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We survey effect measures for models for ordinal cate-

gorical data that can be simpler to interpret than the

model parameters. For describing the effect of an

explanatory variable while adjusting for other explana-

tory variables, we present probability‐based measures,

including a measure of relative size and partial effect

measures based on instantaneous rates of change. We

also discuss summary measures of predictive power that

are analogs of R‐squared and multiple correlation for

quantitative response variables. We illustrate the mea-

sures for an example and provide R code for

implementing them.
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1 | INTRODUCTION

Popularmodels for ordinal categorical response variables, such asmodels that apply link functions
to cumulative probabilities, are generalized linear models that employ nonlinear link functions.
As a consequence of the nonlinearity, model parameters are not as simple to interpret as slopes
and correlations for ordinary linear regression. The model effect parameters relate to measures,
such as odds ratios and probits, that may not be easily understood or can even be misinterpreted
by non‐quantitatively oriented methodologists, see, for example, Schwartz et al. (1999).

This article surveys simpler ways to interpret the effects of an explanatory variable and to
summarize the model's predictive power. In Section 2, we present alternative summaries of
the effect of an explanatory variable while adjusting for other explanatory variables in the model.
These include simple comparisons of the probability of extreme‐response outcomes at extreme
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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2 AGRESTI AND TARANTOLA
values of an explanatory variable, measures of average rates of change of the extreme‐response
probabilities, and group comparisons that result directly from latent variable models that induce
standard ordinal models. In Section 3, we present measures of predictive power. Of the various
measures that have been proposed, no one has achieved the popularity of R2 or the multiple cor-
relation for ordinary linear models. A straightforward approach uses R2 and multiple correlation
measures that closely resemble those for ordinary linear models, such as those estimated for a
corresponding latent variable linear model. We propose an alternative measure that seems to
relate naturally to ordinal models for cumulative probabilities of the response variable.

We illustrate existing and proposed ordinal effect measures with an example and provide R
code for the analyses. The example uses data from a study of mental health (Agresti, 2015,
section 6.3.3). The model relates a four‐category ordinal response variable measuring mental
impairment (1 = well, 2 = mild symptom formation, 3 = moderate symptom formation, and 4
= impaired) to a binary indicator of socioeconomic status (SES, 1 = high, 0 = low) and a quan-
titative life‐events (LE) index that is a numerical composite measure of the number and severity
of important life events such as birth of child, new job, divorce, or death in family that occurred
to the subject within the past 3 years. The LE index takes values on the nonnegative integers
between 0 and 9, with mean 4.3 and standard deviation 2.7. The n = 40 observations are
available at www.stat.ufl.edu/~aa/glm/data.
2 | ORDINAL EFFECT MEASURES FOR INDIVIDUAL
EXPLANATORY VARIABLES

For an ordinal response variable ywith c categories, we consider models in which the explanatory
variables may be a mixture of quantitative and categorical variables. We denote explanatory vari-
able values by x= (x1,…, xp)

T. In describing ways of summarizing effects for a categorical explana-
tory variable, we refer also to a separate indicator variable z that distinguishes between two groups.

Currently, the most popular ordinal models are special cases of the cumulative link model

link½Pðy ≤ jÞ� ¼ αj−βz−β1x1− ⋯−βpxp; j ¼ 1; ⋯; c− 1; (1)

for link functions such as the logit and probit. The nonlinear link function naturally produces
effects on the link scale. For example, for cumulative logit models, −β is the difference between
logits of cumulative probabilities when z=1 and when z=0, and −β1 is the change in the
cumulative logit per each 1‐unit increase in x1, adjusting for the other explanatory variables. This
leads to odds ratios as natural effect measures. For instance, adjusting for the other variables,
expðβ1Þ is a multiplicative effect of each 1‐unit increase in x1 on the cumulative odds of response
> j versus ≤ j, for each j, and expðβÞ is the common cumulative odds ratio for comparing the
groups with z=0 and z=1.

