be fitted with the ocratio module.
See

www.stata.com/search.cgi?query=ocratio.

A command omodel is available from the Stata website for fitting these models and
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testing the assumption of the same effects for each cumulative probability (i.e., the
proportional odds assumption for cumulative logit models).

Chapters 9-10: Loglinear Models

Loglinear models can be fitted as generalized linear models using the glm command.
For examples, including the high school student survey of alcohol, cigarette, and mar-
ijuana use from Chapter 9, see
www.ats.ucla.edu/stat/stata/examples/icda/icdast6.htm|

That source also describes use of a special ipf command for iterative proportional
fitting.

For an example of using glm to fit an association model such as linear-by-linear as-
sociation, see www.ats.ucla.edu/stat/stata/examples/icda/icdast7.html An ex-
ample shown is the text example from Chapter 10 on opinions about premarital sex
and birth control.

Chapter 11: Models for Matched Pairs

Most models in this chapter can be fitted as special cases of logistic or loglinear models,
which are themselves special cases of generalized linear models with the glm command.
Some specialized commands are also available. For example, symmetry tests symmetry
and marginal homogeneity in square tables, and thus gives McNemar’s test for the
special case of 2x2 tables. See

http://www.stata.com/help.cgi?symmetry

and see also www.ats.ucla.edu/stat/stata/examples/icda/icdast9.htm|for an ex-
ample and the use of the mcc command for McNemar’s test. That location also shows
analyses of the coffee choice example from the text, and also the use of glm for fitting
the Bradley—Terry model, with a tennis example.

The command clogit performs conditional logistic regression.

Chapters 12—14: Clustered Categorical Responses

For information about using GEE in Stata, see
www.stata.com/meeting/lnasug/gee.pdf

by Nicholas Horton (in 2001). The GEE method can be conducted using the ztgee
command, see

www.stata.com/help.cgi?xtgee and www.stata.com/capabilities/xtgee.html,

with the usual distributions and link functions for the marginal models. Code has
form such as

. xtgee y x1 x2, family(poisson) link(log) corr(exchangeable) robust

For ML fitting of generalized linear mixed models, the GLLAMM module described
at www.gllamm.org can fit a very wide variety of models, including logistic and cumu-
lative logit models with random effects. For further details, see
www.stata.com/search.cgi?query=gllamm
and Chapter 5 of Multilevel and Longitudinal Modeling Using Stata by S. Rabe-Hesketh
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and A. Skrondal (Stata Press, 2005). For a discussion of its use of adaptive Gauss-
Hermite quadrature, see www.stata-journal.com/sjpdf.html?articlenum=st0005.

Negative binomial regression models can be fitted with the nbreg command. See
www.stata.com/help.cgi?nbregland www.ats.ucla.edu/stat/stata/dae/nbreg.htm,

It is also possible to fit these models with the glm command, with the nbinomial option
for the family. See www.ats.ucla.edu/stat/stata/library/count.htm|

Chapter 15: Non-Model-Based Classification and Cluster-
ing

There is a cart module for classification trees, prepared by Wim van Putten. See
econpapers.repec.org/software/bocbocode/s456776.htm.

Discriminant analysis is available with the discrim command. Options include
linear discriminant analysis (subcommand Ida, that is, the full command is discrim
lda), quadratic discriminant analysis with subcommand qda, k nearest neighbor with
subcommand knn, and logistic with subcommand logistic. See

www.stata.com/help.cgi?discrim

and http://www.stata.com/help.cgi?candisc|for the canonical linear discriminant
function.

For a summary of Stata capabilities for cluster analysis with the cluster command,
see

www.stata.com/capabilities/cluster.html and www.stata.com/help.cgi?cluster.

