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 SUMMARY

 Two types of model are discussed for paired comparisons of several treatments using ordinal scales
 such as (A <<< B, A << B, A < B, A= B, A > B, A >> B, A >>> B), where A <<< B denotes strong
 preference for treatment B over treatment A, A << B denotes moderate preference for B, A < B
 denotes weak preference for B, A = B denotes no preference, and so forth. For the binary scale (A < B,
 A > B), special cases of the models using logit transforms simplify to the Bradley-Terry model. When
 the same raters compare each pair of treatments, one can allow within-rater dependence by fitting
 the models with constrained maximum likelihood.

 Keywords: Bradley-Terry model; Constrained maximum likelihood; Logit models; Log-linear
 models; Probit model; Repeated measures; Wilcoxon signed rank test

 1. Introduction

 This paper considers experiments in which responses are categorical measurements
 resulting from pairwise comparisons of treatments. For instance, wine-tasters might
 compare several brands of chardonnay wine in pairwise taste tests, in each
 comparison indicating which brand is preferable. Or, fashion designers might make
 pairwise comparisons of fabrics, indicating which is softer to the touch.

 In a comparison of treatments h and i, let Yhi= 1 represent preference for i and
 Yhi= 2 represent preference for h. Bradley and Terry (1952) proposed a model having
 the logit representation

 log{P(Yhi= 1)/P(Yhi=2)} = i PIh
 for which P(Yhi=1) = iri/(7ri + 7rh), where .1rk = exp,Ik. This logit model has
 equivalent representations using the quasi-symmetry and quasi-independence models
 (Fienberg and Larntz, 1976; Imrey et al., 1976). David (1988) presented a good survey
 of this model and others for analysing paired comparison data.

 Rao and Kupper (1967) generalized the Bradley-Terry model to allow 'no
 preference' or 'tie' in a comparison. Glenn and David (1960) and Davidson (1970)
 presented related models. All three papers illustrated their models with data from an
 experiment described by Fleckenstein et al. (1958), in which 30 secretaries made
 pairwise comparisons of five brands of typewriter ribbon.

 Some applications permit comparisons by using a more refined ordinal scale.

 tAddress for correspondence: Department of Statistics, Fourth Floor Little Hall, University of Florida,
 GCainesville, FL 32611, USA.
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 TABLE 1

 Fit of models for pairwise comparisons of typewriter ribbons t

 Pair Results for the following scale of preference for brands h and i:
 (h, i) Strong Moderate Mild No Mild Moderate Strong

 for i for i for i preference for h for h for h

 1, 2 4 (2.1) 4 (5.5) 0 (2.6) 5 (4.9) 5 (3.1) 8 (7.9) 4 (3.7)

 (1.9) (5.4) (2.8) (5.4) (3.4) (7.9) (3.3)
 (1.9) (6.0) (2.8) (5.2) (3.2) (7.7) (3.3)

 1, 3 5 (5.2) 12 (9.6) 4 (3.3) 6 (4.6) 0 (2.1) 2 (3.9) 1 (1.3)

 (4.9) (9.6) (3.4) (4.8) (2.2) (3.8) (1.2)
 (5.2) (9.2) (3.2) (4.7) (2.4) (4.3) (1.0)

 1, 4 0 (0.7) 2 (2.4) 2 (1.5) 2 (3.9) 5 (3.3) 15 (11.2) 4 (7.0)
 (0.8) (2.8) (1.7) (4.0) (3.2) (10.7) (6.8)
 (0.6) (3.1) (1.9) (4.2) (3.1) (10.0) (7.1)

 1, 5 4 (3.2) 4 (7.2) 5 (3.0) 4 (5.0) 2 (2.8) 8 (6.2) 3 (2.6)
 (2.8) (7.1) (3.2) (5.5) (3.0) (6.1) (2.2)
 (2.9) (7.4) (3.1) (5.2) (2.9) (6.3) (2.2)

 2, 3 6 (6.2) 9 (10.6) 3 (3.3) 4 (4.2) 1 (1.8) 4 (2.9) 3 (0.9)
 (6.3) (10.5) (3.2) (4.2) (1.8) (3.0) (0.9)