Such effect measures are not easy to interpret by scientists who need to understand the
effects in more real‐world terms. In addition, with nonlinear link functions, effects often behave
in a way that is counterintuitive to those mainly familiar with ordinary linear models. For
example, if an explanatory variable x′ uncorrelated with x1 is added to the model, the partial
effect of x1 is typically different than in the model without x′. For categorical variables, the effect
remains the same when x1 and x′ are conditionally independent given y rather than marginally
independent; for example, see Agresti (2013, pp. 53–54, 379–380). By contrast, the partial effect
would be identical in an ordinary linear model.

www.stat.ufl.edu/~aa/glm/data
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We next describe three types of interpretation that supplement estimated model parameter
effects with simpler effects reported on the probability scale rather than on the scale of the link
function. Such effects are easier to understand and are typically more stable. The summary
measures discussed in this paper are intended for cases in which an explanatory variable has a
monotone effect, such as when it is a main effect term in Model (1). When an effect is U‐shaped,
for example, these summary measures are insufficient and potentially misleading.
2.1 | Extreme‐category range‐based probability summaries

In practice with ordinal responses, special interest often focuses on the highest and lowest
response categories, the most extreme outcomes. Those categories often represent a noteworthy
state, such as the best or worst outcome (e.g., complete recovery vs. death). It is informative to
report how probabilities in these extreme categories, P( y = 1) and P( y = c), change as
explanatory variables change. As any explanatory variable xk increases, cumulative link models
that contain solely main effects imply monotonicity in the extreme‐category probabilities but not
in the other probabilities.

To summarize the effect of xk on y, it can be useful to report the difference between the
model‐fitted estimate of P( y = 1) and/or P( y = c), at the maximum and minimum values of
xk, when other explanatory variables are set at particular values such as their means. For a binary
variable z, this is a comparison of the two groups on the extreme‐category probabilities. For a
continuous explanatory variable, a caveat for such measures is that their relevance depends on
the plausibility of xk taking extreme values when all other explanatory variables fall at their
means. Also, this summary can be misleading when outliers exist on xk, in which case one can
instead report the estimated probabilities at more resistant quartiles. Reporting them at the
upper and lower quartiles of xk summarizes the change in P( y = 1) and/or P( y = c) for the mid-
dle half of the observations on xk.
2.2 | Marginal effect measures

A second type of simple summary uses the rate of change in the probability of an extreme
response category, as a function of xk. We explain versions of such effects in terms of the
cumulative link Model (1) for P( y ≤ j), which generates effects for the extreme‐category proba-
bility P( y = 1) and also for P( y = c) by reversing the response scale. For this, we express the
cumulative link model as

F−1 Pðy ≤ jÞ½ � ¼ αj − βz − xTβ; j ¼ 1; …; c − 1; (2)

where F−1 is the inverse of a standard cumulative distribution function (cdf), x is a column
vector of explanatory variable values (excluding z), and β is a column vector of parameters for
x. Let f (y) = ∂F(y)/∂y, which is the standard normal probability density function for probit models
and the standard logistic probability density function for logistic models. As a function of a
particular explanatory variable, the response curve for P( y= 1) (or for P( y= c)) looks like the curve
for the corresponding binary‐responsemodel with the same link function. So for these probabilities,
one can directly implement rate‐of‐change effect measures for binary‐response models.

We first construct the effect for a quantitative explanatory variable. The rate of change in
P( y = 1) at a particular value of xk, when other explanatory variables are fixed at certain values
x∗, is the partial derivative of P( y = 1) with respect to xk,
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∂Pðy ¼ 1jx ¼ x∗Þ=∂xk:

Many sources, such as Greene (2008) and Long and Freese (2014), refer to such an instantaneous
effect as a marginal effect. This terminology is a bit misleading, as this partial derivative refers to
a conditional effect of xk rather than its marginal effect, collapsing over the other explanatory
variables. Some authors (e.g., Long, 1997) instead use the term partial effect. Because the
“marginal effect” terminology seems to be much more common, especially in relevant software
that we later discuss, we will use it in this article. For the cumulative link model, the marginal
effect of xk on P( y ≤ j), and hence on P( y = 1), is − f ðαj− βz−xTβÞβk. The marginal effect of xk
on P( y = c) is f ðαj− βz− xTβÞβk.

Any particular way of fixing values of the explanatory variables has its corresponding mar-
ginal effect value for xk. For the logit link, such an effect for xk on P( y = 1) has the expression

∂Pðy ¼ 1jx ¼ x∗Þ=∂xk ¼ βkPðy ¼ 1jx ¼ x∗Þ½1−Pðy ¼ 1jx ¼ x∗Þ�:

This takes values bounded above by its highest value of βk/4 that occurswhenP( y=1|x= x∗)= 1/2.

