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Approximate is Better than “Exact” for Interval Estimation

Alan AGRESTI and Brent A. COULL

For interval estimation of a proportion, coverage probabil-
ities tend to be too large for “exact” confidence intervals
based on inverting the binomial test and too small for the
interval based on inverting the Wald large-sample normal
test (i.e., sample proportion =+ z-score x estimated standard
error). Wilson’s suggestion of inverting the related score
test with null rather than estimated standard error yields
coverage probabilities close to nominal confidence levels,
even for very small sample sizes. The 95% score interval
has similar behavior as the adjusted Wald interval obtained
after adding two “successes” and two “failures” to the sam-
ple. In elementary courses, with the score and adjusted Wald
methods it is unnecessary to provide students with awkward
sample size guidelines.

KEY WORDS: Confidence interval, Discrete distribu-
tion; Exact inference; Poisson distribution; Small sample;
Score test.

1. INTRODUCTION

One of the most basic analyses in statistical inference is
forming a confidence interval for a binomial parameter p.
Let X denote a binomial variate for sample size n, and let
p = X/n denote the sample proportion. Most introductory
statistics textbooks present the confidence interval based
on the asymptotic normality of the sample proportion and
estimating the standard error. This 100(1 — )% confidence
interval for p is

P+ za/2vP(1 - P)/n, (1)

where z. denotes the 1 — ¢ quantile of the standard normal
distribution. This is called the Wald confidence interval for
p, since it results from inverting the Wald test for p; that is,
the interval is the set of pg values having P value exceeding
a in testing Hy : p = po against H, : p # po using the
test statistic z = (p — po)/~+/P(1 — p)/n. Historically, this
is surely one of the first confidence intervals proposed for
any parameter (see, e.g., Laplace 1812, p. 283).

To avoid approximation, most advanced statistics text-
books recommend the Clopper—Pearson (1934) “exact” con-
fidence interval for p, based on inverting equal-tailed bino-
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of Binomial Proportions

mial tests of Hy : p = pp. It has endpoints that are the
solutions in pg to the equations

> ( Z )plg(l —po)"* = a/2
k=z
and

g (%)== a2

except that the lower bound is O when = = 0 and the upper
bound is 1 when z = n. This interval estimator is guar-
anteed to have coverage probability of at least 1 — o for
every possible value of p. When =z = 1,2,...,n — 1, the
confidence interval equals

n—x+1

-1
£UF‘Q:D,2(77,—00+1),1—04/2 :|

1+

-1
n—x

sPs {1 - (T + 1) Faz41) 2(n—2),0/2
where F, ;. denotes the 1 — ¢ quantile from the F' distri-
bution with degrees of freedom a and b. Equivalently, the
lower endpoint is the «/2 quantile of a beta distribution
with parameters x and n — z + 1, and the upper endpoint is
the 1 — «/2 quantile of a beta distribution with parameters
z+1 and n—z. Letters to the editor from J. Klotz and from
L. Leemis and K. S. Trivedi in the November 1996 issue of
this journal (p. 389) showed how simple it is to calculate
this interval using Minitab or S-Plus.

A considerable literature exists about these and other,
less common, methods of forming confidence intervals for
p. Santner and Duffy (1989, pp. 33-43) and Vollset (1993)
reviewed a variety of methods. It has been known for some
time that the Wald interval performs poorly unless n is
quite large (e.g., Ghosh 1979, Blyth and Still 1983). The
Clopper—Pearson exact interval is typically treated as the
“gold standard” (e.g., Bohning 1994; Leemis and Trivedi
1996; Jovanovic and Levy 1997; and most mathematical
statistics texts). However, this procedure is necessarily con-
servative, because of the discreteness of the binomial distri-
bution (Neyman 1935), just as the corresponding exact test
(without supplementary randomization on the boundary of
the critical region) is conservative. For any fixed parameter
value, the actual coverage probability can be much larger
than the nominal confidence level unless n is quite large,
and we believe it is inappropriate to treat this approach as
optimal for statistical practice.