 (6.4) (9.7) (3.2) (4.4) (2.1) (3.5) (0.8)
 2, 4 2 (1.0) 4 (3.2) 1 (1.9) 6 (4.3) 4 (3.4) 8 (10.3) 5 (5.9)

 (1. 1) (3.6) (2.1) (4.6) (3.4) (9.9) (5.3)
 (0.9) (3.8) (2.2) (4.6) (3.2) (9.5) (5.8)

 2, 5 5 (4.1) 5 (8.4) 6 (3.2) 6 (4.9) 1 (2.5) 4 (5.0) 3 (1.9)
 (3.7) (8.4) (3.4) (5.3) (2.7) (4.9) (1.7)
 (3.8) (8.2) (3.2) (5.1) (2.7) (5.4) (1.6)

 3, 4 0 (0.3) 1 (1.1) 0 (0.9) 3 (2.7) 1 (2.9) 13 (12.4) 12 (9.7)
 (0.4) (1.4) (0.9) (2.5) (2.3) (1 1.0) (11.6)
 (0.2) (1.5) (1. 1) (2.9) (2.4) (10.2) (11.7)

 3, 5 1 (1.5) 6 (4.3) 3 (2.2) 4 (4.7) 3 (3.3) 11 (9.2) 2 (4.8)
 (1.4) (4.2) (2.4) (5.0) (3.4) (9.2) (4.4)
 (1.3) (4.8) (2.5) (4.9) (3.2) (8.8) (4.6)

 4, 5 6 (7.4) 12 (11.4) 5 (3.3) 3 (3.7) 1 (1.4) 3 (2.2) 0 (0.6)
 (7.4) (1 1.0) (3.1) (3.8) (1.6) (2.5) (0.7)
 (8.0) (10.1) (3.0) (3.9) (1.8) (2.7) (0.5)

 tSource of data, Fleckenstein et al. (1958); the first value for each pair is the fit from the adjacent categories logit
 model, the second is from the cumulative logit model and the third is from the cumulative probit model.

 Comparisons of treatments h and i might use a scale such as (h <<< i, h << i, h < i,
 h = i, h > i, h >> i, h >>> i), where h <<< iindicates strong preference for iover h, h << i
 indicates moderate preference for i, h < i indicates mild preference for i, h = i
 indicates no preference, and so forth. In fact, this was the scale reported by Flec-
 kenstein et al. (1958) for comparisons of typewriter ribbons. Table 1 exhibits their
 data. This paper adapts two types of model for ordinal responses (Agresti, 1990) to
 analyse paired comparison data such as Table 1. We also discuss fitting the models by
 using constrained maximum likelihood to allow within-rater dependence when the
 same raters compare each pair of treatments.

 2. Cumulative Link Model

 Let Idenote the number of treatments, and let Jdenote the number of categories in
 the ordinal response scale. For a randomly selected rater, let P(Yhi =j) denote the
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 probability that comparison of treatments h and i results in response j, where j = 1
 denotes the least favourable response for h and j = J denotes its most favourable
 response. We assume that the scale is symmetric, in the sense that Yhi =j is equivalent
 to Yih = J-j+ 1, for allj.

 We first specify a model by generalizing arguments given by Glenn and David
 (1960) and Anderson and Philips (1981). For comparison of treatments h and i,
 suppose that there is an underlying continuous response variable Y)*. Let a1 <a2 <

 < aj- I denote cutpoints such that Yhi =1 when Y * falls between aj1 and aj, j = 1,
 J, where cao= -oo and !j = 00. We assume that Y,* can be expressed as

 Yh*= Yh - Yi, where Y, represents an underlying rating of treatment t, t = 1, . ., I.
 Finally, we assume that there are treatment merit parameters { ,u, } such that (Yh - h 9
 Yi- ,ui) has the same distribution for each treatment pair. Then, Z = Yi - ,ui - (Yh -
 I-'h) has the same distribution for each pair and

 Yhi = j is equivalent to aj-I - (1h - /Ii) < Z < a? - (/4h - 4i)

 Let F denote the cumulative distribution function of Z. Since Z has the same
 distribution as - Z, Fis symmetric about 0, satisfying F- '(r) = -F- '(1 - ir) for all 0
 < 7r < 1. Paired comparisons satisfy the model

 F'{P(Yhi 6j)} = aj - (Ith-I/i), j= 1, ... ., J-1. (2.1)
 Important special cases for Fare the logistic and the standard normal models. For the
 logistic model, F- 1 is the logit link and equation (2.1) is a cumulative logit model. For
 the normal model, F- 1 is the probit link. In its general form, we refer to equation (2.1)
 as a cumulative link model. We assume an absence of an effect of the order in which
 two treatments are compared or listed, in that P(Yhi < j) = P(Yih > J-j + 1). The
 symmetry of F implies that axj = - aj._1, j= l. . ., J- 1, so that Eaja= 0 andaZJ/2 = 0
 when J is even. Model identifiability requires a constraint such as E Ita = 0 or ,It = 0.