For cumulative probit models, the highest value of this instantaneous change is βk=
ffiffiffiffiffiffi
2π

p
, also

when P( y= 1|x= x∗) = 1/2. Thesemaximum values need not be relevant, as P( y= 1) and P( y= c)
need not be near 1/2 for most or all the data. Freese (2014, pp. 242–246) summarized alternative
versions of the marginal effect. The average marginal effect (AME), finds the marginal effect of
xk at each of the n sample values of the explanatory variables, and then averages them.
Alternatively, one could compute the marginal effect with every explanatory variable, including
xk, set at its mean. This is called the marginal effect at the mean (MEM). The marginal effect at
representative values (MER) is obtained by setting all explanatory variables at values considered
to be of particular interest. For instance, when we focus on the effect of xk but a group variable z
is especially relevant, we could find MER for subgroups; for example, find the marginal effect
for xk (a) when z = 1 and the explanatory variables are at their means for that group and (b) when
z = 0 and the explanatory variables are at their means for that group.

Although our focus for ordinal responses is on the extreme categories, the various marginal
effects can be formed for any outcome category. For a categorical explanatory variable, for each
version, one would instead use a discrete change, finding the change in P(Y = 1) (or P( y = c)) for
a change in an indicator variable, holding all the other variables constant. For instance, for the n
sample observations on x, one could find the difference between P( y = 1) when z = 1 and when
z = 0, and average the obtained values. Likewise, one could find the difference between P(y = 1)
when z = 1 and when z = 0, with other explanatory variables set at their means or at
representativevalues.

Long and Freese (2014, pp. 244–246) discussed factors to consider in selecting one of these
measures. Overall, they recommended AME as the best summary because it averages the effects
across all cases observed in the sample and thus can be interpreted as the sample average size of
the marginal effect. Greene (2008, pp. 775–785) showed how to obtain standard errors for the
maximum likelihood estimators of marginal effect measures. Mood (2010) pointed out that the
AME has behavior reminiscent of effects in ordinary linear models, in the sense that it is roughly
stable when we add an explanatory variable to the model that is uncorrelated with the variable
for which we are describing the effect. This behavior does not occur for the MEM or MER or the
log odds ratio. See also Long (1997, pp.71–77), Long and Freese (2014, pp. 341–351), and Sun
(2015, pp. 527–531) for discussion of the various marginal effect measures.
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2.3 | A probability summary for ordered comparison of groups

Wenext present an alternativeway to summarize the effect of a categorical explanatory variable on
an ordinal response y, suggested byAgresti andKateri (2017) and developed in amore general con-
text by Thas et al. (2012). We discuss this in the context of comparing two groups (z= 0 and z= 1).

It is often sensible to regard an ordinal categorical variable as crude measurement of an
underlying continuous latent variable y∗ that, if we could observe it, would be the response
variable in an ordinary linear model. In fact, Anderson and Philips (1981) showed that the
cumulative link Model (2) is implied by a model in which a latent response has conditional
distribution with standard cdf given by the inverse of the link function. Let y∗1 and y∗2 denote
independent underlying latent variables for the ordinal categorical response, representing the
underlying distributions when z=1 andwhen z=0, respectively. At a particular setting x for other
explanatory variables, Pðy∗1 > y∗2jxÞ is a summary measure of relative size. This measure is most
meaningful when the groups are stochastically ordered, such aswhen they differ by a location shift
on some scale, and it is sometimes referred to as a measure of stochastic superiority.