A compromise solution is the confidence interval based
on inverting the approximately normal test that uses the
null, rather than estimated, standard error; that is, its

The American Statistician, May 1998 Vol. 52, No. 2 119



endpoints are the pg solutions to the equations (p —
p0)/v/Po(1 —po)/n = £24/9. This confidence interval, ap-
parently first discussed by Edwin B. Wilson (1927), has the
form

(54 2222 B =51+ 2 Al ) 1+ 22 /)
(2)

This inversion of what is the score test for p is called the
score confidence interval. (Score tests, and in particular
their standard errors, are based on the log likelihood at the
null hypothesis value of the parameter, whereas Wald tests
are based on the log likelihood at the maximum likelihood
estimate; see, e.g., Agresti 1996, pp. 88-95.) This article
shows that the score confidence interval tends to perform
much better than the exact or Wald intervals in terms of
having coverage probabilities close to the nominal confi-
dence level. It can be recommended for use with nearly all
sample sizes and parameter values. In addition, we show
that a simple adaptation of the Wald interval also performs
well even for small samples.

At first glance, the score confidence interval formula
seems awkward to interpret, compared to (1). Letting z =
Z4/2, however, the midpoint of this interval is the weighted

‘average
N n N 1 22
P\q + 22 2\n+22)’

which falls between p and 1/2, with the weight given to
p approaching 1 asymptotically. This midpoint shrinks the
sample proportion towards .5, the shrinking being less se-
vere as n increases. The coefficient of z in the term that
is added to and subtracted from this midpoint to form the
score confidence interval has square equal to

ool O

This has the form of a weighted average of the variance
of a sample proportion when p = p and the variance of a
sample proportion when p = 1/2, using n + 22 in place of
the usual sample size n.

2. COMPARING ACTUAL COVERAGE
PROBABILITIES TO NOMINAL
CONFIDENCE LEVELS

For a fixed value of a parameter, the actual coverage prob-
ability of an interval estimator is the (a priori) probability
that the interval contains that value. In many cases, such
as with discrete distributions, this varies according to the
parameter value. In statistical theory, the confidence coeffi-
cient is defined to be the infimum of such coverage proba-
bilities for all possible values of that parameter. Most practi-
tioners, however, probably interpret confidence coefficients
in terms of “average performance” rather than “worst pos-
sible performance.” Thus, a possibly more relevant descrip-
tion of performance is the long-run percentage of times that
the procedure is correct when it is used repeatedly for a va-
riety of data sets in various problems with possibly different
parameter values.

For any confidence interval procedure for estimating p,
the actual coverage probability at a fixed value of p is

Calp) = " 1(h,) (’,;‘)m —pn*,
k=0

where I(k, p) equals 1 if the interval contains p when X = k
and equals O if it does not contain p. We summarize this,
using the alternative description of performance, by aver-
aging over the possible values that p can take. We obtained
results C,, = fol Cn(p)g(p)dp for three beta densities g(p)
for this averaging: (1) the uniform distribution (mean = .50,
std. dev. = 1/4/12 = .29); (2) bell-shaped with values rel-
atively near the middle (mean = .50, std. dev. = .10); (3)
skewed with values relatively near 0 (mean = .10, std. dev.
= .05) or, by symmetry, near 1. Due to space considerations,
we report results here mainly for the first case, but similar
results occurred in the other two cases. Though this eval-
uation may suggest a Bayesian approach to inference, we
restrict attention in this article to comparing the three stan-
dard methods decribed previously, in which the user makes
no assumption about such a distribution for p.

Table 1 shows the mean of the actual coverage probabili-
ties for the uniform averaging of the parameter values (i.e.,
C, with g(p) =1, 0 < p < 1) at various sample sizes, for
nominal 95% Wald, score, and exact confidence intervals
(the three other methods listed in that table are discussed

Table 1. Mean Coverage Probabilities of Nominal 95% Confidence Intervals for the Binomial Parameter p, with Root Mean
Square Errors in Parentheses, for Sampling p from a Uniform Distribution

Method n=25 n=15 n= 30 n =50 n= 100
Exact .990 .980 .973 .969 .965
(.041) (.031) (.026) (.022) (.017)

Score .955 .953 .952 .952 .951
(.029) (.019) (.014) (.012) (.008)

Wald .641 .819 .875 .901 .922
(.400) (.238) (.170) (.133) (.094)

Wald with ¢ .664 .837 .886 .905 .926
(.391) (.233) (.167) (.131) (.093)