Chapter 16: Large- and Small-Sample Theory for Multino-
mial Models

The ¢i command can construct small-sample confidence intervals for proportions, in-
cluding Clopper—Pearson intervals. See

www.stata.com/help.cgi?ci

The cc command constructs small-sample confidence intervals for the odds ratio, unless
one requests a different option. See

www.stata.com/help.cgi?cc

The exlogistic command performs exact conditional logistic regression. See
www.stata.com/help.cgi?exlogistic
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A.4 SPSS

Chapters 1-3: Introduction, Two-Way Contingency Tables

The DESCRIPTIVE STATISTICS option on the ANALYZE menu has a suboption
called CROSSTABS, which provides several methods for contingency tables. After
identifying the row and column variables in CROSSTABS, clicking on STATISTICS
provides a wide variety of options, including the chi-squared test and measures of
association. The output lists the Pearson statistic, its degrees of freedom, and its
P-value (labeled Asymp. Sig.). If any expected frequencies in a 2x2 table are less
than 5, Fisher’s exact test results. It can also be requested by clicking on Exact in
the CROSSTABS dialog box and selecting the exact test. SPSS also has an advanced
module for small-sample inference (called SPSS Exact Tests) that provides exact P-
values for various tests in CROSSTABS and NPAR TESTS procedures. For instance,
the Exact Tests module provides exact tests of independence for I x J contingency
tables with nominal or ordinal classifications. See the publication SPSS Ezact Tests
for Windows.

In CROSSTARBS, clicking on CELLS provides options for displaying observed and
expected frequencies, as well as the standardized residuals, labeled as “Adjusted stan-
dardized”. Clicking on STATISTICS in CROSSTABS provides options of a wide va-
riety of statistics other than chi-squared, including gamma and Kendall’s tau-b. The
output shows the measures and their standard errors (labeled Asymp. Std. Error),
which you can use to construct confidence intervals. It also provides a test statistic
for testing that the true measure equals zero, which is the ratio of the estimate to
its standard error. This test uses a simpler standard error that only applies under
independence and is inappropriate for confidence intervals. One option in the list of
statistics, labeled Risk, provides as output the odds ratio and its confidence interval.

Suppose you enter the data as cell counts for the various combinations of the two
variables, rather than as responses on the two variables for individual subjects; for
instance, perhaps you call COUNT the variable that contains these counts. Then,
select the WEIGHT CASES option on the DATA menu in the Data Editor window,
instruct SPSS to weight cases by COUNT.

Chapter 4: Generalized Linear Models

To fit generalized linear models, on the ANALYZE menu select the GENERALIZED
LINEAR MODELS option and the GENERALIZED LINEAR MODELS suboption.
Select the Dependent Variable and then the Distribution and Link Function. Click on
the Predictors tab at the top of the dialog box and then enter quantitative variables as
Covariates and categorical variables as Factors. Click on the Model tab at the top of
the dialog box and enter these variables as main effects, and construct any interactions
that you want in the model. Click on OK to run the model.
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Chapters 5-7: Logistic Regression and Binary Response
Methods

To fit logistic regression models, on the ANALYZE menu select the REGRESSION
option and the BINARY LOGISTIC suboption. In the LOGISTIC REGRESSION
dialog box, identify the binary response (dependent) variable and the explanatory
predictors (covariates). Highlight variables in the source list and click on a*b to create
an interaction term. Identify the explanatory variables that are categorical and for
which you want indicator variables by clicking on Categorical and declaring such a
covariate to be a Categorical Covariate in the LOGISTIC REGRESSION: DEFINE
CATEGORICAL VARIABLES dialog box. Highlight the categorical covariate and
under Change Contrast you will see several options for setting up indicator variables.
The Simple contrast constructs them as in this text, in which the final category is the
baseline.

In the LOGISTIC REGRESSION dialog box, click on Method for stepwise model
selection procedures, such as backward elimination. Click on Save to save predicted
probabilities, measures of influence such as leverage values and DFBETAS, and stan-
dardized residuals. Click on Options to open a dialog box that contains an option to
construct confidence intervals for exponentiated parameters.

Another way to fit logistic regression models is with the GENERALIZED LIN-
EAR MODELS option and suboption on the ANALYZE menu. You pick the binomial
distribution and logit link function. It is also possible there to enter the data as the
number of successes out of a certain number of trials, which is useful when the data are
in contingency table form. One can also fit such models using the LOGLINEAR op-
tion with the LOGIT suboption in the ANALYZE menu. One identifies the dependent
variable, selects categorical predictors as factors, and selects quantitative predictors
as cell covariates. The default fit is the saturated model for the factors, without in-
cluding any covariates. To change this, click on Model and select a Custom model,
entering the predictors and relevant interactions as terms in a customized (unsatu-
rated) model. Clicking on Options, one can also display standardized residuals (called
adjusted residuals) for model fits. This approach is well suited for logit models with
categorical predictors, since standard output includes observed and expected frequen-
cies. When the data file contains the data as cell counts, such as binomial numbers
of successes and failures, one weights each cell by the cell count using the WEIGHT
CASES option in the DATA menu.