The normal latent variable model with y∗∼N(βz + β1x1 +⋯ + βp xp,1) implies the cumulative
probit model

Φ−1½Pðy ≤ jÞ� ¼ αj − βz − β1x1 − ⋯ −βpxp;

with {αj} being cutpoints on the underlying scale and Φ being the standard normal cdf. For this
model,

Pðy∗1 > y∗2jxÞ ¼ P
ðy∗1 − y∗2Þ − βffiffiffi

2
p >

−βffiffiffi
2

p
� �

¼ Φ
βffiffiffi
2

p
� �

: (3)

This is true regardless of the x value, so we simplify the notation to Pðy∗1 > y∗2Þ. For the logit
link, Agresti and Kateri (2017) showed that

Pðy∗1 > y∗2Þ ≈
expðβ= ffiffiffi

2
p Þ

½1þ expðβ= ffiffiffi
2

p Þ�; (4)

for the β coefficient of z in the cumulative logit model. For a log‐log link, which is relevant when
we expect underlying latent variables to have extreme‐value distributions, Agresti and Kateri
noted that

Pðy∗1 > y∗2Þ ¼
expðβÞ

½1þ expðβÞ�;

for the β coefficient of z in the cumulative link model with log‐log link. Ordinary confidence inter-
vals for the βmodel parameter induce confidence intervals for the stochastic superiority measure.

Agresti and Kateri suggested that many practitioners can more easily interpret Pðy∗1 > y∗2Þ
than parameters such as odds ratios and differences in probits that naturally result in cumulative
link models. They also proposed related measures for the observed y scale that need not relate to
latent variables.

The ordinal effect measures presented in this section extend directly to summary comparisons
of multiple groups, based on more general models that have multiple indicator variables for the
groups. For example, suppose a cumulative probit model contains terms β(a)za + β(b)zb in the
linear predictor for groups a and b, where zj = 1 for observations from group j and zj = 0

otherwise. Then, an analog of (3) for comparing those groups is Φ½ðβðaÞ−βðbÞÞ= ffiffiffi
2

p �.
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Such probability measures also generalize for some more complex models, such as the
cumulative link mixed model that has a subject‐specific random intercept. If a group comparison

β refers to a within‐subject effect, then with the probit link, Pðy∗1 > y∗2Þ ¼ Φðβ= ffiffiffi
2

p Þ, with the
corresponding approximation for the logit link.
2.4 | Example: Effect measures for individual explanatory variables

We now illustrate the effect measures for the data from the study of mental health mentioned in
the Section 1. Different packages in R permit fitting cumulative link models, but none of them
implement many of the measures we have described. Separate functions are available for some
measures, and we developed new functions based on existing ones. For fitting cumulative link
models, we used the polr function of the R–package MASS. We illustrate with the cumulative
logit model implied by the logistic latent variable linear model. For the data set on mental
health, the maximum likelihood fit for modeling y (mental impairment) is

logit½P̂ðy ≤ jÞ� ¼ bαj þ 1:111ðSESÞ−0:319ðLEÞ:

Table 1 shows model fitting and results, with edited output.
For a quantitative variable, such as LE in the mental impairment data set, we can report the

change in an extreme‐category probability over its range, at the means of other explanatory
variables or at particular categories of qualitative explanatory variables. Table 2 shows how to
obtain the estimated changes when LE changes from its minimum to its maximum value,
separately for low SES and high SES subjects. For either SES group, as LE increases, the
probability decreases substantially for the well category (by 0.389 for low SES and by 0.581 for
high SES) and increases substantially for the impaired category (by 0.560 for low SES and by
0.354 for high SES). These changes characterize in a simple manner the very strong effect of
TABLE 1 R code and output (edited) for the cumulative logit model fitted to the mental impairment data



TABLE 2 R code and output (edited) for extreme‐category probability changes in cumulative logit model for

mental impairment

Note. The changes compare the maximum and minimum life events values, at low SES and at high SES, and compare low and
high SES at the mean for life events. SES = socioeconomic status; LE = life‐events.

AGRESTI AND TARANTOLA 7
LE on mental impairment. Table 2 also shows the estimated changes between the SES levels, at
the mean of LE, which is a discrete‐change version of the MEM. For high SES compared with
low SES at the mean of LE, the estimated probability is 0.208 higher for the well category and
0.176 lower for the impaired category.

We next consider marginal effects. The R–package erer of Sun (2016) has a function ocME that
supplies marginal effects at the mean, using output from the polr function. Table 3 shows results,
focusing again on the extreme response categories. At themean of LE, the rate of change in the esti-
mated probability per unit change in LE is−0.062 for the well outcome and 0.049 for the impaired
outcome. For categorical explanatory variables, it reports the discrete change.When SES increases
from 0 to 1 at the mean of LE, the estimated probability of thewell outcome increases by 0.208 and
the estimated probability of the impaired outcome decreases by 0.176. These are the same mea-
sures we just found and reported at the bottom of Table 2. The ocME function employs only logit
and probit link functions. An extension of it (called ocMEM) that handles also log‐log and comple-
mentary log‐log link functions is available from the authors and at the Supporting Information
available at www.stat.ufl.edu/~aa/articles/agresti_tarantola_appendix.pdf.