 For the logit link, a simple interpretation of model (2.1) follows from the
 expression

 log P(h Z j)I)P(Yhi >1)) -(t th [P(Y,h <- j)IP(Y,h > }?)3 (i/h

 The odds that treatment i is rated better than treatment h by at least some fixed
 amount are exp{2(ui - ,Uh)} times the odds that h is rated better than i by at least that
 amount. Equivalence of the Itreatments corresponds to ,u = /U2 = ... =

 For the logit link, model (2.1) simplifies to the Bradley-Terry model when J= 2 and
 to the Rao-Kupper model allowing ties when J= 3. Tutz (1986) and Cox and Snell
 (1989) used this model. For the probit link, model (2.1) with J=2 is called the
 Thurstone-Mosteller model (Mosteller, 1951), and when J= 3 it simplifies to a model
 allowing ties proposed by Glenn and David (1960). The cumulative link model (2.1) is
 a special case of a model described by McCullagh (1980) (see also Walker and Duncan
 (1967)) in which treatment effects are the same for each cutpoint j for cumulative
 probabilities.

 3. Adjacent Categories Logit Model

 The model of form (2.1) also makes sense when we apply the link with adjacent
 response probabilities, rather than cumulative probabilities. Conditional on response
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 j orj + 1, we could assume that an underlying random variable Z + ,^i - ,th determines
 the preference, where Z has the same distribution for each pair of treatments and each
 pair of responses. For the logit link, the model in this case is

 log{ P(Yhi=j)/P(Yhi=j+ 1)} = a- (AIh -i), j=1, . . ., J- 1. (3.1)

 Assuming that there is no effect relating to the order in which raters observe

 treatments, this logit is the same as log{P(Yih= J-j+ l)/P(Yih= J-j)}, so that aj
 -CJ_j= j=1, . ..,J-1.
 Model (3.1) satisfies

 P(Yhi j)/P(Yih =j) = exp{(J+ 1 -2])(Ai - AMh)} (3.2)
 When J= 7, if X = exp{2(ti - ,Uh)} is the odds that treatment i is mildly preferred to
 treatment h (instead of h being mildly preferred to i), then X2 iS the odds that i is
 moderately preferred (instead of h being moderately preferred), and X3 is the odds that
 i is strongly preferred. For a fixed set of categories, model (3.1) is simpler to interpret
 than the cumulative link model (2.1). The interpretation refers directly to an odds for
 a given outcome, rather than an odds ratio for two groupings of outcomes. Models

 (3.1) and (2.1) share the property that Yhi is stochastically higher than Yih when
 ,-i < I4h. Like the cumulative logit model, equation (3.1) simplifies to the
 Bradley-Terry model when J= 2.

 Model (3.1) treats each pair of adjacent responses identically. More generally, we

 could permit a positive 'distance' dj between responsesj andj + 1, where dj = dj-j for
 i = 1, . . ., J- 1, such that Z + dj(,i - Uth) has the same distribution for each pair of
 responses. A small distance diminishes influences of treatment effects. This leads to a
 generalization of model (3.2) satisfying

 P(Yhi=])/P(Yih=j) = exp{(vj_j+ 1-Vi)(Ai-h)} (3.3)

 where {v;} are monotone scores satisfying {vj+1 - vj = dj}. Without loss of
 generality, we can let { vj } satisfy vj = - V-j+1 .

 For a sample, let n(hi)j denote the number of times that response j occurs in
 comparing treatment h with treatment i, for each h < i and j= 1,. . ., J. Let {m(hi)1 }
 denote expected frequencies for the (') x J contingency table in which each row
 displays comparisons for a particular pair of treatments. Model (3.3) is equivalent to
 the log-linear model

 log m(hi)i = /1L + + hi) +X Vi (*h -i) (3.4)

 where, for all j, Xjy = Xyj+1. This model is a special case of the row effects model
 introduced by Goodman (1979).