Chapter 8: Multinomial Response Models

SPSS can fit logistic models for multinomial response variables. On the ANALYZE
menu, choose the REGRESSION option and then the ORDINAL suboption for a cu-
mulative logit model. Select the MULTINOMIAL LOGISTIC suboption for a baseline-
category logit model. In the latter, click on Statistics and check Likelihood-ratio tests
under Parameters to obtain results of likelihood-ratio tests for the effects of the pre-
dictors.
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Chapters 9-10: Loglinear Models

For loglinear models, one uses the LOGLINEAR option with GENERAL suboption
in the ANALYZE menu. One enters the factors for the model. The default is the
saturated model, so click on Model and select a Custom model. Enter the factors
as terms in a customized (unsaturated) model and then select additional interaction
effects. Click on Options to show options for displaying observed and expected fre-
quencies and adjusted residuals. When the data file contains the data as cell counts
for the various combinations of factors rather than as responses listed for individual
subjects, weight each cell by the cell count using the WEIGHT CASES option in the
DATA menu.

Chapter 11: Models for Matched Pairs

The models discussed in this chapter are almost all generalized linear models and can
be fitted as described above for Chapter 4. The LOGLINEAR option just mentioned
for Chapters 9-10 can also be used.

Chapters 12—14: Clustered Categorical Responses

For GEE methods, on the ANALYZE menu choose the GENERALIZED LINEAR
MODELS option and the GENERALIZED ESTIMATING EQUATIONS suboption.
You can then select structure for the working correlation matrix and identify the
between-subject and within-subject variables.

For random effects models, on the ANALYZE menu choose the MIXED MODELS
option and the GENERALIZED LINEAR suboption.

Version 19 apparently has capability of fitting generalized linear mixed models:
www.unileon.es/ficheros/servicios/informatica/spss/english/IBM-SPSS_advanced_statistics.pdf

www-01.1ibm.com/software/analytics/spss/products/statistics/advanced-statistics

Chapter 15: Non-Model-Based Classification and Cluster-
ing

SPSS Categories is an add-on module that provides optimal scaling procedures such
as categorical principal components analysis and multidimensional scaling, and some

reduction-dimension techniques such as correspondence analysis, biplots, and canonical
correlation analysis.
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A.5 StatXact and LogXact

For certain analyses, specialized software is better than the major packages. A good
example is StatXact (Cytel Software, Cambridge, Massachusetts), which provides
exact analysis for categorical data methods and some nonparametric methods. See
www.cytel.com/Software/StatXact.aspx|for details Among its procedures are small-
sample confidence intervals for a binomial parameter, the difference of proportions,
relative risk, and odds ratio, and Fisher’s exact test and its generalizations for I x J
tables. It can also conduct exact tests of conditional independence and of equality of
odds ratios in 2 x 2 x K tables, and exact confidence intervals for the common odds
ratio in several 2 x 2 tables. StatXact uses Monte Carlo methods to approximate exact
P-values and confidence intervals when a data set is too large for exact inference to be
computationally feasible. A listing of the extensive selection of small-sample methods
available in StatXact as of 2002 was given in Table 1 of the article by R. A. Oster in
the August 2002 issue of The American Statistician (pp. 235-246)

Its companion, LogXact, performs exact conditional logistic regression. It also pro-
vides exact conditional analyses for baseline-category logit models. See www.cytel.com/Software/LogXact.aspx
for details.

A.6 OTHER SOFTWARE

HLM

HLM, from Scientific Software International (Chicago), fits multilevel models. See
www.ssicentral.com/hlm

For examples, see the useful site
www.ats.ucla.edu/stat/hlm/examples/default.htm

set up by the UCLA Statistical Computing Center.