The erer package does not report AMEs, so we constructed a function called ocAME based
on the ocME function that handles also log‐log and complementary log‐log link functions. The

www.stat.ufl.edu/~aa/articles/agresti_tarantola_appendix.pdf


TABLE 3 R code and output (edited) for marginal effect at the mean and average marginal effect for the

cumulative logit model fitted to the mental impairment data

8 AGRESTI AND TARANTOLA
function, available at the online site just mentioned, uses the discrete‐change version when an
explanatory variable is categorical. Table 3 also shows results of applying this function, for the
extreme categories. At the 40 observed values for LE and SES, the rate of change in the estimated
probability per unit change in LE averages to −0.057 for the well outcome and to 0.048 for the
impaired outcome. At the 40 observed values for LE, when SES increases from 0 to 1, the
estimated probability of the well outcome increases by an average of 0.198 and the estimated
probability of the impaired outcome decreases by an average of 0.171.

Finally, we estimate the ordinal comparison measure introduced in Section 2.3, by compar-
ing the SES groups while adjusting for LE. An exact estimate using Formula 3 follows directly
from the SES effect estimate in the cumulative probit model. Table 4 shows its value of 0.314
and its 95% profile likelihood confidence interval. For the cumulative logit model, we can use
the approximate Formula 4, which gives a similar result (here, 0.313) because of the similarity
of logit and probit link functions. So the estimated probability is 0.31 that mental impairment
is worse at high SES than at low SES, adjusting for the LE index.
3 | SUMMARY MEASURES OF PREDICTIVE POWER

Next, we discuss ways to summarize how well we can predict y using the fit of the chosen ordinal
model, as described by the explanatory power of the explanatory variables. Such measures can be
useful for comparing different models, such as to see whether it helps substantively to add an
interaction term. A model that is more complex than a working model need not provide much
more explanatory power, regardless of whether its extra terms are statistically significant. Here,
by explanatory power, we mean something distinct from goodness of fit. A model may fit a par-
ticular data set very well even if the explanatory power that the model provides is small.



TABLE 4 R code and output for stochastic superiority comparison of SES groups, using cumulative probit and

logit models fitted to the mental impairment data

Note. SES = socioeconomic status.
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3.1 | Concordance index

The concordance index (Harrell et al. 1996, section 5.5) is a measure of predictive power that
strictly uses ordinality and is natural for models that imply stochastic orderings at various set-
tings of the explanatory variables. Consider all pairs of observations that have different outcomes
on y. The concordance index estimates the probability that the predictions and the outcomes are
concordant, that is, that the observation with the larger y‐value also has a stochastically higher
set of model‐fitted probabilities. For cumulative link models, the stochastic ordering of the
model‐fitted probabilities is identical to the ordering of linear predictor values without the
intercept. Of those pairs that are untied on y but tied on the linear predictor, half are treated
as concordant and half as discordant, so that the concordance index has a null value of 1/2.
The higher the value above 1/2, the better the predictive power.

The concordance index is a linear transformation to the [0, 1] scale of a version of the ordinal
measure of association called Somers' d. That measure, which falls on the [−1, 1] scale, is the
difference between the proportions of concordant and discordant pairs out of those pairs that
are untied on y. That is, for marginal response counts nj, j = 1,… ,c, with n = ∑jnj and C
concordant pairs and D discordant pairs, this version of the Somers measure is

d ¼ C−D
nðn−1Þ

2
−Ty

� �;

where Ty =∑ j nj(nj − 1)/2 denotes the number of pairs that are tied on y. The concordance index
equals (d+1)/2.