 Let

 n(hi)+ = Znl(hi)j,

 n(+)j= ZZn(hi)j,
 h<i

 n(k)j Z n(ka)j + Z n(ak)J-j+1
 a>k a<k
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 and

 n(k)+= Z n(k)j.

 Then n(k)j is the number of times that responsej is made in comparing treatment k with
 all other treatments. Suppose that we treat the n(hi)+ comparisons of treatments h and
 i on the J-category scale as independent multinomial trials, and suppose that
 comparisons of different pairs of treatments are independent. Then cell counts in

 different rows of {n(hi)j} are independent multinomial samples, and the likelihood
 equations for model (3.4) are

 M(hi)+ = n(hi)+ for all h<i,

 M(+)] + M(+)jj+l = fn(+)j + n(+)j-j+1, 1= 1,. . .,J

 ViM(k)j= Vjn(k)j, k= i, . .,I.
 i i

 With the first equation, the last set of equations implies that for the scores {v;} the
 mean response when treatment k is compared with other treatments is the same for the
 observed and fitted data. Thus, like model (2.1), model (3.3) gives a way of describing
 location shifts among treatments. In fact, for this model, the maximum likelihood
 (ML) estimates { ,4U } have the same order as these sample means.

 The last set of likelihood equations results from differentiating the log-likelihood

 with respect to {I-k}. Let Mk = F2jvjn(k)j, k= 1, . . ., I. For the hypothesis of no
 treatment effects (Ho: I, = . . . = ,u, let (7r,, . . ., 7rj) with 7rj = 7rj-j +I denote the
 response distribution for each pair of treatments. Under Ho, E(Mk) = 0, var(Mk) =
 n(k)+ , vj27rj and cov(Mh, Mk) = - n(hk) + E vj2frj. When there is the same number of
 observations for each pair of treatments, the correlation for each (Mh, Mk) pair is
 - (I- 1)-i, and the efficient score statistic for testing Ho then has the simple form

 (I- 1) w Mk2/2 E vj2n(+)j. (3.5)

 Its asymptotic null distribution is x2 with I - I degrees of freedom.

 4. Fitting the Models

 For the independent multinomial sampling model, we can obtain ML fitting of the
 cumulative link model (2.1) by using an iterative routine described by McCullagh
 (1980). For logit and probit links, this can be implemented in SAS by using the
 procedure LOGISTIC. We can obtain ML fitting of model (3.3) with standard
 Newton-Raphson routines for log-linear models or the equivalent logit models. This
 can be implemented, for instance, in SAS by using procedure CATMOD and in
 GLIM.

 For the cumulative link or adjacent categories logit models, we can test the

 goodness of fit by comparing observed counts {n(hi)i} with fitted values {m(hi)j} for
 the model, by using a likelihood ratio statistic G2. The residual degrees of freedom for
 the x2-distribution are (')(J- 1) - {(I- 1) + (J- 1)/2} when Jis odd and (')(J- 1) -
 {(I- 1) + (J- 2)/2} when J is even. For either model, we can test the hypothesis of
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 equivalent treatments by the reduction in the likelihood ratio statistic compared with

 the simpler model having I,u = . . . = I,u, based on I- 1 degrees of freedom.

 5. Example

 Table 1 displays ML fitted values for logit model (3.1) applied to the typewriter
 ribbon data. The table is sparse, but the model seems to fit well, with G2= 48.2 based
 on 53 degrees of freedom. Table 2 shows the ML estimates for the model, with the
 constraint E I'-k =0. For ribbons 3 and 4, for instance, conditional on the event that
 one of them is mildly preferred, exp[2{0.270 - ( - 0.340)}] = 3.4 is the estimated odds
 that ribbon 3 is mildly preferred to ribbon 4. Similarly, (3.39)2 = 11.5 is the estimated
 odds that ribbon 3 is moderately preferred to ribbon 4, and (3.39)3 = 38.9 is the
 estimated odds that ribbon 3 is strongly preferred to ribbon 4. The likelihood ratio

 statistic for testing /.l = A2 = . . . = , equals 60.7, and the efficient score statistic
 (3.5) equals 60.4, both based on 4 degrees of freedom. Using the estimated covariance
 matrix of { jk }, we performed Bonferroni multiple comparisons for the 10 pairs of
 ribbons. For any overall confidence level between 0.60 and 0.96, ribbon 3 ranks best,
 ribbon 4 ranks worst, and ribbons (5, 1, 2) are all worse than ribbon 3 and better than
 ribbon 4 but not significantly different from each other.