Latent Gold

The Latent Gold program, marketed by Statistical Innovations (Belmont, MA), can
fit a wide variety of finite mixture models such as latent class models (i.e. the latent
variable is categorical), nonparametric mixtures of logistic regression, and some Rasch
mixture models. It can handle binary, nominal, ordinal, and count response variables
and can include random effects that are treated in a nonparametric method rather
than assumed to have a normal distribution. See

www.statisticalinnovations.com/products/latentgold.html
See also

www.ats.ucla.edu/stat/latent_gold/default.htm
set up by the UCLA Statistical Computing Center.

LEM

LEM is a general program for latent class modeling. See
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www.tilburguniversity.edu/nl/over-tilburg-university/schools/socialsciences/organisatie/departemen
and also the site

www.ats.ucla.edu/stat/lem/default.htm
set up by the UCLA Statistical Computing Center.

LIMDEP and NLOGIT

LIMDERP is designed for modeling limited dependent variables, including multinomial
discrete choice models and count data models. NLOGIT is designed for nested logit
models and multinomial logit models, and can handle extended discrete choice models
that do not appear in LIMDEP. See

www.limdep.com/

For examples of LIMDEP from Greene’s Econometric Analysis, see the useful site
www.ats.ucla.edu/stat/limdep/examples/default.htm

set up by the UCLA Statistical Computing Center.

MAREG

The program MAREG (Kastner et al. 1997) provides GEE fitting and ML fitting of
marginal models with the Fitzmaurice and Laird (1993) approach, allowing multicat-
egory responses. See

www.stat.uni-muenchen.de/sfb386/software/mareg/winmareg.html

MLwiN

MLwiN is a software package for fitting multilevel models. See
www.cmm.bristol.ac.uk/MLwiN

For examples, see the useful site
www.ats.ucla.edu/stat/mlwin/examples

set up by the UCLA Statistical Computing Center.

PASS

PASS, marketed by NCSS Statistical Software (Kaysville, Utah), provides power anal-
yses and sample size determination.

SUDAAN

SUDAAN, from the Research Triangle Institute (Research Triangle Park, North Car-
olina), provides analyses for categorical and continuous data from stratified multi-stage
cluster designs. See

www.rti.org/sudaan/
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It has facility (MULTILOG procedure) for GEE analyses of marginal models for nom-
inal and ordinal responses. See

www.rti.org/sudaan/onlinehelp/sudaanMULTILOG_Procedure.html
For examples, see the useful site
www.ats.ucla.edu/stat/sudaan/examples/default.htm

set up by the UCLA Statistical Computing Center.

SuperMiz

SuperMix, distributed by Scientific Software International, provides ML fitting of gen-
eralized linear mixed models, including count responses, nominal responses, and ordi-
nal responses using cumulative links including the cumulative logit, cumulative probit,
and cumulative complementary log-log. This program is based on software developed
over the years by Donald Hedeker and Robert Gibbons, who have also done consider-
able research on mixed models. For multilevel models, the program is supposed to be
much faster than PROC MIXED or PROC NLMIXED in SAS and make it possible to
fit relatively complex models using ML rather than approximations such as penalized
quasi likelihood (communication from Robert Gibbons). See

www.ssicentral.com/supermix/index.html

Other Software

For software for the Berger - Boos test and other small-sample unconditional tests for
2x2 tables, see

www.west.asu.edu/rlbergel/software.html

For a variety of permutation analyses for categorical and continuous variables,
including some multivariate analyses, using SAS macros constructed by Luigi Salmaso
and Fortunato Pesarin and others at the University of Padova, see

homes.stat.unipd.it/pesarin/software.html

Robert Newcombe at the University of Wales in Cardiff provides an Excel spread-
sheet for forming various confidence intervals for a proportion and for comparing two
proportions with independent or with matched samples. His website also has SPSS
and Minitab macros for doing this. See

medicine.cf.ac.uk/en/research/research-groups/clinical-epidemiology/resources/

70


www.rti.org/sudaan/onlinehelp/sudaanMULTILOG_Procedure.html
www.ats.ucla.edu/stat/sudaan/examples/default.htm
www.ssicentral.com/supermix/index.html
www.west.asu.edu/rlberge1/software.html
homes.stat.unipd.it/pesarin/software.html
medicine.cf.ac.uk/en/research/research-groups/clinical-epidemiology/resources/