Appealing features of the concordance index are its simple structure and its generality of
potential application. Because it utilizes ranking information only, however, it cannot
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distinguish between different link functions or linear predictors that yield the same stochastic
orderings. With a single linear predictor in a cumulative link model, for instance, the concor-
dance index assumes the same value for logit and complementary log‐log link functions, even
though the model fits can be quite different.
3.2 | R‐squared type measures

An alternative approach to summarizing predictive power adapts standard measures for quanti-
tative response variables. For example, to mimic R2 for ordinary linear models, we could assign
ordered scores {vj} to the categories of y and find the proportional reduction in variance in com-
paring the marginal variation to the conditional variation (Agresti, 1986). That measure has the
disadvantage of requiring response scores, which cumulative link models do not require. A way
to construct a measure without assigning scores is to estimate R2 for the linear model for an
underlying latent response variable. McKelvey and Zavoina (1975) suggested this measure for
the cumulative probit model, for which the underlying latent variable model is the ordinary nor-
mal linear model. Let y∗i denote the value of the latent variable for subject i. The R

2 measure has
the usual proportional reduction in variation form

R2 ¼ ∑iðy∗i −�y∗Þ2−∑iðy∗i − ŷ∗i Þ2
∑iðy∗i −�y∗Þ2 ¼ ∑iðŷ∗i −�y∗Þ2

∑iðy∗i −�y∗Þ2:

This equals the estimated variance of ŷ∗ divided by the estimated variance of y∗. After fitting a
cumulative link model, we can estimate the variance of ŷ∗ by the variance of the linear predictor
ŷ∗ ¼ β̂z þ β̂1x1 þ ⋯þ β̂pxp without the intercepts. We cannot observe the latent variable or its

sample variance, but we can estimate that variance by the estimated variance of ŷ∗ plus the var-
iance of the latent variable distribution, which is 1 for the probit link and π2/3=3.29 for the logit
link (i.e., standard logistic distribution).

An alternative proportional‐reduction‐in‐variability approach uses a likelihood‐based mea-
sure such as was proposed for binary data by McFadden (2014). We can express this in terms
of deviance measures for the ungrouped data file. Denote the residual deviance by DM for the
working model fit and denote the null deviance (i.e., for the model containing only intercept
terms) by D0 . Denote the corresponding maximized log‐likelihood values by LM and L0. The
pseudo R‐squared measure

D0−DM

D0
¼ 1−

LM
L0

;

equals 0 when the model provides no improvement in fit over the null model and it equals 1
when the model fits as well as the saturated model. A weakness of such a measure and related
ones based on the log‐likelihood is that the scale is not the same as for y. Interpreting the numer-
ical value is difficult, other than in a comparative sense for different models.

For surveys of R2 type measures in various contexts (but mainly for binary responses), see
Liao and McGee (2003), Mittlböck and Schemper (1996), and Zheng and Agresti (2000).
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3.3 | Multiple correlation measures

Some statisticians prefer correlation measures over related R2 measures because of the appeal of
working on the original scale and its proportionality to the effect size. For example, for the ordi-
nary linear model, for fixed marginal standard deviations, doubling the slope also doubles the
correlation.

For ordinal modeling, we could estimate the multiple correlation for the underlying latent
variable model, using the square root of the McKelvey and Zavoina (1975) R2. As an alternative,
here, we propose an approach that does not require reference to a latent variable or assigning
arbitrary scores to y. We use as scores the average cumulative proportions for the marginal dis-
tribution of y because of their natural connection with cumulative link models. For sample mar-
ginal proportions {pj}, the average cumulative proportion in category j is

vj ¼ ∑
j−1

k¼1
pk þ

1
2

� �
pj; j ¼ 1; 2; …; c:

Such scores, which are linearly related to the midranks {rj} by

rj ¼ nvj þ 0:5; vj ¼ ðrj−0:5Þ=n;

are sometimes referred to as ridits. See Agresti (2010, section 2.1) for discussion and examples of
their use. In particular, (a) they satisfy ∑c

j¼1pjvj ¼ 0:50, (b) if two adjacent categories of y are

combined, then the ridit score for the new category falls between the original two scores, with
the other scores being unaffected, and (c) if the category ordering is reversed, the ridit score
for category j transforms from vj to (1−vj). With such scores, we construct the correlation for
the n sample observations between the observed outcome category score for a subject and the
estimated mean score generated by the model‐fitted probability values for the subject. With ridit
or midrank scores, this is a multiple correlation version of the Spearman correlation. Such scores
are especially natural for the cumulative logit model because McCullagh (1980) showed that the
components of the efficient score are cross‐products of the explanatory variables with the aver-
age rank for the response category. (For example, for comparing two groups with that model,
the score test is identical to the two‐sample Wilcoxon test.)