 We also used the more general form (3.3) of this logit model for unequal interval
 scores. Rather than assigning scores, we could treat the {v; } themselves as
 parameters. The related association model (3.4) is no longer log-linear but is a special
 case of a log-multiplicative (row-column) model introduced by Goodman (1979).

 When we fitted this model subject to the constraint {vj = - vj-j+ I allj } and achieved
 identifiability by setting V7 = - VI = 3.0, we obtained estimated scores { - 3, - 2.32,
 -1.93, 0, 1.93, 2.32, 3} and treatment effects {0.041, -0.053, 0.238, -0.304,
 0.079}. The estimated odds of mild, moderate and strong preference of treatment 3 to
 treatment 4 are then 8.1, 12.4 and 25.9. This model has residual G2 = 45.6, based on 51
 degrees of freedom, so the fit is not better than that provided by the simpler model.

 TABLE 2

 Parameter estimates for models fitted to the typewriter ribbon data I

 Parameter Estimates for the following models:
 Adjacent categories Cumulative Cumulative

 logit probit logit

 sz1 -0.85 -1.38 -2.40

 ca2 0.83 -0.49 - 0.83
 a3 -0.54 -0.22 -0.37

 Al1 0.042 (0.040) 0.058 (0.076) 0.117 (0.129)
 1z2 --0.050 (0.040) - 0.088 (0.076) -0.196 (0.130)
 A3 0.270 (0.046) 0.494 (0.079) 0.887 (0.138)
 A4 --0.340 (0.050) -0.607 (0.080) -1.048 (0.141)
 A5 0.078 (0.041) 0.143 (0.076) 0.240 (0.130)
 G2 48.2 54.8 49.8
 Degrees of freedom 53 53 53

 Test of homogeneityl 60.7 77.7 82.7

 tEstimated asymptotic standard errors are given in parentheses.
 I4 degrees of freedom.
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 Table 1 also displays ML fitted values for the cumulative logit and probit models.
 These models also fit quite well. Table 2 shows their ML estimates. The fits and the
 estimates are qualitatively similar to those for model (3.1). The probit fit gives ji3 - 4
 = 1.10. For an assumed underlying normal distribution of preference, we estimate
 that the difference in means between treatments 3 and 4 is about a standard deviation
 of the difference scale. The latent variable Z in the construction for cumulative link
 models in Section 2 has standard deviation 1 for the probit (inverse standard normal)
 link and standard deviation xr/31/2= 1.8 for the logit (inverse logistic) link. Both
 models fit Table 1 well, so if we divide the parameter estimates for the cumulative logit
 model by 1.8 we obtain estimates similar to those for the cumulative probit model.

 6. Alternative Estimation for Dependent Samples

 The standard assumption in ML fitting of Bradley-Terry models and their
 extensions is that different ratings of the same pair or different pairs of treatments are
 statistically independent. For data such as Table 1, this may not be valid, since the
 same 30 secretaries rated each pair of typewriter ribbons. Different ratings by the
 same secretary may be statistically dependent. If the separate ratings by each secretary
 were available (they are not), we could investigate this dependence by fitting models in
 a different manner.

 Let p = (') be the number of pairs of treatments. When all n raters evaluate each
 pair, the frequencies of the joint ratings can be displayed in a JP contingency table.
 Models discussed in this paper apply to the one-dimensional margins of that table.
 Suppose that there is within-rater dependence of ratings but the one-way margins of
 this table are treated as independent samples. From arguments in Liang and Zeger
 (1986), ML estimates of model parameters are still consistent, if the model holds.
 However, the estimates of the standard errors are not valid.