Mid-P .978 .964 .958 .955 .953
(.033) (.021) (.017) (.013) (.010)

Continuity-corrected .987 979 973 .969 .965
Score (.039) (.030) (.025) (.021) (.016)
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in Section 4). The mean actual coverage probabilities for
the Wald interval tend to be much too small. On the other
hand, the exact interval is very conservative. For instance,
for this method, C,, = .990 when n = 5, .980 when n =
15, and .973 when n = 30. By contrast, C,, for the score
method is close to the nominal confidence level, even for n
= 5 where it is .955. Figure 1, which plots C,, as a function
of n for the three interval estimators with the uniform and
skewed beta weightings, illustrates their performance. Sim-
ilar results were obtained with the bell-shaped weighting
and using .90 nominal confidence coefficient, but are not
reported here.

To describe how far actual coverage probabilities typi-
cally fall from the nominal confidence level, Table 1 also

reports \/ fol(Cn(p) —.95)2dp, the uniform-weighted root
mean squared error of those probabilities about that confi-
dence level. These values indicate that the variability about
the nominal level is much smaller for the score confidence
interval than for the Wald or exact confidence intervals. The
improved performance of the score method relative to the
Wald method is no surprise and simply adds to other evi-
dence of this type accumulated over the years (e.g., Ghosh
1979; Vollset 1993). Some readers, though, may be sur-
prised at just how much better the score method does than
the exact method. The exact interval remains quite conser-
vative even for moderately large sample sizes when p tends
to be near O or 1. The Wald interval is also especially inad-
equate when p is near O or 1, partly a consequence of using
p as its midpoint when the binomial distribution is highly
skewed.

Even though the score intervals tend to have consider-
ably higher actual coverage probabilities than the Wald in-
tervals, they are not necessarily wider. In fact, unless the
sample proportions fall near O or 1, they are shorter. Di-

Coverage Probability

1.0 7

o om

o m
éom
»mm

Hm
£ om
pm
m

09 1 wowo v
0.8
0.7 7
0.6 7
05 7

0.4 7

100

(a)

rect comparison of the formulas for the two interval widths
yields that the score interval is narrower than the Wald
interval whenever p falls within \/(n + 22)/(8n + 422) of
1/2. In particular, since this term decreases in the limit to-
ward 1/4/8 = .35 as n increases or |z| decreases, the score
interval is narrower than the Wald interval whenever p falls
in (.15, .85) for any n and any nominal confidence level.
See Ghosh (1979) for additional results about the relative
lengths of the two types of interval. This comparison has
limited relevance, since the actual coverage probabilities of
the two methods differ. We mention this, however, to stress
that the inadequacy of the Wald approach is not that the
intervals are too short.

For fixed n and p, the expected width of an interval es-
timator is a useful measure of its performance. Figure 2
illustrates the relative sizes of the expected widths for the
nominal 95% Wald, score, and exact intervals by plotting
them as a function of p, for n = 15. For small n, the score
intervals tend to be much shorter than exact intervals. The
narrowness of the Wald intervals as p approaches 0 or 1
reflects the fact that when x = 0 or n, that interval is de-
generate at 0 or at 1. By contrast, when =z = 0, the score
interval is [0,2%/(n + 2%)] = [0, 3.84/(n + 3.84)] and the
exact interval is [0, 1 — (.025)'/™], which is approximately
[0, —log(.025)/n] = [0, 3.69/n]; the latter shows an exten-
sion of the “rule of 3/n” (Jovanovic and Levy 1997) from
the .95 upper confidence bound to .95 confidence limits.

Is anything sacrificed by using the score intervals? Well,
since they are not “exact,” they are not guaranteed to have
coverage probabilities uniformly bounded below by the
nominal confidence level, and their actual confidence co-
efficient (the infimum of such probabilities) is, in fact, well
below it. Vollset’s (1993) plots of the coverage probabilities
as a function of p, for various methods, are illuminating for
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Figure 1. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Exact (E), Score (S), and Wald (W) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with ;. = .10 and o = .05.
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Figure 2. A Comparison of Expected Widths for the Nominal 95%
Exact, Wald, and Score Intervals When n = 15.

describing the behavior of the methods. The score method
has two very narrow regions of values for p, one near 0 and
one near 1, at which the actual coverage probability falls
seriously below the nominal confidence level, and this badly
affects the actual confidence coefficient. These regions get
closer to 0 and to 1 as n increases. For n = 10 with nominal
95% confidence intervals, for instance, there is a minimum
coverage of .835 at p = .018 and p = .982, whereas at n =
100, there is a minimum coverage of .838 at p = .002 and
p = .998.