Yet another way to circumvent assigning scores is to treat them as parameters. For example,
one could estimate scores for the outcome categories for which the correlation is maximized
between them and the fitted mean score. This is a type of canonical correlation as a multiple cor-
relation. One could also consider the special case of this approach in which the parameter scores
are restricted to be monotone increasing.

Zheng and Agresti (2000) proposed a multiple correlation measure for generalized linear
models. For its application to binary regression models, they found that a jackknife estimate is
less biased. It would be of interest to study whether this is also true for ordinal versions of the
measure such as the rank‐based measure just proposed.
3.4 | Example: Measures of predictive power

We now illustrate the measures of predictive power for the data from the study of mental health.
The concordance index can be easily obtained in R using an R package that has a function for
Somers' d, as shown in Table 5. The command logit.m$lp provides the fitted values of the linear
predictor without the intercepts. For the cumulative logit model, we estimate that for 70.5% of



TABLE 5 R code and output (edited) for concordance index for cumulative logit model with mental impair-

ment data

12 AGRESTI AND TARANTOLA
the untied pairs on mental impairment, the observation with the higher mental impairment also
had a stochastically higher estimated distribution.

Table 6 shows how to find various R2 measures. The McFadden pseudo R2 measure is easily
calculated using deviances or maximized log‐likelihoods. The deviance for the model is 9.1%
smaller than for the null model. For the logistic latent variable model, the multiple correlation
is 0.473, with R2 = 0.224. We estimate that for the underlying continuous measure of mental
impairment, the conditional variability (given LE and SES) is 22.4% less than the marginal
variability. For the 40 observations, with ridit scores (which are 0.15, 0.45, 0.6875, 0.8875), the
multiple correlation is 0.479 and R2 = 0.230. The R2 values with the latent variable model and
TABLE 6 R code and output (edited) for R2 and multiple correlation measures for cumulative logit model with

mental impairment data
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with ridit scores are similar and seem to be more realistic summaries of predictive power for
these data than the pseudo R2 of 0.091 provides.
4 | EXTENSIONS TO OTHER GENERALIZED LINEAR
MODELS

The focus of this paper has been ordinal response variables. The same issues arise for other types
of response variables and model structures. For instance, one could develop alternative effect
measures and measures of predictive power for nominal‐scale variables and for marginal models
and random‐effects models.

The measures discussed in this paper extend also to more general ordinal‐response models
than those having linear predictors, such as generalized additive models for ordinal responses
and their extensions with random effects, see, for example, Yee and Wild (1996) and
Wood et al. (2016). Readers who find it challenging to understand cumulative link models and
their corresponding summary measures such as odds ratios undoubtedly find such generalized
models even more demanding. When effects are monotone, simple summaries such as changes
over the range in estimated ordinal extreme‐category probabilities could be useful to help less
quantitatively sophisticated readers understand the substantive importance of the effects, and
they can be presented with the model summaries (e.g., as done by Wood, 2016) with a graphic
in their example on prostate cancer). Interesting challenges for research statisticians are
abundant for such models, such as obtaining confidence intervals for some of the summary
measures that can be applied with such models, such as Pðy∗1 > y∗2jxÞ and differences of
extreme‐category probabilities for comparing two groups.

In addition, there is scope to develop simple summary measures for alternative generalized
linear models that employ nonlinear link functions and may have nontrivial interpretations.
For example, the measure P(y1>y2 ;x) could, in principle, be used with models for any
quantitative response, such as for comparing groups in gamma‐regression models for positive
responses and in standard survival models for continuous responses, such as proportional
hazards models. With the usual adjustment for ties, they could also be used with Poisson,
negative binomial, and zero‐inflated models for count‐data responses. It is of interest to consider
such cases and investigate whether the value of the measure is still relatively unaffected by the
values of the explanatory variables.

Finally, although our focus has been on simple ways of describing effects, of course, other
measures are still highly relevant in any model‐building process. An example is Akaike
information criterion, useful for comparing models in terms of estimating which is likely to give
fitted values closest to the underlying probabilities or means.
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