 To allow potential within-rater dependence, we fit models to the margins of the
 joint ratings table, treating cell counts in that table as multinomial or independent
 Poisson variates, i.e. we maximize the likelihood subject to the constraint that the
 model holds for the one-way margins. To do this, we used a Fisher scoring algorithm
 adapted from Aitchison and Silvey (1958) and Haber (1985) to obtain ML cell fitted
 values, and then used the delta method to obtain the ML model parameter estimates
 and their estimated covariance matrix.

 Using notation from Aitchison and Silvey (1958) and Haber (1985), we let 0 denote
 the constrained ML estimate of the cell expected frequencies 0 in the table of joint
 ratings. The marginal expected frequencies are AO for an appropriate matrix A of Os
 and Is. Assume independent Poisson sampling for cell counts in the joint ratings
 table, and suppose that the model of interest for the marginal distributions has form
 C log(AO) = X,f. The model corresponds to constraints U'C log(AO) = 0, where U
 has columns that span the space orthogonal to that spanned by the columns of X. The
 information matrix for Poisson sampling and the matrix of derivatives of the
 constraint equations are

 B = diag(0)1,

 H = A' diag(AO)-1C'U,

 where diag( ) denotes the diagonal matrix with elements of the vector on the main
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 TABLE 3

 Data from the soft drink testing experiment

 A-B A-C B-C A-B A-C B-C A-B A-C B-C A-B A-C B-C A-B A-C B-C

 1 1 2 2 1 1 2 3 3 3 3 4 4 3 3
 1 1 4 2 1 5 2 3 4 3 4 1 4 3 4
 1 2 2 2 1 5 2 3 4 3 4 2 4 3 4
 1 2 3 2 1 5 2 4 3 3 4 4 4 3 5
 1 2 3 2 2 1 2 4 4 3 5 2 4 4 2
 1 2 3 2 2 3 2 4 4 3 5 4 4 4 2
 1 2 3 2 2 3 2 4 5 4 1 1 4 4 4

 1 2 5 2 2 4 3 1 2 4 1 4 4 5 2
 1 4 4 2 2 5 3 2 1 4 1 4 5 1 3
 1 4 5 2 2 5 3 2 3 4 2 2 5 2 1

 1 4 5 2 3 2 3 2 3 4 2 5 5 5 1

 1 5 4 2 3 2 3 3 3 4 3 2 5 5 3
 1 5 5

 tA i Coke, B i Classic Coke, C Pepsi.

 diagonal. Aitchison and Silvey (1958) showed that n"(0 - 0) is asymptotically
 normal, with estimated covariance matrix of 0 given by

 P = B-1{1-H(H'B-'H)-'H'B-11.
 Since , = (X'X)- 'X'C log(AO), the estimated asymptotic covariance matrix of , is

 (X'X) - I X'C diag(AO) - 'APA' diag(AO) - 1 C'X(X'X) - 1.

 To illustrate this dependence analysis, we consider Table 3, which refers to a soft
 drink tasting experiment in which each subject made pairwise comparisons of Coke,
 Classic Coke and Pepsi. The 53 subjects were graduate students at the University of
 Florida taking courses (autumn 1989) in categorical data analysis or statistics for
 psychologists. The experiment used the rating scale (h >> i, h > i, h = i, h < i, h << i).
 In Table 3, the response sequence (1, 2, 5), for instance, means that the subject rated
 Coke much better than Classic Coke, Coke better than Pepsi and Classic Coke much
 worse than Pepsi. The joint ratings for the 53 subjects produce counts in a
 contingency table having 53= 125 cells. This table is highly sparse. The one-way
 margins to which the model applies are less sparse, with counts ranging from 2 to 19.

 Table 4 shows comparisons for ML fitting of the adjacent categories logit model
 (3.1) to these data. The drinks were ranked in the order (Coke, Pepsi, Classic Coke),
 but there is evidence of a difference only between Coke and Classic Coke. For these
 data, estimated asymptotic standard errors for estimated differences in parameters
 are similar whether we treat the three ratings by each subject as independent or
 dependent observations. The estimated differences are smaller for the dependence
 analysis, however, and that analysis shows less evidence of treatment effects. Though
 the two sets of estimates must be similar for large n when the model holds, they can be
 quite different when some one-way marginal counts are small or when the model fits
 poorly. Since the sample size is relatively small, it is improper to make generalizations
 from the results in Table 4, but they do show that it may be unwise blindly to assume
 independence of repeated ratings in paired comparison models.
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 TABLE 4

 Comparisons from ML fitting of the adjacent categories logit model to Table 3 t

 Comparison Results for the following samples:
 Independent Dependent

 samples samples

 Al - A2 0.258 (0.095) 0.182 (0.092)
 Al - A3 0.148 (0.093) 0.102 (0.086)
 A2 - /3 -0.110 (0.093) -0.080 (0.088)
 Test of homogeneity 7.79 3.41
 Al = A2 = 31

 tEstimated asymptotic standard errors are given in parentheses.
 t2 degrees of freedom.