We now explain why this happens. There is a region
of values [0,7) for p that falls in the score confidence
interval only when X = 0. The upper bound r of this
region is the lower endpoint of the confidence interval
when X = 1, which for large n is approximately (1 +
2%/2 — 23/4+ 22/2)/n. The coverage probability just be-
low r is approximately P(X = 0) = [1 — (1 + 22/2 —
2VA+22/2) /)™ ~ exp{—(1 + 22/2 — /4 + 22/2)}. The
analogous remark applies for values of p near 1. This lim-
iting coverage probability is .800 for nominal 90% inter-
vals, .838 for 95% intervals, and .889 for 99% intervals.
See Huwang (1995) for related remarks. In particular, the
actual confidence level does not converge to the nominal
level as n increases.

Though this may seem problematic, the portion of the [0,
1] parameter space over which the actual coverage proba-

bility drops seriously below the nominal confidence level
is small. Table 2 illustrates. The proportion of the parame-
ter space for which the coverage probability of the nominal
95% score interval falls below .90 is no more than .01 when
n > 20. That table also shows that the proportion of param-
eter values for which the coverage probability is within .02
of .95 is much higher for the score than the exact interval.
In fact, the score coverage probability is closer than the ex-
act coverage probability to .95 over more than 90% of the
parameter space, for the sample sizes reported.

3. THE “ADD TWO SUCCESSES AND TWO
FAILURES” ADJUSTED WALD INTERVAL

The poor performance of the Wald interval is unfortu-
nate, since it is the simplest approach to present in elemen-
tary statistics courses. We strongly recommend that instruc-
tors present the score interval instead. Santner (1998) makes
the same recommendation. Of course, many instructors will
hesitate to present a formula such as (2) in elementary
courses. The shrinkage representation of the score approach
suggests, however, that for constructing 95% confidence in-
tervals (for which 2% = 1.96% ~ 4 and the midpoint of the
score interval is (X + 22/2)/(n + 2%) = (X +2)/(n + 4))
an instructor will not go far wrong in giving the following
advice: “Add two successes and two failures and then use
the Wald formula (1).” That is, this “adjusted Wald” interval
uses the usual simple formula presented in such courses, but
with (n + 4) trials and point estimate p = (X + 2)/(n + 4).

The midpoint of this interval, § = (X + 2)/(n + 4), is
nearly identical to the midpoint of the 95% score interval.
It is identical to the Bayes estimate (mean of the posterior
distribution) for the beta prior distribution with parame-
ters 2 and 2, which has mean .50 and standard deviation
.224 and which shrinks the sample proportion toward .50
somewhat more than does the uniform prior. This simple
adjustment to the ordinary Wald interval changes it from
highly liberal to slightly conservative, on the average, and
a bit more conservative than the score method. Figure 3 il-
lustrates, showing the mean actual coverage probability C,,
for the nominal 95% Wald and adjusted Wald intervals as a
function of n, for the uniform and skewed weightings of p.
The adjusted Wald confidence interval behaves surprisingly
well, even for very small sample sizes.

Figure 4 shows the actual coverage probabilities as a
function of p for the Wald, adjusted Wald, and Clopper—
Pearson exact intervals when n = 5 and n = 10. The im-

Table 2. Proportion of Parameter Space for which (a) Nominal 95% Score Interval has Actual Coverage Probability
Below .90; (b) Nominal 95% Score and Exact Intervals Have Actual Coverage Probabilities
Between .93 and .97, (c) Actual Coverage Probability is Closer to .95 for Score Interval than Exact Interval

Coverage Coverage closer
Score coverage .93-.97 to .95 for Score
n Prob. below .90 Score Exact than Exact

5 .042 463 .000 .944
10 .019 .608 .077 .963
20 .010 .792 .297 .925
30 .006 .882 .395 977
50 .003 .939 615 .961
100 .002 .968 .830 .961
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Figure 3. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Wald (W) and Adjusted Wald (A) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with . = .10 and o = .05.

provement of the adjusted Wald interval over the ordinary ing spikes with seriously low coverage near p = 0 and 1.
Wald interval is dramatic. The adjusted Wald interval also This is because this interval’s rather crude bounds contain
has the advantage, relative to the score interval, of not hav- 0 when X = 0 or 1 and contain 1 when X = n—1 or n. For
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Figure 4. A Comparison of Coverage Probabilities for the Nominal 95% Wald, Adjusted Wald, and Exact Intervals.
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instance, the minimum coverage probability for the nominal
95% adjusted Wald interval is .917 for n = 10 and never
falls below .92 for n > 10. The proportion of the parameter
space for which the actual coverage probability falls within
.02 of .95 is slightly less than reported in Table 2 for the
score interval, but the proportion of times its actual cov-
erage probability is closer to .95 than the exact interval is
still at least .94 for the sample sizes reported in that table.
See Chen (1990) for results about coverage properties of
related intervals using Bayes estimates as midpoints.

Introductory statistics textbooks have an awkward time
with sample size recommendations for the Wald inter-
val. Most simple recommendations tend to be inadequate
(Leemis and Trivedi 1996). Our results suggest that if one
tells students to add two successes and two failures be-
fore they form the Wald 95% interval, it is not necessary to
present such sample size rules, since the “add two successes
and two failures” confidence interval behaves adequately
for practical application for essentially any n regardless of
the value of p.

One can use the adjusted Wald interval without regard-
ing its midpoint p = (X +2)/(n +4) as the preferred point
estimate of p. However, this rather strong shrinkage toward
.5 might often provide a more appealing estimate than p.
The mean square error of p equals [np(l — p) + 16(p —
5)2]/(n + 4)%, which is smaller than that of $ when p is
within v/3n? + 8n + 4/(6n + 4) of .5; this interval of val-
ues of p decreases from (.113, .887) to (.211, .789) as n in-
creases. Interestingly, Wilson (1927) mentioned this shrink-
age estimator as a reasonable alternative to the sample pro-
portion or the Laplace estimator (X + 1)/(n + 2). Letting
S denote X, the number of successes, Wilson stated, “As
the distribution of chances of an observation is asymmet-
ric, it is perhaps unfair to take the central value as the best
estimate of the true probability; but this is what is actually
done in practice. .. . Those who make the usual allowance
of 20 for drawing an inference would use (S +2)/(n+4).”

In recognition of his pioneering work, predating the fa-
mous articles by Neyman and Pearson on confidence inter-
vals, we suggest that statisticians refer to p = (X +2)/(n+

Coverage Coverage
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4) as the Wilson point estimator of p and refer to the score
confidence interval for p as the Wilson method. See Stigler
(1997) for an interesting summary of Edwin B. Wilson’s ca-
reer. Other highlights included service as the first professor
and head of the Department of Vital Statistics at Harvard
School of Public Health in 1922, the Wilson—Hilferty nor-
mal approximation for the chi-squared distribution in 1931,
and the Wilson—Worcester introduction of the median lethal
dose (LD 50) in bioassay.

4. OTHER INTERVAL ESTIMATION
METHODS FOR p

Although the focus of this article is comparison of the
Wald, score, and exact intervals, which are the methods
commonly presented in statistics textbooks, we next briefly
discuss some alternative methods. Some elementary text-
books (e.g., Siegel 1988), perhaps recognizing the poor per-
formance of the Wald intervals, suggest using ordinary ¢
confidence intervals for a mean for interval estimation of a
proportion. These intervals are wider than the Wald inter-
vals, of course, but we found that mean coverage probabil-
ities are still seriously deficient. Table 1 illustrates for the
uniform weighting.

Other, more complex, methods exist for constructing ex-
act confidence intervals, such as presented by Blyth and
Still (1983) and Duffy and Santner (1987). Our evaluations
of these intervals indicated that they perform better than the
Clopper—Pearson intervals but not as well as the score in-
tervals, still showing considerable conservatism. To reduce
the conservativeness inherent in exact methods for discrete
distributions, many authors recommend using tests and con-
fidence intervals based on the mid-P value, namely half the
probability of the observed result plus the probability of
more extreme results (Lancaster 1961). The mid-P confi-
dence interval is the inversion of the adaptation of the ex-
act test that uses the mid-P value. Results in Vollset (1993)
suggest that the mid-P interval tends to perform well but
is somewhat more conservative than the score interval, typ-
ically having actual coverage probability greater than (and
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never much less than) the nominal confidence level. Our
evaluations agreed with this, and are also illustrated in Ta-
ble 1. We feel this is a reasonable method to use, especially
if one is concerned that p may be very close to 0 or 1. It is
more complex computationally than the score and adjusted
Wald intervals, but like those intervals it has the advantage
of being shorter than the exact interval.