 Fitting a model by constrained ML is sometimes impractical, because the joint
 ratings table may be huge. For instance, the table for the typewriter ribbon analysis
 would have 710 = 2.8 x 108 cells. Since the asymptotic covariance of the sample
 marginal logits (or other links for the one-way margins) is determined by the (S) two-
 way marginal tables rather than by the entirep-way table, it is often feasible to obtain
 constrained estimates by using a weighted least squares analysis for such tables. The
 weighted least squares analysis seems to have reasonable validity when the one-way
 marginal totals mostly exceed 5, as recommended for related analyses described by
 Koch et al. (1977). Such an analysis can be performed with SAS (procedure
 CATMOD).

 Alternative ways to handle potential dependence are to obtain a robust estimate of
 the covariance matrix of the independence estimates that is consistent even when there
 is dependence, or to estimate the model parameters and to obtain their covariance
 estimates under some assumed correlation structure for within-rater dependence.
 This might be done by generalizing methods that Liang and Zeger (1986) and Lipsitz
 et al. (1990) proposed for dependent responses with logit models. A topic for future
 research is to compare methods of handling possible dependence.

 7. Other Comments

 Semenya et al. (1983) and Agresti et al. (1987) have described other ways of
 applying Bradley-Terry models to ordered categorical responses. Their models,
 which apply to standard one-way layout or regression problems rather than paired
 comparisons, describe the probability of concordance for pairs of settings of
 explanatory variables.

 Scheffe (1952) proposed an analysis of variance for ordinal paired comparisons,
 based on assigning monotone scores {vj} to the response scale and using ordinary
 least squares. Scheffe's model deals directly with estimating mean responses for the
 treatments for that assigned scale. A simple version of his model implies that

 E Vj1P(Yhi =i) = I-h -i

 for all h and i, wherev; = - Vj I for allj. For fixed {vj }, Scheffe's analysis gives the
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 same ranking of the treatments as does logit model (3.3). Scheffe's analysis treats the
 observed response as normally distributed with constant variance, rather than
 categorical. Alternatively, we could recognize the categorical nature of the scale by
 fitting his model by using ML or weighted least squares, assuming multinomial
 sampling.

 The analysis of treatment effects with logit model (3.3) also has connections with
 nonparametric methods for matched pairs. For pairwise comparisons of Itreatments,
 Mehra (1964) proposed a generalization of the Wilcoxon signed rank statistic. The

 efficient score statistic (3.5) for model (3.3) with signed mid-rank scores for { vj } is
 simply Mehra's test generalized to allow for ties and falls in a class of statistics
 discussed by Ghosh (1973). For I=2, the score test of treatment effect with the
 Bradley-Terry model for a binary scale is the sign test. For large J, we expect
 the efficiency of treatment comparisons based on model (3.3) relative to the
 Bradley-Terry model to be approximated by the efficiency of Mehra's test relative to

 the test using the Bradley-Terry model, at least when the scores { vj } are highly
 correlated with signed mid-rank scores. In a balanced case, Mehra noted that this
 efficiency is the same as that of the Wilcoxon test relative to the sign test. For many
 standard underlying distributions (e.g. normal, logistic), the efficiency gain may be
 considerable.

 The Bradley-Terry model has been generalized in various ways to account for
 possible departures from basic assumptions. Many modifications apply in a straight-
 forward manner to models discussed here. For instance, to account for an effect
 relating to the order in which a rater observes treatments, we could follow Fienberg
 (1979) and Cox and Snell (1989), p. 160, and add a parameter that induces a shift in
 the cutpoints, so that for all h < i

 F 1{P(Yhi < i)} = F- {P(Yih > J-j+ 1)} + 6.
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