Yet another alternative method is a continuity-corrected
version of the score interval, based on the normal continu-
ity correction for the binomial. This interval approximates
the Clopper—Pearson interval, however, and our evaluations
and results in Vollset (1993, Fig. 2) suggest that it is often
as conservative as the exact interval itself. Again, Table 1
illustrates, and we do not recommend this approach.

Finally, we mention two other methods that perform well.
The confidence interval based on inverting the likelihood-
ratio test is similar to the score interval in terms of how it
compares with the exact interval, but it is more complex to
construct. Not surprisingly, Bayesian confidence intervals
with beta priors that are only weakly informative also per-
form well in a frequentist sense (see, e.g., Carlin and Louis
1996, pp. 117-123).

In deciding whether to use the score interval, some may
be bothered by its poor coverage for values of p just below
the lower boundary of the interval when X = 1 and just
above the upper boundary of the interval when X =n — 1.
One could then use an adapted version that replaces the
lower endpoint by —log(l — a)/n when X = 1 and the
upper endpoint by 1+ log(1 — a)/n when X =n —1. (e.g.,
at p=—log(l—a)/n, P(X =0)=[1+log(l—a)/n|" ~
1 — o) This adaptation improves the minimum coverage
considerably. For instance, the nominal 95% interval has
minimum coverage probability converging to .895 for large
n, which is the large-sample coverage probability at p just
below the lower endpoint of the interval when X = 2.

5. CONCLUSION AND EXTENSIONS

The Clopper—Pearson interval has coverage probabilities
bounded below by the nominal confidence level, but the
typical coverage probability is much higher than that level.
The score and adjusted Wald intervals can have coverage
probabilities lower than the nominal confidence level, yet
the typical coverage probability is close to that level. In
forming a 95% confidence interval, is it better to use an ap-
proach that guarantees that the actual coverage probabilities
are at least .95 yet typically achieves coverage probabilities
of about .98 or .99, or an approach giving narrower inter-
vals for which the actual coverage probability could be less
than .95 but is usually quite close to .95?7 For most appli-
cations, we would prefer the latter. The score and adjusted
Wald confidence intervals for p provide shorter intervals
with actual coverage probability usually nearer the nominal
confidence level. In particular, even though the score and
adjusted Wald intervals leave something to be desired in
terms of satisfying the usual technical definition of “95%
confidence,” the operational performance of those methods

is better than the exact interval in terms of how most prac-
titioners interpret that term.

Results similar to those in this article also hold in other
discrete problems. For instance, similar comparisons apply
for score, Wald, and exact confidence intervals for a Pois-
son parameter u, based on an observation X from that dis-
tribution. Figure 5 illustrates, plotting the actual coverage
probabilities when the nominal confidence level is .95. Here,
the score interval for y results from inverting the approx-
imately normal test statistic z = (X — p)/+/fo, the Wald

interval results from inverting z = (X — po)/v/X, and the
endpoints of the exact interval, (1/2)(x3 X..025° xg( x +1)7_975),
result from equating tail sums of null Poisson probabilities
to .025 (Garwood 1936; for n independent Poisson obser-
vations, Xi,...,X,, the same formulas apply if one lets
X =Y X; and p = F(X) = nE(X;)). For another discrete
example, see Mehta and Walsh (1992) for a comparison of
exact with mid- P confidence intervals for odds ratios or for
a common odds ratio in several 2x2 contingency tables.

Exact inference has an important place in statistical infer-
ence of discrete data, in particular for sparse contingency
table problems for which large-sample chi-squared statis-
tics are often unreliable. However, approximate results are
sometimes more useful than exact results, because of the
inherent conservativeness of exact methods.

[Received February 1997. Revised November 1997.]
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